1
|
Hossain I, Shila RA, Uddin MM, Chowdhury EH, Parvin R, Begum JA. Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus. BMC Vet Res 2024; 20:500. [PMID: 39482682 PMCID: PMC11529290 DOI: 10.1186/s12917-024-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus. METHODS Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR. RESULTS Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens. CONCLUSION This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.
Collapse
Affiliation(s)
- Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rupaida Akter Shila
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Mohi Uddin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
2
|
Gupta S, Kaur R, Sohal JS, Singh SV, Das K, Sharma MK, Singh J, Sharma S, Dhama K. Countering Zoonotic Diseases: Current Scenario and Advances in Diagnostics, Monitoring, Prophylaxis and Therapeutic Strategies. Arch Med Res 2024; 55:103037. [PMID: 38981342 DOI: 10.1016/j.arcmed.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Human life and health have interacted reciprocally with the surrounding environment and animal fauna for ages. This relationship is evident in developing nations, where human life depends more on the animal population for food, transportation, clothing, draft power, and fuel sources, among others. This inseparable link is a potent source of public health issues, especially in outbreaks of zoonotic diseases transmitted from animals to humans. Zoonotic diseases are referred to as diseases that are naturally transmitted between vertebrate animals and humans. Among the globally emerging diseases in the last decade, 75% are of animal origin, most of which are life-threatening. Since most of them are caused by potent new pathogens capable of long-distance transmission, the impact is widespread and has serious public health and economic consequences. Various other factors also contribute to the transmission, spread, and outbreak of zoonotic diseases, among which industrialization-led globalization followed by ecological disruption and climate change play a critical role. In this regard, all the possible strategies, including advances in rapid and confirmatory disease diagnosis and surveillance/monitoring, immunization/vaccination, therapeutic approaches, appropriate prevention and control measures to be adapted, and awareness programs, need to be adopted collaboratively among different health sectors in medical, veterinary, and concerned departments to implement the necessary interventions for the effective restriction, minimization, and timely control of zoonotic threats. The present review focuses on the current scenario of zoonotic diseases and their counteracting approaches to safeguard their health impact on humans.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India.
| | - Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Jagdip Singh Sohal
- Centre for Vaccine and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, West Bengal, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Saket Nagar, Madhya Pradesh, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, LUVAS, Hisar, Haryana, India; Division of Veterinary Physiology and Biochemistry, SKUAST-J, Jammu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Szablewski CM, Iwamoto C, Olsen SJ, Greene CM, Duca LM, Davis CT, Coggeshall KC, Davis WW, Emukule GO, Gould PL, Fry AM, Wentworth DE, Dugan VG, Kile JC, Azziz-Baumgartner E. Reported Global Avian Influenza Detections Among Humans and Animals During 2013-2022: Comprehensive Review and Analysis of Available Surveillance Data. JMIR Public Health Surveill 2023; 9:e46383. [PMID: 37651182 PMCID: PMC10502594 DOI: 10.2196/46383] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Avian influenza (AI) virus detections occurred frequently in 2022 and continue to pose a health, economic, and food security risk. The most recent global analysis of official reports of animal outbreaks and human infections with all reportable AI viruses was published almost a decade ago. Increased or renewed reports of AI viruses, especially high pathogenicity H5N8 and H5N1 in birds and H5N1, H5N8, and H5N6 in humans globally, have established the need for a comprehensive review of current global AI virus surveillance data to assess the pandemic risk of AI viruses. OBJECTIVE This study aims to provide an analysis of global AI animal outbreak and human case surveillance information from the last decade by describing the circulating virus subtypes, regions and temporal trends in reporting, and country characteristics associated with AI virus outbreak reporting in animals; surveillance and reporting gaps for animals and humans are identified. METHODS We analyzed AI virus infection reports among animals and humans submitted to animal and public health authorities from January 2013 to June 2022 and compared them with reports from January 2005 to December 2012. A multivariable regression analysis was used to evaluate associations between variables of interest and reported AI virus animal outbreaks. RESULTS From 2013 to 2022, 52.2% (95/182) of World Organisation for Animal Health (WOAH) Member Countries identified 34 AI virus subtypes during 21,249 outbreaks. The most frequently reported subtypes were high pathogenicity AI H5N1 (10,079/21,249, 47.43%) and H5N8 (6722/21,249, 31.63%). A total of 10 high pathogenicity AI and 6 low pathogenicity AI virus subtypes were reported to the WOAH for the first time during 2013-2022. AI outbreaks in animals occurred in 26 more Member Countries than reported in the previous 8 years. Decreasing World Bank income classification was significantly associated with decreases in reported AI outbreaks (P<.001-.02). Between January 2013 and June 2022, 17/194 (8.8%) World Health Organization (WHO) Member States reported 2000 human AI virus infections of 10 virus subtypes. H7N9 (1568/2000, 78.40%) and H5N1 (254/2000, 12.70%) viruses accounted for the most human infections. As many as 8 of these 17 Member States did not report a human case prior to 2013. Of 1953 human cases with available information, 74.81% (n=1461) had a known animal exposure before onset of illness. The median time from illness onset to the notification posted on the WHO event information site was 15 days (IQR 9-30 days; mean 24 days). Seasonality patterns of animal outbreaks and human infections with AI viruses were very similar, occurred year-round, and peaked during November through May. CONCLUSIONS Our analysis suggests that AI outbreaks are more frequently reported and geographically widespread than in the past. Global surveillance gaps include inconsistent reporting from all regions and human infection reporting delays. Continued monitoring for AI virus outbreaks in animals and human infections with AI viruses is crucial for pandemic preparedness.
Collapse
Affiliation(s)
- Christine M Szablewski
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Chelsea Iwamoto
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sonja J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Carolyn M Greene
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lindsey M Duca
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - C Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kira C Coggeshall
- Division of Global Health Protection, Global Health Center, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - William W Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gideon O Emukule
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Philip L Gould
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - James C Kile
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eduardo Azziz-Baumgartner
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
4
|
Djurdjević B, Polaček V, Pajić M, Petrović T, Vučićević I, Vidanović D, Aleksić-Kovačević S. Highly Pathogenic Avian Influenza H5N8 Outbreak in Backyard Chickens in Serbia. Animals (Basel) 2023; 13:ani13040700. [PMID: 36830487 PMCID: PMC9952722 DOI: 10.3390/ani13040700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
In winter 2016/2017, the highly pathogenic avian influenza virus H5N8 was detected in backyard poultry in Serbia for the first time. The second HPAI outbreak case in backyard poultry was reported in 2022, caused by subtype H5N1. This is the first study that documents the laboratory identification and pathology associated with highly pathogenic avian influenza in poultry in Serbia during the first and second introduction waves. In both cases, the diagnosis was based on real-time reverse transcriptase PCR. The most common observed lesions included subepicardial hemorrhages, congestion and hemorrhages in the lungs, and petechial hemorrhages in coelomic and epicardial adipose tissue. Histologically, the observed lesions were mostly nonpurulent encephalitis accompanied by encephalomalacia, multifocal necrosis in the spleen, pancreas, and kidneys, pulmonary congestion, and myocardial and pulmonary hemorrhages. In H5N8-infected chickens, immunohistochemical examination revealed strong positive IHC staining in the brain and lungs. Following these outbreaks, strict control measures were implemented on farms and backyard holdings to prevent the occurrence and spread of the disease. Extensive surveillance of birds for avian influenza virus did not detect any additional cases in poultry. These outbreaks highlight the importance of a rapid detection and response system in order to quickly suppress outbreaks.
Collapse
Affiliation(s)
- Biljana Djurdjević
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
- Correspondence:
| | - Vladimir Polaček
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Tamaš Petrović
- Department of Virology, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Ivana Vučićević
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11080 Belgrade, Serbia
| | - Dejan Vidanović
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia
| | - Sanja Aleksić-Kovačević
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Guo Y, Ding P, Li Y, Zhang Y, Zheng Y, Yu M, Suzuki Y, Zhang H, Ping J. Genetic and biological properties of H10N3 avian influenza viruses: A potential pandemic candidate? Transbound Emerg Dis 2022; 69:e3171-e3182. [PMID: 35067005 DOI: 10.1111/tbed.14458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
The continued emergence of human illness caused by avian influenza viruses (AIVs) demonstrates the threat of strains such as H5N1, H7N9, H10N8, and now H10N3. The genetic and biological properties of H10N3 viruses are not fully understood. In this study, three H10N3 strains isolated from live poultry markets (LPMs) were systematically studied. Genome sequencing showed that the poultry-origin viruses are highly homologous to the human H10N3 isolate. The three avian strains were A/chicken/Jiangsu/0146/2021(abbreviated as JS146, H10N3), A/chicken/Jiangsu/0169/2021 (JS169, H10N3), and A/chicken/Jiangsu/0189/2021(JS189, H10N3). Animal studies indicated that all three viruses are highly pathogenic to mice and that all could replicate efficiently in mouse nasal turbinate and lungs despite maintaining their avian receptor binding affinity. We also found that these viruses replicated efficiently in A549 cells and chicken embryos. The strain JS146 had sensitivity to the neuraminidase-targeting drugs oseltamivir and zanamivir, whereas JS169 and JS189 were more resistant; genetic comparison implied that a substitution at NA position 368 conferred drug resistance. Importantly, several key molecular markers associated with mammalian adaptation had been detected in both avian and human-isolated H10N3 influenza viruses in the HA (G228S), PB2 (I292V and A588V), PB1 (M317V and I368V), and PA (A343S, K356R and S409N) protein. The above work contributes new insight into the biology of this potentially zoonotic subtype and provides evidence supporting the continued epidemiological monitoring of human infections caused by AIV subtype H10N3.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pingyun Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinjing Li
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute in CAAS, Harbin, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengqi Yu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Haitao Zhang
- Lihua Nanjing Industrial Research Institute Co., Ltd, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Castro-Sanguinetti GR, Marques Simas PV, Apaza-Chiara AP, Callupe-Leyva JA, Rondon-Espinoza JA, Gavidia CM, More-Bayona JA, Gonzalez Veliz RI, Vakharia VN, Icochea ME. Genetic subtyping and phylogenetic analysis of HA and NA from avian influenza virus in wild birds from Peru reveals unique features among circulating strains in America. PLoS One 2022; 17:e0268957. [PMID: 35671300 PMCID: PMC9173603 DOI: 10.1371/journal.pone.0268957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Avian influenza virus (AIV) represents a major concern with productive implications in poultry systems but it is also a zoonotic agent that possesses an intrinsic pandemic risk. AIV is an enveloped, negative-sense and single-stranded RNA virus with a segmented genome. The eight genomic segments, comprising the whole genome, encode for eleven proteins. Within these proteins, Hemagglutinin (HA) and Neuraminidase (NA) are the most relevant for studies of evolution and pathogenesis considering their role in viral replication, and have also been used for classification purposes. Migratory birds are the main hosts and play a pivotal role in viral evolution and dissemination due to their migratory routes that comprise large regions worldwide. Altogether, viral and reservoir factors contribute to the emergence of avian influenza viruses with novel features and pathogenic potentials. The study aimed to conduct surveillance of AIVs in wild birds from Peru. A multi-site screening of feces of migratory birds was performed to isolate viruses and to characterize the whole genome sequences, especially the genes coding for HA and NA proteins. Four-hundred-twenty-one (421) fecal samples, collected between March 2019 and March 2020 in Lima, were obtained from 21 species of wild birds. From these, we isolated five AIV from whimbrel, kelp gull, Franklin’s gulls and Mallard, which were of low pathogenicity, including four subtypes as H6N8, H13N6, H6N2 and H2N6. Genetic analysis of HA and NA genes revealed novel features in these viruses and phylogenetic analysis exhibited a close relationship with those identified in North America (US and Canada). Furthermore, H2N6 isolate presented a NA sequence with higher genetic relationship to Chilean isolates. These results highlight that the geographical factor is of major relevance in the evolution of AIV, suggesting that AIV circulating in Peru might represent a new site for the emergence of reassortant AIVs.
Collapse
Affiliation(s)
- Gina R. Castro-Sanguinetti
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Paulo Vitor Marques Simas
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Ana Paola Apaza-Chiara
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Jose Alonso Callupe-Leyva
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Alexander Rondon-Espinoza
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Cesar M. Gavidia
- Laboratory of Epidemiology and Veterinary Economy, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Anderson More-Bayona
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- Laboratory of Microbiology and Parasitology, Virology Section, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Rosa Isabel Gonzalez Veliz
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Maria Eliana Icochea
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- * E-mail:
| |
Collapse
|
7
|
Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, Ghosh M. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J 2022; 20:5378-5392. [PMID: 36212529 PMCID: PMC9526013 DOI: 10.1016/j.csbj.2022.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.
Collapse
|
8
|
Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells. J Virol 2021; 95:e0090621. [PMID: 34319155 DOI: 10.1128/jvi.00906-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cleavage of the influenza A virus (IAV) hemagglutinin (HA) by host proteases is indispensable for virus replication. Most IAVs possess a monobasic HA cleavage site cleaved by trypsin-like proteases. Previously, the transmembrane protease TMPRSS2 was shown to be essential for proteolytic activation of IAV HA subtypes H1, H2, H7 and H10 in mice. In contrast, additional proteases are involved in activation of certain H3 IAVs, indicating that HAs with monobasic cleavage site can differ in their sensitivity to host proteases. Here, we investigated the role of TMPRSS2 in proteolytic activation of avian HA subtypes H1 to H11 and H14 to H16 in human and mouse airway cell cultures. Using reassortant viruses carrying representative HAs, we analysed HA cleavage and multicycle replication in (i) lung cells of TMPRSS2-deficient mice and (ii) Calu-3 cells and primary human bronchial cells subjected to morpholino oligomer-mediated knockdown of TMPRSS2 activity. TMPRSS2 was found to be crucial for activation of H1 to H11, H14 and H15 in airway cells of human and mouse. Only H9 with an R-S-S-R cleavage site and H16 were proteolytically activated in the absence of TMPRSS2 activity, albeit with reduced efficiency. Moreover, a TMPRSS2-orthologous protease from duck supported activation of H1 to H11, H15 and H16 in MDCK cells. Together, our data demonstrate that in human and murine respiratory cells, TMPRSS2 is the major activating protease of almost all IAV HA subtypes with monobasic cleavage site. Furthermore, our results suggest that TMPRSS2 supports activation of IAV with monobasic cleavage site in ducks. Importance Human infections with avian influenza A viruses upon exposure to infected birds are frequently reported and have received attention as a potential pandemic threat. Cleavage of the envelope glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. In this study, we identify the transmembrane protease TMPRSS2 as the major activating protease of avian influenza virus HAs of subtypes H1 to H11, H14 and H15 in human and murine airway cells. Our data demonstrate that inhibition of TMPRSS2 activity may provide a useful approach for the treatment of human infections with avian influenza viruses that should be considered for pandemic preparedness as well. Additionally, we show that a TMPRSS2-orthologous protease from duck can activate avian influenza virus HAs with a monobasic cleavage site and thus represents a potential virus-activating protease in waterfowl, the primary reservoir for influenza A viruses.
Collapse
|
9
|
Mach N, Baranowski E, Nouvel LX, Citti C. The Airway Pathobiome in Complex Respiratory Diseases: A Perspective in Domestic Animals. Front Cell Infect Microbiol 2021; 11:583600. [PMID: 34055660 PMCID: PMC8160460 DOI: 10.3389/fcimb.2021.583600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Respiratory infections in domestic animals are a major issue for veterinary and livestock industry. Pathogens in the respiratory tract share their habitat with a myriad of commensal microorganisms. Increasing evidence points towards a respiratory pathobiome concept, integrating the dysbiotic bacterial communities, the host and the environment in a new understanding of respiratory disease etiology. During the infection, the airway microbiota likely regulates and is regulated by pathogens through diverse mechanisms, thereby acting either as a gatekeeper that provides resistance to pathogen colonization or enhancing their prevalence and bacterial co-infectivity, which often results in disease exacerbation. Insight into the complex interplay taking place in the respiratory tract between the pathogens, microbiota, the host and its environment during infection in domestic animals is a research field in its infancy in which most studies are focused on infections from enteric pathogens and gut microbiota. However, its understanding may improve pathogen control and reduce the severity of microbial-related diseases, including those with zoonotic potential.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Baranowski
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Laurent Xavier Nouvel
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
10
|
A Replication-Defective Influenza Virus Harboring H5 and H7 Hemagglutinins Provides Protection against H5N1 and H7N9 Infection in Mice. J Virol 2021; 95:JVI.02154-20. [PMID: 33177192 DOI: 10.1128/jvi.02154-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The recent highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses have caused hundreds of human infections with high mortality rates. Although H5N1 and H7N9 viruses have been limited mainly to avian species, there is high potential for these viruses to acquire human-to-human transmission and initiate a pandemic. A highly safe and effective vaccine is needed to protect against a potential H5N1 or H7N9 influenza pandemic. Here, we report the generation and evaluation of two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA These viruses contain six internal segments from A/Puerto Rico/8/1934 (PR8), the HA segment from either A/Alberta/01/2014 (H5N1) [AB14 (H5N1)] or A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], and a chimeric NA segment with either the BC15 (H7N9) HA gene or the AB14 (H5N1) HA gene flanked by the NA packaging signals of PR8. These viruses expressed both H5 and H7 HAs in infected cells, replicated to high titers when exogenous NA was added to the culture medium in vitro, and were replication defective and nonvirulent when administered intranasally in mice. Moreover, intranasal vaccination with PR8-H5-H7NA elicited robust immune responses to both H5 and H7 viruses, conferring complete protection against both AB14 (H5N1) and BC15 (H7N9) challenges in mice. Conversely, vaccination with PR8-H7-H5NA only elicited robust immune responses toward the H7 virus, which conferred complete protection against BC15 (H7N9) but not against AB14 (H5N1) in mice. Therefore, PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.IMPORTANCE Avian influenza H5N1 and H7N9 viruses infected humans with high mortality rates. A highly safe and effective vaccine is needed to protect against a potential pandemic. We generated and evaluated two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA, as vaccine candidates. Each virus contains one type of HA in segment 4 and the other subtype of HA in segment 6, thereby expressing both H5 and H7 subtypes of the HA molecule. The replication of viruses is dependent on the addition of exogenous NA in cell culture and is replication defective in vivo Vaccination of PR8-H5-H7NA virus confers protection to both H5N1 and H7N9 virus challenge; conversely, vaccination of PR8-H7-H5NA provides protection only to H7N9 virus challenge. Our data revealed that when engineering such a virus, the H5 or H7 HA in segment 6 affects the immunogenicity. PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.
Collapse
|
11
|
Kumar M, Bharti R, Ranjan T. The Evolutionary Significance of Generalist Viruses with Special Emphasis on Plant Viruses and their Hosts. Open Virol J 2020. [DOI: 10.2174/1874357902014010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The host range of a virus is defined as the number of species a virus potentially infects. The specialist virus infects one or few related species while the generalist virus infects several different species, possibly in different families. Origin of generalist viruses from their specialist nature and the expansion of the host range of the generalist virus occur with the host shift event in which the virus encounters and adapts to a new host. Host shift events have resulted in the majority of the newly emerging viral diseases. This review discusses the advantages and disadvantages of generalist over specialist viruses and the unique features of plant viruses and their hosts that result in a higher incidence of generalist viruses in plants.
Collapse
|
12
|
Royce K, Fu F. Mathematically modeling spillovers of an emerging infectious zoonosis with an intermediate host. PLoS One 2020; 15:e0237780. [PMID: 32845922 PMCID: PMC7449412 DOI: 10.1371/journal.pone.0237780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Modeling the behavior of zoonotic pandemic threats is a key component of their control. Many emerging zoonoses, such as SARS, Nipah, and Hendra, mutated from their wild type while circulating in an intermediate host population, usually a domestic species, to become more transmissible among humans, and this transmission route will only become more likely as agriculture and trade intensifies around the world. Passage through an intermediate host enables many otherwise rare diseases to become better adapted to humans, and so understanding this process with accurate mathematical models is necessary to prevent epidemics of emerging zoonoses, guide policy interventions in public health, and predict the behavior of an epidemic. In this paper, we account for a zoonotic disease mutating in an intermediate host by introducing a new mathematical model for disease transmission among three species. We present a model of these disease dynamics, including the equilibria of the system and the basic reproductive number of the pathogen, finding that in the presence of biologically realistic interspecies transmission parameters, a zoonotic disease with the capacity to mutate in an intermediate host population can establish itself in humans even if its R0 in humans is less than 1. This result and model can be used to predict the behavior of any zoonosis with an intermediate host and assist efforts to protect public health.
Collapse
Affiliation(s)
- Katherine Royce
- Dartmouth College Mathematics Department, Hanover, NH, United States of America
- * E-mail:
| | - Feng Fu
- Dartmouth College Mathematics Department, Hanover, NH, United States of America
| |
Collapse
|
13
|
AbouAitah K, Swiderska-Sroda A, Kandeil A, Salman AMM, Wojnarowicz J, Ali MA, Opalinska A, Gierlotka S, Ciach T, Lojkowski W. Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs. Int J Nanomedicine 2020; 15:5181-5202. [PMID: 32801685 PMCID: PMC7398888 DOI: 10.2147/ijn.s247692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses. Materials and Methods In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explored as a novel antiviral nanoformulations targeting the highly pathogenic avian influenza H5N1 virus. Also, the immunomodulatory effects were investigated in vitro tests and anti-inflammatory activity was determined in vivo using the acute carrageenan-induced paw edema rat model. Results Prodrugs alone or the MSNs displayed weaker antiviral effects as evidenced by virus titers and plaque formation compared to nanoformulations. The MSNs-NH2-SH and MSNs-NH2-SH-QR2 nanoformulations displayed a strong virucidal by inactivating the H5N1 virus. They induced also strong immunomodulatory effects: they inhibited cytokines (TNF-α, IL-1β) and nitric oxide production by approximately 50% for MSNs-NH2-SH-QR2 (containing both SH and QR). Remarkable anti-inflammatory effects were observed during in vivo tests in an acute carrageenan-induced rat model. Conclusion Our preliminary findings show the potential of nanotechnology for the application of natural prodrug substances to produce a novel safe, effective, and affordable antiviral drug.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland.,Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C.12622, Dokki, Giza, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Division, National Research Centre (NRC) P.C.12622, Dokki, Giza, Egypt
| | - Asmaa M M Salman
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622, Dokki, Giza, Egypt
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Division, National Research Centre (NRC) P.C.12622, Dokki, Giza, Egypt
| | - Agnieszka Opalinska
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Abstract
Novel viruses and zoonotic infections pose global health risks.
Collapse
|
15
|
Prior exposure to immunogenic peptides found in human influenza A viruses may influence the age distribution of cases with avian influenza H5N1 and H7N9 virus infections. Epidemiol Infect 2020; 147:e213. [PMID: 31364549 PMCID: PMC6624876 DOI: 10.1017/s095026881900102x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The epidemiology of H5N1 and H7N9 avian viruses of humans infected in China differs despite both viruses being avian reassortants that have inherited six internal genes from a common ancestor, H9N2. The median age of infected populations is substantially younger for H5N1 virus (26 years) compared with H7N9 virus (63 years). Population susceptibility to infection with seasonal influenza is understood to be influenced by cross-reactive CD8+ T cells directed towards immunogenic peptides derived from internal viral proteins which may provide some level of protection against further influenza infection. Prior exposure to seasonal influenza peptides may influence the age-related infection patterns observed for H5N1 and H7N9 viruses. A comparison of relatedness of immunogenic peptides between historical human strains and the two avian emerged viruses was undertaken for a possible explanation in the differences in age incidence observed. There appeared to be some relationship between past exposure to related peptides and the lower number of H5N1 virus cases in older populations, however the relationship between prior exposure and older populations among H7N9 virus patients was less clear.
Collapse
|
16
|
Ma YD, Li KH, Chen YH, Lee YM, Chou ST, Lai YY, Huang PC, Ma HP, Lee GB. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface. LAB ON A CHIP 2019; 19:3804-3814. [PMID: 31620745 DOI: 10.1039/c9lc00797k] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Emerging and re-emerging infectious diseases pose global threats to human health. Although several conventional diagnostic methods have been widely adopted in the clinic, the long turn-around times of "gold standard" culture-based techniques, as well as the limited sensitivity of lateral-flow strip assays, thwart medical progress. In this study, a smartphone-controlled, automated, and portable system was developed for rapid molecular diagnosis of pathogens (including viruses and bacteria) via the use of a colorimetric loop-mediated isothermal amplification (LAMP) approach on a passive, self-driven microfluidic device. The system was capable of 1) purifying viral or bacterial samples with specific affinity reagents that had been pre-conjugated to magnetic beads, 2) lysing pathogens at low temperatures, 3) executing isothermal nucleic acid amplification, and 4) quantifying the results of colorimetric assays for detection of pathogens with an integrated color sensor. The entire, 40 min analytical process was automatically performed with a novel punching-press mechanism that could be controlled and monitored by a smartphone. As a proof of concept, the influenza A (H1N1) virus and methicillin-resistant Staphylococcus aureus bacteria were used to characterize and optimize the device, and the limits of detection were experimentally found to be 3.2 × 10-3 hemagglutinating units (HAU) per reaction and 30 colony-forming units (CFU) per reaction, respectively; both such values represent high enough sensitivity for clinical adoption. Moreover, the colorimetric assay could be both qualitative and quantitative for detection of pathogens. This is the first instance of an easy-to-use, automated, and portable system for accurate and sensitive molecular diagnosis of either viruses or bacteria, and it is envisioned that this smartphone-controlled apparatus may serve as a platform for clinical, point-of-care pathogen detection, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yu-Dong Ma
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yung-Mao Lee
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Shang-Ta Chou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yue-Yuan Lai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013 Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
17
|
Coombs KM, Simon PF, McLeish NJ, Zahedi-Amiri A, Kobasa D. Aptamer Profiling of A549 Cells Infected with Low-Pathogenicity and High-Pathogenicity Influenza Viruses. Viruses 2019; 11:v11111028. [PMID: 31694171 PMCID: PMC6893437 DOI: 10.3390/v11111028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) are important animal and human emerging and re-emerging pathogens that are responsible for yearly seasonal epidemics and sporadic pandemics. IAVs cause a wide range of clinical illnesses, from relatively mild infections by seasonal strains, to acute respiratory distress during infections with highly pathogenic avian IAVs (HPAI). For this study, we infected A549 human lung cells with lab prototype A/PR/8/34 (H1N1) (PR8), a seasonal H1N1 (RV733), the 2009 pandemic H1N1 (pdm09), or with two avian strains, an H5N1 HPAI strain or an H7N9 strain that has low pathogenicity in birds but high pathogenicity in humans. We used a newly-developed aptamer-based multiplexed technique (SOMAscan®) to examine >1300 human lung cell proteins affected by the different IAV strains, and identified more than 500 significantly dysregulated cellular proteins. Our analyses indicated that the avian strains induced more profound changes in the A549 global proteome compared to all tested low-pathogenicity H1N1 strains. The PR8 strain induced a general activation, primarily by upregulating many immune molecules, the seasonal RV733 and pdm09 strains had minimal effect upon assayed molecules, and the avian strains induced significant downregulation, primarily in antimicrobial response, cardiovascular and post-translational modification systems.
Collapse
Affiliation(s)
- Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-7893-976
| | - Philippe F. Simon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Nigel J. McLeish
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
18
|
Chávez Ramos K, Nishiyama K, Maeki M, Ishida A, Tani H, Kasama T, Baba Y, Tokeshi M. Rapid, Sensitive, and Selective Detection of H5 Hemagglutinin from Avian Influenza Virus Using an Immunowall Device. ACS OMEGA 2019; 4:16683-16688. [PMID: 31616851 PMCID: PMC6788042 DOI: 10.1021/acsomega.9b02788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Avian influenza virus (AIV) infection, caused by influenza virus type A, is an infectious, acute respiratory disease of birds related to influenza outbreaks worldwide. The highly pathogenic AIV subtype H5N1 has crossed species barriers to infect mammals, including humans, with fatal outcomes and has received attention as a potential pandemic threat. A rapid and timely detection in poultry is vitally important to prevent the virus spread. Despite their great sensitivity, conventional detection methods such as real-time reverse transcription-polymerase chain reaction and the agar gel precipitation test are time-consuming and labor-intensive and require special training. In this work, an immunowall device was evaluated as an easier and faster way for detecting AIV H5-hemagglutinin (AIV H5-HA). For detection, fluorescence-labeled or enzyme-labeled antibody was employed as a labeling antibody in a sandwich immunoassay. Both were shown in this paper to be easier and faster assays for detection compared with the conventional enzyme-linked immunosorbent assay (ELISA) kit. In addition, high selectivity was achieved for AIV H5-HA detection after the evaluation of other different HA virus subtypes. The limit of detection was 0.23 ng/mL for the enzyme-labeled antibody. This value was equivalent to that of the conventional ELISA kit but 8 times faster (31 min compared to 260 min). The detection range was 0.23-100 ng/mL. The immunowall device with the enzyme-labeled antibody offers a rapid, sensitive, selective, and simple immunoassay system for future H5 AIV real sample detection.
Collapse
Affiliation(s)
- Kenia Chávez Ramos
- Department
of Analytical Chemistry, School of Chemistry, National Autonomous University of Mexico, Av. Universidad 3000, Mexico
City 04510, Mexico
| | - Keine Nishiyama
- Graduate School of Chemical Sciences and Engineering, and Division of Applied
Chemistry, Faculty of Engineering, Hokkaido
University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Masatoshi Maeki
- Graduate School of Chemical Sciences and Engineering, and Division of Applied
Chemistry, Faculty of Engineering, Hokkaido
University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Graduate School of Chemical Sciences and Engineering, and Division of Applied
Chemistry, Faculty of Engineering, Hokkaido
University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Graduate School of Chemical Sciences and Engineering, and Division of Applied
Chemistry, Faculty of Engineering, Hokkaido
University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Toshihiro Kasama
- Department
of Bioengineering, School of Engineering, The University of Tokyo, Shinkawasaki, Saiwai-ku, Kanagawa 212-0032, Japan
- Institute
of Nano-Life Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Institute
of Nano-Life Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Manabu Tokeshi
- Graduate School of Chemical Sciences and Engineering, and Division of Applied
Chemistry, Faculty of Engineering, Hokkaido
University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Institute
of Nano-Life Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- E-mail: . Phone: +81-11-706-6744. Fax: +81-11-706-6745
| |
Collapse
|
19
|
Comparison of nucleic acid extraction methods for next-generation sequencing of avian influenza A virus from ferret respiratory samples. J Virol Methods 2019; 270:95-105. [DOI: 10.1016/j.jviromet.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 11/13/2022]
|
20
|
Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol 2018; 26:841-853. [PMID: 29681430 PMCID: PMC6150828 DOI: 10.1016/j.tim.2018.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
For decades, hemagglutinin (HA) protein structure and its refolding mechanism have served as a paradigm for understanding protein-mediated membrane fusion. HA trimers are in a high-energy state and are functionally activated by low pH. Over the past decade, HA stability (or the pH at which irreversible conformational changes are triggered) has emerged as an important determinant in influenza virus host range, infectivity, transmissibility, and human pandemic potential. Here, we review HA protein structure, assays to measure its stability, measured HA stability values, residues and mutations that regulate its stability, the effect of HA stability on interspecies adaptation and transmissibility, and mechanistic insights into this process. Most importantly, HA stabilization appears to be necessary for adapting emerging influenza viruses to humans.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA; Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meng Hu
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Faten A Okda
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
21
|
Avian Influenza A Virus Pandemic Preparedness and Vaccine Development. Vaccines (Basel) 2018; 6:vaccines6030046. [PMID: 30044370 PMCID: PMC6161001 DOI: 10.3390/vaccines6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.
Collapse
|
22
|
Avian viral surveillance in Victoria, Australia, and detection of two novel avian herpesviruses. PLoS One 2018; 13:e0194457. [PMID: 29570719 PMCID: PMC5865735 DOI: 10.1371/journal.pone.0194457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Viruses in avian hosts can pose threats to avian health and some have zoonotic potential. Hospitals that provide veterinary care for avian patients may serve as a site of exposure of other birds and human staff in the facility to these viruses. They can also provide a useful location to collect samples from avian patients in order to examine the viruses present in wild birds. This study aimed to investigate viruses of biosecurity and/or zoonotic significance in Australian birds by screening samples collected from 409 birds presented to the Australian Wildlife Health Centre at Zoos Victoria’s Healesville Sanctuary for veterinary care between December 2014 and December 2015. Samples were tested for avian influenza viruses, herpesviruses, paramyxoviruses and coronaviruses, using genus- or family-wide polymerase chain reaction methods coupled with sequencing and phylogenetic analyses for detection and identification of both known and novel viruses. A very low prevalence of viruses was detected. Columbid alphaherpesvirus 1 was detected from a powerful owl (Ninox strenua) with inclusion body hepatitis, and an avian paramyxovirus most similar to Avian avulavirus 5 was detected from a musk lorikeet (Glossopsitta concinna). Two distinct novel avian alphaherpesviruses were detected in samples from a sulphur-crested cockatoo (Cacatua galerita) and a tawny frogmouth (Podargus strigoides). Avian influenza viruses and avian coronaviruses were not detected. The clinical significance of the newly detected viruses remains undetermined. Further studies are needed to assess the host specificity, epidemiology, pathogenicity and host-pathogen relationships of these novel viruses. Further genome characterization is also indicated, and would be required before these viruses can be formally classified taxonomically. The detection of these viruses contributes to our knowledge on avian virodiversity. The low level of avian virus detection, and the absence of any viruses with zoonotic potential, suggests low risk to biosecurity and human health.
Collapse
|
23
|
Jephcott FL, Wood JLN, Cunningham AA. Facility-based surveillance for emerging infectious diseases; diagnostic practices in rural West African hospital settings: observations from Ghana. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0544. [PMID: 28584181 PMCID: PMC5468698 DOI: 10.1098/rstb.2016.0544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2017] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to better understand the effectiveness of Integrated Disease Surveillance and Response (IDSR) facility-based surveillance in detecting newly emerging infectious diseases (EIDs) in rural West African settings. A six-month ethnographic study was undertaken in 2012 in the Techiman Municipality of the Brong-Ahafo Region of Ghana, aimed at documenting the trajectories of febrile illness cases of unknown origin occurring within four rural communities. Particular attention was paid to where these trajectories involved the use of formal healthcare facilities and the diagnostic practices that occurred there. Seventy-six participants were enrolled in the study, and 24 complete episodes of illness were documented. While participants routinely used hospital treatment when confronted with enduring or severe illness, the diagnostic process within clinical settings meant that an unusual diagnosis, such as an EID, was unlikely to be considered. Facility-based surveillance is unlikely to be effective in detecting EIDs due to a combination of clinical care practices and the time constraints associated with individual episodes of illness, particularly in the resource-limited settings of rural West Africa, where febrile illness due to malaria is common and specific diagnostic assays are largely unavailable. The success of the ‘One Health' approach to EIDs in West Africa is predicated on characterization of accurately diagnosed disease burdens. To this end, we must address inefficiencies in the dominant approaches to EID surveillance and the weaknesses of health systems in the region generally. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being'.
Collapse
Affiliation(s)
- Freya L Jephcott
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK .,Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| |
Collapse
|
24
|
A Filippov model describing the effects of media coverage and quarantine on the spread of human influenza. Math Biosci 2017; 296:98-112. [PMID: 29273381 DOI: 10.1016/j.mbs.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/02/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Mass-media reports on an epidemic or pandemic have the potential to modify human behaviour and affect social attitudes. Here we construct a Filippov model to evaluate the effects of media coverage and quarantine on the transmission dynamics of influenza. We first choose a piecewise smooth incidence rate to represent media reports being triggered once the number of infected individuals exceeds a certain critical level [Formula: see text] . Further, if the number of infected cases increases and exceeds another larger threshold value [Formula: see text] ( [Formula: see text] ), we consider that the incidence rate tends to a saturation level due to the protection measures taken by individuals; meanwhile, we begin to quarantine susceptible individuals when the number of susceptible individuals is larger than a threshold value Sc. Then, for each susceptible threshold value Sc, the global properties of the Filippov model with regard to the existence and stability of all possible equilibria and sliding-mode dynamics are examined, as we vary the infected threshold values [Formula: see text] and [Formula: see text] . We show generically that the Filippov system stabilizes at either the endemic equilibrium of the subsystem or the pseudoequilibrium on the switching surface or the endemic equilibrium [Formula: see text] depending on the choice of the threshold values. The findings suggest that proper combinations of infected and susceptible threshold values can maintain the number of infected individuals either below a certain threshold level or at a previously given level.
Collapse
|
25
|
Hu J, Xu X, Wang C, Bing G, Sun H, Pu J, Liu J, Sun Y. Isolation and characterization of H4N6 avian influenza viruses from mallard ducks in Beijing, China. PLoS One 2017; 12:e0184437. [PMID: 28877243 PMCID: PMC5587311 DOI: 10.1371/journal.pone.0184437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
The novel H7N9 influenza virus, which has caused severe disease in humans in China, is a reassortant with surface genes derived from influenza viruses in wild birds. This highlights the importance of monitoring influenza viruses in these hosts. However, surveillance of influenza virus in wild birds remains very limited in China. In this study, we isolated four H4N6 avian influenza viruses (AIVs) from mallard ducks in Beijing Wetland Park, which is located on the East Asia–Australasia migratory flyway. The gene segments of these Chinese H4N6 viruses were closest to AIVs in wild birds from Mongolia or the Republic of Georgia, indicating the interregional AIV gene flow among these countries. All of our isolates belonged to a novel genotype that was different from other H4N6 viruses isolated in China. We further evaluated the virulence and transmission of two representative H4N6 strains in mammalian models. We found that both of these H4N6 viruses replicated efficiently in mice without adaptation. Additionally, these two strains had a 100% transmission rate in guinea pigs via direct contact, but they had not acquired respiratory droplet transmissibility. These results reveal the potential threat to human health of H4N6 viruses in migratory birds and the need for enhanced surveillance of AIVs in wild birds.
Collapse
Affiliation(s)
- Junyi Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinyi Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenxi Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guoxia Bing
- China Animal Disease Control Center, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Richard M, Herfst S, van den Brand JMA, de Meulder D, Lexmond P, Bestebroer TM, Fouchier RAM. Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. Sci Rep 2017; 7:7187. [PMID: 28775271 PMCID: PMC5543172 DOI: 10.1038/s41598-017-07000-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
A/H5N1 influenza viruses pose a threat to human and animal health. A fully avian A/H5N1 influenza virus was previously shown to acquire airborne transmissibility between ferrets upon accumulation of five or six substitutions that affected three traits: polymerase activity, hemagglutinin stability and receptor binding. Here, the impact of these traits on A/H5N1 virus replication, tissue tropism, pathogenesis and transmission was investigated in chickens. The virus containing all substitutions associated with transmission in mammals was highly attenuated in chickens. However, single substitutions that affect polymerase activity, hemagglutinin stability and receptor binding generally had a small or negligible impact on virus replication, morbidity and mortality. A virus carrying two substitutions in the receptor-binding site was attenuated, although its tissue tropism in chickens was not affected. This data indicate that an A/H5N1 virus that is airborne-transmissible between mammals is unlikely to emerge in chickens, although individual mammalian adaptive substitutions have limited impact on viral fitness in chickens.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Judith M A van den Brand
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Taye B, Chen H, Myaing MZ, Tan BH, Maurer-Stroh S, Sugrue RJ. Systems-based approach to examine the cytokine responses in primary mouse lung macrophages infected with low pathogenic avian Influenza virus circulating in South East Asia. BMC Genomics 2017; 18:420. [PMID: 28558796 PMCID: PMC5450074 DOI: 10.1186/s12864-017-3803-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Background Influenza A virus (IAV) is a major public health concern, being responsible for the death of approximately half a million people each year. Zoonotic transmissions of the virus from swine and avian origin have occurred in the past, and can potentially lead to the emgergence of new IAV stains in future pandemics. Pulmonary macrophages have been implicated in disease severity in the lower airway, and understanding the host response of macrophages infected with avian influenza viruses should provide new therapeutic strategies. Results We used a systems-based approach to investigate the transcriptome response of primary murine lung macrophages (PMФ) infected with the mouse-adapted H1N1/WSN virus and low pathogenic avian influenza (LPAI) viruses H5N2 and H5N3. The results showed that the LPAI viruses H5N2 and H5N3 can infect PMФ with similar efficiency to the H1N1/WSN virus. While all viruses induced antiviral responses, the H5N3 virus infection resulted in higher expression levels of cytokines and chemokines associated with inflammatory responses. Conclusions The LPAI H5N2 and H5N3 viruses are able to infect murine lung macrophages. However, the H5N3 virus was associated with increased expression of pro-inflammatory mediators. Although the H5N3 virus it is capable of inducing high levels of cytokines that are associated with inflammation, this property is distinct from its inability to efficiently replicate in a mammalian host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3803-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biruhalem Taye
- Bioinformatics Institute, A*STAR, 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Republic of Singapore.,School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.,Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, P.O.BOX 1176, Ethiopia
| | - Hui Chen
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.,Current address Genome Institute of Singapore, A*STAR, 60 Biopolis Street, #02-01, Genome, Singapore, 138672, Republic of Singapore
| | - Myint Zu Myaing
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, Defence Science Organisation National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.,LKC School of Medicine, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Republic of Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Republic of Singapore.,National Public Health Laboratory, Ministry of Health, Singapore, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
28
|
Eng CLP, Tong JC, Tan TW. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest. Int J Mol Sci 2017; 18:E1135. [PMID: 28587080 PMCID: PMC5485959 DOI: 10.3390/ijms18061135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.
Collapse
Affiliation(s)
- Christine L P Eng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
| | - Joo Chuan Tong
- Institute of High Performance Computing, A*Star, 138632 Singapore, Singapore.
| | - Tin Wee Tan
- National Supercomputing Centre, 138632 Singapore, Singapore.
| |
Collapse
|
29
|
Mancera Gracia JC, Van den Hoecke S, Saelens X, Van Reeth K. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine. PLoS One 2017; 12:e0175267. [PMID: 28384328 PMCID: PMC5383288 DOI: 10.1371/journal.pone.0175267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an extensive set of mutations.
Collapse
Affiliation(s)
- Jose Carlos Mancera Gracia
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Silvie Van den Hoecke
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Jordan I, John K, Höwing K, Lohr V, Penzes Z, Gubucz-Sombor E, Fu Y, Gao P, Harder T, Zádori Z, Sandig V. Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines. Avian Pathol 2017; 45:137-55. [PMID: 26814192 DOI: 10.1080/03079457.2016.1138280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Veterinary vaccines contribute to food security, interrupt zoonotic transmissions, and help to maintain overall health in livestock. Although vaccines are usually cost-effective, their adoption depends on a multitude of factors. Because poultry vaccines are usually given to birds with a short life span, very low production cost per dose is one important challenge. Other hurdles are to ensure a consistent and reliable supply of very large number of doses, and to have flexible production processes to accommodate a range of different pathogens and dosage requirements. Most poultry vaccines are currently being produced on primary avian cells derived from chicken or waterfowl embryos. This production system is associated with high costs, logistic complexities, rigid intervals between harvest and production, and supply limitations. We investigated whether the continuous cell lines Cairina retina and CR.pIX may provide a substrate independent of primary cell cultures or embryonated eggs. Viruses examined for replication in these cell lines are strains associated with, or contained in vaccines against egg drop syndrome, Marek's disease, Newcastle disease, avian influenza, infectious bursal disease and Derzsy's disease. Each of the tested viruses required the development of unique conditions for replication that are described here and can be used to generate material for in vivo efficacy studies and to accelerate transfer of the processes to larger production volumes.
Collapse
Affiliation(s)
| | | | | | | | - Zoltán Penzes
- b Ceva-Phylaxia Veterinary Biologicals Co. Ltd. , Budapest , Hungary
| | | | - Yan Fu
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Peng Gao
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Timm Harder
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Zoltán Zádori
- e Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences , Budapest , Hungary
| | | |
Collapse
|
31
|
Role for migratory wild birds in the global spread of avian influenza H5N8. Science 2016; 354:213-217. [PMID: 27738169 PMCID: PMC5972003 DOI: 10.1126/science.aaf8852] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/07/2016] [Indexed: 01/21/2023]
Abstract
Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014-2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.
Collapse
|
32
|
Puryear WB, Keogh M, Hill N, Moxley J, Josephson E, Davis KR, Bandoro C, Lidgard D, Bogomolni A, Levin M, Lang S, Hammill M, Bowen D, Johnston DW, Romano T, Waring G, Runstadler J. Prevalence of influenza A virus in live-captured North Atlantic gray seals: a possible wild reservoir. Emerg Microbes Infect 2016; 5:e81. [PMID: 27485496 PMCID: PMC5034098 DOI: 10.1038/emi.2016.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups. There was an overall viral prevalence of 9.0% (95% confidence interval (CI): 6.4%-12.5%) in weaned pups and 5.3% (CI: 1.2%-14.6%) in adults, with seroprevalences of 19.3% (CI: 15.0%-24.5%) and 50% (CI: 33.7%-66.4%), respectively. Positive sera showed a broad reactivity to diverse influenza subtypes. IAV status did not correlate with measures of animal health nor impact animal movement or foraging. This study demonstrated that Northwest Atlantic gray seals are both permissive to and tolerant of diverse IAV, possibly representing an endemically infected wild reservoir population.
Collapse
Affiliation(s)
| | | | - Nichola Hill
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Elizabeth Josephson
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, Woods Hole, MA 02543, USA
| | | | | | - Damian Lidgard
- Dalhousie University, Halifax, Nova Scotia, Canada B3H 1C2
| | | | - Milton Levin
- University of Connecticut, Storrs, CT 06268, USA
| | - Shelley Lang
- Department of Fisheries and Oceans, Dartmouth, Nova Scotia, Canada B2Y 4A2
| | - Michael Hammill
- Department of Fisheries and Oceans, Dartmouth, Nova Scotia, Canada B2Y 4A2
| | - Don Bowen
- Department of Fisheries and Oceans, Dartmouth, Nova Scotia, Canada B2Y 4A2
| | | | | | - Gordon Waring
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, Woods Hole, MA 02543, USA
| | | |
Collapse
|
33
|
Eng CLP, Tong JC, Tan TW. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses. PLoS One 2016; 11:e0150173. [PMID: 26915079 PMCID: PMC4767729 DOI: 10.1371/journal.pone.0150173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.
Collapse
Affiliation(s)
- Christine L. P. Eng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joo Chuan Tong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of High Performance Computing, Singapore, Singapore
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Richard M, Fouchier RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev 2016; 40:68-85. [PMID: 26385895 PMCID: PMC5006288 DOI: 10.1093/femsre/fuv039] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/13/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
35
|
Abstract
Influenza viruses of animals can cross species and infect humans. In this issue of Cell Host & Microbe, Zhang et al. (2015) and Tzarum et al. (2015) describe crystal structures and receptor-binding properties of hemagglutinins of avian-origin H10N8 and H6N1 influenza viruses. Human infections with these viruses are not associated with a switch favoring human receptor binding.
Collapse
|
36
|
Wang J, Ge A, Xu M, Wang Z, Qiao Y, Gu Y, Liu C, Liu Y, Hou J. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens. Virol J 2015; 12:126. [PMID: 26263920 PMCID: PMC4533785 DOI: 10.1186/s12985-015-0354-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Background Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. Results The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 106 TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 107 TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 106 TCID50 DEV-vectored vaccine. Conclusions We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEVC-KCE. (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEVC-KCE affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.
Collapse
Affiliation(s)
- Jichun Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Aimin Ge
- Shandong Vocational Animal Science and Veterinary College, Weifang, 261061, China.
| | - Mengwei Xu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Zhisheng Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yongfeng Qiao
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yiqi Gu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chang Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yamei Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Jibo Hou
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| |
Collapse
|
37
|
Richard M, Herfst S, van den Brand JMA, Lexmond P, Bestebroer TM, Rimmelzwaan GF, Koopmans M, Kuiken T, Fouchier RAM. Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets. PLoS One 2015; 10:e0129827. [PMID: 26090682 PMCID: PMC4474857 DOI: 10.1371/journal.pone.0129827] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N8 viruses that emerged in poultry in East Asia spread to Europe and North America by late 2014. Here we show that the European HPAI H5N8 viruses differ from the Korean and Japanese HPAI H5N8 viruses by several amino acids and that a Dutch HPAI H5N8 virus had low virulence and was not transmitted via the airborne route in ferrets. The virus did not cross-react with sera raised against pre-pandemic H5 vaccine strains. This data is useful for public health risk assessments.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Sander Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Judith M. A. van den Brand
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
38
|
A Single Dose of an Avian H3N8 Influenza Virus Vaccine Is Highly Immunogenic and Efficacious against a Recently Emerged Seal Influenza Virus in Mice and Ferrets. J Virol 2015; 89:6907-17. [PMID: 25903333 DOI: 10.1128/jvi.00280-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED H3N8 influenza viruses are a commonly found subtype in wild birds, usually causing mild or no disease in infected birds. However, they have crossed the species barrier and have been associated with outbreaks in dogs, pigs, donkeys, and seals and therefore pose a threat to humans. A live attenuated, cold-adapted (ca) H3N8 vaccine virus was generated by reverse genetics using the wild-type (wt) hemagglutinin (HA) and neuraminidase (NA) genes from the A/blue-winged teal/Texas/Sg-00079/2007 (H3N8) (tl/TX/079/07) wt virus and the six internal protein gene segments from the ca influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (H2N2), the backbone of the licensed seasonal live attenuated influenza vaccine. One dose of the tl/TX/079/07 ca vaccine induced a robust neutralizing antibody response against the homologous (tl/TX/079/07) and two heterologous influenza viruses, including the recently emerged A/harbor seal/New Hampshire/179629/2011 (H3N8) and A/northern pintail/Alaska/44228-129/2006 (H3N8) viruses, and conferred robust protection against the homologous and heterologous influenza viruses. We also analyzed human sera against the tl/TX/079/07 H3N8 avian influenza virus and observed low but detectable antibody reactivity in elderly subjects, suggesting that older H3N2 influenza viruses confer some cross-reactive antibody. The latter observation was confirmed in a ferret study. The safety, immunogenicity, and efficacy of the tl/TX/079/07 ca vaccine in mice and ferrets support further evaluation of this vaccine in humans for use in the event of transmission of an H3N8 avian influenza virus to humans. The human and ferret serology data suggest that a single dose of the vaccine may be sufficient in older subjects. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza virus has not yet been reported, this influenza virus subtype has already crossed the species barrier and productively infected mammals. Pandemic preparedness is an important public health priority. Therefore, we generated a live attenuated avian H3N8 vaccine candidate and demonstrated that a single dose of the vaccine was highly immunogenic and protected mice and ferrets against homologous and heterologous H3N8 avian viruses.
Collapse
|
39
|
Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head. Vaccines (Basel) 2015; 3:239-62. [PMID: 26343187 PMCID: PMC4494343 DOI: 10.3390/vaccines3020239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines.
Collapse
|