1
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Agioti S, Zaravinos A. Immune Cytolytic Activity and Strategies for Therapeutic Treatment. Int J Mol Sci 2024; 25:3624. [PMID: 38612436 PMCID: PMC11011457 DOI: 10.3390/ijms25073624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie Agioti
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| |
Collapse
|
3
|
Jaton F. Groundwork for AI: Enforcing a benchmark for neoantigen prediction in personalized cancer immunotherapy. SOCIAL STUDIES OF SCIENCE 2023; 53:787-810. [PMID: 37650579 PMCID: PMC10543129 DOI: 10.1177/03063127231192857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This article expands on recent studies of machine learning or artificial intelligence (AI) algorithms that crucially depend on benchmark datasets, often called 'ground truths.' These ground-truth datasets gather input-data and output-targets, thereby establishing what can be retrieved computationally and evaluated statistically. I explore the case of the Tumor nEoantigen SeLection Alliance (TESLA), a consortium-based ground-truthing project in personalized cancer immunotherapy, where the 'truth' of the targets-immunogenic neoantigens-to be retrieved by the would-be AI algorithms depended on a broad technoscientific network whose setting up implied important organizational and material infrastructures. The study shows that instead of grounding an undisputable 'truth', the TESLA endeavor ended up establishing a contestable reference, the biology of neoantigens and how to measure their immunogenicity having slightly evolved alongside this four-year project. However, even if this controversy played down the scope of the TESLA ground truth, it did not discredit the whole undertaking. The magnitude of the technoscientific efforts that the TESLA project set into motion and the needs it ultimately succeeded in filling for the scientific and industrial community counterbalanced its metrological uncertainties, effectively instituting its contestable representation of 'true' neoantigens within the field of personalized cancer immunotherapy (at least temporarily). More generally, this case study indicates that the enforcement of ground truths, and what it leaves out, is a necessary condition to enable AI technologies in personalized medicine.
Collapse
Affiliation(s)
- Florian Jaton
- Graduate Institute of International and Development Studies, Geneva, Switzerland
| |
Collapse
|
4
|
Douka S, Brandenburg LE, Casadidio C, Walther J, Garcia BBM, Spanholtz J, Raimo M, Hennink WE, Mastrobattista E, Caiazzo M. Lipid nanoparticle-mediated messenger RNA delivery for ex vivo engineering of natural killer cells. J Control Release 2023; 361:455-469. [PMID: 37567506 DOI: 10.1016/j.jconrel.2023.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Natural killer (NK) cells participate in the immune system by eliminating cancer and virally infected cells through germline-encoded surface receptors. Their independence from prior activation as well as their significantly lower toxicity have placed them in the spotlight as an alternative to T cells for adoptive cell therapy (ACT). Engineering NK cells with mRNA has shown great potential in ACT by enhancing their tumor targeting and cytotoxicity. However, mRNA transfection of NK cells is challenging, as the most common delivery methods, such as electroporation, show limitations. Therefore, an alternative non-viral delivery system that enables high mRNA transfection efficiency with preservation of the cell viability would be beneficial for the development of NK cell therapies. In this study, we investigated both polymeric and lipid nanoparticle (LNP) formulations for eGFP-mRNA delivery to NK cells, based on a dimethylethanolamine and diethylethanolamine polymeric library and on different ionizable lipids, respectively. The mRNA nanoparticles based on cationic polymers showed limited internalization by NK cells and low transfection efficiency. On the other hand, mRNA-LNP formulations were optimized by tailoring the lipid composition and the microfluidic parameters, resulting in a high transfection efficiency (∼100%) and high protein expression in NK cells. In conclusion, compared to polyplexes and electroporation, the optimized LNPs show a greater transfection efficiency and higher overall eGFP expression, when tested in NK (KHYG-1) and T (Jurkat) cell lines, and cord blood-derived NK cells. Thus, LNP-based mRNA delivery represents a promising strategy to further develop novel NK cell therapies.
Collapse
Affiliation(s)
- Stefania Douka
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands
| | - Lisa E Brandenburg
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands
| | - Cristina Casadidio
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands; School of Pharmacy, Drug Delivery Division, University of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Johanna Walther
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands
| | - Bianca Bonetto Moreno Garcia
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands; Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Jan Spanholtz
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Monica Raimo
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Wim E Hennink
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands.
| | - Massimiliano Caiazzo
- Pharmaceutics division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
5
|
Zou H, Mou X, Zhu B. Combining of Oncolytic Virotherapy and Other Immunotherapeutic Approaches in Cancer: A Powerful Functionalization Tactic. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200094. [PMID: 36618103 PMCID: PMC9818137 DOI: 10.1002/gch2.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Oncolytic viruses have found a good place in the treatment of cancer. Administering oncolytic viruses directly or by applying genetic changes can be effective in cancer treatment through the lysis of tumor cells and, in some cases, by inducing immune system responses. Moreover, oncolytic viruses induce antitumor immune responses via releasing tumor antigens in the tumor microenvironment (TME) and affect tumor cell growth and metabolism. Despite the success of virotherapy in cancer therapies, there are several challenges and limitations, such as immunosuppressive TME, lack of effective penetration into tumor tissue, low efficiency in hypoxia, antiviral immune responses, and off-targeting. Evidence suggests that oncolytic viruses combined with cancer immunotherapy-based methods such as immune checkpoint inhibitors and adoptive cell therapies can effectively overcome these challenges. This review summarizes the latest data on the use of oncolytic viruses for the treatment of cancer and the challenges of this method. Additionally, the effectiveness of mono, dual, and triple therapies using oncolytic viruses and other anticancer agents has been discussed based on the latest findings.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Zhou Mou
- General SurgeryCancer CenterDepartment of Hepatobiliary and Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College)Hangzhou310014China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang ProvinceZhejiang Provincial People's HospitalAffiliated People's Hospital of Hangzhou Medical CollegeHangzhou310014China
| | - Biao Zhu
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
6
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Dai X, Li J, Chen Y, Ostrikov KK. When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies. Front Oncol 2022; 12:837995. [PMID: 35280746 PMCID: PMC8905244 DOI: 10.3389/fonc.2022.837995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
T cells engineered with chimeric antigen receptors (CAR) have demonstrated its widespread efficacy as a targeted immunotherapeutic modality. Yet, concerns on its specificity, efficacy and generalization prevented it from being established into a first-line approach against cancers. By reviewing challenges limiting its clinical application, ongoing efforts trying to resolve them, and opportunities that emerging oncotherapeutic modalities may bring to temper these challenges, we conclude that careful CAR design should be done to avoid the off-tumor effect, enhance the efficacy of solid tumor treatment, improve product comparability, and resolve problems such as differential efficacies of co-stimulatory molecules, cytokine storm, tumor lysis syndrome, myelosuppression and severe hepatotoxicity. As a promising solution, we propose potential synergies between CAR-T therapies and cold atmospheric plasma, an emerging onco-therapeutic strategy relying on reactive species, towards improved therapeutic efficacies and enhanced safety that deserve extensive investigations.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,CAPsoul Biotechnology Company, Ltd, Beijing, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Yiming Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Blethen KE, Arsiwala TA, Fladeland RA, Sprowls SA, Panchal DM, Adkins CE, Kielkowski BN, Earp LE, Glass MJ, Pritt TA, Cabuyao YM, Aulakh S, Lockman PR. Modulation of the blood-tumor barrier to enhance drug delivery and efficacy for brain metastases. Neurooncol Adv 2021; 3:v133-v143. [PMID: 34859240 PMCID: PMC8633736 DOI: 10.1093/noajnl/vdab123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier is the selectively permeable vasculature of the brain vital for maintaining homeostasis and neurological function. Low permeability is beneficial in the presence of toxins and pathogens in the blood. However, in the presence of metastatic brain tumors, it is a challenge for drug delivery. Although the blood-tumor barrier is slightly leaky, it still is not permissive enough to allow the accumulation of therapeutic drug concentrations in brain metastases. Herein, we discuss the differences between primary brain tumors and metastatic brain tumors vasculature, effects of therapeutics on the blood-tumor barrier, and characteristics to be manipulated for more effective drug delivery.
Collapse
Affiliation(s)
- Kathryn E Blethen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Tasneem A Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Ross A Fladeland
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Samuel A Sprowls
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Dhruvi M Panchal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, Georgia, USA
| | - Brooke N Kielkowski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Leland E Earp
- Department of Cancer Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Morgan J Glass
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Trenton A Pritt
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Yssabela M Cabuyao
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Sonikpreet Aulakh
- Department of Cancer Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Shi W, Yang X, Xie S, Zhong D, Lin X, Ding Z, Duan S, Mo F, Liu A, Yin S, Jiang X, Xu ZPG, Lu X. A new PD-1-specific nanobody enhances the antitumor activity of T-cells in synergy with dendritic cell vaccine. Cancer Lett 2021; 522:184-197. [PMID: 34562519 DOI: 10.1016/j.canlet.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Despite the many successes and opportunities presented by PD-1 blockade in cancer therapies, anti-PD-1 monoclonal antibodies still face multiple challenges. Herein we report a strategy based on a nanobody (Nb) to circumvent these obstacles. A new PD-1-blocking Nb (PD-1 Nb20) in combination with tumor-specific dendritic cell (DC)/tumor-fusion cell (FC) vaccine that aims to improve the activation, proliferation, cytokine secretion, and tumor cell cytotoxicity of CD8+ T-cells. This combination was found to effectively enhance the in vitro cytotoxicity of CD8+ T-cells to kill human non-small cell lung cancer (NSCLC) HCC827 cells, hepatocellular carcinoma (HCC) HepG2 cells, and tongue squamous cell carcinoma (TSCC) Tca8113 cells. Moreover, CD8+ T-cells pre-treated with PD-1 Nb20 and tumor-specific DC/tumor-FCs significantly suppressed the growth of NSCLC-, HCC- and TSCC-derived xenograft tumors and prolonged the survival of tumor-bearing mice, through promoting T-cell infiltration to kill tumor cells and inhibiting tumor angiogenesis. These data demonstrate that PD-1 Nb20 in synergy with DC/tumor-FC vaccine augment the broad spectrum of antitumor activity of CD8+ T-cells, providing an alternative and promising immunotherapeutic strategy for tumor patients who are T-cell-dysfunctional or not sensitive to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaomei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shenxia Xie
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Dani Zhong
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, PR China
| | - Xuandong Lin
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ziqiang Ding
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Siliang Duan
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Fengzhen Mo
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Aiqun Liu
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, PR China
| | - Shihua Yin
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| | - Zhi Ping Gordon Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Xiaoling Lu
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
10
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Lin X, Ji Y. The Joint i3+3 (Ji3+3) design for phase I/II adoptive cell therapy clinical trials. J Biopharm Stat 2020; 30:993-1005. [DOI: 10.1080/10543406.2020.1818250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Thiramanas R, Li M, Jiang S, Landfester K, Mailänder V. Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions. Cells 2020; 9:cells9092043. [PMID: 32906726 PMCID: PMC7565787 DOI: 10.3390/cells9092043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
T-cells are a type of lymphocyte (a subtype of white blood cells) that play a central role in cell-mediated immunity. Currently, adoptive T-cell immunotherapy is being developed to destroy cancer cells. In this therapy, T-cells are harvested from a patient’s blood. After several weeks of growth in culture, tumor-specific T-cells can be reinfused into the same cancer patient. This technique has proved highly efficient in cancer treatment. However, there are several biological processes that can suppress the anti-cancer responses of T-cells, leading to a loss of their functionality and a reduction of their viability. Therefore, strategies are needed to improve T-cell survival and their functions. Here, a small interfering RNA (siRNA)-loaded nanocarrier was used to knockdown PD-L1, one of the most important proteins causing a loss in the functionality of T-cells. The biocompatibility and the cellular uptake of siRNA-loaded silica nanocapsules (SiNCs) were investigated in CD8+ T-cells. Then, the PD-L1 expression at protein and at mRNA levels of the treated cells were evaluated. Furthermore, the effect of the PD-L1 knockdown was observed in terms of cell proliferation and the expression of specific biomarkers CD25, CD69 and CD71, which are indicators of T-cell functions. The results suggest that this siRNA-loaded nanocarrier showed a significant potential in the delivery of siRNA into T-cells. This in turn resulted in enhanced T-cell survival by decreasing the expression of the inhibitory protein PD-L1. Such nanocarriers could, therefore, be applied in adoptive T-cell immunotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Raweewan Thiramanas
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
| | - Mengyi Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
| | - Shuai Jiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
- Correspondence: (K.L.); (V.M.)
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
- Correspondence: (K.L.); (V.M.)
| |
Collapse
|
13
|
Thiramanas R, Jiang S, Simon J, Landfester K, Mailänder V. Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells. Int J Nanomedicine 2020; 15:6069-6084. [PMID: 32884263 PMCID: PMC7439283 DOI: 10.2147/ijn.s246322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Adoptive T-cell immunotherapy emerged as a powerful and promising cancer therapy, as the problem regarding the immuno-reaction between different donors and recipients can be avoided. However, this approach is challenging. After long cultivation and expansion under laboratory media conditions, T-cells are losing their viability and function due to immune checkpoint proteins, leading to decreased efficiency in killing cancer cells. Therefore, a new strategy to improve T-cell survival and function is needed. With the advantages of nanotechnology and the biocompatibility of silica-based material, silica nanocapsules (SiNCs) provide an ideal delivery system to transport therapeutic biomolecules to T-cells. Up to now, there is a lack of cellular uptake studies of nanocarriers towards T-cells. Methods We systematically studied the influence of various physicochemical properties such as sizes, core hydrophobicities, surface charges, and surface functionalities of SiNC for their impact on cellular uptake and toxicity in CD8+ T-cells by flow cytometry and confocal laser scanning microscopy. Cytokine secretion assay was performed using the enzyme-linked immunosorbent assay. To identify suitable uptake conditions for SiNCs into CD8+ T-cells, the impact of human serum in cell culture medium was also investigated. Results The major impact on cellular uptake and toxicity was found to be size- and dose-dependent. Smaller sizes of SiNCs than 100 nm caused significant toxicity to the cells. It was found that the formed protein corona reduced the toxicity of the SiNCs. However, it also inhibited their uptake. Conclusion Overall, we present a set of different criteria for a suitable design of nanocarriers and cell culture conditions, which need to be carefully considered for T-cell immunotherapy in vitro to facilitate uptake while avoiding toxicity.
Collapse
Affiliation(s)
- Raweewan Thiramanas
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Shuai Jiang
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Katharina Landfester
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| |
Collapse
|
14
|
Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 2020; 27:854-868. [PMID: 32418986 DOI: 10.1038/s41417-020-0179-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy emerged as a novel therapeutic option that employs enhanced or amended native immune system to create a robust response against malignant cells. The systemic therapies with immune-stimulating cytokines have resulted in substantial dose-limiting toxicities. Targeted cytokine immunotherapy is being explored to overcome the heterogeneity of malignant cells and tumor cell defense with a remarkable reduction of systemic side effects. Cell-based strategies, such as dendritic cells (DCs), fibroblasts or mesenchymal stem cells (MSCs) seek to minimize the numerous toxic side effects of systemic administration of cytokines for extended periods of time. The usual toxicities comprised of a vascular leak, hypotension, and respiratory insufficiency. Natural and strong tropism of MSCs toward malignant cells made them an ideal systemic delivery vehicle to direct the proposed therapeutic genes to the vicinity of a tumor where their expression could evoke an immune reaction against the tumor. Compared with other methods, the delivery of cytokines via engineered MSCs is safer and renders a more practical, and promising strategy. Large numbers of genes code for cytokines have been utilized to reengineer MSCs as therapeutic cells. This review highlights the recent findings on the cytokine gene therapy for human malignancies by focusing on MSCs application in cancer immunotherapy.
Collapse
|
15
|
Carlson RD, Flickinger JC, Snook AE. Talkin' Toxins: From Coley's to Modern Cancer Immunotherapy. Toxins (Basel) 2020; 12:E241. [PMID: 32283684 PMCID: PMC7232517 DOI: 10.3390/toxins12040241] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of the immune system to precisely target and eliminate aberrant or infected cells has long been studied in the field of infectious diseases. Attempts to define and exploit these potent immunological processes in the fight against cancer has been a longstanding effort dating back over 100 years to when Dr. William Coley purposefully infected cancer patients with a cocktail of heat-killed bacteria to stimulate anti-cancer immune processes. Although the field of cancer immunotherapy has been dotted with skepticism at times, the success of immune checkpoint inhibitors and recent FDA approvals of autologous cell therapies have pivoted immunotherapy to center stage as one of the most promising strategies to treat cancer. This review aims to summarize historic milestones throughout the field of cancer immunotherapy as well as highlight current and promising immunotherapies in development.
Collapse
Affiliation(s)
| | | | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (R.D.C.); (J.C.F.J.)
| |
Collapse
|
16
|
Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Front Immunol 2020; 10:2989. [PMID: 32010123 PMCID: PMC6978681 DOI: 10.3389/fimmu.2019.02989] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota refers to the diverse community of more than 100 trillion microorganisms residing in our intestines. It is now known that any shift in the composition of gut microbiota from that present during the healthy state in an individual is associated with predisposition to multiple pathological conditions, such as diabetes, autoimmunity, and even cancer. Currently, therapies targeting programmed cell death protein 1/programmed cell death 1 ligand 1 or cytotoxic T-lymphocyte antigen-4 are the focus of cancer immunotherapy and are widely applied in clinical treatment of various tumors. Owing to relatively low overall response rate, however, it has been an ongoing research endeavor to identify the mechanisms or factors for improving the therapeutic efficacy of these immunotherapies. Other than causing mutations that affect gene expression, some gut bacteria may also activate or repress the host's response to immune checkpoint inhibitors. In this review, we have described recent advancements made in understanding the regulatory relationship between gut microbiome and cancer immunotherapy. We have also summarized the potential molecular mechanisms behind this interaction, which can serve as a basis for utilizing different kinds of gut bacteria as promising tools for reversing immunotherapy resistance in cancer.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Sun
- Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Strizova Z, Bartunkova J, Smrz D. The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol Immunother 2019; 68:1831-1838. [PMID: 31222485 PMCID: PMC11028041 DOI: 10.1007/s00262-019-02359-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal urologic malignancies. Its incidence continues to rise worldwide with a rate of 2% per year. Approximately, one-third of the RCC patients are diagnosed at advanced stages due to the asymptomatic nature of its early stages. This represents a great hurdle, since RCC is largely chemoresistant/radioresistant, and targeted therapy of mRCC still has limited efficacy. The 5-year survival rate of metastatic RCC (mRCC) is only around 10%. Adoptive cell transfer (ACT), a particular form of cell-based anticancer immunotherapy, is a promising approach in the treatment of mRCC. The vaccination principle, however, faces unique challenges that preclude the efficacy of ACT. In this article, we review the main challenges of ACT in the treatment of mRCC and describe multiple methods that can be used to overcome these challenges. In this respect, the ultimate purpose of this review is to provide a descriptive tool by which to improve the development of novel protocols for ACT of mRCC.
Collapse
Affiliation(s)
- Zuzana Strizova
- Institute of Immunology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Jirina Bartunkova
- Institute of Immunology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Daniel Smrz
- Institute of Immunology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, V Uvalu 84, 150 06, Prague, Czech Republic.
| |
Collapse
|
18
|
Li Y, Ayala-Orozco C, Rauta PR, Krishnan S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. NANOSCALE 2019; 11:17157-17178. [PMID: 31531445 PMCID: PMC6778734 DOI: 10.1039/c9nr05371a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy is emerging as a promising treatment modality that suppresses and eliminates tumors by re-activating and maintaining the tumor-immune cycle, and further enhancing the body's anti-tumor immune response. Despite the impressive therapeutic potential of immunotherapy approaches such as immune checkpoint inhibitors and tumor vaccines in pre-clinical and clinical applications, the effective response is limited by insufficient accumulation in tumor tissues and severe side-effects. Recent years have witnessed the rise of nanotechnology as a solution to improve these technical weaknesses due to its inherent biophysical properties and multifunctional modifying potential. In this review, we summarized and discussed the current status of nanoparticle-enhanced cancer immunotherapy strategies, including intensified delivery of tumor vaccines and immune adjuvants, immune checkpoint inhibitor vehicles, targeting capacity to tumor-draining lymph nodes and immune cells, triggered releasing and regulating specific tumor microenvironments, and adoptive cell therapy enhancement effects.
Collapse
Affiliation(s)
- Yongjiang Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ciceron Ayala-Orozco
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Pradipta Ranjan Rauta
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. and Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
19
|
Ayyappan S, Maddocks K. Novel and emerging therapies for B cell lymphoma. J Hematol Oncol 2019; 12:82. [PMID: 31345247 PMCID: PMC6659277 DOI: 10.1186/s13045-019-0752-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
Lymphomas are a heterogeneous group of lymphoproliferative disorders, with unique clinical and biological characteristics that exhibit variable response to therapy. Advances in chemo-immunotherapy have improved outcomes in a number of lymphoma subtypes; however, the prognosis for many patients with relapsed and refractory disease remains poor. Novel therapies including several small molecule inhibitors and chimeric antigen receptor T cells have been approved for the treatment of different lymphoma subtypes at relapse, changing the therapy landscape and further improving survival in many of these diseases. This has led to a focus on the development of new cellular therapy, antibody-based therapy, and small molecule inhibitors for relapsed and refractory disease that offer an alternative approach to cytotoxic chemotherapy. We will review these promising novel therapies and discuss their safety and efficacy in first in human studies.
Collapse
Affiliation(s)
- Sabarish Ayyappan
- Division of Hematology, Department of Internal Medicine, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 320 W 10th Street, A342 Starling Loving Hall, Columbus, Ohio, 43210, USA.
| | - Kami Maddocks
- Division of Hematology, Department of Internal Medicine, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 320 W 10th Street, A342 Starling Loving Hall, Columbus, Ohio, 43210, USA
| |
Collapse
|
20
|
Klener P, Etrych T, Klener P. Biological Therapy of Hematologic Malignancies: Toward a Chemotherapy- free Era. Curr Med Chem 2019; 26:1002-1018. [PMID: 28990505 DOI: 10.2174/0929867324666171006144725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Less than 70 years ago, the vast majority of hematologic malignancies were untreatable diseases with fatal prognoses. The development of modern chemotherapy agents, which had begun after the Second World War, was markedly accelerated by the discovery of the structure of DNA and its role in cancer biology and tumor cell division. The path travelled from the first temporary remissions observed in children with acute lymphoblastic leukemia treated with single-agent antimetabolites until the first cures achieved by multi-agent chemotherapy regimens was incredibly short. Despite great successes, however, conventional genotoxic cytostatics suffered from an inherently narrow therapeutic index and extensive toxicity, which in many instances limited their clinical utilization. In the last decade of the 20th century, increasing knowledge on the biology of certain malignancies resulted in the conception and development of first molecularly targeted agents designed to inhibit specific druggable molecules involved in the survival of cancer cells. Advances in technology and genetic engineering enabled the production of structurally complex anticancer macromolecules called biologicals, including therapeutic monoclonal antibodies, antibody-drug conjugates and antibody fragments. The development of drug delivery systems (DDSs), in which conventional drugs were attached to various types of carriers including nanoparticles, liposomes or biodegradable polymers, represented an alternative approach to the development of new anticancer agents. Despite the fact that the antitumor activity of drugs attached to DDSs was not fundamentally different, the improved pharmacokinetic profiles, decreased toxic side effects and significantly increased therapeutic indexes resulted in their enhanced antitumor efficacy compared to conventional (unbound) drugs. Approval of the first immune checkpoint inhibitor for the treatment of cancer in 2011 initiated the era of cancer immunotherapy. Checkpoint inhibitors, bispecific T-cell engagers, adoptive T-cell approaches and cancer vaccines have joined the platform so far, represented mainly by recombinant cytokines, therapeutic monoclonal antibodies and immunomodulatory agents. In specific clinical indications, conventional drugs have already been supplanted by multi-agent, chemotherapy-free regimens comprising diverse immunotherapy and/or targeted agents. The very distinct mechanisms of the anticancer activity of new immunotherapy approaches not only call for novel response criteria, but might also change fundamental treatment paradigms of certain types of hematologic malignancies in the near future.
Collapse
Affiliation(s)
- Pavel Klener
- First Medical Department- Dept. of Hematology, First Faculty of Medicine and General University Hospital, Charles University, Czech Republic.,Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
| | - Tomas Etrych
- Department of biomedical polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic
| | - Pavel Klener
- First Medical Department- Dept. of Hematology, First Faculty of Medicine and General University Hospital, Charles University, Czech Republic
| |
Collapse
|
21
|
Strizova Z, Taborska P, Stakheev D, Partlová S, Havlova K, Vesely S, Bartunkova J, Smrz D. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol Oncol 2019; 37:503-509. [PMID: 31030972 DOI: 10.1016/j.urolonc.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) is the most lethal urologic malignancy with increasing incidence worldwide. The conventional treatment strategies for advanced or recurrent RCC are not efficient and show considerable toxicities. Adoptive cell transfer (ACT) has become a promising treatment option for multiple cancers, particularly in combination with other therapeutic approaches. ACT often utilizes extensively in vitro expanded tumor-infiltrating lymphocytes (TILs). However, TILs are a very heterogeneous mix of cell populations and only those populations that have a cytotoxic and migratory potential are thought to deliver a therapeutic impact in ACT. The identification and localization of these therapeutically potent populations are therefore needed. METHODS AND MATERIALS A total number of 57 tissue samples from 19 RCC patients who underwent radical nephrectomy was analyzed. The tissue samples were obtained from the tumor, peritumoral tissue, and the adjacent healthy renal tissue. The tissues were sliced, enzymatically dissociated into single cell suspensions and the obtained cells further analyzed by flow cytometry for the expression of markers of lymphocyte cytotoxicity - TRAIL and FasL, and a surrogate marker of lymphocyte migratory activity - PECAM-1. The analyzed data were next correlated with the clinical and histopathological data. RESULTS Non-clear cell RCC (non-ccRCC) tumors showed a significantly decreased tumor infiltration with TRAIL+FasL+ NK cells but elevated infiltration with FasL+PECAM-1+ T cells as compared with clear cell RCC (ccRCC) tumors. Further analyses revealed that the peritumoral tissue of ccRCC patients is a reservoir of TRAIL+FasL+, TRAIL+PECAM-1+, or FasL+PECAM-1+ NK and T cells. CONCLUSIONS The cytotoxic/migratory lymphocytes were identified in tumors of ccRCC patients. These lymphocytes became excluded from the tumor and accumulated in the patient's peritumoral tissue.
Collapse
Affiliation(s)
- Zuzana Strizova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Pavla Taborska
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Dmitry Stakheev
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Simona Partlová
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Klara Havlova
- Department of Urology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Stepan Vesely
- Department of Urology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Jirina Bartunkova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Daniel Smrz
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic.
| |
Collapse
|
22
|
Yu WD, Sun G, Li J, Xu J, Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett 2019; 452:66-70. [PMID: 30902563 DOI: 10.1016/j.canlet.2019.02.048] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Immunotherapies based on T cells have gained significant success in the treatment of diverse cancers, however, several limitations also exist, including low response, acquired resistance and severe side effects, which lead to unfavorable outcomes. Recent studies found that traditional therapies, radiotherapy and/or chemotherapy may affect the immune condition in situ and cause abscopal effect, which may improve the response of immunotherapies, enhance the efficiency, and reduce the untoward effect. Here, we review the mechanisms uncovering the cancer immunotherapy and immunogenic effects of radiotherapy and chemotherapy, aiming to highlight the principles underlying the therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy and ultimately guide better designs for future synergistic cancer therapies.
Collapse
Affiliation(s)
- Wei-Di Yu
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Guan Sun
- Department of Neurosurgery, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, PR China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, 168 Gushan Road, Nanjing, Jiangsu Province, PR China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| | - Xiaochen Wang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
23
|
Shirjang S, Alizadeh N, Mansoori B, Mahmoodpoor A, Kafil HS, Hojjat-Farsangi M, Yousefi M. Promising immunotherapy: Highlighting cytokine-induced killer cells. J Cell Biochem 2018; 120:8863-8883. [PMID: 30556298 DOI: 10.1002/jcb.28250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
For many years, cancer therapy has appeared to be a challenging issue for researchers and physicians. By the introduction of novel methods in immunotherapy, the prospect of cancer therapy even more explained than before. Cytokine-induced killer (CIK) cell-based immunotherapy demonstrated to have potentiality in improving clinical outcomes and relieving major side effects of standard treatment options. In addition, given the distinctive features such as high safety, low toxicity effects on healthy cells, numerous clinical trials conducted on CIK cells. Due to the shortcomings that observed in CIK cell immunotherapy alone, arising a tendency to make modifications (combined modality therapy or combination therapy) including the addition of various types of cytokines, genetic engineering, combination with immune checkpoints, and so on. In this review, we have tried to bring forth the latest immunotherapy methods and their overview. We have discussed the combination therapies with CIK cells and the conducted clinical trials. This helps the future studies to use integrated therapies with CIK cells as a promising treatment of many types of cancers.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Cancer Immunotherapy: A Simple Guide for Interventional Radiologists of New Therapeutic Approaches. Cardiovasc Intervent Radiol 2018; 42:1221-1229. [PMID: 30209564 DOI: 10.1007/s00270-018-2074-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022]
Abstract
The therapeutic options in the treatment of cancer therapy have been recently significantly increased with systemic immune-targeted therapies. Novel immunotherapy approaches based on immune checkpoint blockade or engineered cytotoxic T lymphocytes have reached late-stage clinical development, with highly encouraging results. The success of cancer immunotherapy has generated a tremendous interest in further developing and exploring these strategies in combination with other approaches such as radiotherapy and local ablative therapies in oncology. The goal of this review is to discuss current approaches in immunotherapy and provide simple and constructive explanations on their mechanisms of action as well as certain more common and serious toxicities.
Collapse
|
25
|
Gao X, Mi Y, Guo N, Xu H, Xu L, Gou X, Jin W. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy. Front Immunol 2017; 8:774. [PMID: 28729866 PMCID: PMC5498561 DOI: 10.3389/fimmu.2017.00774] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are a heterogeneous population of effector CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral blood mononuclear cells. CIK cells work as pharmacological tools for cancer immunotherapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells combined with other antitumor therapies are applied. This review summarizes some strategies, including the combination of CIK with additional cytokines, dendritic cells, check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other immunotherapies. Finally, further research is needed to clarify the pharmacological mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK expansion.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev 2017. [PMID: 28629761 DOI: 10.1016/j.cytogfr.2017.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells. Additionally, their antitumor activity can be redirected and further improved with chimeric antigen receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained from a growing body of literature support CIK cells as a very promising cell population for adoptive immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role of the cytokines involved in CIK cell generation, expansion and functionalization.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|