1
|
Gilloteaux J, Jamison JM, Summers JL, Taper HS. Reactivation of nucleases with peroxidation damages induced by a menadione: ascorbate combination devastates human prostate carcinomas: ultrastructural aspects. Ultrastruct Pathol 2024; 48:378-421. [PMID: 39105605 DOI: 10.1080/01913123.2024.2379300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Xenografts of androgen-independent human DU145 prostate metastatic carcinomas implanted in nu/nu male mice have revealed a significant survival after a prooxidant anticancer treatment consisting of a combination of menadione bisulfite and sodium ascorbate (VK3:VC). METHODS Implanted samples of diaphragm carcinomas from longest survived mice from either oral, intraperitoneal (IP), or both oral and IP treatment groups were assessed with light, scanning, and transmission electron microscopy to analyze morphologic damages. RESULTS Compared with previous fine structure data of in vitro untreated carcinomas, the changes induced by oral, IP, and oral with IP VK3:VC treatment dismantled those xenografts with autoschizis, and necrotic atrophy was accomplished by cell's oxidative stress whose injuries were consequent to reactivated deoxyribonucleases and ribonucleases. Tumor destructions resulted from irreversible damages of nucleus components, endoplasmic reticulum, and mitochondria there. Other alterations included those of the cytoskeleton that resulted in characteristic self-excisions named " autoschizis." All these injuries lead resilient cancer cells to necrotic cell death. CONCLUSION The fine structure damages caused by VK3:VC prooxidant combination in the human DU145 prostate xenografts confirmed those shown in vitro and of other cell lines with histochemistry and biomolecular investigations. These devastations incurred without damage to normal tissues; thus, our data brought support for the above combination to assist in the treatment of prostate cancers and other cancers.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, Newcastle upon Tyne, UK
- Department of Anatomical Sciences, NEOMed (NEOUCOM), Rootstown, Ohio, USA
- Department of Medicine, Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium
| | - James M Jamison
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Jack L Summers
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Henryk S Taper
- Département des Sciences Pharmaceutiques, Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Maji S, Kumar A, Emdad L, Fisher PB, Das SK. Molecular landscape of prostate cancer bone metastasis. Adv Cancer Res 2024; 161:321-365. [PMID: 39032953 DOI: 10.1016/bs.acr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
4
|
Young SAE, Heller AD, Garske DS, Rummler M, Qian V, Ellinghaus A, Duda GN, Willie BM, Grüneboom A, Cipitria A. From breast cancer cell homing to the onset of early bone metastasis: The role of bone (re)modeling in early lesion formation. SCIENCE ADVANCES 2024; 10:eadj0975. [PMID: 38381833 PMCID: PMC10881061 DOI: 10.1126/sciadv.adj0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Breast cancer often metastasizes to bone, causing osteolytic lesions. Structural and biophysical changes are rarely studied yet are hypothesized to influence metastasis. We developed a mouse model of early bone metastasis and multimodal imaging to quantify cancer cell homing, bone (re)modeling, and onset of metastasis. Using tissue clearing and three-dimensional (3D) light sheet fluorescence microscopy, we located enhanced green fluorescent protein-positive cancer cells and small clusters in intact bones and quantified their size and spatial distribution. We detected early bone lesions using in vivo microcomputed tomography (microCT)-based time-lapse morphometry and revealed altered bone (re)modeling in the absence of detectable lesions. With a new microCT image analysis tool, we tracked the growth of early lesions over time. We showed that cancer cells home in all bone compartments, while osteolytic lesions are only detected in the metaphysis, a region of high (re)modeling. Our study suggests that higher rates of (re)modeling act as a driver of lesion formation during early metastasis.
Collapse
Affiliation(s)
- Sarah A. E. Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Anna-Dorothea Heller
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S. Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Research Centre, Shriners Hospital for Children–Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Victoria Qian
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children–Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Anika Grüneboom
- Leibniz-Institute for Advancing Analytics – ISAS – e.V., Dortmund, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Saadh MJ, Rasulova I, Almoyad MAA, Kiasari BA, Ali RT, Rasheed T, Faisal A, Hussain F, Jawad MJ, Hani T, Sârbu I, Lakshmaiya N, Ciongradi CI. Recent progress and the emerging role of lncRNAs in cancer drug resistance; focusing on signaling pathways. Pathol Res Pract 2024; 253:154999. [PMID: 38118218 DOI: 10.1016/j.prp.2023.154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
It is becoming more and more apparent that many of the genetic alterations associated with cancer are located in areas that do not encode proteins. lncRNAs are a class of RNAs that do not code for proteins but play a crucial role in maintaining cell function and regulating various cellular processes. By doing this, they have recently introduced what may be a brand-new and essential layer of biological control. These have more than 200 nucleotides and are linked to several diseases; as a result, they have become potential tools for therapeutic intervention. Emerging technologies suggest the presence of mutations on genomic loci that give rise to lncRNAs rather than proteins in a disease as complex as cancer. These lncRNAs play essential parts in gene regulation, which impacts several cellular homeostasis processes, including proliferation, survival, migration, and genomic stability. The leading cause of death in the world today is cancer. Delays in diagnosis and a lack of standard and efficient treatments are the leading causes of the high death rate. Clinically, surgery is frequently used successfully to remove cancers that have not spread, but it is less successful in treating metastatic cancer, which has a drastically lower chance of survival. Chemotherapeutic drugs are a typical therapy to treat the cancer that has spread to other organs. Drug resistance to chemotherapy, however, presents a significant challenge to achieving positive outcomes and is frequently the cause of treatment failure. A substantial barrier to progress in medical oncology is cancer drug resistance. Resistance can develop clinically either before or after cancer treatment. According to this study, lncRNAs influence drug resistance through several different methods. LncRNAs often impact drug resistance by controlling the expression of a few intermediary regulatory variables rather than by directly affecting drug resistance. Additionally, lncRNAs have a variety of roles in cancer medication resistance. Most lncRNAs induce drug resistance when overexpressed; however, other lncRNAs have inhibitory effects. This study provides an overview of the current understanding of lncRNAs, relevance to cancer, and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 4536, 47 Abha Mushait, 61412, Saudi Arabia
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| | - Tariq Rasheed
- College of Science and Humanities, Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
6
|
Huang CY, Wei PL, Prince GMSH, Batzorig U, Lee CC, Chang YJ, Hung CS. The Role of Thrombomodulin in Estrogen-Receptor-Positive Breast Cancer Progression, Metastasis, and Curcumin Sensitivity. Biomedicines 2023; 11:biomedicines11051384. [PMID: 37239055 DOI: 10.3390/biomedicines11051384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Estrogen and estrogen receptors (ER) play a key role in breast cancer progression, which can be treated with endocrine therapy. Nevertheless, resistance to endocrine therapies is developed over time. The tumor expression of thrombomodulin (TM) is correlated with favorable prognosis in several types of cancer. However, this correlation has not yet been confirmed in ER-positive (ER+) breast cancer. This study aims to evaluate the role of TM in ER+ breast cancer. Firstly, we found that lower TM expression correlates to poor overall survival (OS) and relapse-free survival (RFS) rates in ER+ breast cancer patients through Kaplan-Meier survival analysis (p < 0.05). Silencing TM in MCF7 cells (TM-KD) increased cell proliferation, migration, and invasion ability. Additionally, TM-KD MCF7 cells showed higher sensitivity (IC50 15 μM) to the anti-cancer agent curcumin than the scrambled control cells. Conversely, overexpression of TM (TM-over) in T47D cells leads to decreased cell proliferation, migration, and invasion ability. Furthermore, TM-over T47D cells showed more resistance (IC50 > 40 μM) to the curcumin treatment. The PI staining, DAPI, and tunnel assay also confirmed that the curcumin-induced apoptosis in TM-KD MCF7 cells was higher (90.34%) than in the scrambled control cells (48.54%). Finally, the expressions of drug-resistant genes (ABCC1, LRP1, MRP5, and MDR1) were determined by qPCR. We found that the relative mRNA expression levels of ABCC1, LRP1, and MDR1 genes after curcumin treatment were higher in scrambled control cells than in TM-KD cells. In conclusion, our results demonstrated that TM plays a suppressive role in the progression and metastasis of ER+ breast cancer, and it regulates curcumin sensitivity by interfering with ABCC1, LRP1, and MDR1 gene expression.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - G M Shazzad Hossain Prince
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
8
|
Wang Y, Zhong Z, Ma M, Zhao Y, Zhang C, Qian Z, Wang B. The role played by ailanthone in inhibiting bone metastasis of breast cancer by regulating tumor-bone microenvironment through the RANKL-dependent pathway. Front Pharmacol 2023; 13:1081978. [PMID: 36686653 PMCID: PMC9849906 DOI: 10.3389/fphar.2022.1081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Bone metastasis of breast cancer (BC) is a process in which the disruption of the bone homeostatic microenvironment leads to an increase in osteoclast differentiation. Ailanthus altissima shows an inhibitory effect on osteoclast differentiation. Ailanthone (AIL) refers to a natural compound isolated from Ailanthus altissima, a Chinese herbal medicine, and has effective anti-tumor activity in numerous cell lines. Its impact on bone metastases for BC is yet unclear. Methods: We measured the effect of AIL on MDA-MB-231 cells by wound healing experiments, Transwell and colony formation experiment. Using the Tartrate-resistant Acid Phosphatase (TRAP) staining tests, filamentous (F-actin) staining and bone resorption test to detect the effect of AIL on the osteoclast cell differentiation of the Bone Marrow-derived Macrophages (BMMs), activated by the MDA-MB-231 cell Conditioned Medium (MDA-MB-231 CM) and the Receptor Activator of Nuclear factor-κB Ligand (RANKL),and to explore its possibility Mechanisms. In vivo experiments verified the effect of AIL on bone destruction in breast cancer bone metastasis model mice. Results: In vitro, AIL significantly decrease the proliferation, migration and infiltration abilities of MDA-MB-231 cells at a safe concentration, and also reduced the expression of genes and proteins involved in osteoclast formation in MDA-MB-231 cells. Osteoclast cell differentiation of the BMMs, activated by MDA-MB-231 CM and RANKL, were suppressed by AIL in the concentration-dependent manner. Additionally, it inhibits osteoclast-specific gene and protein expression. It was noted that AIL inhibited the expression of the osteoclast differentiation-related cytokines RANKL and interleukin-1β (IL-1β) that were secreted by the MDA-MB-231 cells after upregulating the Forkhead box protein 3 (FOXP3) expression. Furthermore, AIL also inhibits the expression of the Mitogen-Activated Protein Kinase (MAPK), Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and Nuclear factor-κB Ligand (NF-κB) signaling pathways, which then suppresses the MDA-MB-231CM-induced development of Osteoclasts. Conclusion: Our study shows that AIL blocks osteoclast differentiation in the bone metastasis microenvironment by inhibiting cytokines secreted by BC cells, which may be a potential agent for the treatment of BC and its secondary bone metastasis.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeyuan Zhong
- Shanghai Medical College, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yannan Zhao
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjing Zhang
- Shanghai Medical College, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| | - Zhi Qian
- Institution of Orthopedic Diseases, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| |
Collapse
|
9
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
10
|
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. Int J Mol Sci 2022; 23:ijms23095271. [PMID: 35563661 PMCID: PMC9105119 DOI: 10.3390/ijms23095271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response.
Collapse
|
11
|
Ryan C, Stoltzfus KC, Horn S, Chen H, Louie AV, Lehrer EJ, Trifiletti DM, Fox EJ, Abraham JA, Zaorsky NG. Epidemiology of bone metastases. Bone 2022; 158:115783. [PMID: 33276151 DOI: 10.1016/j.bone.2020.115783] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND This study evaluated the incidence of de novo bone metastasis across all primary cancer sites and their impact on survival by primary cancer site, age, race, and sex. QUESTIONS/PURPOSES Our objectives were (I) characterize the epidemiology of de novo bone metastasis with respect to patient demographics, (II) characterize the incidence by primary site, age, and sex (2010-2015), and (III) compare survival of de novo metastatic cancer patients with and without bone metastasis. METHODS This is a retrospective, population-based study using nationally representative data from the Surveillance, Epidemiology, and End Results program, 2010-2015. Incidence rates by year of diagnosis, annual percentage changes, Kaplan-Meier, univariate and multiple Cox regression models are included in the analysis. RESULTS Of patients with cancer in the SEER database, 5.1% were diagnosed with metastasis to bone, equaling ~18.8 per 100,000 bone metastasis diagnoses in the US per year (2010-2015). For adults >25, lung cancer is the most common primary site (2015 rate: 8.7 per 100,000) with de novo bone metastases, then prostate and breast primaries (2015 rates: 3.19 and 2.38 per 100,000, respectively). For patients <20 years old, endocrine cancers and soft tissue sarcomas are the most common primaries. Incidence is increasing for prostate (Annual Percentage Change (APC) = 4.6%, P < 0.001) and stomach (APC = 5.0%, P = 0.001) cancers. The presence of de novo bone metastasis was associated with a limited reduction in overall survival (HR = 1.02, 95%, CI = [1.01-1.03], p < 0.001) when compared to patients with other non-bone metastases. CONCLUSION The presence of bone metastasis versus metastasis to other sites has disease site-specific impact on survival. The incidence of de novo bone metastasis varies by age, sex, and primary disease site.
Collapse
Affiliation(s)
- Casey Ryan
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Kelsey C Stoltzfus
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Samantha Horn
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Hanbo Chen
- Department of Radiation Oncology, Amsterdam University Medical Centers - Location VUmc, Amsterdam, Netherlands
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Edward J Fox
- Penn State Hershey Bone and Joint Institute, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - John A Abraham
- Rothman Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA; Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA. https://twitter.com/NicholasZaorsky
| |
Collapse
|
12
|
Furesi G, de Jesus Domingues AM, Alexopoulou D, Dahl A, Hackl M, Schmidt JR, Kalkhof S, Kurth T, Taipaleenmäki H, Conrad S, Hofbauer C, Rauner M, Hofbauer LC. Exosomal miRNAs from Prostate Cancer Impair Osteoblast Function in Mice. Int J Mol Sci 2022; 23:1285. [PMID: 35163219 PMCID: PMC8836054 DOI: 10.3390/ijms23031285] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most frequent malignancy in older men with a high propensity for bone metastases. Characteristically, PCa causes osteosclerotic lesions as a result of disrupted bone remodeling. Extracellular vesicles (EVs) participate in PCa progression by conditioning the pre-metastatic niche. However, how EVs mediate the cross-talk between PCa cells and osteoprogenitors in the bone microenvironment remains poorly understood. We found that EVs derived from murine PCa cell line RM1-BM increased metabolic activity, vitality, and cell proliferation of osteoblast precursors by >60%, while significantly impairing mineral deposition (-37%). The latter was further confirmed in two complementary in vivo models of ossification. Accordingly, gene and protein set enrichments of osteoprogenitors exposed to EVs displayed significant downregulation of osteogenic markers and upregulation of proinflammatory factors. Additionally, transcriptomic profiling of PCa-EVs revealed the abundance of three microRNAs, miR-26a-5p, miR-27a-3p, and miR-30e-5p involved in the suppression of BMP-2-induced osteogenesis in vivo, suggesting the critical role of these EV-derived miRNAs in PCa-mediated suppression of osteoblast activity. Taken together, our results indicate the importance of EV cargo in cancer-bone cross-talk in vitro and in vivo and suggest that exosomal miRNAs may contribute to the onset of osteosclerotic bone lesions in PCa.
Collapse
Affiliation(s)
- Giulia Furesi
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| | | | - Dimitra Alexopoulou
- DRESDEN-Concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, 01307 Dresden, Germany; (D.A.); (A.D.)
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, 01307 Dresden, Germany; (D.A.); (A.D.)
| | | | - Johannes R. Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany; (J.R.S.); (S.K.)
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany; (J.R.S.); (S.K.)
- Institute of Bioanalysis, University of Applied Sciences and Arts of Coburg, 96450 Coburg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM and Histology Facility, TU Dresden, 01307 Dresden, Germany;
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 82152 Planegg-Martinsried, Germany;
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefanie Conrad
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| | - Christine Hofbauer
- National Center for Tumor Diseases, Technical University of Dresden, 01307 Dresden, Germany;
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| |
Collapse
|
13
|
Anticancer properties of colicin E7 against colon cancer. GASTROENTEROLOGY REVIEW 2022; 16:364-368. [PMID: 34976246 PMCID: PMC8690953 DOI: 10.5114/pg.2021.109622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Introduction Cancer is a major public health problem in the modern world. Every year, new cases of cancer are diagnosed around the world. Cancer cells are altered cells that have escaped the mechanisms that regulate natural growth. Bacteriocins are cationic peptides synthesized by ribosomes that are secreted by almost all groups of bacteria. Some bacteriocins have shown selective toxicity to cancer cells compared to normal cells. This makes them other candidates for research and clinical trials. Aim Due to the high prevalence of colon cancer and its therapeutic problems, this study was performed on colicin E7 to evaluate its anti-colon cancer properties. Material and methods For this reason, colE7 was cloned in pet32c vector and purified protein was affected on HT-29 cells to evaluate the expression of p53 and bcl2. Results Our in silco analysis demonstrated that colicin E7 has 87.23% confidence as anticancer peptide by ACPred-FL program. First, a PCR reaction was performed using specific primers of the colicin E7 gene, which formed the 1728 bp fragment that belongs to this gene. Conclusions Colicin E7 decreased the expression of bcl2 and increased P53. The results of this study showed the general effect of colicin E7 on cancer cells in vitro, which can be evaluated in the future with further experiments.
Collapse
|
14
|
Trivedi T, Pagnotti GM, Guise TA, Mohammad KS. The Role of TGF-β in Bone Metastases. Biomolecules 2021; 11:1643. [PMID: 34827641 PMCID: PMC8615596 DOI: 10.3390/biom11111643] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Complications associated with advanced cancer are a major clinical challenge and, if associated with bone metastases, worsen the prognosis and compromise the survival of the patients. Breast and prostate cancer cells exhibit a high propensity to metastasize to bone. The bone microenvironment is unique, providing fertile soil for cancer cell propagation, while mineralized bone matrices store potent growth factors and cytokines. Biologically active transforming growth factor β (TGF-β), one of the most abundant growth factors, is released following tumor-induced osteoclastic bone resorption. TGF-β promotes tumor cell secretion of factors that accelerate bone loss and fuel tumor cells to colonize. Thus, TGF-β is critical for driving the feed-forward vicious cycle of tumor growth in bone. Further, TGF-β promotes epithelial-mesenchymal transition (EMT), increasing cell invasiveness, angiogenesis, and metastatic progression. Emerging evidence shows TGF-β suppresses immune responses, enabling opportunistic cancer cells to escape immune checkpoints and promote bone metastases. Blocking TGF-β signaling pathways could disrupt the vicious cycle, revert EMT, and enhance immune response. However, TGF-β's dual role as both tumor suppressor and enhancer presents a significant challenge in developing therapeutics that target TGF-β signaling. This review presents TGF-β's role in cancer progression and bone metastases, while highlighting current perspectives on the therapeutic potential of targeting TGF-β pathways.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Gabriel M. Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Theresa A. Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Khalid S. Mohammad
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
15
|
Argote Camacho AX, González Ramírez AR, Pérez Alonso AJ, Rejón García JD, Olivares Urbano MA, Torné Poyatos P, Ríos Arrabal S, Núñez MI. Metalloproteinases 1 and 3 as Potential Biomarkers in Breast Cancer Development. Int J Mol Sci 2021; 22:ijms22169012. [PMID: 34445715 PMCID: PMC8396449 DOI: 10.3390/ijms22169012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%–>50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control–case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Torné Poyatos
- Department of Surgery and Its Specialties, University of Granada, 18012 Granada, Spain;
| | - Sandra Ríos Arrabal
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute, ibs.Granada, 18012 Granada, Spain
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| |
Collapse
|
16
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
17
|
Jelgersma C, Vajkoczy P. How to Target Spinal Metastasis in Experimental Research: An Overview of Currently Used Experimental Mouse Models and Future Prospects. Int J Mol Sci 2021; 22:ijms22115420. [PMID: 34063821 PMCID: PMC8196562 DOI: 10.3390/ijms22115420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
The spine is one of the organs that is most affected by metastasis in cancer patients. Since the control of primary tumor is continuously improving, treatment of metastases is becoming one of the major challenges to prevent cancer-related death. Due to the anatomical proximity to the spinal cord, local spread of metastasis can directly cause neurological deficits, severely limiting the patient’s quality of life. To investigate the underlying mechanisms and to develop new therapies, preclinical models are required which represent the complexity of the multistep cascade of metastasis. Current research of metastasis focuses on the formation of the premetastatic niche, tumor cell dormancy and the influence and regulating function of the immune system. To unveil whether these influence the organotropism to the spine, spinal models are irreplaceable. Mouse models are one of the most suitable models in oncologic research. Therefore, this review provides an overview of currently used mouse models of spinal metastasis. Furthermore, it discusses technical aspects clarifying to what extend these models can picture key steps of the metastatic process. Finally, it addresses proposals to develop better mouse models in the future and could serve as both basis and stimulus for researchers and clinicians working in this field.
Collapse
|
18
|
Kreps LM, Addison CL. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. Int J Mol Sci 2021; 22:ijms22062911. [PMID: 33805598 PMCID: PMC7998601 DOI: 10.3390/ijms22062911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.
Collapse
Affiliation(s)
- Lauren M. Kreps
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-7700
| |
Collapse
|
19
|
Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021; 9:2362-2383. [DOI: 10.1039/d0bm01943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Illustration of engineered hydrogel to recapitulate aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- Kanishka Fernando
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Leng Gek Kwang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Joanne Tze Chin Lim
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
- The N.1 Institute for Health
- National University of Singapore
| |
Collapse
|
20
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Canuas-Landero VG, George CN, Lefley DV, Corness H, Muthana M, Wilson C, Ottewell PD. Oestradiol Contributes to Differential Antitumour Effects of Adjuvant Zoledronic Acid Observed Between Pre- and Post-Menopausal Women. Front Endocrinol (Lausanne) 2021; 12:749428. [PMID: 34733240 PMCID: PMC8559775 DOI: 10.3389/fendo.2021.749428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Clinical trials have demonstrated that adding zoledronic acid (Zol) to (neo)adjuvant standard of care has differential antitumour effects in pre- and post-menopausal women: Both benefit from reduced recurrence in bone; however, while postmenopausal women also incur survival benefit, none is seen in premenopausal women treated with adjuvant bisphosphonates. In the current study, we have used mouse models to investigate the role of oestradiol in modulating potential antitumour effects of Zol. Pre-, peri-, and post-menopausal concentrations of oestradiol were modelled in BALB/c wild-type, BALB/c nude, and C57BL/6 mice by ovariectomy followed by supplementation with oestradiol. Mice also received 40 mg/kg/day goserelin to prevent ovariectomy-induced increases in follicle-stimulating hormone (FSH). Metastasis was modelled following injection of MDA-MB-231, 4T1, or E0771 cells after ovariectomy and saline or 100 μg/kg Zol administered weekly. Supplementing ovariectomised mice with 12.5 mg/ml, 1.38 mg/ml, and 0 ng/ml oestradiol, in the presence of goserelin, resulted in serum concentrations of 153.16 ± 18.10 pg/ml, 48.64 ± 18.44 pg/ml, and 1.00 ± 0.27 pg/ml oestradiol, which are equivalent to concentrations found in pre-, peri-, and post-menopausal humans. Osteoclast activity was increased 1.5-1.8-fold with peri- and post-menopausal compared with premenopausal oestradiol, resulting in a 1.34-1.69-fold reduction in trabecular bone. Zol increased trabecular bone in all groups but did not restore bone to volumes observed under premenopausal conditions. In tumour-bearing mice, Zol reduced bone metastases in BALB/c (wild-type and nude), with greatest effects seen under pre- and post-menopausal concentrations of oestradiol. Zol did not affect soft tissue metastases in immunocompetent BALB/c mice but increased metastases 3.95-fold in C57BL/6 mice under premenopausal concentrations of oestradiol. In contrast, Zol significantly reduced soft tissue metastases 2.07 and 4.69-fold in immunocompetent BALB/c and C57BL/6 mice under postmenopausal oestradiol, mirroring the results of the clinical trials of (neo)adjuvant bisphosphonates. No effects on soft tissue metastases were observed in immunocompromised mice, and differences in antitumour response did not correlate with musculoaponeurotic fibrosarcoma (MAF), macrophage capping protein (CAPG), or PDZ domain containing protein GIPC1 (GIPC1) expression. In conclusion, oestradiol contributes to altered antitumour effects of Zol observed between pre- and post-menopausal women. However, other immunological/microenvironmental factors are also likely to contribute to this phenomenon.
Collapse
|
22
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
23
|
Ovadia EM, Pradhan L, Sawicki LA, Cowart J, Huber RE, Polson SW, Chen C, van Golen KL, Ross KE, Wu C, Kloxin AM. Understanding ER+ Breast Cancer Dormancy Using Bioinspired Synthetic Matrices for Long-Term 3D Culture and Insights into Late Recurrence. ADVANCED BIOSYSTEMS 2020; 4:e2000119. [PMID: 32603024 PMCID: PMC7807552 DOI: 10.1002/adbi.202000119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Late recurrences of breast cancer are hypothesized to originate from disseminated tumor cells that re-activate after a long period of dormancy, ≥5 years for estrogen-receptor positive (ER+) tumors. An outstanding question remains as to what the key microenvironment interactions are that regulate this complex process, and well-defined human model systems are needed for probing this. Here, a robust, bioinspired 3D ER+ dormancy culture model is established and utilized to probe the effects of matrix properties for common sites of late recurrence on breast cancer cell dormancy. Formation of dormant micrometastases over several weeks is examined for ER+ cells (T47D, BT474), where the timing of entry into dormancy versus persistent growth depends on matrix composition and cell type. In contrast, triple negative cells (MDA-MB-231), associated with early recurrence, are not observed to undergo long-term dormancy. Bioinformatic analyses quantitatively support an increased "dormancy score" gene signature for ER+ cells (T47D) and reveal differential expression of genes associated with different biological processes based on matrix composition. Further, these analyses support a link between dormancy and autophagy, a potential survival mechanism. This robust model system will allow systematic investigations of other cell-microenvironment interactions in dormancy and evaluation of therapeutics for preventing late recurrence.
Collapse
Affiliation(s)
- Elisa M. Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lina Pradhan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lisa A. Sawicki
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Rebecca E. Huber
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kenneth L. van Golen
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Karen E. Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
24
|
Tang Q, Li X, Lai C, Li L, Wu H, Wang Y, Shi X. Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening. Bioact Mater 2020; 6:169-178. [PMID: 32913926 PMCID: PMC7453124 DOI: 10.1016/j.bioactmat.2020.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is an important part of the human body structure and plays a vital role in human health. A microfluidic chip that can simulate the structure and function of bone will provide a platform for bone-related biomedical research. Hydroxyapatite (HA), a bioactive ceramic material, has a similar structure and composition to bone mineralization products. In this study, we used HA as a microfluidic chip component to provide a highly bionic bone environment. HA substrates with different microchannel structures were printed by using ceramic stereolithography (SLA) technology, and the minimum trench width was 50 μm. The HA substrate with microchannels was sealed by a thin polydimethylsiloxane (PDMS) layer to make a HA-PDMS microfluidic chip. Cell culture experiments demonstrated that compared with PDMS, HA was more conducive to the proliferation and osteogenic differentiation of the human foetal osteoblast cell line (hFOB). In addition, the concentration gradient of the model drug doxorubicin hydrochloride (DOX) was successfully generated on a Christmas tree structure HA-PDMS chip, and the half maximal inhibitory concentration (IC50) of DOX was determined. The findings of this study indicate that the HA-PDMS microfluidic chip has great potential in the field of high-throughput bone-related drug screening and bone-related research. 3D printing of the hydroxyapatite (HA) substrate with microchannel networks. Fabrication of HA-PDMS microfluidic chips. (3) Provided a new microfluidic platform for studying bone and bone-related diseases.
Collapse
Affiliation(s)
- Qiangqiang Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaoyu Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Chen Lai
- Peking University Shenzhen Institute, Peking University, Shenzhen, 518055, PR China
| | - Lei Li
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yingjun Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuetao Shi
- Peking University Shenzhen Institute, Peking University, Shenzhen, 518055, PR China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, PR China
| |
Collapse
|
25
|
Zhao Q, Liu C, Xie Y, Tang M, Luo G, Chen X, Tian L, Yu X. Lung Cancer Cells Derived Circulating miR-21 Promotes Differentiation of Monocytes into Osteoclasts. Onco Targets Ther 2020; 13:2643-2656. [PMID: 32280240 PMCID: PMC7127863 DOI: 10.2147/ott.s232876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/06/2020] [Indexed: 02/05/2023] Open
Abstract
Objective Osteoclastogenesis is a key process in osteolytic bone metastasis (BM). Previous studies indicated that some miRNAs could regulate cancers progression and osteoclastogenesis. Our purpose was to investigate the roles of lung cancer cells-derived circulating miR-21 on osteoclastogenesis and its clinical significance in BM patients. Materials and Methods The difference of miRNA expression in two lung cancer cell lines SBC-5 (with characteristic BM ability) and SBC-3 (without BM ability) were analyzed by microarray and qRT-PCR. Circulating miR-21 levels of lung cancer patients with or without BM were compared by qRT-PCR. The TRAP staining was used to investigate the effects of conditioned media from lung cancer cell lines or patients’ plasma with different miR-21 levels on osteoclastogenesis. ROC curve was used to evaluate the diagnostic performance of circulating miR-21 in BM patients. Results We found that miR-21 expression was specifically higher in SBC-5 than that in SBC-3 cells. The supernatants of SBC-5 cells with higher-level miR-21 promoted osteoclastogenesis. Moreover, we demonstrated that the circulating miR-21 level was significantly higher in BM patients than that in non-BM patients. The plasma from BM patients with higher-level miR-21 could also promote osteoclastogenesis. Mechanistically, lung cancer cells-derived circulating miR-21 could be transferred into osteoclast precursor cells and promote osteoclastogenesis probably by inhibiting PTEN. Finally, clinical data showed that circulating miR-21 had a potential for the diagnosis of BM. Conclusion Overall, our findings suggested that circulating miR-21 played important roles in osteoclastogenesis of lung cancer patients and may serve as a biomarker to diagnose BM of lung cancer.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of General Practice, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chang Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Mengjia Tang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
26
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
27
|
Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone Pain in Cancer Patients: Mechanisms and Current Treatment. Int J Mol Sci 2019; 20:E6047. [PMID: 31801267 PMCID: PMC6928918 DOI: 10.3390/ijms20236047] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The skeletal system is the third most common site for cancer metastases, surpassed only by the lungs and liver. Many tumors, especially those of the breast, prostate, lungs, and kidneys, have a strong predilection to metastasize to bone, which causes pain, hypercalcemia, pathological skeletal fractures, compression of the spinal cord or other nervous structures, decreased mobility, and increased mortality. Metastatic cancer-induced bone pain (CIBP) is a type of chronic pain with unique and complex pathophysiology characterized by nociceptive and neuropathic components. Its treatment should be multimodal (pharmacological and non-pharmacological), including causal anticancer and symptomatic analgesic treatment to improve quality of life (QoL). The aim of this paper is to discuss the mechanisms involved in the occurrence and persistence of cancer-associated bone pain and to review the treatment methods recommended by experts in clinical practice. The final part of the paper reviews experimental therapeutic methods that are currently being studied and that may improve the efficacy of bone pain treatment in cancer patients in the future.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Wojciech Leppert
- Laboratory of Quality of Life Research, Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| |
Collapse
|
28
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Tao L, Su L, Yuan C, Ma Z, Zhang L, Bo S, Niu Y, Lu S, Xiu D. Postoperative metastasis prediction based on portal vein circulating tumor cells detected by flow cytometry in periampullary or pancreatic cancer. Cancer Manag Res 2019; 11:7405-7425. [PMID: 31496801 PMCID: PMC6689556 DOI: 10.2147/cmar.s210332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The aim of this study was to evaluate the value of flow cytometry (FCM) detection of portal vein circulating tumor cells (CTCs) in predicting postoperative metastasis. Methods Samples of portal venous blood and peripheral blood were collected from 39 patients during surgery, and CTCs were detected by FCM, with confirmation by laser confocal microscopy and single-cell sequencing. Results Among all patients, a portal EpCAM+CD45- percentage ≥24.5×10−4 (P=0.06), peripheral EpCAM+CD45- count ≥97/5 mL (P=0.034), peripheral EpCAM+CD45- percentage ≥4.4×10−4 (P=0.042), and CA242≥3.5 U/mL (P=0.027) were significant predictors of metastasis. Further analysis showed that the portal EpCAM+CD45- ratio ≥24.5×10−4 is a predictor of metastasis (P=0.025) in pancreatic cancer after curative resection. Conclusion CTCs detected by FCM in portal venous blood are of significant value for the prediction of postoperative metastasis in pancreatic or periampullary tumors.
Collapse
Affiliation(s)
- Lianyuan Tao
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China.,Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Li Su
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Zhaolai Ma
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Shiping Bo
- Department of Clinical Research, Yikon Genomics Co. Ltd., Shanghai, People's Republic of China
| | - Yunyun Niu
- Department of Clinical Research, Yikon Genomics Co. Ltd., Shanghai, People's Republic of China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics Co. Ltd., Shanghai, People's Republic of China
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| |
Collapse
|
30
|
Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ, Holen I. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche in vivo. J Bone Oncol 2019; 17:100244. [PMID: 31236323 PMCID: PMC6582079 DOI: 10.1016/j.jbo.2019.100244] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bone metastasis is one of the most common complications of advanced breast cancer. During dissemination to bone, breast cancer cells locate in a putative 'metastatic niche', a microenvironment that regulates the colonisation, maintenance of tumour cell dormancy and subsequent tumour growth. The precise location and composition of the bone metastatic niche is not clearly defined. We have used in vivo models of early breast cancer dissemination to provide novel evidence that demonstrates overlap between endosteal, perivascular, HSC and the metastatic niche in bone. METHODS Estrogen Receptor (ER) +ve and -ve breast cancer cells were labelled with membrane dyes Vybrant-DiD and Vybrant-CM-DiI and injected via different routes in BALBc/nude mice of different ages. Two-photon microscopy was used to detect and quantitate tumour cells and map their location within the bone microenvironment as well as their distance to the nearest bone surface compared to the nearest other tumour cell. To investigate whether the metastatic niche overlapped with the HSC niche, animals were pre-treated with the CXCR4 antagonist AMD3100 to mobilise hematopoietic (HSCs) prior to injection of breast cancer cells. RESULTS Breast cancer cells displayed a characteristic pattern of homing in the long bones, with the majority of tumour cells seeded in the trabecular regions, regardless of the route of injection, cell-line characteristics (ER status) or animal age. Breast cancer cells located in close proximity to the nearest bone surface and the average distance between individual tumour cells was higher than their distance to bone. Mobilisation of HSCs from the niche to the circulation prior to injection of cell lines resulted in increased numbers of tumour cells disseminated in trabecular regions. CONCLUSION Our data provide evidence that homing of breast cancer cells is independent of their ER status and that the breast cancer bone metastasis niche is located within the trabecular region of bone, an area rich in osteoblasts and microvessels. The increased number of breast cancer cells homing to bone after mobilisation of HSCs suggests that the HSC and the bone metastasis niche overlap.
Collapse
Key Words
- ANOVA, Analysis of variance
- Animal models
- Bone metastasis
- Breast cancer
- CTC, Circulating tumour cell
- DAPI, 4′,6-diamidino-2-phenylindole
- DTC, Disseminated tumour cell
- EDTA, Ethylenediaminetetraacetic acid
- ER, Estrogen Receptor
- FBS, Foetal bovine serum
- GFP, Green fluorescent protein
- HSC, Hematopoietic stem cell
- Hematopoietic stem cell
- IC, Intra cardiac
- IV, Intra venous
- Luc2, Luciferase2
- OVX, Ovariectomy
- ROI, Region of interest
- TSP-1, thrombospondin-1
- µCT, Microcomputed tomography
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ingunn Holen
- Department of Oncology and Metabolism, Medical School, University of Sheffield, UK
| |
Collapse
|
31
|
Fetah K, Tebon P, Goudie MJ, Eichenbaum J, Ren L, Barros N, Nasiri R, Ahadian S, Ashammakhi N, Dokmeci MR, Khademhosseini A. The emergence of 3D bioprinting in organ-on-chip systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2516-1091/ab23df] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Hu HJ, Deng XW, Li RX, Chen DW, Xue C. Inhibition of protein kinase C activity inhibits osteosarcoma metastasis. Arch Med Sci 2019; 15:1028-1034. [PMID: 31360197 PMCID: PMC6657256 DOI: 10.5114/aoms.2018.79450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION For some cancers bone is the preferred site for metastasis and involves a cascade involving transition of epithelial cells to mesenchymal cells and subsequent intravasation to the blood and lymph vessels, and finally hematogenous dissemination to perivascular niches of the bone marrow sinusoids. It has been shown that protein kinase C can aid metastasis to bone. Hence, pharmacological inhibition of protein kinase C (PKC) activity is thought of as a potential therapeutic option in bone metastatic lesions. The objective of the current study was to investigate how PKCs exert their effect on bone cancer metastasis and to test the efficacy of pharmacological inhibition of PKC on bone metastasis. MATERIAL AND METHODS The effect of the PKC inhibitor Go6983 on epithelial and mesenchymal cell marker expression in the osteosarcoma cell line DAN was determined by immunoblot and immunofluorescence analysis. The in vivo effect of Go6983 was evaluated with a xenograft model using DAN cells. RESULTS Treatment with transforming growth factor β (TGF-β) led to loss of the epithelial cell marker and gain of mesenchymal cell markers in the osteosarcoma cell line, DAN. This transition occurred concomitantly with PKC activation. TGF-β-mediated PKC activation resulted in activation of ribosomal protein 6 (S6), but not S6K1. Pharmacological inhibition of PKC activation attenuated these effects. In a xenograft model of experimental metastasis, pharmacological inhibition of PKC activation over a period of 4 weeks reduced both tumor burden and metastasis to lungs. CONCLUSIONS Our results indicate that PKC potentiates tumor metastasis to the bone by potentiating translation increase and can be putatively inhibited by pharmacological inhibition.
Collapse
Affiliation(s)
- He-Jun Hu
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xiong-Wei Deng
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - Run-Xiang Li
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - De-Wang Chen
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chao Xue
- Chinese General PLA Hospital, Beijing, China
| |
Collapse
|
33
|
Lee CC, Soon YY, Tan CL, Koh WY, Leong CN, Tey JCS, Tham IWK. Discordance of epidermal growth factor receptor mutation between primary lung tumor and paired distant metastases in non-small cell lung cancer: A systematic review and meta-analysis. PLoS One 2019; 14:e0218414. [PMID: 31216329 PMCID: PMC6583965 DOI: 10.1371/journal.pone.0218414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose To evaluate the rate of discordance of epidermal growth factor receptor (EGFR) mutation between primary lung tumor and paired distant metastases in non-small-cell lung cancer (NSCLC). Methods We performed a meta-analysis of 17 studies (518 cases) assessing discordance rates of EGFR mutation in primary tumors and paired distant metastases. We performed subgroup analyses based on EGFR mutation status in primary tumor (mutant or wildtype), site of distant metastasis (bone, central nervous system (CNS) or lung/ pleural), methods of testing (direct sequencing or allele-specific testing) and timing of metastasis (synchronous or metachronous). Results The overall discordance rate in EGFR mutation was low at 10.36% (95% CI = 4.23% to 18.79%) and varied widely between studies (I2 = 83.18%). The EGFR discordance rate was statistically significantly higher in bone metastases (45.49%, 95% CI = 14.13 to 79.02) than CNS (17.26%, 95% CI = 7.64 to 29.74; P = 0.002) and lung/ pleural metastases (8.17%, 95% CI = 3.35 to 14.85; P < 0.001). Subgroup analyses did not demonstrate any significant effect modification on the discordance rates by the EGFR mutation status in primary lung tumor, methods of testing and timing of metastasis. Conclusion The overall discordance rate in EGFR mutation between primary lung tumor and paired distant metastases in NSCLC is low, although higher discordance rates were observed in bone metastases compared with CNS and lung/pleural metastases. Future studies assessing the impact of EGFR mutation discordance on treatment outcomes are required.
Collapse
Affiliation(s)
- Chia Ching Lee
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital Singapore, Singapore, Singapore
| | - Yu Yang Soon
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital Singapore, Singapore, Singapore
- * E-mail:
| | - Char Loo Tan
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| | - Wee Yao Koh
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital Singapore, Singapore, Singapore
| | - Cheng Nang Leong
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital Singapore, Singapore, Singapore
| | - Jeremy Chee Seong Tey
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital Singapore, Singapore, Singapore
| | - Ivan Weng Keong Tham
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Chang X, Liu Z, Man S, Roys A, Li Z, Zuo D, Wu Y. Metastasis manners and the underlying mechanisms of ALK and ROS1 rearrangement lung cancer and current possible therapeutic strategies. RSC Adv 2019; 9:17921-17932. [PMID: 35520562 PMCID: PMC9064669 DOI: 10.1039/c9ra02258a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/01/2019] [Indexed: 11/21/2022] Open
Abstract
The rearrangements of anaplastic lymphoma kinase (ALK) and the c-ros oncogene 1 (ROS1) have both been important driving factors in non-small-cell lung cancer (NSCLC). They have already been defined in 3-5% of NSCLC patients. ALK and ROS1 rearrangements are associated with unique clinical and pathological features, especially patients are usually younger, with milder or never smoking history, and adenocarcinoma histology. Also, they have both been found to contribute to the metastasis of NSCLC by cell migration and invasion. It has recently been recognized that the brain can be considered as a primary site for metastasis in cancers with ALK or ROS1 rearrangements. The present review summarizes the current status of NSCLC metastasis and possible mechanisms based on available evidence, and then we list possible therapeutic strategies so that an increase in control of ALK and ROS1 rearrangement of NSCLC metastases by combination therapy can be translated in an increase in overall survival and prognosis.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Shuai Man
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Annie Roys
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| |
Collapse
|
35
|
Guanghui R, Xiaoyan H, Shuyi Y, Jun C, Guobin Q. An efficient or methodical review of immunotherapy against breast cancer. J Biochem Mol Toxicol 2019; 33:e22339. [PMID: 31157481 DOI: 10.1002/jbt.22339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is one of the most widespread malignancies in women worldwide. Breast cancer is mainly classified into a few key molecular subtypes in accordance with hormone and growth factor receptor expression, etc. In spite of numerous advances in the remedy of breast cancer, the development of metastatic disease remains an untreatable and repeated basis of cancer death for women. Preclinical and clinical studies of immunotherapy in cancer remedy have been in progress for the past quite a few decades by an effort to accelerate, augment, and modulate the immune system to spot and devastate cancer cells. Advancement of cancer immunotherapy is rapidly increasing with eminent and most interesting therapy compared to other therapy like targeted therapy, cytotoxic chemotherapy, radiation as well as surgery. Cancer immunotherapy, also known as biological therapy, which denotes the controlling and by means of the patient's own immune system to goal the cancer cells rather than using an extrinsic therapy. In that way, focusing of cancer immunotherapy developing mediators that stimulates or enhances the immune system's recognition and destroying the cancer cells. This review describes a holistic outlook and deeper understanding of the biology of immunotherapy within the system of tumor microenvironment of breast cancer that improve clinical research and constructive impact on the study conclusion.
Collapse
Affiliation(s)
- Ren Guanghui
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, BaoAn District, Shenzhen, Guangdong, China
| | - Hao Xiaoyan
- Department of Thyroid and Breast Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yang Shuyi
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, BaoAn District, Shenzhen, Guangdong, China
| | - Chen Jun
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, BaoAn District, Shenzhen, Guangdong, China
| | - Qiu Guobin
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, BaoAn District, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Sørensen ST, Kirkegaard AO, Carreon L, Rousing R, Andersen MØ. Vertebroplasty or kyphoplasty as palliative treatment for cancer-related vertebral compression fractures: a systematic review. Spine J 2019; 19:1067-1075. [PMID: 30822527 DOI: 10.1016/j.spinee.2019.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Percutaneous vertebroplasty (PVP) and kyphoplasty (KP) are minimally invasive treatment options for vertebral compression fractures (VCFs) due to malignancy. PURPOSE To perform a systematic review evaluating the effectiveness and safety of vertebral augmentation for malignant VCFs. STUDY DESIGN Systematic review. STUDY SAMPLE Studies on PVP or KP for VCFs in patients with malignant spinal lesions. OUTCOME MEASURES Visual Analog Scale (VAS) for pain, Oswestry Disability Index (ODI), Karnofsky Performance Score (KPS), and complications were extracted from eligible studies. METHODS Using Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, studies published between January 1, 2000 and January 3, 2018 were identified by combining the results of a report by Health Quality Ontario with an updated literature search. RESULTS The review identified two randomized controlled trials, 16 prospective studies, 44 retrospective studies, and 25 case series for a patient sample size of 3,426. At the earliest follow-up, pain improved from 7.48 to 3.00 with PVP, and from 7.05 to 2.96 with KP. ODI improved from 74.68 to 17.73 with PVP, and from 66.02 to 34.73 with KP. KPS improved from 66.99 to 80.28. Cement leakage was seen in 37.9% and 13.6% of patients treated with PVP and KP, respectively. Symptomatic complications (N = 43) were rare. CONCLUSIONS This review showed clinically relevant improvements in pain, ODI, and KPS in patients with VCFs due to malignancy treated with either PVP or KP. Cement leakage is common, but rarely symptomatic. Percutaneous vertebroplasty and KP are safe and effective palliative procedures for painful VCFs in patients with malignant spinal lesions.
Collapse
Affiliation(s)
- Simon Thorbjørn Sørensen
- Center for Spine Surgery & Research, Middelfart Hospital, Østre Hougvej 55, 5500 Middelfart, Denmark.
| | - Andreas Ole Kirkegaard
- Center for Spine Surgery & Research, Middelfart Hospital, Østre Hougvej 55, 5500 Middelfart, Denmark
| | - Leah Carreon
- Center for Spine Surgery & Research, Middelfart Hospital, Østre Hougvej 55, 5500 Middelfart, Denmark
| | - Rikke Rousing
- Center for Spine Surgery & Research, Middelfart Hospital, Østre Hougvej 55, 5500 Middelfart, Denmark
| | | |
Collapse
|
37
|
Liao TY, Liaw CC, Tsui KH, Juan YH. Invasion of Adjacent Lumbar Vertebral Body from Renal Pelvis Carcinoma: Associated With Bone Metastasis But Easily Overlooked on Initial CT Scan. In Vivo 2019; 33:939-943. [PMID: 31028220 PMCID: PMC6559887 DOI: 10.21873/invivo.11562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM We hypothesized that regional tumor growth into L1 and L2 vertebral bodies from renal pelvis carcinoma was linked to the development of bone metastases. MATERIALS AND METHODS Criteria for the study were: (i) Metastatic renal pelvis carcinoma confirmed via pathology and computed tomographic (CT) scan, (ii) L1 and L2 invasion confirmed from retrospective CT scan review, and (iii) detection of bone metastases using radionuclide images/CT scans. RESULTS A total of 71 cases were enrolled in the study. Initial L1 and L2 vertebral body invasion. were detected in 45 (63%) patients. As well as L1 and L2 invasion, 32 (71%) had development of bone metastases. All bone lesions were osteolytic. Initial L1 and L2 invasion (p<0.00001) was associated with the development of bone metastasis. CONCLUSION CT scan can help to detect L1 and L2 vertebral body invasion in patients with renal pelvis carcinoma. Early identification and optimal management of such patients is necessary.
Collapse
Affiliation(s)
- Tzu-Yao Liao
- Division of Hemato-Oncology, Department of Internal Medicine, Chang-Gung Memorial Hospital and Chang-Gung University College of Medicine, Taoyuan, Taiwan, R.O.C
| | - Chuang-Chi Liaw
- Division of Hemato-Oncology, Department of Internal Medicine, Chang-Gung Memorial Hospital and Chang-Gung University College of Medicine, Taoyuan, Taiwan, R.O.C.
| | - Ke-Hung Tsui
- Department of Urology, Chang-Gung Memorial Hospital and Chang-Gung University College of Medicine, Taoyuan, Taiwan, R.O.C
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang-Gung Memorial Hospital and Chang-Gung University College of Medicine, Taoyuan, Taiwan, R.O.C
| |
Collapse
|
38
|
Subbotin VM. A hypothesis on paradoxical privileged portal vein metastasis of hepatocellular carcinoma. Can organ evolution shed light on patterns of human pathology, and vice versa? Med Hypotheses 2019; 126:109-128. [PMID: 31010487 DOI: 10.1016/j.mehy.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Unlike other carcinomas, hepatocellular carcinoma (HCC) metastasizes to distant organs relatively rarely. In contrast, it routinely metastasizes to liver vasculature/liver, affecting portal veins 3-10 times more often than hepatic veins. This portal metastatic predominance is traditionally rationalized within the model of a reverse portal flow, due to accompanying liver cirrhosis. However, this intuitive model is not coherent with facts: 1) reverse portal flow occurs in fewer than 10% of cirrhotic patients, while portal metastasis occurs in 30-100% of HCC cases, and 2) portal vein prevalence of HCC metastasis is also characteristic of HCC in non-cirrhotic livers. Therefore, we must assume that the route for HCC metastatic dissemination is the same as for other carcinomas: systemic dissemination via the draining vessel, i.e., via the hepatic vein. In this light, portal prevalence versus hepatic vein of HCC metastasis appears as a puzzling pattern, particularly in cases when portal HCC metastases have appeared as the sole manifestation of HCC. Considering that other GI carcinomas (colorectal, pancreatic, gastric and small bowel) invariably disseminate via portal vein, but very rarely form portal metastasis, portal prevalence of HCC metastasis appears as a paradox. However, nature does not contradict itself; it is rather our wrong assumptions that create paradoxes. The 'portal paradox' becomes a logical event within the hypothesis that the formation of the unique portal venous system preceded the appearance of liver in evolution of chordates. The analysis suggests that the appearance of the portal venous system, supplying hormones and growth factors of pancreatic family, which includes insulin, glucagon, somatostatin, and pancreatic polypeptide (HGFPF) to midgut diverticulum in the early evolution of chordates (in an Amphioxus-like ancestral animal), promoted differentiation of enterocytes into hepatocytes and their further evolution to the liver of vertebrates. These promotional-dependent interactions are conserved in the vertebrate lineage. I hypothesize that selective homing and proliferation of malignant hepatocytes (i.e., HCC cells) in the portal vein environment are due to a uniquely high concentration of HGFPF in portal blood. HGFPF are also necessary for liver function and renewal and are significantly extracted by hepatocytes from passing blood, creating a concentration gradient of HGFPF between the portal blood and hepatic vein outflow, making post-liver vasculature and remote organs less favorable spaces for HCC growth. It also suggested that the portal vein environment (i.e., HGFPF) promotes the differentiation of more aggressive HCC clones from already-seeded portal metastases, explaining the worse outcome of HCC with the portal metastatic pattern. The analysis also offers new hypothesis on the phylogenetic origin of the hepatic diverticulum of cephalochordates, with certain implications for the modeling of the chordate phylogeny.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Arrowhead Parmaceuticals, Madison, WI 53719, USA; University of Wisconsin, Madison, WI 53705, USA; University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
39
|
Tareen SA, Rodriguez J, Wu P. Prostate Cancer Metastatic to the Peritoneum: A Road Less Traveled by a Common Malignancy. Cureus 2019; 11:e4222. [PMID: 31123644 PMCID: PMC6510563 DOI: 10.7759/cureus.4222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/11/2019] [Indexed: 11/12/2022] Open
Abstract
A 70-year-old Indian male with a history of a Gleason 7 (3+4) prostate cancer presented with abdominal ascites. Imaging was remarkable for peritoneal carcinomatosis as well as possible metastases to the bladder and seminal vesicle. Given the atypical pattern of presentation, further investigation was performed with studies of the ascites fluid. Cytology from the ascites fluid returned consistent with malignant cells of prostatic origin. His treatment course included androgen deprivation therapy (ADT), docetaxel, abiraterone, and cabazitaxel. He had eventual progression and worsening of his disease and performance status and was transitioned to hospice. This case demonstrated the importance of pursuing a thorough diagnostic evaluation, when faced with a rare presentation of a common malignancy. Furthermore, it illustrated the challenges incurred when tailoring standard regimens to best address the needs of the whole patient and not simply their disease.
Collapse
Affiliation(s)
- Serene A Tareen
- Internal Medicine, Olive View - University of California Los Angeles (UCLA) Medical Center, Los Angeles, USA
| | - Joshua Rodriguez
- Hematology & Oncology, Olive View - University of California Los Angeles (UCLA) Medical Center, Los Angeles , USA
| | - Phillis Wu
- Hematology & Oncology, Olive View - University of California Los Angeles (UCLA) Medical Center, Los Angeles, USA
| |
Collapse
|
40
|
Spadazzi C, Recine F, Mercatali L, Miserocchi G, Liverani C, De Vita A, Bongiovanni A, Fausti V, Ibrahim T. mTOR inhibitor and bone-targeted drugs break the vicious cycle between clear-cell renal carcinoma and osteoclasts in an in vitro co-culture model. J Bone Oncol 2019; 16:100227. [PMID: 30911462 PMCID: PMC6416775 DOI: 10.1016/j.jbo.2019.100227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 02/03/2023] Open
Abstract
The skeleton is one of the most common sites of metastatic spread from advanced clear-cell renal carcinoma (ccRCC). Most of the bone lesions observed in RCC patients are classified as osteolytic, causing severe pain and morbidity due to pathological bone destruction. Nowadays, it is well known that cancer induced bone loss in lytic metastasis is caused by the triggering of a vicious cycle between cancer and bone resident cells that leads to an imbalance between bone formation and degradation. Targeting the mammalian target of rapamycin (mTOR) is an efficient treatment option for metastatic renal carcinoma patients. Moreover, bone targeted therapy could benefit bone metastatic cancer patients caused by advanced RCC. However, more data is needed to support the hypothesis of the beneficial effect of a combined therapy. The aim of this work is to investigate the effect of targeting mTOR and the sequential combination with bone targeted therapy as a strategy to break the vicious cycle between ccRCC cells and osteoclasts. A previously optimized fully human co-culture model is used to mimic the crosstalk between Caki-2 cells (ccRCC) and osteoclasts. Cells are treated at fixed timing with everolimus, zoledronic acid and denosumab as single or sequential combined treatment. We show that Caki-2 cells can induce osteoclast cells differentiation from isolated human monocytes, as demonstrated by specific tartrate-resistant acid phosphatase (TRAP) staining and f-actin ring formation, in a statistically significant manner. Moreover, differentiated osteoclasts proved to be functionally active by pit formation assay. Caki-2 cells co-cultured with osteoclasts acquire a more aggressive phenotype based on gene expression analysis. Interestingly, the sequential combined treatment of everolimus and zoledronic acid is the most effective in the inhibition of both Caki-2 cells survival and osteoclastogenic potential, making it an effective strategy to inhibit the vicious cycle of bone metastasis. At preclinical level, this observation confirms the value of our co-culture model as a useful tool to mimic the bone microenvironment and to assess drug sensitivity in vitro. A better understanding of the molecular mechanisms involved in tumor-bone cells crosstalk will be investigated next.
Collapse
Key Words
- Bone metastasis
- Co-culture
- Deno, denosumab
- Eve, everolimus
- M-CSF, macrophage colony-stimulating factor
- OPG, osteoprotegerin
- Osteoclasts
- RANK-L, receptor activator of nuclear factor-kb ligand
- RCC, renal cell carcinoma
- Renal carcinoma
- Targeted therapy
- VEGF, vascular endothelial growth factor
- Vicious cycle
- Zol, zoledronic acid
- ccRCC, clear-cell renal cell carcinoma
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Valentina Fausti
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| |
Collapse
|
41
|
Rizzo FM, Vesely C, Childs A, Marafioti T, Khan MS, Mandair D, Cives M, Ensell L, Lowe H, Akarca AU, Luong T, Caplin M, Toumpanakis C, Krell D, Thirlwell C, Silvestris F, Hartley JA, Meyer T. Circulating tumour cells and their association with bone metastases in patients with neuroendocrine tumours. Br J Cancer 2019; 120:294-300. [PMID: 30636773 PMCID: PMC6353867 DOI: 10.1038/s41416-018-0367-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 02/03/2023] Open
Abstract
Background Bone metastases are associated with a worse outcome in patients with neuroendocrine tumours (NETs). Tumour overexpression of C-X-C chemokine receptor 4 (CXCR4) appears predictive of skeletal involvement. We investigated the role of circulating tumour cells (CTCs) and CXCR4 expression on CTCs as potential predictors of skeleton invasion. Methods Blood from patients with metastatic bronchial, midgut or pancreatic NET (pNET) was analysed by CellSearch. CXCR4 immunohistochemistry was performed on matched formalin-fixed paraffin-embedded (FFPE) samples. Results Two hundred and fifty-four patients were recruited with 121 midgut and 119 pNETs, of which 51 and 36% had detectable CTCs, respectively. Bone metastases were reported in 30% of midgut and 23% of pNET patients and were significantly associated with CTC presence (p = 0.003 and p < 0.0001). In a subgroup of 40 patients, 85% patients with CTCs had CTCs positive for CXCR4 expression. The proportion of CXCR4-positive CTCs in patients with bone metastases was 56% compared to 35% in those without (p = 0.18) it. Staining for CXCR4 on matched FFPE tissue showed a trend towards a correlation with CXCR4 expression on CTCs (p = 0.08). Conclusions CTC presence is associated with bone metastases in NETs. CXCR4 may be involved in CTC osteotropism and present a therapeutic target to reduce skeletal morbidity.
Collapse
Affiliation(s)
- Francesca M Rizzo
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Clare Vesely
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Alexa Childs
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Teresa Marafioti
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Mohid S Khan
- Wales Neuroendocrine Tumour Service, Department of Gastroenterology, University Hospital of Wales, Cardiff, UK
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Leah Ensell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Helen Lowe
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Ayse U Akarca
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - TuVinh Luong
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Daniel Krell
- Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Christina Thirlwell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK.,Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - John A Hartley
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Tim Meyer
- Department of Oncology, UCL Cancer Institute, University College London, London, UK. .,Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
42
|
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne) 2019; 9:788. [PMID: 30671025 PMCID: PMC6333051 DOI: 10.3389/fendo.2018.00788] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is strongly linked to the maintenance of healthy bone. Inflammatory cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6), act as osteoclast differentiation modulators and as such, must be carefully monitored and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and can cause excessive osteoclastic activity and osteolysis when overly abundant. Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis, osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with growth factors into the bone marrow microenvironment (BMM) during osteolysis from bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis. Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of MM are discussed in this review, including roles in bone homing, cancer-associated bone loss, disease progression and drug resistance. MM disease progression often includes the development of drug-resistant clones, and patients commonly struggle with reoccurrence. As such, therapeutics that specifically target the microenvironment, rather than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners, are model targets. Lastly, current and potential therapeutic interventions involving IL-6 and connected signaling molecules are discussed in this review.
Collapse
Affiliation(s)
- Danielle Harmer
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
43
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
44
|
Zhang X, Xiang J. Remodeling the Microenvironment before Occurrence and Metastasis of Cancer. Int J Biol Sci 2019; 15:105-113. [PMID: 30662351 PMCID: PMC6329933 DOI: 10.7150/ijbs.28669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis and progression of cancer are complex processes which transformed cells and stromal cells interact and co-evolve. Intrinsic and extrinsic factors cause the mutations of cells. The survival of transformed cells critically depends on the circumstances which they reside. The malignant transformed cancer cells reprogram the microenvironment locally and systemically. The formation of premetastatic niche in the secondary organs facilitates cancer cells survival in the distant organs. This review outlines the current understanding of the key roles of premalignant niche and premetastatic niche in cancer progression. We proposed that a niche facilitates survival of transformed cells is characteristics of senescence, stromal fibrosis and obese microenvironment. We also proposed the formation of premetastatic niche in secondary organs is critically influenced by primary cancer cells. Therefore, it suggested that strategies to target the niche can be promising approach to eradicate cancer cells.
Collapse
Affiliation(s)
- Xina Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Sambi M, Qorri B, Harless W, Szewczuk MR. Therapeutic Options for Metastatic Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:131-172. [PMID: 31456183 DOI: 10.1007/978-3-030-20301-6_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic breast cancer is the most common cancer in women after skin cancer, with a 5-year survival rate of 26%. Due to its high prevalence, it is important to develop therapies that go beyond those that just provide palliation of symptoms. Currently, there are several types of therapies available to help treat breast cancer including: hormone therapy, immunotherapy, and chemotherapy, with each one depending on both the location of metastases and morphological characteristics. Although technological and scientific advancements continue to pave the way for improved therapies that adopt a targeted and personalized approach, the fact remains that the outcomes of current first-line therapies have not significantly improved over the last decade. In this chapter, we review the current understanding of the pathology of metastatic breast cancer before thoroughly discussing local and systemic therapies that are administered to patients diagnosed with metastatic breast cancer. In addition, our review will also elaborate on the genetic profile that is characteristic of breast cancer as well as the local tumor microenvironment that shapes and promotes tumor growth and cancer progression. Lastly, we will present promising novel therapies being developed for the treatment of this disease.
Collapse
Affiliation(s)
- Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
46
|
Kim A, Ma JY. Isoliquiritin Apioside Suppresses in vitro Invasiveness and Angiogenesis of Cancer Cells and Endothelial Cells. Front Pharmacol 2018; 9:1455. [PMID: 30618749 PMCID: PMC6295464 DOI: 10.3389/fphar.2018.01455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Several components isolated from Glycyrrhizae radix rhizome (GR), including glycyrrhizin, liquiritin, and liquiritigenin, have been shown to induce cancer cell death and inhibit cancer metastasis. Isoliquiritin apioside (ISLA), a component isolated from GR, has been effective for treating tetanic contraction and genotoxicity. However, the effects of ISLA on the metastasis and angiogenesis of malignant cancer cells and endothelial cells (ECs) have not been reported. In this study, we found that up to 100 μM ISLA did not affect cell proliferation but efficiently suppressed the metastatic ability of HT1080 cells, as assessed by scratch-wound migration, Transwell® migration, scratch-wound invasion, Transwell® invasion, and three-dimensional spheroid invasion. ISLA significantly decreased phorbol 12-myristate 13-acetate (PMA)-induced increases in matrix metalloproteinase (MMP) activities and suppressed PMA-induced activation of mitogen-activated protein kinase as well as NF-κB, which are involved in cancer metastasis. In addition, ILSA treatment reduced the production of pro-angiogenic factors in HT1080 cells, including MMP-9, placental growth factor, and vascular endothelial growth factor under normoxia as well as hypoxia conditions, by impairing the hypoxia-inducible factor-1α pathway. We also found that the abilities of human umbilical vein ECs to migrate across the Transwell® and to form tube-like structures were significantly reduced by ISLA treatment. Moreover, using the chorioallantoic membrane assay, vessel formation with or without vascular endothelial growth factor was significantly suppressed by ISLA. These results suggested that ISLA possesses anti-metastatic and anti-angiogenic abilities in malignant cancer cells and ECs, with no cytotoxicity. ISLA may therefore be a safe and effective lead compound to develop anti-cancer drug for limiting the spread of primary tumors to distant organs to form secondary tumors.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
47
|
Hong X, Hong X, Zhao H, He C. Knockdown of SRPX2 inhibits the proliferation, migration, and invasion of prostate cancer cells through the PI3K/Akt/mTOR signaling pathway. J Biochem Mol Toxicol 2018; 33:e22237. [PMID: 30537353 DOI: 10.1002/jbt.22237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 01/04/2023]
Abstract
Sushi repeat-containing protein X-linked 2 (SRPX2), a novel chondroitin sulfate proteoglycan, is reported to play a critical role in tumorigenesis. However, the expression and functional role of SRPX2 in prostate cancer have not been defined. Thus, the aim of this study was to investigate the expression and functional role of SRPX2 in human prostate cancer. Our results showed that the expression of SRPX2 was obviously increased in human prostate cancer tissues and cell lines. In addition, knockdown of SRPX2 inhibited the proliferation, migration, and invasion of prostate cancer cells, as well as prevented the epithelial-mesenchymal transition process in prostate cancer cells. Mechanically, knockdown of SRPX2 efficiently inhibited the activation of PI3K/Akt/mTOR pathway in prostate cancer cells. Taken together, these data demonstrated that knockdown of SRPX2 inhibits the proliferation and metastasis in human prostate cancer cells, partly through the PI3K/Akt/mTOR signaling pathway. Thus, SRPX2 may be a novel therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xin Hong
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xingyu Hong
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengyan He
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22:5776-5786. [PMID: 30255991 PMCID: PMC6237612 DOI: 10.1111/jcmm.13867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that cancer cells spread much earlier than was previously believed. Recent technological advances have greatly improved the detection methods of circulating tumour cells (CTCs), suggesting that the dissemination of cancer cells into the circulation occurs randomly. Most CTCs die in circulation as a result of shear stress and/or anoikis. However, the persistence of disseminated tumour cells (DTCs) in the bone marrow is the result of interaction of DTCs with bone marrow microenvironment. DTCs in the bone marrow undergo successive clonal expansions and a parallel progression that leads to new variants. Compared to the CTCs, DTCs in the bone marrow have a unique signature, which displayed dormant, mesenchymal phenotype and osteoblast-like or osteoclast-like phenotype. The persistence of DTCs in the bone marrow is always related to minimal residual diseases (MRDs). This review outlines the difference between CTCs and DTCs in the bone marrow and describes how this difference affects the clinical values of CTCs and DTCs, such as metastasis and recurrence. We suggest that DTCs remaining in the bone marrow after therapy can be used as a superior marker in comparison with CTCs to define patients with an unfavourable prognosis and may therefore be a potential prognostic factor and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Buqing Sai
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Juanjuan Xiang
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerChangshaHunanChina
| |
Collapse
|
49
|
Kaposi sarcoma-associated herpes virus (KSHV) latent protein LANA modulates cellular genes associated with epithelial-to-mesenchymal transition. Arch Virol 2018; 164:91-104. [DOI: 10.1007/s00705-018-4060-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
|
50
|
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 2018; 8:1483-1507. [PMID: 29978332 PMCID: PMC6133085 DOI: 10.1007/s13346-018-0551-3] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The major current conventional types of metastatic breast cancer (MBC) treatments include surgery, radiation, hormonal therapy, chemotherapy, or immunotherapy. Introducing biological drugs, targeted treatment and gene therapy can potentially reduce the mortality and improve the quality of life in patients with MBC. However, combination of several types of treatment is usually recommended. Triple negative breast cancer (TNBC) accounts for 10-20% of all cases of breast carcinoma and is characterized by the low expression of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). Consequently, convenient treatments used for MBC that target these receptors are not effective for TNBC which therefore requires special treatment approaches. This review discusses the occurrence of MBC, the prognosis and predictive biomarkers of MBC, and focuses on the novel advanced tactics for treatment of MBC and TNBC. Nanotechnology-based combinatorial approach for the suppression of EGFR by siRNA and gifitinib is described.
Collapse
Affiliation(s)
- Sumayah Al-Mahmood
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Rutgers Cancer Institute, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|