1
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Meng M, Ma Y, Xu J, Chen G, Mahato RK. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: implications for asthma pathogenesis. Front Mol Biosci 2024; 11:1433557. [PMID: 39377013 PMCID: PMC11456769 DOI: 10.3389/fmolb.2024.1433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) is known to play a crucial role in the pathogenesis of asthma, although the precise mechanism remains unclear. This study aims to investigate how DNA methylation-mediated silencing of FGFR1 contributes to the enhancement of NF-κB signaling, thereby influencing the progression of asthma. Methods RT-qPCR was utilized to assess FGFR1 mRNA levels in the serum of asthma patients and BEAS-2B, HBEpiC, and PCS-301-011 cells. CCK8 assays were conducted to evaluate the impact of FGFR1 overexpression on the proliferation of BEAS-2B, PCS-301-011, and HBEpiC cells. Dual-luciferase and DNA methylation inhibition assays were performed to elucidate the underlying mechanism of FGFR1 gene in asthma. The MassARRAY technique was employed to measure the methylation levels of the FGFR1 DNA. Results Elevated FGFR1 mRNA levels were observed in the serum of asthma patients compared to healthy controls. Overexpression of FGFR1 in BEAS-2B cells significantly enhanced cell proliferation and stimulated NF-ĸB transcriptional activity in HERK-293T cells. Furthermore, treatment with 5-Aza-CdR, a DNA demethylating agent, markedly increased the expression of FGFR1 mRNA in BEAS-2B, PCS-301-011, and HBEpiC cells. Luciferase activity analysis confirmed heightened NF-ĸB transcriptional activity in FGFR1-overexpressing BEAS-2B cells and BEAS-2B cells treated with 5-Aza-CdR. Additionally, a decrease in methylation levels in the FGFR1 DNA promoter was detected in the serum of asthma patients using the MassARRAY technique. Conclusion Our findings reveal a potential mechanism involving FGFR1 in the progression of asthma. DNA methylation of FGFR1 inactivates the NF-ĸB signaling pathway, suggesting a promising avenue for developing effective therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Minglu Meng
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Yingjiao Ma
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
| | - Jianguo Xu
- Department of Respiratory Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Gao Chen
- Department of Laboratory Medicine, The People’s Hospital of Hechi, Hechi, China
| | | |
Collapse
|
3
|
Sio YY, Du K, Lam TYW, Say YH, Reginald K, Chew FT. Functional Polymorphisms Regulate FOXO1 Transcript Expression and Contribute to the Risk and Symptom Severity of HDM-Induced Allergic Rhinitis. Int Arch Allergy Immunol 2024:1-11. [PMID: 39208774 DOI: 10.1159/000540686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION FOXO1 plays an important role in regulating immune processes that contribute to allergic inflammation; however, genetic variants influencing FOXO1 expression in AR pathogenesis remains unclear. This study aimed to investigate the functional effect of FOXO1 single nucleotide polymorphisms (SNPs) on AR development by performing genetic association and functional analysis studies. METHODS This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). We assessed the associations of FOXO1 transcript expression levels in peripheral blood mononuclear cells (PBMC) with AR phenotype, total nasal symptom score (TNSS), and SNP genotype in a sub-cohort of n = 658 individuals from the SMCSGES population. Associations of FOXO1 SNPs with AR were assessed in a cohort of n = 5,072 individuals from the SMCSGES population. In vitro promoter luciferase assay was used to evaluate the effect of AR-associated SNPs on FOXO1 promoter activity. RESULTS FOXO1 transcript expression in PBMC was significantly associated with the risk of AR (p < 0.05) and TNSS among AR patients (p < 0.0001). We identified a significant association between tag-SNPs rs9549246 and FOXO1 transcript expression in PBMC from the SMCSGES sub-cohort and the multiethnic eQTLGen consortium (false discovery rate-adjusted p < 0.05). The minor allele "A" of tag-SNP rs9549246 was significantly associated with a higher risk of AR (p = 0.04422, odds ratio = 1.21, 95% confidence interval = 1.01-1.45) in the SMCSGES genotyping cohort (n = 5,072). In vitro luciferase assay showed the minor allele "A" of rs35594717 (tagged by rs9549246) was significantly associated with a higher FOXO1 promoter activity (p < 0.05). CONCLUSION FOXO1 transcript expression in PBMC has a strong association with the risk and symptom severity of AR. Genetic variants tagged by rs9549246 were shown to affect the expression of FOXO1 and contribute to the development of AR in the SMCSGES population.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore,
| | - Kefan Du
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Terence Yin Weng Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Ekpruke CD, Alford R, Rousselle D, Babayev M, Sharma S, Parker E, Davis K, Hemmerich C, Rusch DB, Silveyra P. Sex-specific alterations in the gut and lung microbiome of allergen-induced mice. FRONTIERS IN ALLERGY 2024; 5:1451846. [PMID: 39210977 PMCID: PMC11358121 DOI: 10.3389/falgy.2024.1451846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Recent evidence has demonstrated that the microbiome is a driver of the underlying pathophysiological mechanisms of respiratory disease. Studies have indicated that bacterial metabolites produced in the gut and lung can impact lung inflammation and immune cell activity, affecting disease pathology. Despite asthma being a disease with marked sex differences, experimental work linking microbiomes and asthma has not considered the sex variable. Methods To test the hypothesis that the lung and gut microbial composition impacts allergic lung inflammation in a sex-specific manner, we evaluated lung and gut microbiome alterations in a mouse model of allergic inflammation and assessed their association with lung function and inflammation phenotypes. For this, we exposed male and female adult C57BL/6J mice intranasally to 25 µg of a house dust mite extract mix (HDM) daily, or phosphate-buffered saline (PBS) as control, for 5 weeks (n = 4-6/group). DNA from fecal pellets collected before and after the 5-week treatment, and from lung tissue collected at endpoint, was extracted using the ZymoBIOMICS®-96 MagBead DNA Kit and analyzed to determine the 16S microbiome via Targeted Metagenomic Sequencing. Results The HDM treatment induced a sex-specific allergic inflammation phenotype with significantly higher neutrophilia, lymphocytosis, inflammatory gene expression, and histopathological changes in females than males following exposure to HDM, but higher airway hyperresponsiveness (AHR) in males than females. In addition, sex-specific lung gene expression and associated pathways were identified HDM mix after challenge. These changes corresponded to sex-specific alterations in the gut microbiome, where the Firmicutes to Bacteroidetes ratio (F:B) was significantly reduced in fecal samples from only male mice after HDM challenge, and alpha diversity was increased in males, but decreased in females, after 5-weeks of HDM treatment. Discussion Overall, our findings indicate that intranasal allergen challenge triggers sex-specific changes in both gut and lung microbiomes, and induces sex-specific lung inflammation, AHR, and lung inflammatory gene expression pathways, suggesting a contribution of the lung-gut axis in allergic airway disease.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Kyle Davis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Christopher Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
5
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
6
|
Du L, Zhang X, Wu C, Zhou R, Chen L, Gui R, Wang W, An M, Wang X. Association of food folate with asthma in US children and adolescents: a cross-sectional study. J Asthma 2024:1-9. [PMID: 39012758 DOI: 10.1080/02770903.2024.2380509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease. Currently, contradictory findings exist regarding the association between food folate and asthma. Therefore, we hypothesize a positive correlation between food folate and asthma. PURPOSE To investigate the possible relationship between food folate intake and the development of asthma in children and adolescents in the United States. METHODS Data from the U.S. National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018 were analyzed cross-sectionally by covariate adjustment using multivariate logistic regression, restricted triple spline curves, threshold effects, and stratified analyses. RESULTS There were 8,821 participants, of whom 1,697 (19.2%) self-reported having received a diagnosis of asthma from a physician or other health professional. After accounting for potential confounders, the adjusted odds ratios (ORs) for asthma in the second (T2, 111-178 µg/day) and third (T3, >178 µg/day) groups were 1.15 (1-1.33) and 1.23 (1.04-1.46), respectively, compared with the group with the lowest food folate intake (T1, <111 µg/day). In addition, the association between food folate intake and asthma showed an inverse L-shaped curve (non-linear relationship, p = 0.003), and stratified analysis further validated the robustness of the results. The OR of asthma in subjects with food folate intake less than 263.9 µg/day was 1.002 (1.001-1.004). CONCLUSION In children and adolescents in the United States, there is a non-linear association (inverted "L" shape) between food folate intake and asthma, with an inflection point at 263.9 micrograms per day.
Collapse
Affiliation(s)
- Linjun Du
- The Third People's Hospital of Liaocheng City, Shandong Province, China
| | - Xiaolan Zhang
- The Third People's Hospital of Liaocheng City, Shandong Province, China
| | - Cuiqing Wu
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China
| | | | - Lifang Chen
- The Third People's Hospital of Liaocheng City, Shandong Province, China
| | - Ruping Gui
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China
| | - Wei Wang
- Tai'an Maternal and Child Health Hospital, Shandong Province, China
| | - Mouzhen An
- Tai'an Maternal and Child Health Hospital, Shandong Province, China
| | - Xia Wang
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China
| |
Collapse
|
7
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
9
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2024:S0091-6749(24)00634-1. [PMID: 38906272 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Grijincu M, Buzan MR, Zbîrcea LE, Păunescu V, Panaitescu C. Prenatal Factors in the Development of Allergic Diseases. Int J Mol Sci 2024; 25:6359. [PMID: 38928067 PMCID: PMC11204337 DOI: 10.3390/ijms25126359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Allergic diseases are showing increasing prevalence in Western societies. They are characterized by a heightened reactivity towards otherwise harmless environmental stimuli. Allergic diseases showing a wide range of severity of symptoms have a significant impact on the quality of life of affected individuals. This study aims to highlight the mechanisms that induce these reactions, how they progress, and which prenatal factors influence their development. Most frequently, the reaction is mediated by immunoglobulin E (IgE) produced by B cells, which binds to the surface of mast cells and basophils and triggers an inflammatory response. The antibody response is triggered by a shift in T-cell immune response. The symptoms often start in early childhood with eczema or atopic dermatitis and progress to allergic asthma in adolescence. An important determinant of allergic diseases seems to be parental, especially maternal history of allergy. Around 30% of children of allergic mothers develop allergic sensitization in childhood. Genes involved in the regulation of the epithelial barrier function and the T-cell response were found to affect the predisposition to developing allergic disorders. Cord blood IgE was found to be a promising predictor of allergic disease development. Fetal B cells produce IgE starting at the 20th gestation week. These fetal B cells could be sensitized together with mast cells by maternal IgE and IgE-allergen complexes crossing the placental barrier via the low-affinity IgE receptor. Various factors were found to facilitate these sensitizations, including pesticides, drugs, exposure to cigarette smoke and maternal uncontrolled asthma. Prenatal exposure to microbial infections and maternal IgG appeared to play a role in the regulation of T-cell response, indicating a protective effect against allergy development. Additional preventive factors were dietary intake of vitamin D and omega 3 fatty acids as well as decreased maternal IgE levels. The effect of exposure to food allergens during pregnancy was inconclusive, with studies having found both sensitizing and protective effects. In conclusion, prenatal factors including genetics, epigenetics and fetal environmental factors have an important role in the development of allergic disorders in later life. Children with a genetic predisposition are at risk when exposed to cigarette smoke as well as increased maternal IgE in the prenatal period. Maternal diet during pregnancy and immunization against certain allergens could help in the prevention of allergy in predisposed children.
Collapse
Affiliation(s)
- Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| |
Collapse
|
12
|
Zhang W, Huang F, Ding X, Qin J, Wang W, Luo L. Identifying ALOX15-initiated lipid peroxidation increases susceptibility to ferroptosis in asthma epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167176. [PMID: 38641013 DOI: 10.1016/j.bbadis.2024.167176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.
Collapse
Affiliation(s)
- Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Fangfang Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuexuan Ding
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Jingtong Qin
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
13
|
Tang K, Wang J, Zhong H, Wang Q, Li Z, Wu C, An R, Lin Y, Tan H, Chen L, Wang M, Chen M. Impact of PD-L1 Gene Polymorphisms and Interactions with Cooking with Solid Fuel Exposure on Tuberculosis. Public Health Genomics 2024; 27:74-82. [PMID: 38735285 DOI: 10.1159/000538904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Given that PD-L1 is a crucial immune checkpoint in regulating T-cell responses, the aim of this study was to explore the impact of PD-L1 gene polymorphisms and the interaction with cooking with solid fuel on susceptibility to tuberculosis (TB) in Chinese Han populations. METHODS A total of 503 TB patients and 494 healthy controls were enrolled in this case-control study. Mass spectrometry technology was applied to genotype rs2297136 and rs4143815 of PD-L1 genes. The associations between single nucleotide polymorphism (SNPs) and TB were assessed using unconditional logistic regression analysis. Marginal structural linear odds models were used to estimate the gene-environment interactions. RESULTS Compared with genotype CC, genotypes GG and CG+GG at rs4143815 locus were significantly associated with susceptibility to TB (OR: 3.074 and 1.506, respectively, p < 0.05). However, no statistical association was found between rs2297136 SNP and TB risk. Moreover, the relative excess risk of interaction between rs4143815 of the PD-L1 gene and cooking with solid fuel was 2.365 (95% CI: 1.922-2.809), suggesting positive interactions with TB susceptibility. CONCLUSION The rs4143815 polymorphism of the PD-L1 gene was associated with susceptibility to TB in Chinese Han populations. There were significantly positive interactions between rs4143815 and cooking with solid fuel.
Collapse
Affiliation(s)
- Kun Tang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaozhi Wang
- Hunan Institute of Tuberculosis Prevention and Treatment, Changsha, China
| | - Zihao Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rongjing An
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ying Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
14
|
Potaczek DP, Bazan-Socha S, Wypasek E, Wygrecka M, Garn H. Recent Developments in the Role of Histone Acetylation in Asthma. Int Arch Allergy Immunol 2024; 185:641-651. [PMID: 38522416 DOI: 10.1159/000536460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Epigenetic modifications are known to mediate both beneficial and unfavorable effects of environmental exposures on the development and clinical course of asthma. On the molecular level, epigenetic mechanisms participate in multiple aspects of the emerging and ongoing asthma pathology. SUMMARY Studies performed in the last several years expand our knowledge on the role of histone acetylation, a classical epigenetic mark, in the regulation of (patho)physiological processes of diverse cells playing a central role in asthma, including those belonging to the immune system (e.g., CD4+ T cells, macrophages) and lung structure (e.g., airway epithelial cells, pulmonary fibroblasts). Those studies demonstrate a number of specific histone acetylation-associated mechanisms and pathways underlying pathological processes characteristic for asthma, as well as report their modification modalities. KEY MESSAGES Dietary modulation of histone acetylation levels in the immune system might protect against the development of asthma and other allergies. Interfering with the enzymes controlling the histone acetylation status of structural lung and (local) immune cells might provide future therapeutic options for asthmatics. Despite some methodological obstacles, analysis of the histone acetylation levels might improve asthma diagnostics.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Institute of Lung Health, Member of the German Center for Lung Research (DZL), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| |
Collapse
|
15
|
Guo X, Bai Y, Jia X, Wu P, Luo L, Wang J, Li H, Guo H, Li J, Guo Z, Yun K, Gao C, Yan J. DNA methylation profiling reveals potential biomarkers of β-lactams induced fatal anaphylactic shock. Forensic Sci Int 2024; 356:111943. [PMID: 38290418 DOI: 10.1016/j.forsciint.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Anaphylaxis is a serious reaction of systemic hypersensitivity with that rapid onset and sudden death. Drug hypersensitivity, particularly induced by β-lactams, is one of the most frequent causes of anaphylaxis in adults. But identification of anaphylactic shock, in forensic sciences recently, is difficult, because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. Here, we detected DNA methylation signatures of β-lactams-induced fatal anaphylactic shock with the Illumina Infinium Human Methylation EPIC BeadChip, to screen potential forensic biomarkers and reveal the molecular mechanisms of drug-induced anaphylaxis with fatal shock and sudden death. Our results indicated that DNA methylation was associated with β-lactams-induced fatal anaphylactic shock, in which the hypomethylation played a vital role. We found that 1459 differentially methylated positions (DMPs) were mainly involved in β-lactams-induced fatal anaphylactic shock by regulating MAPK and other signaling pathways. 18 DNA methylation signatures that could separate β-lactams-induced anaphylactic shock from healthy individuals were identified. The altered methylation of DMPs can affect the transcription of corresponding genes and promote β-lactams-induced fatal anaphylactic shock. The results suggest that DNA methylation can detect forensic identification markers of drug-induced anaphylaxis with fatal shock and sudden death, and it is an effective method for the forensic diagnosis.
Collapse
Affiliation(s)
- Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China.
| | - Yaqin Bai
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Jia
- College of Pharmacy, Nankai University, Tianjin, China
| | - Peng Wu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Luo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Wang
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Li
- Institute of Forensic Science of China, Beijing, China
| | - Hualin Guo
- China Astronaut Research and Training Center, Beijing, China
| | - Jianguo Li
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China
| | - Zhongyuan Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cairong Gao
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jiangwei Yan
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
16
|
Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1042. [PMID: 38256115 PMCID: PMC10815999 DOI: 10.3390/ijms25021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis and atopic dermatitis fall within the category of cutaneous immune-mediated inflammatory diseases (IMIDs). The prevalence of IMIDs is increasing in industrialized societies, influenced by both environmental changes and a genetic predisposition. However, the exact immune factors driving these chronic, progressive diseases are not fully understood. By using multi-omics techniques in cutaneous IMIDs, it is expected to advance the understanding of skin biology, uncover the underlying mechanisms of skin conditions, and potentially devise precise and personalized approaches to diagnosis and treatment. We provide a narrative review of the current knowledge in genomics, epigenomics, and proteomics of atopic dermatitis and psoriasis. A literature search was performed for articles published until 30 November 2023. Although there is still much to uncover, recent evidence has already provided valuable insights, such as proteomic profiles that permit differentiating psoriasis from mycosis fungoides and β-defensin 2 correlation to PASI and its drop due to secukinumab first injection, among others.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
17
|
Škrgat S, Harlander M, Janić M. Obesity and Insulin Resistance in Asthma Pathogenesis and Clinical Outcomes. Biomedicines 2024; 12:173. [PMID: 38255279 PMCID: PMC10813771 DOI: 10.3390/biomedicines12010173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Common inflammatory ground links obesity, insulin resistance, and asthma. As recognition of their interplay, one worsening the natural course of the other, is recognised, questions remain about how to adequately address them altogether to improve clinical outcomes. The present manuscript sheds light on the problem, describing possible pathophysiological links, clinical views, and therapeutic challenges, raising questions about what remains to be done, and calling for multidisciplinary treatment of these patients to detect diseases early and adequately address them before they become full-blown and deteriorate their health and quality of life.
Collapse
Affiliation(s)
- Sabina Škrgat
- Department of Pulmonary Diseases and Allergy, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Matevž Harlander
- Department of Pulmonary Diseases and Allergy, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Miodrag Janić
- Medical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:110. [PMID: 38256371 PMCID: PMC10820670 DOI: 10.3390/medicina60010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Allergic diseases are one of the most common chronic conditions and their prevalence is on the rise. Environmental exposure, primarily prenatal and early life influences, affect the risk for the development and specific phenotypes of allergic diseases via epigenetic mechanisms. Exposure to pollutants, microorganisms and parasites, tobacco smoke and certain aspects of diet are known to drive epigenetic changes that are essential for immune regulation (e.g., the shift toward T helper 2-Th2 cell polarization and decrease in regulatory T-cell (Treg) differentiation). DNA methylation and histone modifications can modify immune programming related to either pro-allergic interleukin 4 (IL-4), interleukin 13 (IL-13) or counter-regulatory interferon γ (IFN-γ) production. Differential expression of small non-coding RNAs has also been linked to the risk for allergic diseases and associated with air pollution. Certain exposures and associated epigenetic mechanisms play a role in the susceptibility to allergic conditions and specific clinical manifestations of the disease, while others are thought to have a protective role against the development of allergic diseases, such as maternal and early postnatal microbial diversity, maternal helminth infections and dietary supplementation with polyunsaturated fatty acids and vitamin D. Epigenetic mechanisms are also known to be involved in mediating the response to common treatment in allergic diseases, for example, changes in histone acetylation of proinflammatory genes and in the expression of certain microRNAs are associated with the response to inhaled corticosteroids in asthma. Gaining better insight into the epigenetic regulation of allergic diseases may ultimately lead to significant improvements in the management of these conditions, earlier and more precise diagnostics, optimization of current treatment regimes, and the implementation of novel therapeutic options and prevention strategies in the near future.
Collapse
Affiliation(s)
- Sandra Mijač
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Ivana Banić
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia
| | - Ana-Marija Genc
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Marcel Lipej
- IT Department, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
| | - Mirjana Turkalj
- Department of Pediatric Allergy and Pulmonology, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
19
|
Karthik KP, Dileep A, Rajagopala S, Arun Kumar M, Dharmarajan P, Vellela J. Ayurvedic clinical decision-making methods to predict, prevent and manage childhood allergic disorders. J Ayurveda Integr Med 2024; 15:100857. [PMID: 38237455 PMCID: PMC10828817 DOI: 10.1016/j.jaim.2023.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/14/2023] [Accepted: 11/24/2023] [Indexed: 02/03/2024] Open
Abstract
Allergy is a conundrum lacking satisfactory answers despite its global prevalence. Traditional systems of medicine may contain sustainable and effective solutions for the same. For mainstreaming them, an evaluation based on the system's own methods is inevitable rather than symptom-based correlations. Atopy is a novel entity in Ayurveda, but the methods of tripartite delineation (disease pattern, disease targets and influencing factors) of novel diseases and multifactorial approach to diagnosis and management in Ayurveda can bring about comprehensiveness in collection and categorization of data regarding the entity. This in turn can make the prediction, prevention and management of the same more precise, effective and sustainable. The article provides a template for the application of Ayurvedic biological framework in the diagnosis and management of novel diseases, with special reference to childhood allergic disorders.
Collapse
Affiliation(s)
| | | | - S Rajagopala
- Department of Kaumarabhritya, All Institute of Ayurveda, India
| | | | | | | |
Collapse
|
20
|
Lee E, Lee SY, Kim HB, Yang SI, Yoon J, Suh DI, Oh HY, Ahn K, Kim KW, Shin YH, Hong SJ. Insights from the COCOA birth cohort: The origins of childhood allergic diseases and future perspectives. Allergol Int 2024; 73:3-12. [PMID: 37752021 DOI: 10.1016/j.alit.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The ongoing COhort for Childhood Origin of Asthma and allergic diseases (COCOA) study is a prospective birth cohort investigating the origin and natural courses of childhood allergic diseases, including atopic dermatitis, food allergy, allergic rhinitis and asthma, with long-term prognosis. Initiated under the premise that allergic diseases result from a complex interplay of immune development alterations, environmental exposures, and host susceptibility, the COCOA study explores these dynamic interactions during prenatal and postnatal periods, framed within the hygiene and microbial hypotheses alongside the developmental origins of health and disease (DOHaD) hypothesis. The scope of the COCOA study extends to genetic predispositions, indoor and outdoor environmental variables affecting mothers and their offsprings such as outdoor and indoor air pollution, psychological factors, diets, and the microbiomes of skin, gut, and airway. We have embarked on in-depth investigations of diverse risk factors and the pathophysiological underpinnings of allergic diseases. By employing multi-omics approaches-proteomics, transcriptomics, and metabolomics-we gain deeper insights into the distinct pathophysiological processes across various endotypes of childhood allergic diseases, incorporating the exposome using extensive resources within the COCOA study. Integration with large-scale datasets, such as national health insurance records, enhances robustness and mitigates potential limitations inherent to birth cohort studies. As part of global networks focused on childhood allergic diseases, the COCOA study fosters collaborative research across multiple cohorts. The findings from the COCOA study are instrumental in informing precision medicine strategies for childhood allergic diseases, underpinning the establishment of disease trajectories.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jisun Yoon
- Department of Pediatrics, Chung-Ang University College of Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Hea Young Oh
- Department of Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, The Catholic University of Korea, Yeouido St. Mary's Hospital, Seoul, South Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
21
|
Dessì A, Di Maria C, Pintus R, Fanos V, Bosco A. Lipidomics and Metabolomics in Infant Atopic Dermatitis: What's the Correlation with Early Nutrition? Curr Pediatr Rev 2024; 20:510-524. [PMID: 37055903 DOI: 10.2174/1573396320666230411093122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/15/2023]
Abstract
To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk. In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.
Collapse
Affiliation(s)
- Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Camilla Di Maria
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Del Refugio Morfin Maciel BM, Álvarez Castelló M. [Risk factors for food allergy]. REVISTA ALERGIA MÉXICO 2023; 70:214-221. [PMID: 38506859 DOI: 10.29262/ram.v70i4.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
Allergy is the result of genetic and environmental interactions, including time, route, and dose of food exposure in susceptible patients. Risk factors can be: 1) genetic and 2) environmental, and these, in turn, are divided into prenatal, perinatal and postnatal. Food allergy appears frequently and depends on multiple risk factors (genetic and environmental), which in turn are divided into: prenatal, natal and postnatal factors; They participate in the expression of the disease and clinical intervention is not possible in all cases.
Collapse
Affiliation(s)
- Blanca María Del Refugio Morfin Maciel
- Alergóloga Pediatra, Instituto Nacional de Pediatría; Académico numerario de la Academia Mexicana de Pediatría; Maestría en Ciencias Mé-dicas, Universidad Nacional Autónoma de México Alergóloga, Hospital San Ángel Inn Chapultepec, Ciudad de
| | - Mirta Álvarez Castelló
- Doctor en Ciencias médicas, Especialista en Medicina General Integral y Alergología; Hospital Universitario General Calixto García; Investigadora Titular; Profesora auxiliar
| |
Collapse
|
23
|
Ansotegui Zubeldia IJ, Fiocchi A. [Introduction to food allergy]. REVISTA ALERGIA MÉXICO 2023; 70:208-210. [PMID: 38506857 DOI: 10.29262/ram.v70i4.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
Food allergy is a common chronic disorder that affects infants, children, adolescents, and adults. The prevalence of food allergy has increased in recent decades throughout the world, not limited to Western countries. Since there is no treatment, this focuses on avoiding allergens, in addition to educating patients and caregivers in the emergency treatment of acute reactions, for example: application of epinephrine. Studies suggest that accidental reactions occur in about 45% of children with food allergies each year, although most reactions are mild or moderate in severity. Hospital admissions for food anaphylaxis vary from 4 to 20 per 100,000 inhabitants; Deaths are rare, with an estimated incidence of 0.03 to 0.3 per million people with food allergy. Death from food anaphylaxis is rare and appears to have remained stable, possibly due to increases in food allergen labeling, diagnostic services, rates of intramuscular epinephrine prescription, and awareness of food allergies. Omalizumab is a drug approved for several disorders (chronic hives or difficult asthma) and may help reduce symptoms associated with food allergy. The relative importance of alternative technologies, management strategies and policies for food allergy varies from one region to another, due to differences in the epidemiology, education, socioeconomic well-being, and cultural preferences of the population.
Collapse
Affiliation(s)
- Ignacio Javier Ansotegui Zubeldia
- Director Médico Ejecutivo, Expresidente de la Organización Mundial de Alergia (WAO). Jefe del Departamento de Alergia e Inmunología, Hospital Quironsalud, Bizkaia, Bilbao,
| | - Alessandro Fiocchi
- Director responsable de la S.C. de Pediatría, Hospital Materno Infantil Macedonio Melloni, Milán, Italia. Director del Departamento Materno Infantil, Hospital Fatebenefratelli-Ophthalmic de Milán, Italia. Profesor adjunto de la Escuela de Es-pecialización en Pediatría III, Universidad de Milán y Consejero de la Sociedad Italiana de Pediatría, Sección Lombarda. Pediatric Hospital Bambino Gesú IRCCS Allergy division, Roma, Italia
| |
Collapse
|
24
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Wang S, Wang X, Liu J, Li Y, Sun M, Zhu G, Zhu X. Helicobacter pylori infection attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in C57/BL6 mice. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:97. [PMID: 37978564 PMCID: PMC10656826 DOI: 10.1186/s13223-023-00851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Although numerous studies have suggested a negative correlation between Helicobacter pylori (H. pylori) infection and allergies, there has been limited research on the relationship between H. pylori infections and atopic dermatitis (AD). The present study aimed to investigate the effects of H. pylori infection in an AD mouse model and identify potential mechanisms related to type 2 immunity, skin barrier defects, and pruritus. METHODS A model of AD-like symptoms was established with 2,4-dinitrochlorobenzene (DNCB) after infection of the gastric cavity with H. pylori. Analysis of the expression of key inflammatory cytokines and serum levels of immunoglobulin E (IgE) was based on enzyme-linked immunosorbent assay (ELISA). The expression of filaggrin (FLG) and loricrin (LOR) were analyzed by immunohistochemistry staining. The evaluation of STAT1, STAT3, phosphorylated STAT1 (phospho-STAT1), and phosphorylated STAT3 (phospho-STAT1) expression levels in skin lesions was performed using western blot. RESULTS The present study showed that the H. pylori-positive AD group (HP+AD+) exhibited milder skin lesions, including erythema, erosion, swelling, and scaling, than the H. pylori-negative AD group (HP-AD+). Additionally, HP+AD+ displayed lower levels of IgE in serum, and downregulated expression of interleukins 4 and 31 (IL-4 and IL-31) in serum. Furthermore, HP+AD+ demonstrated higher expression of filaggrin and loricrin than HP-AD+. Notably, H. pylori significantly reduced the amount of phosphorylated STAT1 and STAT3. CONCLUSION Helicobacter pylori infection negatively regulates the inflammatory response by affecting inflammatory factors in the immune response, and repairs the defective epidermal barrier function. In addition, H. pylori infection may reduce IL-31, thereby alleviating pruritus. These effects may be associated with the inhibition of JAK-STAT signaling activation.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Dermatology, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaokang Wang
- Department of Dermatology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jiaqi Liu
- Veterinary Medical College, Yangzhou University, Yangzhou, China
| | - Yaqian Li
- Veterinary Medical College, Yangzhou University, Yangzhou, China
| | - Minghui Sun
- Department of Dermatology, Medical College, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Veterinary Medical College, Yangzhou University, Yangzhou, China
| | - Xiaofang Zhu
- Department of Dermatology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
26
|
Alhamdan F, Greulich T, Daviaud C, Marsh LM, Pedersen F, Thölken C, Pfefferle PI, Bahmer T, Potaczek DP, Tost J, Garn H. Identification of extracellular vesicle microRNA signatures specifically linked to inflammatory and metabolic mechanisms in obesity-associated low type-2 asthma. Allergy 2023; 78:2944-2958. [PMID: 37486026 DOI: 10.1111/all.15824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
RATIONALE AND OBJECTIVE Plasma extracellular vesicles (EVs) represent a vital source of molecular information about health and disease states. Due to their heterogenous cellular sources, EVs and their cargo may predict specific pathomechanisms behind disease phenotypes. Here we aimed to utilize EV microRNA (miRNA) signatures to gain new insights into underlying molecular mechanisms of obesity-associated low type-2 asthma. METHODS Obese low type-2 asthma (OA) and non-obese low type-2 asthma (NOA) patients were selected from an asthma cohort conjointly with healthy controls. Plasma EVs were isolated and characterised by nanoparticle tracking analysis. EV-associated small RNAs were extracted, sequenced and bioinformatically analysed. RESULTS Based on EV miRNA expression profiles, a clear distinction between the three study groups could be established using a principal component analysis. Integrative pathway analysis of potential target genes of the differentially expressed miRNAs revealed inflammatory cytokines (e.g., interleukin-6, transforming growth factor-beta, interferons) and metabolic factors (e.g., insulin, leptin) signalling pathways to be specifically associated with OA. The miR-17-92 and miR-106a-363 clusters were significantly enriched only in OA. These miRNA clusters exhibited discrete bivariate correlations with several key laboratory (e.g., C-reactive protein) and lung function parameters. Plasma EV miRNA signatures mirrored blood-derived CD4+ T-cell transcriptome data, but achieved an even higher sensitivity in identifying specifically affected biological pathways. CONCLUSION The identified plasma EV miRNA signatures and particularly the miR-17-92 and -106a-363 clusters were capable to disentangle specific mechanisms of the obesity-associated low type-2 asthma phenotype, which may serve as basis for stratified treatment development.
Collapse
Affiliation(s)
- Fahd Alhamdan
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Marburg, Germany
| | - Christian Daviaud
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, France
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Ludwig Boltzmann Institute for Lung Vascular Research and Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Frauke Pedersen
- Lungen Clinic Großhansdorf GmbH, Member of the German Center for Lung Research (DZL), Airway Research Center North (ARCN), Großhansdorf, Germany
| | - Clemens Thölken
- Institute of Medical Bioinformatics and Biostatistics, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | - Petra Ina Pfefferle
- Comprehensive Biobank Marburg (CBBMR), Member of the German Biobank Alliance (GBA) and the German Center for Lung Research (DZL), Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | - Thomas Bahmer
- Lungen Clinic Großhansdorf GmbH, Member of the German Center for Lung Research (DZL), Airway Research Center North (ARCN), Großhansdorf, Germany
- Department for Internal Medicine I, Campus Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Gießen, Germany
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, France
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
27
|
Cardenas A, Fadadu R, Bunyavanich S. Climate change and epigenetic biomarkers in allergic and airway diseases. J Allergy Clin Immunol 2023; 152:1060-1072. [PMID: 37741554 PMCID: PMC10843253 DOI: 10.1016/j.jaci.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif.
| | - Raj Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
28
|
Yu RL, Ning HY, Lan TF, He H, Zheng CB, Wang XY, Wang HT, Wang XY. Self-Reported Allergic Rhinitis Prevalence and Risk Factors in Employees of the China National Railway. Aerosp Med Hum Perform 2023; 94:821-826. [PMID: 37853588 DOI: 10.3357/amhp.6229.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND: Allergic rhinitis (AR) is a common allergic disease globally and its prevalence is increasing year by year. This study aimed to analyze the prevalence and risk factors of self-reported AR among the Chinese National Railway train crew in the China Railway Beijing Group.METHODS: This prospective questionnaire study surveyed 1511 randomly recruited train crewmembers from 20 cities in the China National Railway network, and 494 reported having AR. A structured questionnaire was tailored, designed, and delivered electronically to all subjects. Prevalence of and risk factors for AR were analyzed based on self-reported results.RESULTS: The prevalence of self-reported AR among train crewmembers was 32.6%. Among respondents, 86.03% worked in passenger cars and 64.6% reported having worse AR symptoms while on trains. AR frequencies were 40.15% perennially and 59.85% seasonally. Among the Total Nasal Symptoms Scores (TNSS), significant differences were found between rhinorrhea and sneezing and between nasal itching and sneezing. The Rhino-Conjunctivitis Quality of Life Questionnaire (RQLQ) showed significant correlations between all seven sections. TNSS was significantly associated with the RQLQ. Scores of both the TNSS and RQLQ showed that the severity of AR symptoms (rp = 0.103) and the impact on quality of life (rp = 0.113) correlated significantly with seniority.CONCLUSIONS: The prevalence of self-reported AR among train crew working in passenger cars is higher than that of the general Chinese population. The severity of AR symptoms and the impact on quality of life are associated with seniority, meaning the number of years working on trains.Yu R-L, Ning H-Y, Lan T-F, He H, Zheng C-B, Wang X-Y, Wang H-T, Wang X-Y. Self-reported allergic rhinitis prevalence and risk factors in employees of the China National Railway. Aerosp Med Hum Perform. 2023; 94(11):821-826.
Collapse
|
29
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Chen C, Zeng J, Lu J. Critical role of epigenetic modification in the pathogenesis of atopic dermatitis. Indian J Dermatol Venereol Leprol 2023; 89:700-709. [PMID: 37067130 DOI: 10.25259/ijdvl_298_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/24/2022] [Indexed: 03/31/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterised by recurrent eczema-like lesions and severe pruritus, along with drying and decrustation of skin. Current research relates the pathogenesis of atopic dermatitis mainly to genetic susceptibility, abnormal skin barrier function, immune disorders, Staphylococcus aureus colonisation, microbiological dysfunction and vitamin D insufficiency. Epigenetic modifications are distinct genetic phenotypes resulting from environment-driven changes in chromosome functions in the absence of nuclear DNA sequence variation. Classic epigenetic events include DNA methylation, histone protein modifications and non-coding RNA regulation. Increasing evidence has indicated that epigenetic events are involved in the pathogenesis of atopic dermatitis by their effects on multiple signalling pathways which in turn influence the above factors. This review primarily analyses the function of epigenetic regulation in the pathogenesis of atopic dermatitis. In addition, it tries to make recommendations for personalised epigenetic treatment strategies for atopic dermatitis in the future.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Bagnasco D, Nicola S, Testino E, Brussino L, Pini L, Caminati M, Piccardo F, Canevari RF, Melissari L, Ioppi A, Guastini L, Lombardi C, Milanese M, Losa F, Robbiano M, De Ferrari L, Riccio AM, Guida G, Bonavia M, Fini D, Balbi F, Caruso C, Paggiaro P, Blasi F, Heffler E, Paoletti G, Canonica GW, Senna G, Passalacqua G. Long-Term Efficacy of Mepolizumab at 3 Years in Patients with Severe Asthma: Comparison with Clinical Trials and Super Responders. Biomedicines 2023; 11:2424. [PMID: 37760865 PMCID: PMC10525371 DOI: 10.3390/biomedicines11092424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
The efficacy mepolizumab in severe asthmatic patients is proven in the literature. Primarily to study the effect of mepolizumab on exacerbations, steroid dependence, and the continuation of efficacy in the long term. Secondarily to evaluate the effect of the drug on nasal polyps. Analyzing data from SANI (Severe Asthma Network Italy) clinics, we observed severe asthmatic patients treated with mepolizumab 100 mg/4 weeks, for a period of 3 years. 157 patients were observed. Exacerbations were reduced from the first year (-84.6%) and progressively to 90 and 95% in the second and third ones. Steroid-dependent patients decreased from 54% to 21% and subsequently to 11% in the second year and 6% in the third year. Patients with concomitant nasal polyps, assessed by SNOT-22, showed a 49% reduction in value from baseline to the third year. The study demonstrated the long-term efficacy of mepolizumab in a real-life setting.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Stefania Nicola
- SCDU Immunologia e Allergologia, AO Ordine Mauriziano di Torino, C.so Re Umberto 109, 10128 Torino, Italy (L.B.)
| | - Elisa Testino
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Luisa Brussino
- SCDU Immunologia e Allergologia, AO Ordine Mauriziano di Torino, C.so Re Umberto 109, 10128 Torino, Italy (L.B.)
| | - Laura Pini
- Respiratory Medicine Unit, ASST—“Spedali Civili” of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Marco Caminati
- Department of Medicine, University of Verona, 37134 Verona, Italy; (M.C.); (G.S.)
| | - Federica Piccardo
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Rikki Frank Canevari
- ENT Department, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.F.C.); (L.G.)
| | - Laura Melissari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Alessandro Ioppi
- ENT Department, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.F.C.); (L.G.)
| | - Luca Guastini
- ENT Department, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.F.C.); (L.G.)
| | - Carlo Lombardi
- Departmental Unit of Allergology, Immunology & Pulmonary Diseases, Fondazione Poliambulanza, 25124 Brescia, Italy;
| | - Manlio Milanese
- Department of Respiratory Diseases, S. Corona Hospital, ASL2, 17027 Pietra Ligure, Italy;
| | - Francesca Losa
- UO Allergology and Clinical Immunology, ASST Mantova, 46100 Mantova, Italy;
| | - Michela Robbiano
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Giuseppe Guida
- Department of Clinical and Biological Science, University of Torino, 10043 Orbassano, Italy;
| | - Marco Bonavia
- Department of Rehabilitation Pulmonology, Hospital Ge-Arenzano, ASL3, 16149 Genoa, Italy;
| | - Donatella Fini
- Department of Pneumologiy, Hospital Sarzana (SP), 19125 La Spezia, Italy;
| | - Francesco Balbi
- Department of Pneumologiy, Hospital Imperia, 18100 Imperia, Italy;
| | - Cristiano Caruso
- Department of di Medical and Surgical Science, Fondation Universitary Policlinic A. Gemelli IRCCS, University Cattolica Sacro Cuore, 20123 Rome, Italy;
| | - Pierluigi Paggiaro
- Department of Surgery, Medicine, Molecular Biology and Critical Care, University of Pisa, 56126 Pisa, Italy;
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Enrico Heffler
- Unit of Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Hospital, 20089 Rozzano, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Unit of Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Hospital, 20089 Rozzano, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giorgio Walter Canonica
- Unit of Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Hospital, 20089 Rozzano, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (M.C.); (G.S.)
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | | |
Collapse
|
32
|
Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. The ERBB2 Exonic Variant Pro1170Ala Modulates Mitogen-Activated Protein Kinase Signaling Cascades and Associates with Allergic Asthma. Int Arch Allergy Immunol 2023; 184:1010-1021. [PMID: 37336194 DOI: 10.1159/000530960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies. METHODS This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches. RESULTS The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk. CONCLUSIONS The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore,
| | - Wei Liang Gan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wing Shan Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR)Kampar Campus, Kampar, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Arzola-Martínez L, Ptaschinski C, Lukacs NW. Trained innate immunity, epigenetics, and food allergy. FRONTIERS IN ALLERGY 2023; 4:1105588. [PMID: 37304168 PMCID: PMC10251748 DOI: 10.3389/falgy.2023.1105588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years the increased incidence of food allergy in Western culture has been associated with environmental factors and an inappropriate immune phenotype. While the adaptive immune changes in food allergy development and progression have been well-characterized, an increase in innate cell frequency and activation status has also recently received greater attention. Early in prenatal and neonatal development of human immunity there is a reliance on epigenetic and metabolic changes that stem from environmental factors, which are critical in training the immune outcomes. In the present review, we discuss how trained immunity is regulated by epigenetic, microbial and metabolic factors, and how these factors and their impact on innate immunity have been linked to the development of food allergy. We further summarize current efforts to use probiotics as a potential therapeutic approach to reverse the epigenetic and metabolic signatures and prevent the development of severe anaphylactic food allergy, as well as the potential use of trained immunity as a diagnostic and management strategy. Finally, trained immunity is presented as one of the mechanisms of action of allergen-specific immunotherapy to promote tolerogenic responses in allergic individuals.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Gautam Y, Caldwell J, Kottyan L, Chehade M, Dellon ES, Rothenberg ME, Mersha TB. Genome-wide admixture and association analysis identifies African ancestry-specific risk loci of eosinophilic esophagitis in African Americans. J Allergy Clin Immunol 2023; 151:1337-1350. [PMID: 36400179 PMCID: PMC10164699 DOI: 10.1016/j.jaci.2022.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE), a chronic allergic inflammatory disease, is linked to multiple genetic risk factors, but studies have focused on populations of European ancestry. Few studies have assessed Black or African American (AA) populations for loci involved in EoE susceptibility. OBJECTIVE We performed admixture mapping (AM) and genome-wide association study (GWAS) of EoE using participants from AA populations. METHODS We conducted AM and GWAS of EoE using 137 EoE cases and 1465 healthy controls from the AA population. Samples were genotyped using molecular evolutionary genetics analysis (MEGA). Genotype imputation was carried out with the Consortium on Asthma Among African-Ancestry Populations in the Americas (CAAPA) reference panel using the Michigan Imputation Server. Global and local ancestry inference was carried out, followed by fine mapping and RNA sequencing. After quality control filtering, over 6,000,000 variants were tested by logistic regression adjusted for sex, age, and global ancestry. RESULTS The global African ancestry proportion was found to be significantly lower among cases than controls (0.751 vs 0.786, P = .012). Case-only AM identified 3 significant loci (9p13.3, 12q24.22-23, and 15q11.2) associated with EoE, of which 12q24.22-23 and 9p13.3 were further replicated in the case-control analysis, with associations observed with African ancestry. Fine mapping and multiomic functional annotations prioritized the variants rs11068264 (FBXW8) and rs7307331 (VSIG10) at 12q24.23 and rs2297879 (ARHGEF39) at 9p13.3. GWAS identified 1 genome-wide significant locus at chromosome 1p22.3 (rs17131726, DDAH1) and 10 other suggestive loci. Most GWAS variants were low-frequency African ancestry-specific variants. RNA sequencing revealed that esophageal DDAH1 and VSIG10 were downregulated and ARHGEF39 upregulated among EoE cases. CONCLUSIONS GWAS and AM for EoE in AA revealed that African ancestry-specific genetic susceptibility loci exist at 1p22.3, 9p13.3, and 12q24.23, providing evidence of ancestry-specific inheritance of EoE. More independent genetic studies of different ancestries for EoE are needed.
Collapse
Affiliation(s)
- Yadu Gautam
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Julie Caldwell
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Leah Kottyan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Evan S Dellon
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
35
|
Fiala S, Fleit HB. Clinical and experimental treatment of allergic asthma with an emphasis on allergen immunotherapy and its mechanisms. Clin Exp Immunol 2023; 212:14-28. [PMID: 36879430 PMCID: PMC10081111 DOI: 10.1093/cei/uxad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is currently the only form of treatment that modifies allergic asthma. Pharmacotherapy alone seeks to control the symptoms of allergic asthma, allergic rhinitis, and other atopic conditions. In contrast, AIT can induce long-term physiological modifications through the immune system. AIT enables individuals to live improved lives many years after treatment ends, where they are desensitized to the allergen(s) used or no longer have significant allergic reactions upon allergen provocation. The leading forms of treatment with AIT involve injections of allergen extracts with increasing doses via the subcutaneous route or drops/tablets via the sublingual route for several years. Since the initial attempts at this treatment as early as 1911 by Leonard Noon, the mechanisms by which AIT operates remain unclear. This literature-based review provides the primary care practitioner with a current understanding of the mechanisms of AIT, including its treatment safety, protocols, and long-term efficacy. The primary mechanisms underlying AIT include changes in immunoglobulin classes (IgA, IgE, and IgG), immunosuppressive regulatory T-cell induction, helper T cell type 2 to helper T cell type 1 cell/cytokine profile shifts, decreased early-phase reaction activity and mediators, and increased production of IL-10, IL-35, TGF-β, and IFN-γ. Using the databases PubMed and Embase, a selective literature search was conducted searching for English, full-text, reviews published between 2015 and 2022 using the keywords (with wildcards) "allerg*," "immunotherap*," "mechanis*," and "asthma." Among the cited references, additional references were identified using a manual search.
Collapse
Affiliation(s)
- Scott Fiala
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Howard B Fleit
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
36
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
37
|
Safar R, Oussalah A, Mayorga L, Vieths S, Barber D, Torres MJ, Guéant JL. Epigenome alterations in food allergy: A systematic review of candidate gene and epigenome-wide association studies. Clin Exp Allergy 2023; 53:259-275. [PMID: 36756739 DOI: 10.1111/cea.14277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVE The aim of this study was to systematically review the evidence across studies that assessed DNA methylome variations in association with food allergy (FA). DESIGN A systematic review of the literature and meta-analysis were carried out within several databases. However, the risk of bias in the included articles was not evaluated. DATA SOURCES PubMed, Cochrane Database of Systematic Reviews, and Web of Science were used to search up to July 2022. ELIGIBILITY CRITERIA We included targeted and epigenome-wide association studies (EWASs) that assessed DNA methylome alterations in association with FA in adult or paediatric populations. RESULTS Among 366 publications, only 16 were retained, which were mainly focused on FA in children. Seven candidate gene-targeted studies found associations in Th1/Th2 imbalance (IL4, IL5, IL10, INFG, IL2 and IL12B genes), regulatory T cell function (FOXP3 gene), Toll-like receptors pathway (TLR2, CD14 genes) and digestive barrier integrity (FLG gene). Nine EWAS assessed the association with peanut allergy (n = 3), cow's milk allergy (n = 2) or various food allergens (n = 4). They highlighted 11 differentially methylated loci in at least two studies (RPS6KA2, CAMTA1, CTBP2, RYR2, TRAPPC9, DOCK1, GALNTL4, HDAC4, UMODL1, ZAK and TNS3 genes). Among them, CAMTA1 and RPS6KA2, and CTBP2 are involved in regulatory T cell function and Th2 cell differentiation, respectively. Gene-functional analysis revealed two enriched gene clusters involved in immune responses and protein phosphorylation. ChIP-X Enrichment Analysis 3 showed eight significant transcription factors (RXRA, ZBTB7A, ESR1, TCF3, MYOD1, CTCF, GATA3 and CBX2). Ingenuity Pathway Analysis identified canonical pathways involved, among other, in B cell development, pathogen-induced cytokine storm signalling pathway and dendritic cell maturation. CONCLUSION This review highlights the involvement of epigenomic alterations of loci in Th1/Th2 and regulatory T cell differentiation in both candidate gene studies and EWAS. These alterations provide a better insight into the mechanistic aspects in FA pathogenesis and may guide the development of epigenome-based biomarkers for FA.
Collapse
Affiliation(s)
- Ramia Safar
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Lina Mayorga
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Research Group, Instituto de Investigación Biomedica de Malaga-IBIMA and ARADyAL, Malaga, Spain.,Laboratory for Nanostructures for the Diagnosis and Treatment of Allergic Diseases, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, IMMA, Universidad San Pablo CEU, CEU Universities, Madrid, Spain.,ARADyAL-RD16/0006/0015, Thematic Network and Cooperative Research Centers, ISCIII, Madrid, Spain
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Research Group, Instituto de Investigación Biomedica de Malaga-IBIMA and ARADyAL, Malaga, Spain.,Laboratory for Nanostructures for the Diagnosis and Treatment of Allergic Diseases, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
38
|
Bhat S, Rotti H, Prasad K, Kabekkodu SP, Saadi AV, Shenoy SP, Joshi KS, Nesari TM, Shengule SA, Dedge AP, Gadgil MS, Dhumal VR, Salvi S, Satyamoorthy K. Genome-wide DNA methylation profiling after Ayurveda intervention to bronchial asthmatics identifies differential methylation in several transcription factors with immune process related function. J Ayurveda Integr Med 2023; 14:100692. [PMID: 37018893 PMCID: PMC10122039 DOI: 10.1016/j.jaim.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harish Rotti
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushma P Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sushant A Shengule
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Amrish P Dedge
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Maithili S Gadgil
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Vikram R Dhumal
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sundeep Salvi
- Department of Pulmonary Medicine, Chest Research Foundation, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
39
|
Recto KA, Huan T, Lee DH, Lee GY, Gereige J, Yao C, Hwang SJ, Joehanes R, Kelly RS, Lasky-Su J, O’Connor G, Levy D. Transcriptome-wide association study of circulating IgE levels identifies novel targets for asthma and allergic diseases. Front Immunol 2023; 14:1080071. [PMID: 36793728 PMCID: PMC9922991 DOI: 10.3389/fimmu.2023.1080071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Measurement of circulating immunoglobulin E (IgE) concentration is helpful for diagnosing and treating asthma and allergic diseases. Identifying gene expression signatures associated with IgE might elucidate novel pathways for IgE regulation. To this end, we performed a discovery transcriptome-wide association study to identify differentially expressed genes associated with circulating IgE levels in whole-blood derived RNA from 5,345 participants in the Framingham Heart Study across 17,873 mRNA gene-level transcripts. We identified 216 significant transcripts at a false discovery rate <0.05. We conducted replication using the meta-analysis of two independent external studies: the Childhood Asthma Management Program (n=610) and the Genetic Epidemiology of Asthma in Costa Rica Study (n=326); we then reversed the discovery and replication cohorts, which revealed 59 significant genes that replicated in both directions. Gene ontology analysis revealed that many of these genes were implicated in immune function pathways, including defense response, inflammatory response, and cytokine production. Mendelian randomization (MR) analysis revealed four genes (CLC, CCDC21, S100A13, and GCNT1) as putatively causal (p<0.05) regulators of IgE levels. GCNT1 (beta=1.5, p=0.01)-which is a top result in the MR analysis of expression in relation to asthma and allergic diseases-plays a role in regulating T helper type 1 cell homing, lymphocyte trafficking, and B cell differentiation. Our findings build upon prior knowledge of IgE regulation and provide a deeper understanding of underlying molecular mechanisms. The IgE-associated genes that we identified-particularly those implicated in MR analysis-can be explored as promising therapeutic targets for asthma and IgE-related diseases.
Collapse
Affiliation(s)
- Kathryn A. Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Jessica Gereige
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Rachel S. Kelly
- Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, MA, United States
| | - Jessica Lasky-Su
- Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, MA, United States
| | - George O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| |
Collapse
|
40
|
Systemic and Airway Epigenetic Disruptions Are Associated with Health Status in COPD. Biomedicines 2023; 11:biomedicines11010134. [PMID: 36672643 PMCID: PMC9855774 DOI: 10.3390/biomedicines11010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic modifications are common in chronic obstructive pulmonary disease (COPD); however, their clinical relevance is largely unknown. We hypothesized that epigenetic disruptions are associated with symptoms and health status in COPD. We profiled the blood (n = 57) and airways (n = 62) of COPD patients for DNA methylation (n = 55 paired). The patients' health status was assessed using the St. George's Respiratory Questionnaire (SGRQ). We conducted differential methylation analyses and identified pathways characterized by epigenetic disruptions associated with SGRQ scores and its individual domains. 29,211 and 5044 differentially methylated positions (DMPs) were associated with total SGRQ scores in blood and airway samples, respectively. The activity, impact, and symptom domains were associated with 9161, 25,689 and 17,293 DMPs in blood, respectively; and 4674, 3730 and 5063 DMPs in airways, respectively. There was a substantial overlap of DMPs between airway and blood. DMPs were enriched for pathways related to common co-morbidities of COPD (e.g., ageing, cancer and neurological) in both tissues. Health status in COPD is associated with airway and systemic epigenetic changes especially in pathways related to co-morbidities of COPD. There are more blood DMPs than in the airways suggesting that blood epigenome is a promising source to discover biomarkers for clinical outcomes in COPD.
Collapse
|
41
|
Wen S, Li F, Tang Y, Dong L, He Y, Deng Y, Tao Z. MIR222HG attenuates macrophage M2 polarization and allergic inflammation in allergic rhinitis by targeting the miR146a-5p/TRAF6/NF-κB axis. Front Immunol 2023; 14:1168920. [PMID: 37205104 PMCID: PMC10185836 DOI: 10.3389/fimmu.2023.1168920] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Although M2 macrophages are involved in the orchestration of type 2 inflammation in allergic diseases, the mechanisms underlying non-coding RNA (ncRNA)-mediated macrophage polarization in allergic rhinitis (AR) have not been systematically understood. Here, we identified long non-coding RNA (lncRNA) MIR222HG as a key regulator of macrophage polarization and revealed its role in AR. Consistent with our bioinformatic analysis of GSE165934 dataset derived from the Gene Expression Omnibus (GEO) database, lncRNA-MIR222HG and murine mir222hg were downregulated in our clinical samples and animal models of AR, respectively. Mir222hg was upregulated in M1 macrophages and downregulated in M2 macrophages. The allergen-ovalbumin facilitated polarization of RAW264.7 cells to the M2 phenotype, accompanied by the downregulation of mir222hg expression in a dose-dependent manner. Mir222hg facilitates macrophage M1 polarization and reverses M2 polarization caused by ovalbumin. Furthermore, mir222hg attenuates macrophage M2 polarization and allergic inflammation in the AR mouse model. Mechanistically, a series of gain- and loss-of-function experiments and rescue experiments were performed to verify the role of mir222hg as a ceRNA sponge that adsorbed miR146a-5p, upregulated Traf6, and activated the IKK/IκB/P65 pathway. Collectively, the data highlight the remarkable role of MIR222HG in the modulation of macrophage polarization and allergic inflammation, as well as its potential role as a novel AR biomarker or therapeutic target.
Collapse
Affiliation(s)
- Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| |
Collapse
|
42
|
Long noncoding RNA HOXA-AS2 ameliorates chronic intermittent hypoxia-induced lung inflammation by regulating miR-17-5p/tipe2 axis. Allergol Immunopathol (Madr) 2023; 51:36-44. [PMID: 36916086 DOI: 10.15586/aei.v51i2.701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/27/2022] [Indexed: 03/08/2023]
Abstract
PURPOSE The purpose is to confirm whether long noncoding RNA HOXA-AS2 relieves chronic intermittent hypoxia (CIH)-induced lung inflammation. METHODS Male Sprague Dawley rats were used to establisha CIH rat model. Hematoxylin and Eosin staining was used on the lung tissue injury to determine the successful construction of CIH animal model. Arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2) were measured. HOXA-AS2 was overexpressed to evaluate its role in the progression and development of CIH. T cell differentiation and cytokine production were determined using flow cytometry. Cell apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labelling assay kit. The target of HOXA-AS2 and miR-17-5p was predicted by the Encyclopedia of RNA Interactomes (ENCORI) and confirmed using luciferase assay. RESULTS HOXA-AS2 was downregulated in CIH rat models. Lung tissue injury was observed in CIH rats, and the injury was attenuated by the overexpression of HOXA-AS2. PaO2 was reduced and PaCO2 was induced in CIH rats, which was reversed by the overexpression of HOXA-AS2. The overexpression of HOXA-AS2 inhibited CIH-induced cell apoptosis. It also reversed alterations in the levels of interferon gamma (IFNγ), interleukin (IL)-2, IL-6, IL-1β, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta1 (TGF-β1) in rats caused by CIH. The overexpression of HOXA-AS2 prevented the induction in CD4+ IFN-γ+ T cells and reduction in CD4+TGF-β1+ T cells. The overexpression of HOXA-AS2 upregulated tumor necrosis factor-alpha-induced protein 8-like 2 (tipe2) key regulator through directly targeting miR-17-5p. Further experiments proved that tipe2 was the direct target of miR-17-5p. CONCLUSION This study manifested that HOXA-AS2 acted as an anti-inflammatory regulator and protected lung tissue injury from CIH in the rat model; this was mediated by upregulation of tipe2 through directly targeting miR-17-5p. HOXA-AS2 upregulated the expression of tipe2, providing new understanding and therapeutic target for CIH.
Collapse
|
43
|
Schedel M, Leach SM, Strand MJ, Danhorn T, MacBeth M, Faino AV, Lynch AM, Winn VD, Munoz LL, Forsberg SM, Schwartz DA, Gelfand EW, Hauk PJ. Molecular networks in atopic mothers impact the risk of infant atopy. Allergy 2023; 78:244-257. [PMID: 35993851 DOI: 10.1111/all.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.
Collapse
Affiliation(s)
- Michaela Schedel
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pulmonary Medicine, University Medicine Essen-Ruhrlandklinik, Essen, Germany.,Department of Pulmonary Medicine, University Medicine Essen, University Hospital, Essen, Germany
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Matthew J Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Department of Pharmacology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Morgan MacBeth
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anna V Faino
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Biostatistics, Epidemiology and Research Core, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne M Lynch
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Lindsay L Munoz
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Shannon M Forsberg
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Thoracic Oncology, University of Colorado Cancer Center, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erwin W Gelfand
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Pia J Hauk
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Section Allergy/Immunology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
44
|
Dholariya S, Singh RD, Patel KA. Melatonin: Emerging Player in the Management of Oral Cancer. Crit Rev Oncog 2023; 28:77-92. [PMID: 37830217 DOI: 10.1615/critrevoncog.2023048934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has emerged as a major medical and social issue in many industrialized nations due to the high death rate. It is becoming increasingly common in people under the age of 45, although the underlying causes and mechanisms of this increase remain unclear. Melatonin, as a pleiotropic hormone, plays a pivotal role in a wide variety of cellular and physiological functions. Mounting evidence supports melatonin's ability to modify/influence oral carcinogenesis, help in the reduction of the incidence of OC, and increase chemo- and radiosensitivity. Despite its potential anti-carcinogenic effects, the precise function of melatonin in the management of OC is not well understood. This review summarizes the current knowledge regarding melatonin function in anti-carcinogenesis mechanisms for OC. In addition, clinical assessment and the potential therapeutic utility of melatonin in OC are discussed. This review will provide a basis for researchers to create new melatonin-based personalized medicines for treating and preventing OC.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | |
Collapse
|
45
|
Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun 2022; 13:7415. [PMID: 36456559 PMCID: PMC9715628 DOI: 10.1038/s41467-022-35088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis.
Collapse
|
46
|
Pongdee T, Bielinski SJ, Decker PA, Kita H, Larson NB. White blood cells and chronic rhinosinusitis: a Mendelian randomization study. Allergy Asthma Clin Immunol 2022; 18:98. [PMID: 36419128 PMCID: PMC9682667 DOI: 10.1186/s13223-022-00739-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Risk factors for the pathogenesis of chronic rhinosinusitis (CRS) remain largely undetermined, which is likely due to the heterogeneity of the disease. White blood cell counts have been largely unexplored as a risk factor for CRS even though different types of white blood cells are involved in the inflammatory process of CRS. OBJECTIVE To investigate causal associations between different types of white blood cells on risk of CRS utilizing a Mendelian randomization (MR) analysis. METHODS A two-sample MR analysis was performed using respective GWAS summary statistics for the exposure traits (neutrophil count, eosinophil count, basophil count, lymphocyte count, and monocyte count) and outcome trait (CRS). For the exposure traits, the European Bioinformatics Institute database of complete GWAS summary data was used. For the outcome trait, summary statistics for CRS GWAS were obtained from FinnGen. Primary analysis for MR was performed using inverse-variance weighted two-sample MR. Sensitivity analyses included weighted median, MR-Egger, and MR-PRESSO (raw and outlier-corrected). RESULTS Eosinophils were associated with CRS (OR = 1.55 [95% CI 1.38, 1.73]; p = 4.3E-14). Eosinophil results were similar across additional MR methods. MR results did not demonstrate significant causal relationships between neutrophils, lymphocytes, monocytes, or basophils with CRS. No significant pleiotropic bias was observed. CONCLUSIONS In a two-sample MR analysis, a potential causal link between blood eosinophil counts and CRS has been demonstrated. In addition, causal relationships between blood counts among other white blood cell types and CRS were not found. Further studies involving genetic variation in CRS are needed to corroborate genetic causal effects for CRS.
Collapse
Affiliation(s)
- Thanai Pongdee
- grid.66875.3a0000 0004 0459 167XDivision of Allergic Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Suzette J. Bielinski
- grid.66875.3a0000 0004 0459 167XDivision of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Paul A. Decker
- grid.66875.3a0000 0004 0459 167XDivision of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Hirohito Kita
- grid.417468.80000 0000 8875 6339Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, AZ USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Nicholas B. Larson
- grid.66875.3a0000 0004 0459 167XDivision of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
47
|
Zhang P, Du Y, Bai H, Wang Z, Duan J, Wang X, Zhong J, Wan R, Xu J, He X, Wang D, Fei K, Yu R, Tian J, Wang J. Optimized dose selective HDAC inhibitor tucidinostat overcomes anti-PD-L1 antibody resistance in experimental solid tumors. BMC Med 2022; 20:435. [PMID: 36352411 PMCID: PMC9648046 DOI: 10.1186/s12916-022-02598-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) have influenced the treatment paradigm for multiple solid tumors, increasing evidence suggests that primary and adaptive resistance may limit the long-term efficacy of ICIs. New therapeutic strategies with other drug combinations are hence warranted to enhance the antitumor efficacy of ICIs. As a novel tumor suppressor, histone deacetylase (HDAC) inhibitor tucidinostat has been successfully confirmed to act against hematological malignancies. However, the underlying mechanisms of action for tucidinostat and whether it can manipulate the tumor microenvironment (TME) in solid tumors remain unclear. METHODS Three murine tumor models (4T1, LLC, and CT26) were developed to define the significant role of different doses of tucidinostat in TME. The immunotherapeutic effect of tucidinostat combined with anti-programmed cell death ligand 1 antibody (aPD-L1) was demonstrated. Furthermore, the effect of tucidinostat on phenotypic characteristics of peripheral blood mononuclear cells (PBMCs) from lung cancer patients was investigated. RESULTS With an optimized dose, tucidinostat could alter TME and promote the migration and infiltration of CD8+ T cells into tumors, partially by increasing the activity of C-C motif chemokine ligand 5 (CCL5) via NF-κB signaling. Moreover, tucidinostat significantly promoted M1 polarization of macrophages and increased the in vivo antitumor efficacy of aPD-L1. Tucidinostat also enhanced the expression of the costimulatory molecules on human monocytes, suggesting a novel and improved antigen-presenting function. CONCLUSIONS A combination regimen of tucidinostat and aPD-L1 may work synergistically to reduce tumor burden in patients with cancer by enhancing the immune function and provided a promising treatment strategy to overcome ICI treatment resistance.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jia Zhong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xiran He
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101125, China
| | - Di Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ruofei Yu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China. .,School of Life Science and Technology, Xidian University, Xi'an, 710071, Shanxi, China.
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
48
|
Radzikowska U, Baerenfaller K, Cornejo‐Garcia JA, Karaaslan C, Barletta E, Sarac BE, Zhakparov D, Villaseñor A, Eguiluz‐Gracia I, Mayorga C, Sokolowska M, Barbas C, Barber D, Ollert M, Chivato T, Agache I, Escribese MM. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022; 77:2888-2908. [PMID: 35713644 PMCID: PMC9796060 DOI: 10.1111/all.15412] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - José Antonio Cornejo‐Garcia
- Research LaboratoryIBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMAMálagaSpain
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain,Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain,Andalusian Centre for Nanomedicine and Biotechnology – BIONANDMálagaSpain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthyEsch‐sur‐AlzetteLuxembourg,Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisOdense University Hospital, University of Southern DenmarkOdenseDenmark
| | - Tomas Chivato
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain,Department of Clinic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | | | - Maria M. Escribese
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| |
Collapse
|
49
|
Sesé L, Mahay G, Barnig C, Guibert N, Leroy S, Guilleminault L. [Markers of severity and predictors of response to treatment in severe asthma]. Rev Mal Respir 2022; 39:740-757. [PMID: 36115752 DOI: 10.1016/j.rmr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Asthma is a multifactorial disease with complex pathophysiology. Knowledge of its immunopathology and inflammatory mechanisms is progressing and has led to the development over recent years of increasingly targeted therapeutic strategies. The objective of this review is to pinpoint the different predictive markers of asthma severity and therapeutic response. Obesity, nasal polyposis, gastroesophageal reflux disease and intolerance to aspirin have all been considered as clinical markers associated with asthma severity, as have functional markers such as bronchial obstruction, low FEV1, small daily variations in FEV1, and high FeNO. While sinonasal polyposis and allergic comorbidities are associated with better response to omalizumab, nasal polyposis or long-term systemic steroid use are associated with better response to antibodies targeting the IL5 pathway. Elevated total IgE concentrations and eosinophil counts are classic biological markers regularly found in severe asthma. Blood eosinophils are predictive biomarkers of response to anti-IgE, anti-IL5, anti-IL5R and anti-IL4R biotherapies. Dupilumab is particularly effective in a subgroup of patients with marked type 2 inflammation (long-term systemic corticosteroid therapy, eosinophilia≥150/μl or FENO>20 ppb). Chest imaging may help to identify severe patients by seeking out bronchial wall thickening and bronchial dilation. Study of the patient's environment is crucial insofar as exposure to tobacco, dust mites and molds, as well as outdoor and indoor air pollutants (cleaning products), can trigger asthma exacerbation. Wider and more systematic use of markers of severity or response to treatment could foster increasingly targeted and tailored approaches to severe asthma.
Collapse
Affiliation(s)
- L Sesé
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - G Mahay
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Rouen, Rouen, France
| | - C Barnig
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France; Service de pneumologie, oncologie thoracique et allergologie respiratoire, CHRU Besançon, Besançon, France
| | - N Guibert
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - S Leroy
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, CNRS UMR 7275-FHU OncoAge, service de pneumologie oncologie thoracique et soins intensifs respiratoires, CHU de Nice, hôpital Pasteur, Nice, France
| | - L Guilleminault
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France; Institut Toulousain des maladies infectieuses et inflammatoires (Infinity) inserm UMR1291-CNRS UMR5051-université Toulouse III, CRISALIS F-CRIN, Toulouse, France.
| |
Collapse
|
50
|
Fu X, Ou Z, Sun Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:133-146. [PMID: 38075599 PMCID: PMC10702906 DOI: 10.1016/j.eehl.2022.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/20/2023]
Abstract
The prevalence of allergic diseases, such as asthma, rhinitis, eczema, and sick building syndrome (SBS), has increased drastically in the past few decades. Current medications can only relieve the symptoms but not cure these diseases whose development is suggested to be greatly impacted by the indoor microbiome. However, no study comprehensively summarizes the progress and general rules in the field, impeding subsequent translational application. To close knowledge gaps between theoretical research and practical application, we conducted a comprehensive literature review to summarize the epidemiological, environmental, and molecular evidence of indoor microbiome studies. Epidemiological evidence shows that the potential protective indoor microorganisms for asthma are mainly from the phyla Actinobacteria and Proteobacteria, and the risk microorganisms are mainly from Bacilli, Clostridia, and Bacteroidia. Due to extremely high microbial diversity and geographic variation, different health-associated species/genera are detected in different regions. Compared with indoor microbial composition, indoor metabolites show more consistent associations with health, including microbial volatile organic compounds (MVOCs), lipopolysaccharides (LPS), indole derivatives, and flavonoids. Therefore, indoor metabolites could be a better indicator than indoor microbial taxa for environmental assessments and health outcome prediction. The interaction between the indoor microbiome and environmental characteristics (surrounding greenness, relative humidity, building confinement, and CO2 concentration) and immunology effects of indoor microorganisms (inflammatory cytokines and pattern recognition receptors) are briefly reviewed to provide new insights for disease prevention and treatment. Widely used tools in indoor microbiome studies are introduced to facilitate standard practice and the precise identification of health-related targets.
Collapse
Affiliation(s)
- Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|