1
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
2
|
Chen A, Li Q, Huang Y, Li Y, Chuang YN, Hu X, Guo S, Wu Y, Guo Y, Bian J. Feasibility of Identifying Factors Related to Alzheimer's Disease and Related Dementia in Real-World Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.10.24302621. [PMID: 38405723 PMCID: PMC10889002 DOI: 10.1101/2024.02.10.24302621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A comprehensive view of factors associated with AD/ADRD will significantly aid in studies to develop new treatments for AD/ADRD and identify high-risk populations and patients for prevention efforts. In our study, we summarized the risk factors for AD/ADRD by reviewing existing meta-analyses and review articles on risk and preventive factors for AD/ADRD. In total, we extracted 477 risk factors in 10 categories from 537 studies. We constructed an interactive knowledge map to disseminate our study results. Most of the risk factors are accessible from structured Electronic Health Records (EHRs), and clinical narratives show promise as information sources. However, evaluating genomic risk factors using RWD remains a challenge, as genetic testing for AD/ADRD is still not a common practice and is poorly documented in both structured and unstructured EHRs. Considering the constantly evolving research on AD/ADRD risk factors, literature mining via NLP methods offers a solution to automatically update our knowledge map.
Collapse
Affiliation(s)
- Aokun Chen
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Qian Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu Huang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yongqiu Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu-neng Chuang
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Xia Hu
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Serena Guo
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL 32610
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| |
Collapse
|
3
|
Yang H, Qin Q, Wang M, Yin Y, Li R, Tang Y. Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cell Immunol 2023; 391-392:104743. [PMID: 37451918 DOI: 10.1016/j.cellimm.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.
Collapse
Affiliation(s)
- Hanchen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruiyang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
| |
Collapse
|
4
|
Song Y, Niu J, Ji Y, Zhang Y, Peng R, Li M, Wang Z, Tang T, Yu Z, Huang Y. Prevalence and risk factors of dementia in elder adults in Xiamen, China: A cross-sectional study. Psychogeriatrics 2023; 23:71-76. [PMID: 36353810 DOI: 10.1111/psyg.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND The prevalence of dementia can vary by region and there is a cluster of more than 10 modifiable risk factors for dementia. Therefore, this study aimed to determine the prevalence of dementia in Xiamen, China, and identify independent risk factors associated with dementia. METHODS This cluster sampling-based cross-sectional study enrolled elder adults from Xiamen City and conducted face-to-face interviews between April and August 2019. Data on the demographic characteristics and prevalence of dementia were collected. Multivariable logistic regression was used to analyse the factors associated with dementia. RESULTS A total of 6430 subjects were enrolled. The prevalence of dementia was 7.62% (490/6430). A total of 490 patients were in the dementia group and 196 healthy matched subjects were selected for the control group with similar profiles for age, gender, and occupation as the dementia patients. Dementia patients were at increased risk for cerebrovascular disease, traumatic brain injury, and hypertension (all P < 0.05). Multivariable logistic regression analysis showed hypertension (odds ratio (OR) = 2.4, 95% confidence interval (CI): 1.62-3.63, P < 0.001) and traumatic brain injury (OR = 2.19, 95% CI: 1.16-4.53, P = 0.023) were independent risk factors for dementia. CONCLUSIONS The prevalence of dementia was high among elder adults residing in Xiamen, China. Dementia patients were more likely to have hypertension and traumatic brain injury than the matched control group.
Collapse
Affiliation(s)
- Yehua Song
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jianping Niu
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yong Ji
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yiwen Zhang
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Ruiqiang Peng
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Miaoduan Li
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Zetuo Wang
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Ting Tang
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Zhenzhen Yu
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yanyan Huang
- Department of Neurology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
5
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
6
|
Lee KH, Kang KM. Association between Cerebral Small Vessel and Alzheimer’s Disease. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:486-507. [PMID: 36238505 PMCID: PMC9514514 DOI: 10.3348/jksr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
뇌소혈관질환은 뇌 자기공명영상에서 흔히 관찰되는 혈관성 변화로 뇌백질 고신호강도, 뇌미세출혈, 열공성 경색, 혈관주위공간 등을 포함한다. 이러한 혈관성 변화가 알츠하이머병(Alzheimer’s disease; 이하 AD)의 발병 및 진행과 관련되어 있고, 대표 병리인 베타 아밀로이드 및 타우 단백의 침착과도 연관되어 있다는 증거들이 축적되고 있다. 혈관성 변화는 생활 습관 개선이나 약물 치료를 통해 예방과 개선이 가능하기 때문에 뇌소혈관질환과 AD 및 AD 생체지표의 관련성을 연구하는 것이 중요하다. 본 종설에서는 AD와 AD 생체지표에 대해 간략히 소개하고, AD와 혈관성 변화의 관련성에 대해 축적된 증거들을 제시한 다음, 뇌소혈관질환의 병태 생리와 MR 영상 소견을 설명하고자 한다. 또 뇌소혈관질환과 AD 진단의 위험도 및 AD 생체지표와의 관련성에 대한 기존 연구 결과들을 정리하고자 한다.
Collapse
Affiliation(s)
- Kyung Hoon Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
8
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
Ebrahimi Z, Talaei S, Aghamiri S, Goradel NH, Jafarpour A, Negahdari B. Overcoming the blood-brain barrier in neurodegenerative disorders and brain tumours. IET Nanobiotechnol 2020; 14:441-448. [PMID: 32755952 PMCID: PMC8676526 DOI: 10.1049/iet-nbt.2019.0351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 07/31/2023] Open
Abstract
Drug delivery is one of the major challenges in the treatment of central nervous system disorders. The brain needs to be protected from harmful agents, which are done by the capillary network, the so-called blood-brain barrier (BBB). This protective guard also prevents the delivery of therapeutic agents to the brain and limits the effectiveness of treatment. For this reason, various strategies have been explored by scientists for overcoming the BBB from disruption of the BBB to targeted delivery of nanoparticles (NPs) and cells and immunotherapy. In this review, different promising brain drug delivery strategies including disruption of tight junctions in the BBB, enhanced transcellular transport by peptide-based delivery, local delivery strategies, NP delivery, and cell-based delivery have been fully discussed.
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Students' Scientific Research Center, Virology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Joseph CR. Novel MRI Techniques Identifying Vascular Leak and Paravascular Flow Reduction in Early Alzheimer Disease. Biomedicines 2020; 8:biomedicines8070228. [PMID: 32698354 PMCID: PMC7400582 DOI: 10.3390/biomedicines8070228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
With beta amyloid and tau antibody treatment trial failures, avenues directed to other facets of the disease pathophysiology are being explored to treat in the preclinical or early clinical state. Clear evidence of blood–brain barrier (BBB) breakdown occurring early in the AD process has recently been established. Likewise, the glymphatic system regulating water and solute inflow and outflow in parallel with the vascular system is affected causing delayed clearance of fluid waste. Its dysfunction as a component of AD along with BBB leak are reasonable candidates to explore for future treatments. Ideally, human medication trials require a minimally invasive method of quantifying both improvements in BBB integrity and glymphatic fluid clearance correlated with clinical outcomes. We will review the known physiology and anatomy of the BBB system, and its relationship to the glymphatic system and the microglial surveillance system. Dysfunction of this tripart system occurring in preclinical Alzheimer disease (AD) will be reviewed along with existing MRI tools for identifying altered flow dynamics useful for monitoring improved functionality with future treatments. High-resolution dynamic contrast enhanced MRI imaging demonstrating BBB leak and the recently reported non-invasive 3D PASL MRI pilot study demonstrating significant delay in glymphatic clearance in AD subjects appear to be the best candidates.
Collapse
Affiliation(s)
- Charles R Joseph
- Department of Internal Medicine, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA
| |
Collapse
|
11
|
Garrett MD. Multiple Causes of Dementia as Engineered Senescence. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
All traumas—cranial, cardiovascular, hormone, viral, bacterial, fungi, parasites, misfolded protein, genetic, behavior, environmental and medication—affect the brain. This paper itemizes studies showing the many different causes of dementia including Alzheimer’s disease. Causes interact with each other, act sequentially by preparing the optimal conditions for its successor, initiate other diseases, allow for other traumas to accumulate and degrade protective features of the brain. Since such age-related cognitive impairment is not exclusively a human attribute there might be support for an evolutionary theory of dementia. Relying on theories of antagonistic pleiotropy and polymorphism, the brain has been designed to sequester trauma. Because of increased longevity, the short-term tactic of sequestering trauma becomes a long-term liability. We are engineered to sequester these insults until a tipping point is reached. Dementia is an evolutionary trade-off for longevity. We cannot cure dementia without understanding the overall biology of aging.
Collapse
|
12
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
13
|
Román G, Jackson R, Reis J, Román A, Toledo J, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019; 175:705-723. [DOI: 10.1016/j.neurol.2019.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
14
|
Gyanwali B, Shaik MA, Venketasubramanian N, Chen C, Hilal S. Mixed-Location Cerebral Microbleeds: An Imaging Biomarker for Cerebrovascular Pathology in Cognitive Impairment and Dementia in a Memory Clinic Population. J Alzheimers Dis 2019; 71:1309-1320. [DOI: 10.3233/jad-190540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Muhammad Amin Shaik
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore, Singapore
| | | | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Department of Radiology and Nuclear medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, Harrington MG, Pa J, Law M, Wang DJJ, Jacobs RE, Doubal FN, Ramirez J, Black SE, Nedergaard M, Benveniste H, Dichgans M, Iadecola C, Love S, Bath PM, Markus HS, Al-Shahi Salman R, Allan SM, Quinn TJ, Kalaria RN, Werring DJ, Carare RO, Touyz RM, Williams SCR, Moskowitz MA, Katusic ZS, Lutz SE, Lazarov O, Minshall RD, Rehman J, Davis TP, Wellington CL, González HM, Yuan C, Lockhart SN, Hughes TM, Chen CLH, Sachdev P, O'Brien JT, Skoog I, Pantoni L, Gustafson DR, Biessels GJ, Wallin A, Smith EE, Mok V, Wong A, Passmore P, Barkof F, Muller M, Breteler MMB, Román GC, Hamel E, Seshadri S, Gottesman RF, van Buchem MA, Arvanitakis Z, Schneider JA, Drewes LR, Hachinski V, Finch CE, Toga AW, Wardlaw JM, Zlokovic BV. Vascular dysfunction-The disregarded partner of Alzheimer's disease. Alzheimers Dement 2019; 15:158-167. [PMID: 30642436 PMCID: PMC6338083 DOI: 10.1016/j.jalz.2018.07.222] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Judy Pa
- Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Law
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fergus N Doubal
- Neuroimaging Sciences and Brain Research Imaging Center, Division of Neuroimaging Sciences, Center for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, UK
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Hurvitz Brain Sciences Program, Canadian Partnership for Stroke Recovery, and LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| | - Maiken Nedergaard
- Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Ludwing-Maximilians-University Munich, Munich, Germany
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Seth Love
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, City Hospital Campus, Nottingham, UK; Stroke, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rustam Al-Shahi Salman
- Neuroimaging Sciences and Brain Research Imaging Center, Division of Neuroimaging Sciences, Center for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Terence J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rajesh N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rhian M Touyz
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael A Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jalees Rehman
- Department of Pharmacology, The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA; Department of Medicine, The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hector M González
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Samuel N Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher L H Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Australia, Sydney, Australia
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Leonardo Pantoni
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Deborah R Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, Brooklyn, NY, USA
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anders Wallin
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Eric E Smith
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Vincent Mok
- Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Adrian Wong
- Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter Passmore
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Frederick Barkof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands; Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Majon Muller
- Section of Geriatrics, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Monique M B Breteler
- Department of Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Gustavo C Román
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Rebecca F Gottesman
- Departments of Neurology and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zoe Arvanitakis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lester R Drewes
- Laboratory of Cerebral Vascular Biology, Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, USA
| | - Vladimir Hachinski
- Division of Neurology, Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Caleb E Finch
- Leonard Davis School of Gerontology, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanna M Wardlaw
- Neuroimaging Sciences and Brain Research Imaging Center, Division of Neuroimaging Sciences, Center for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, UK
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 2019; 99:21-78. [PMID: 30280653 PMCID: PMC6335099 DOI: 10.1152/physrev.00050.2017] [Citation(s) in RCA: 1236] [Impact Index Per Article: 247.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
17
|
ten Kate M, Ingala S, Schwarz AJ, Fox NC, Chételat G, van Berckel BNM, Ewers M, Foley C, Gispert JD, Hill D, Irizarry MC, Lammertsma AA, Molinuevo JL, Ritchie C, Scheltens P, Schmidt ME, Visser PJ, Waldman A, Wardlaw J, Haller S, Barkhof F. Secondary prevention of Alzheimer's dementia: neuroimaging contributions. Alzheimers Res Ther 2018; 10:112. [PMID: 30376881 PMCID: PMC6208183 DOI: 10.1186/s13195-018-0438-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), pathological changes may arise up to 20 years before the onset of dementia. This pre-dementia window provides a unique opportunity for secondary prevention. However, exposing non-demented subjects to putative therapies requires reliable biomarkers for subject selection, stratification, and monitoring of treatment. Neuroimaging allows the detection of early pathological changes, and longitudinal imaging can assess the effect of interventions on markers of molecular pathology and rates of neurodegeneration. This is of particular importance in pre-dementia AD trials, where clinical outcomes have a limited ability to detect treatment effects within the typical time frame of a clinical trial. We review available evidence for the use of neuroimaging in clinical trials in pre-dementia AD. We appraise currently available imaging markers for subject selection, stratification, outcome measures, and safety in the context of such populations. MAIN BODY Amyloid positron emission tomography (PET) is a validated in-vivo marker of fibrillar amyloid plaques. It is appropriate for inclusion in trials targeting the amyloid pathway, as well as to monitor treatment target engagement. Amyloid PET, however, has limited ability to stage the disease and does not perform well as a prognostic marker within the time frame of a pre-dementia AD trial. Structural magnetic resonance imaging (MRI), providing markers of neurodegeneration, can improve the identification of subjects at risk of imminent decline and hence play a role in subject inclusion. Atrophy rates (either hippocampal or whole brain), which can be reliably derived from structural MRI, are useful in tracking disease progression and have the potential to serve as outcome measures. MRI can also be used to assess comorbid vascular pathology and define homogeneous groups for inclusion or for subject stratification. Finally, MRI also plays an important role in trial safety monitoring, particularly the identification of amyloid-related imaging abnormalities (ARIA). Tau PET to measure neurofibrillary tangle burden is currently under development. Evidence to support the use of advanced MRI markers such as resting-state functional MRI, arterial spin labelling, and diffusion tensor imaging in pre-dementia AD is preliminary and requires further validation. CONCLUSION We propose a strategy for longitudinal imaging to track early signs of AD including quantitative amyloid PET and yearly multiparametric MRI.
Collapse
Affiliation(s)
- Mara ten Kate
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Adam J. Schwarz
- Takeda Pharmaceuticals Comparny, Cambridge, MA USA
- Eli Lilly and Company, Indianapolis, Indiana USA
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Gaël Chételat
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Bart N. M. van Berckel
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | | | | | - Adriaan A. Lammertsma
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Craig Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip Scheltens
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | | | - Pieter Jelle Visser
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | - Adam Waldman
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sven Haller
- Affidea Centre de Diagnostic Radiologique de Carouge, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Insititutes of Neurology and Healthcare Engineering, University College London, London, UK
| |
Collapse
|
18
|
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21:1318-1331. [PMID: 30250261 PMCID: PMC6198802 DOI: 10.1038/s41593-018-0234-x] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Adequate supply of blood and structural and functional integrity of blood vessels are key to normal brain functioning. On the other hand, cerebral blood flow shortfalls and blood-brain barrier dysfunction are early findings in neurodegenerative disorders in humans and animal models. Here we first examine molecular definition of cerebral blood vessels, as well as pathways regulating cerebral blood flow and blood-brain barrier integrity. Then we examine the role of cerebral blood flow and blood-brain barrier in the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We focus on Alzheimer's disease as a platform of our analysis because more is known about neurovascular dysfunction in this disease than in other neurodegenerative disorders. Finally, we propose a hypothetical model of Alzheimer's disease biomarkers to include brain vasculature as a factor contributing to the disease onset and progression, and we suggest a common pathway linking brain vascular contributions to neurodegeneration in multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Hartmann S, Ledur Kist TB. A review of biomarkers of Alzheimer's disease in noninvasive samples. Biomark Med 2018; 12:677-690. [PMID: 29896987 DOI: 10.2217/bmm-2017-0388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The discovery of biomarkers that confer high confidence of presymptomatic Alzheimer's disease (AD) diagnosis would be a valuable tool to study the etiology of the disease, to find risk factors, to discover more treatments and medicines. The present work reviews the potential biomarkers of AD based on the concentration changes of small molecules and chemical elements in noninvasive samples (urine, saliva, hair and others). An updated table with 74 target compounds is produced and ranked. Until the present date, there are a few biomarkers, present in urine, with the most promising potential: isoprostane 8,12-iso-iPF2a-VI, total free amino acids, 8-hydroxy-2'-deoxyguanosine, glycine and enzymatic activity of NaCl-stimulated PON1. All show increased levels in AD carriers, with the exception of NaCl-stimulated PON1.
Collapse
Affiliation(s)
- Samuel Hartmann
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, 91.501-970, Porto Alegre, RS, Brazil
| | - Tarso B Ledur Kist
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, 91.501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14:133-150. [PMID: 29377008 PMCID: PMC5829048 DOI: 10.1038/nrneurol.2017.188] [Citation(s) in RCA: 1730] [Impact Index Per Article: 288.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
21
|
Hu X, Song C, Fang M, Li C. Simvastatin inhibits the apoptosis of hippocampal cells in a mouse model of Alzheimer's disease. Exp Ther Med 2017; 15:1795-1802. [PMID: 29434767 PMCID: PMC5776644 DOI: 10.3892/etm.2017.5620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/24/2017] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease is associated with cognitive impairments that affect memory and executive functions. Simvastatin is a cholesterol-lowering statin drug that is used to control levels of cholesterol in the blood, particularly in cases of hypercholesterolemia, and may be used in the treatment of aneurysmal subarachnoid hemorrhage. Previous results have indicated that the apoptosis of hippocampal cells may serve a critical role in the progression of Alzheimer's disease. In the present study, it was determined whether Simvastatin inhibited the apoptosis of hippocampal cells in vitro and in vivo. The therapeutic effects of Simvastatin were evaluated in 24-month-old triple-transgenic Alzheimer's disease (3×Tg-AD) mice, and the efficacy of Simvastatin in attenuating memory and cognitive impairment was investigated. Levels of apoptosis-related gene expression in the hippocampus and hippocampal cells of experimental mice were also detected. In addition, neuron excitability was assessed in the functionally relevant brain regions in the hippocampus. The data indicated that Simvastatin significantly suppressed the apoptosis of hippocampal cells in 3×Tg-AD model mice compared with controls (P<0.01). Furthermore, treatment with Simvastatin improved the dementia status of 3×Tg-AD mice, as determined by a learning task in which mice exhibited significantly reduced attention impairment, impulsivity and compulsivity (P<0.01). In addition, results demonstrated that Simvastatin significantly inhibited hippocampal damage and significantly improved neuronal loss in hippocampal structures classically associated with attentional performance when compared with untreated mice (P<0.01). Thus, Simvastatin prevented cognitive impairment by decreasing hippocampal cell apoptosis and improving learning-memory ability. Simvastatin treatment also increased the expression of anti-apoptotic genes and decreased the expression pro-apoptotic genes (P<0.01), which may have been associated with improved motor attention and cognitive competence in 3×Tg-AD mice. Collectively, these preclinical data indicated that Simvastatin was efficient in attenuating memory lapse and hippocampal cell apoptosis in a 3×Tg-AD mouse model. Thus, Simvastatin may be useful in improving the clinical outcome of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoqin Hu
- Department of Neurology, Remnin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chengwei Song
- Department of Neurology, The First Hospital of Yichang, The Gorges University College of Medicine, Yichang, Hubei 443000, P.R. China
| | - Ming Fang
- Department of Neurology, The First Hospital of Yichang, The Gorges University College of Medicine, Yichang, Hubei 443000, P.R. China
| | - Chengyan Li
- Department of Neurology, Remnin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
Montagne A, Zhao Z, Zlokovic BV. Alzheimer's disease: A matter of blood-brain barrier dysfunction? J Exp Med 2017; 214:3151-3169. [PMID: 29061693 PMCID: PMC5679168 DOI: 10.1084/jem.20171406] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Montagne et al. examine the role of blood–brain barrier (BBB) dysfunction in Alzheimer’s neurodegeneration and how targeting the BBB can influence the course of neurological disorder in transgenic models with human APP, PSEN1 and TAU mutations, APOE4 (major genetic risk), and pericyte degeneration causing loss of BBB integrity. The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
23
|
Carusillo Theriault B, Woo SK, Karimy JK, Keledjian K, Stokum JA, Sarkar A, Coksaygan T, Ivanova S, Gerzanich V, Simard JM. Cerebral microbleeds in a neonatal rat model. PLoS One 2017; 12:e0171163. [PMID: 28158198 PMCID: PMC5291518 DOI: 10.1371/journal.pone.0171163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/15/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes) dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter. METHODS Pregnant Wistar rats were subjected to intrauterine ischemia (IUI) and low-dose maternal lipopolysaccharide (mLPS) at embryonic day (E) 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks. RESULTS mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2) and protein (CD31, MMP2, MMP9) for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls. CONCLUSIONS In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development.
Collapse
Affiliation(s)
- Brianna Carusillo Theriault
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jason K. Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Turhan Coksaygan
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
He D, Liu CF, Chu L, Li Y, Xu DF, Jiao L. The risk factors and pattern of cerebral microbleeds in Parkinson's disease. Int J Neurosci 2017; 127:909-914. [PMID: 28051884 DOI: 10.1080/00207454.2017.1278590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral microbleeds (CMBs) in Parkinson's disease (PD) have been reported recently and concerned increasingly. Our aim was to investigate the risk factors and pattern of CMBs in patients with PD, as well as the influence of risk factors on the pattern of CMBs. METHODS We retrospectively collected medical and imaging data of 247 patients who underwent brain susceptibility-weighted imaging. Logistic regression analyses were performed to determine the risk factors of CMBs. The frequency and amount of CMBs in different locations between patients with and without risk factors were analyzed. RESULTS Of the 247 patients with PD, 39 (15.79%) had CMBs, 27 (69.23%) had lobar CMBs, 20 (51.28%) had deep CMBs and 17 (43.59%) had infratentorial CMBs. A history of cerebral ischemic events was independently associated with the presence of CMBs (odds ratio (OR) 4.485 [95% CI 2.150-9.356]; p = 0.000), especially with lobar and deep CMBs. Hypertension and Hoehn and Yahr score were also associated with the presence of deep CMBs. Only white matter hyperintensities were independently associated with the presence of infratentorial CMBs. Compared to patients without risk factors, the frequency of deep CMBs was greater in those with a history of cerebral ischemic events (p = 0.013), while the amount of deep CMBs was higher in those with hypertension (p = 0.035). CONCLUSION CMBs in PD seem to present a lobe-dominant pattern. A history of cerebral ischemic events and hypertension may be two strong risk factors which preferentially influences the pattern of deep CMBs in PD.
Collapse
Affiliation(s)
- Dian He
- a Department of Neurology , The Second Affiliated Hospital of Soochow University , Soochow University , Suzhou , China.,b Department of Neurology , Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Chun-Feng Liu
- a Department of Neurology , The Second Affiliated Hospital of Soochow University , Soochow University , Suzhou , China.,c Institute of Neuroscience , Soochow University , Suzhou , China
| | - Lan Chu
- b Department of Neurology , Affiliated Hospital of Guizhou Medical University , Guiyang , China.,c Institute of Neuroscience , Soochow University , Suzhou , China
| | - Ya Li
- b Department of Neurology , Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Da-Fei Xu
- b Department of Neurology , Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Ling Jiao
- b Department of Neurology , Affiliated Hospital of Guizhou Medical University , Guiyang , China
| |
Collapse
|
25
|
Atri A. Imaging of neurodegenerative cognitive and behavioral disorders: practical considerations for dementia clinical practice. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:971-984. [PMID: 27430453 DOI: 10.1016/b978-0-444-53486-6.00050-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reviews clinical applications and imaging findings useful in medical practice relating to neurodegenerative cognitive/dementing disorders. The preponderance of evidence and consensus guidelines support an essential role of multitiered neuroimaging in the evaluation and management of neurodegenerative cognitive/dementia syndrome that range in severity from mild impairments to frank dementia. Additionally, imaging features are incorporated in updated clinical and research diagnostic criteria for most dementias, including Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), Frontotemporal Lobar Degenerations/Frontotemporal Dementia (FTD), and Vascular Cognitive Impairment (VCI). Best clinical practices dictate that structural imaging, preferably with magnetic resonance imaging (MRI) when possible and computed tomography when not, be obtained as a first-tier approach during the course of a thorough clinical evaluation to improve diagnostic confidence and assess for nonneurodegenerative treatable conditions that may cause or substantially contribute to cognitive/behavioral symptoms or which may dictate a substantial change in management. These conditions include less common structural (e.g., mass lesions such as tumors and hematomas; normal-pressure hydrocephalus), inflammatory, autoimmune and infectious conditions, and more common comorbid contributing conditions (e.g., vascular cerebral injury causing leukoaraiosis, infarcts, or microhemorrhages) that can produce a mixed dementia syndrome. When, after appropriate clinical, cognitive/neuropsychologic, and structural neuroimaging assessment, a dementia specialist remains in doubt regarding etiology and appropriate management, second-tier imaging with molecular methods, preferably with fluorodexoyglucose positron emission tomography (PET) (or single-photon emission computed tomography if PET is unavailable) can provide more diagnostic specificity (e.g., help differentiate between atypical AD and FTD as the etiology for a frontal/dysexecutive syndrome). The potential clinical utility of other promising methods, whether already approved for use (e.g., amyloid PET) or as yet only used in research (e.g., tau PET, functional MRI, diffusor tensor imaging), remains to be proven for widespread use in community practice. However, these constitute unreimbursed third-tier options that merit further study for clinical and cost-effective utility. In the future, combination use of imaging methods will likely improve diagnostic accuracy.
Collapse
Affiliation(s)
- Alireza Atri
- Ray Dolby Brain Health Center, California Pacific Medical Center Research Institute, Sutter Health, San Francisco, CA, USA.
| |
Collapse
|