1
|
M. S, V. J, Ahmad SF, Attia SM, Emran TB, Patil RB, Ahmed SSSJ. Structural Characteristics of PON1 with Leu55Met and Gln192Arg Variants Influencing Oxidative-Stress-Related Diseases: An Integrated Molecular Modeling and Dynamics Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2060. [PMID: 38138163 PMCID: PMC10744641 DOI: 10.3390/medicina59122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: PON1 is a multi-functional antioxidant protein that hydrolyzes a variety of endogenous and exogenous substrates in the human system. Growing evidence suggests that the Leu55Met and Gln192Arg substitutions alter PON1 activity and are linked with a variety of oxidative-stress-related diseases. Materials and Methods: We implemented structural modeling and molecular dynamics (MD) simulation along with essential dynamics of PON1 and molecular docking with their endogenous (n = 4) and exogenous (n = 6) substrates to gain insights into conformational changes and binding affinity in order to characterize the specific functional ramifications of PON1 variants. Results: The Leu55Met variation had a higher root mean square deviation (0.249 nm) than the wild type (0.216 nm) and Gln192Arg (0.202 nm), implying increased protein flexibility. Furthermore, the essential dynamics analysis confirms the structural change in PON1 with Leu55Met vs. Gln192Arg and wild type. Additionally, PON1 with Leu55Met causes local conformational alterations at the substrate binding site, leading to changes in binding affinity with their substrates. Conclusions: Our findings highlight the structural consequences of the variants, which would increase understanding of the role of PON1 in the pathogenesis of oxidative-stress-related diseases, as well as the management of endogenous and exogenous chemicals in the treatment of diseases.
Collapse
Affiliation(s)
- Sudhan M.
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Janakiraman V.
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Societys, Sinhgad College of Pharmacy, Vadgaon (BK), Pune 411041, Maharashtra, India
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
2
|
Sulaiman D, Choi LS, Lee HM, Shin J, Kim DH, Lee KW, Eftekhari P, Quartier A, Park HS, Reddy ST. Vutiglabridin Modulates Paraoxonase 1 and Ameliorates Diet-Induced Obesity in Hyperlipidemic Mice. Biomolecules 2023; 13:687. [PMID: 37189434 PMCID: PMC10135725 DOI: 10.3390/biom13040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Vutiglabridin is a clinical-stage synthetic small molecule that is being developed for the treatment of obesity and its target proteins have not been fully identified. Paraoxonase-1 (PON1) is an HDL-associated plasma enzyme that hydrolyzes diverse substrates including oxidized low-density lipoprotein (LDL). Furthermore, PON1 harbors anti-inflammatory and antioxidant capacities and has been implicated as a potential therapeutic target for treating various metabolic diseases. In this study, we performed a non-biased target deconvolution of vutiglabridin using Nematic Protein Organisation Technique (NPOT) and identified PON1 as an interacting protein. We examined this interaction in detail and demonstrate that vutiglabridin binds to PON1 with high affinity and protects PON1 against oxidative damage. Vutiglabridin treatment significantly increased plasma PON1 levels and enzyme activity but not PON1 mRNA in wild-type C57BL/6J mice, suggesting that vutiglabridin modulates PON1 post-transcriptionally. We further investigated the effects of vutiglabridin in obese and hyperlipidemic LDLR-/- mice and found that it significantly increases plasma PON1 levels, while decreasing body weight, total fat mass, and plasma cholesterol levels. Overall, our results demonstrate that PON1 is a direct, interacting target of vutiglabridin, and that the modulation of PON1 by vutiglabridin may provide benefits for the treatment of hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Dawoud Sulaiman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of CA Los Angeles, Los Angeles, CA 90095, USA
| | | | - Hyeong Min Lee
- Glaceum Incorporation, Suwon 16675, Republic of Korea (J.S.)
| | - Jaejin Shin
- Glaceum Incorporation, Suwon 16675, Republic of Korea (J.S.)
| | - Dong Hwan Kim
- Department of Bio & Medical Big Data, Division of Life Science, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data, Division of Life Science, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | | | - Hyung Soon Park
- Glaceum Incorporation, Suwon 16675, Republic of Korea (J.S.)
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of CA Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Li J, Thangaiyan R, Govindasamy K, Wei J. Anti-inflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals. Hum Exp Toxicol 2020; 40:915-927. [PMID: 33242989 DOI: 10.1177/0960327120975131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the antihyperlipidemic and anti-inflammatory effect of zingiberene (ZBN) on isoproterenol-(ISO) induced myocardial infarction in rats. ZBN (10 mg/kg b.wt.) was orally administered to rats for 21 days and ISO (85 mg/kg b.wt.) was subcutaneously injected into the rats at 24 h intervals for the last 2 consecutive days. We observed increased serum creatine kinase, creatine kinase-MB, cardiac troponin T, and I levels in ISO-treated MI rats. Conversely, ZBN oral administration significantly prevented in cardiac marker enzyme activities in ISO-mediated rats. We also noticed that ZBN oral administration prevented ISO-induced expression of lipid peroxidative markers, total cholesterol, triglycerides, phospholipids, free fatty acids, very-low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) to the normal basal level. Furthermore, ZBN restored ISO-mediated antioxidant status, increased level of high-density lipoprotein cholesterol (HDL-C), and tissue phospholipids to the near-normal levels. Besides, ZBN pre-treatment significantly reduced the level of inflammatory markers (TNF-α, IL-6, NF-κB, and IL-1β) in ISO-induced MI in rats. We noticed that ZBN pretreatment inhibited the pro-apoptotic proteins Bax and cytochrome c and increased the Bcl-2 expression in ISO induced rats. The gene expression profiling by qRT-PCR array illustrates that ZBN treatment prevents the ISO mediated activation of cardiac markers, inflammatory, and fibrosis-related genes in the heart tissue. Taken together, pre-treatment with ZBN attenuated ISO-induced MI resolved exhibits the anti-inflammatory and antiapoptotic effect.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Cardiology, Xi'an Fourth Hospital, Xi'an, Shaanxi, China
| | - Radhiga Thangaiyan
- Department of Biochemistry and Biotechnology, 29895Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Kanimozhi Govindasamy
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - Jianxia Wei
- Department of Cardiology, The Third Affiliated Hospital of Xi 'an Medical College, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Aluganti Narasimhulu C, Mitra C, Bhardwaj D, Burge KY, Parthasarathy S. Alzheimer's Disease Markers in Aged ApoE-PON1 Deficient Mice. J Alzheimers Dis 2020; 67:1353-1365. [PMID: 30714958 DOI: 10.3233/jad-180883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder associated with aging. Cardiovascular risk factors like hypertension and atherosclerosis increase the risk for AD. Polymorphic alleles of apolipoprotein E (ApoE) are one of the main genetic determinants of AD. OBJECTIVE Mice, double-knockout (DKO) for ApoE (major cholesterol carrier in brain) and PON1 (paroxonase1, reduces oxidative stress), showed severe age-dependent atherosclerosis of the arteries carrying blood to the brain even on normal diet. This prompted us to investigate the possibility of an AD pathology resulting from the deficiency of ApoE and the induction of oxidative stress. METHODS Atherosclerotic lesions were quantified by ImageJ. The brain hippocampus of young and old ApoE-PON1 DKO mice and control mice were harvested. RT-PCR analysis was performed for mRNA levels of AD specific markers. Blood levels of S100 calcium-binding protein B (S100B) protein were measured by ELISA. H&E as well as immunostaining was performed to detect amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) in brain tissues. Evans blue dye was used to evaluate the vascular permeability and blood-brain barrier (BBB) dysfunction. RESULTS Results showed that the older DKO mice had severe carotid atherosclerosis, increased mRNA levels of AD markers in brain tissue, and elevated levels of serum S100B protein. Immunological staining confirmed the characteristics of AD. Ex-vivo imaging showed higher levels of Evans blue dye in the ApoE-PON1 DKO mice brain tissues, pointing toward impaired vasculature. CONCLUSION Aged ApoE-PON1 DKO mice displaying AD specific markers along with Aβ plaques, NFTs, and disrupted BBB suggests the animals are suffering from AD.
Collapse
Affiliation(s)
| | - Connie Mitra
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Deepshikha Bhardwaj
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kathryn Young Burge
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Unregulated uptake of oxidized LDL by macrophages to form foam cells is the hallmark for atherosclerosis. The paraoxonase (PON) family of enzymes plays a critical role in attenuating atherosclerotic lesion formation by hydrolyzing lipid peroxides (LOOHs) and preventing the oxidation of LDL particles and by enhancing HDL-mediated cholesterol efflux. Findings in recent years suggest novel mechanisms by which PON isoforms interact with macrophages to regulate cholesterol metabolism and cellular function. RECENT FINDINGS The association of PON with HDL particles facilitates binding of the particle to macrophages and ABCA1-dependent cholesterol efflux. The hydrolysis of membrane phospholipids by PON generates lysophosphatidylcholine which is shown to regulate expression of cholesterol transport proteins. The PON family also regulates multiple aspects of macrophage function. PON attenuates inflammation and prevents induction of apoptosis via activation of a scavenger receptor class B type-1-dependent signaling mechanism. PON limits macrophage-dependent oxidant formation by preventing the activation of the membrane-associated NADPH oxidase and by stabilizing mitochondria. PON also promotes the differentiation of macrophages to an anti-inflammatory phenotype. This function appears to be independent of PON enzymatic activity and, rather, is dependent on the ability of endogenous sulfhydryls to neutralize pro-inflammatory peroxides. SUMMARY In recent years, the therapeutic efficacy of HDL-based therapies has been subject to dispute. Pharmacological approaches that target an increase in the expression and/or activity of PON may facilitate macrophage cholesterol metabolism and attenuate inflammatory injury.
Collapse
Affiliation(s)
- C. Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
- Address correspondence to: C. Roger White, University of Alabama at Birmingham, Atherosclerosis Research Unit, Department of Medicine, Zeigler Research Building, Room 1046, 703 19th Street S, Birmingham, AL 35294, Tel 205-934-1296,
| | - G.M. Anantharamaiah
- Division of Gerontology, Geriatric Medicine and Palliative Care, University of Alabama at Birmingham, Birmingham, AL
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Rosenblat M, Volkova N, Aviram M. HDL3 stimulates paraoxonase 1 antiatherogenic catalytic and biological activities in a macrophage model system: in vivo and in vitro studies. Biofactors 2014; 40:536-45. [PMID: 25230879 DOI: 10.1002/biof.1184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/07/2022]
Abstract
We analyzed in-vivo and in-vitro high density lipoprotein (HDL) effects on paraoxonase 1 (PON1) antiatherogenic properties in serum and in macrophages. Intraperitoneal injection to C57BL/6 mice of recombinant PON1 (rePON1) + HDL, in comparison to HDL or to rePON1 alone, significantly increased serum PON1 arylesterase activity (by 20%), and serum-mediated cholesterol efflux from J774A.1 macrophages (by 18%). Similarly, in peritoneal macrophages (MPM) harvested from mice injected with HDL + rePON1 versus rePON1 alone, we observed reduction in oxidative stress (by 11%), increase in cellular PON1 activity (by 14%) and in HDL-mediated cholesterol efflux (by 38%). Incubation of serum or HDL with rePON1, substantially increased PON1 arylesterase activity, two-fold more than the expected additive values. HDL2 and HDL3 increased PON1 activity by 199% or 274%, respectively. Macrophage (J774A.1) cholesterol efflux rate significantly increased by HDL3 + rePON1 versus HDL3 alone (by 19%), but not by HDL2 + rePON1 versus HDL2 alone. Oxidation of HDL3 reduced its ability to induce macrophage cholesterol efflux, and abolished HDL3 stimulatory effects on rePON1. Addition of exogenous polyphenol quercetin (60 µM), but not phosphatidylcholine or apolipoprotein A1, to HDL + rePON1 increased PON1 activity (by 404%), increased the ability to reduce oxidative stress in J774A.1 macrophages (by 53%) and to stimulate macrophage cholesterol efflux (by 14%). Upon adding the hypocholesterolemic drug simvastatin (15 µg/mL) to HDL + rePON1, PON1 activity and the ability to induce macrophage cholesterol efflux increased, in comparison to HDL + rePON1. We thus concluded that HDL (mostly HDL3), stimulates PON1 antiatherogenic activities in macrophages, and these PON1 activities were further stimulated by quercetin, or by simvastatin.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, the Technion Rappaport Faculty of Medicine and Research Institute, Rambam Health Care Campus, Technion- Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Improving serum levels of HDL and its subfractions, as well as, oxidative/inflammatory properties has become a fundamental aim in today's atherosclerosis research. Efforts to reach this goal are paralleled by achievements in drug development toward decreasing serum LDL levels and oxidative status. RECENT FINDINGS Paraoxonase1 (PON1) is an HDL-associated enzyme that is deemed responsible for many of the HDL's antiatherogenic and cardioprotective characteristics. PON1 is highly sensitive to variations in its milieu, and endogenous compounds (fatty acids, phospholipids), nutritional ingredients (flavonoids and other antioxidants), and environmental elements (reactive nitrogen and oxygen species, metals, surfactants), significantly affect the enzyme's activities. PON1 was shown to be responsible for some of the HDL antiatherogenic characteristics such as HDL-mediated cholesterol efflux from macrophages, and the inhibition of LDL oxidation. SUMMARY The present review summarizes the recent literature related to various elements in PON1's milieu that regulate its activities, with an emphasis on its interrelation with components of the human carotid atherosclerotic lesion (plaque) which are in constant contact with circulating HDL-associated PON1.
Collapse
Affiliation(s)
- Michael Aviram
- Technion Rappaport Faculty of Medicine, and Rambam Medical Center, Haifa, Israel
| | | |
Collapse
|
9
|
Macharia M, Hassan MS, Blackhurst D, Erasmus RT, Matsha TE. The growing importance of PON1 in cardiovascular health. J Cardiovasc Med (Hagerstown) 2012; 13:443-53. [DOI: 10.2459/jcm.0b013e328354e3ac] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Beekhof PK, Gorshunska M, Jansen EHJM. Long term stability of paraoxonase-1 and high-density lipoprotein in human serum. Lipids Health Dis 2012; 11:53. [PMID: 22584062 PMCID: PMC3430585 DOI: 10.1186/1476-511x-11-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/04/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Paraoxonase-1 (PON1) is an enzyme with numerous functions and receives an increasing interest in clinical and epidemiological studies. Sometimes samples are stored for longer periods at a certain temperature. Therefore the stability of PON1 activity must be checked and retained upon storage for longer periods. RESULTS In this study the stability of PON1 activity has been tested in human serum samples during storage up to 12 months at 3 commonly used temperatures, -20°C, -70°C and -196°C. It was found that the stability of the PON1 activity is constant during 12 months of storage at -70°C and -196°C. Storage at -20°C resulted in a small but statistically significant decrease after 6 months to about 94% of its original value. Nonetheless, the rank order between the samples at T = 0 and 12 months remained the same. The same temperature dependence was found for the associated high-density lipoprotein. CONCLUSIONS It can be concluded that -70°C is the right temperature for storage to maintain the PON1 activity for at least one year. Storage at a lower temperature in liquid nitrogen (-196°C) is not necessary.
Collapse
Affiliation(s)
- Piet K Beekhof
- Laboratory for Health Protection Research, National Institute of Public Health and the Environment, PO Box 1, Bilthoven, BA, 3720, The Netherlands
| | - Maryana Gorshunska
- Department of Endocrinology, Kharkiv Postgraduate Medical Academy, Korchagintsiv Str., 58, Kharkiv, 61176, Ukraine
| | - Eugène HJM Jansen
- Laboratory for Health Protection Research, National Institute of Public Health and the Environment, PO Box 1, Bilthoven, BA, 3720, The Netherlands
| |
Collapse
|
11
|
Atrahimovich D, Vaya J, Tavori H, Khatib S. Glabridin protects paraoxonase 1 from linoleic acid hydroperoxide inhibition via specific interaction: a fluorescence-quenching study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3679-3685. [PMID: 22380866 DOI: 10.1021/jf2046009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The enzyme paraoxonase 1 (PON1) binds to high-density lipoprotein (HDL) and is responsible for many of HDL's antiatherogenic properties. We previously showed that recombinant PON1 is inhibited by linoleic acid hydroperoxide (LA-OOH) present in the lipid fraction of the human carotid plaque (LLE) via oxidation of the enzyme's Cys284 thiol. Here we explore the effect of glabridin, an isoflavan isolated from licorice root, on preventing LA-OOH's inhibitory effect on rePON1 using the tryptophan-fluorescence-quenching technique and modeling calculations. Glabridin significantly prevented rePON1 inhibition by LLE or oxidized linoleic acid (by 22% and 15%, respectively), whereas ascorbic acid and Trolox, strong antioxidants, had no effect. Glabridin quenched the intrinsic fluorescence of rePON1 in a concentration-dependent manner. Binding parameters and modeling calculations demonstrated a major role for hydrophobic forces in the rePON1-glabridin interaction, indicating that it is not the antioxidant capacity of glabridin that protects rePON1 from LA-OOH inhibition, but rather its specific interaction with the enzyme.
Collapse
Affiliation(s)
- Dana Atrahimovich
- Oxidative Stress Research Laboratory, MIGAL-Galilee Technology Center, Kiryat Shmona, Israel
| | | | | | | |
Collapse
|
12
|
Rosenblat M, Volkova N, Aviram M. Injection of paraoxonase 1 (PON1) to mice stimulates their HDL and macrophage antiatherogenicity. Biofactors 2011; 37:462-7. [PMID: 22162319 DOI: 10.1002/biof.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/08/2011] [Indexed: 11/08/2022]
Abstract
We analyzed, for the first time, the effects of recombinant PON1 (rePON1) intraperitoneal injection to C₅₇BL/6 mice on their HDL and macrophage antiatherogenic properties. Thioglycolate-treated mice were injected with either saline (Control), or rePON1 (50 μg/mouse), and 20 H post injection, their blood samples and peritoneal macrophages (MPM) were collected. A significant increase in serum and HDL-PON1 arylesterase and lactonase activities was noted. Similarly, a significant increment, by 3.8 and 2.8 fold, in MPM-PON1 arylesterase and lactonase activities, respectively, as compared to the activities in control MPM was observed. The HDL from rePON1-injected mice was resistant to oxidation by copper ions as compared to control HDL. Furthermore, enrichment of the mouse HDL with rePON1 increased its ability to induce cholesterol efflux from J774A.1 macrophage cell line, and to inhibit macrophage-mediated LDL oxidation. In MPM from rePON1-injected mice vs. control MPM, there was a significant reduction in cholesterol mass, by 42%, in association with inhibition in cellular cholesterol biosynthesis rate, by 33%, and with significant stimulation, by 65%, of human HDL-mediated cholesterol efflux from the cells. We conclude that rePON1 injection to mice improved the mice HDL and MPM antiatherogenic properties, and these effects could probably lead to attenuation of atherosclerosis development.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa, Israel
| | | | | |
Collapse
|