1
|
Xu Y, Liu D, Zhang W, Liu Z, Liu J, Zhang W, Song R, Li J, Yang F, Wang Y, Liu D, Qian G, Tang H, Chen X, Lai Y. Discovery of Novel 5-(Pyridazin-3-yl)pyrimidine-2,4(1 H,3 H)-dione Derivatives as Potent and Orally Bioavailable Inhibitors Targeting Ecto-5'-nucleotidase. J Med Chem 2024; 67:18491-18511. [PMID: 39385716 DOI: 10.1021/acs.jmedchem.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ecto-5-nucleotidase (CD73) is overexpressed in a variety of cancers and associated with the immunosuppressive tumor microenvironment, making it an attractive target for cancer immunotherapy. Herein, we designed and synthesized a series of novel (pyridazine-3-yl)pyrimidine-2,4(1H,3H)-dione derivatives as CD73 inhibitors. These compounds exhibited remarkable inhibitory activity against CD73 in both enzymatic biochemical and cellular assays. Among them, compound 35j proved to be one of the most potent inhibitors and an uncompetitive inhibitor with no obvious cytotoxicity. This compound showed high metabolic stability in rat liver microsomes and favorable pharmacokinetic profiles in rats (T1/2 = 3.37 h, F = 50.24%). Importantly, orally administered 35j significantly inhibited tumor growth in the triple-negative breast cancer 4T1 mouse model (TGI = 73.6%, 50 mg/kg). Immunoassays suggested that 35j remarkably increased the infiltration of positive immune cells, thereby reinvigorating antitumor immunity. These results demonstrate that 35j is a potent CD73 inhibitor worthy of further development.
Collapse
Affiliation(s)
- Yu Xu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Dan Liu
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenzhuang Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Zhining Liu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Jingjing Liu
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanling Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rongxing Song
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Li
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Yang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Wang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Dunkai Liu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Gaofei Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing 210023, China
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yisheng Lai
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
3
|
Li R, An P, Lin X, Liu X, Zhao L, He Y. A comprehensive analysis of LINC00958 as a prognostic biomarker for head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg 2024; 53:461-469. [PMID: 37923576 DOI: 10.1016/j.ijom.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
This work focused on exploring whether the long intergenic non-protein coding RNA LINC00958 is associated with the prognosis of head and neck squamous cell carcinoma (HNSCC). Associations of the LINC00958 expression level with clinicopathological features of HNSCC were investigated by logistic regression and Wilcoxon signed-rank test. The Kaplan-Meier method was applied to evaluate patient survival. Clinical data and expression profiles were obtained from The Cancer Genome Atlas (TCGA). Associations of patient clinical characteristics with overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) were assessed by univariate and multivariate analysis using the Cox proportional hazard model. Immune cell infiltration analysis and gene set enrichment analysis (GSEA) were applied to determine any significant effects of LINC00958. High LINC00958 expression was related to early pT stage (P < 0.01), primary therapy outcome (P < 0.01), HPV status (P < 0.001), lymphovascular invasion (P < 0.001), and perineural invasion (P < 0.01). The receiver operating characteristic curve showed strong prognostic power for LINC00958 (area under curve = 0.886). High LINC00958 expression predicted poor OS (P = 0.007), DSS (P = 0.036), and PFI (P = 0.040). LINC00958 was related to signalling pathways and the infiltration of certain immune cells. miR-27b-5p was significantly associated with LINC00958, and downstream NT5E predicted poor survival in HNSCC cases. LINC00958 may affect the prognosis by regulating NT5E via miR-27b-5p, and could serve as a possible factor to predict the prognosis of HNSCC, especially oral squamous cell carcinoma.
Collapse
Affiliation(s)
- R Li
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China; Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - P An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Lin
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - X Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - L Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Y He
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China.
| |
Collapse
|
4
|
Zhu Y, Banerjee A, Xie P, Ivanov AA, Uddin A, Jiao Q, Chi JJ, Zeng L, Lee JY, Xue Y, Lu X, Cristofanilli M, Gradishar WJ, Henry CJ, Gillespie TW, Bhave MA, Kalinsky K, Fu H, Bahar I, Zhang B, Wan Y. Pharmacological suppression of the OTUD4/CD73 proteolytic axis revives antitumor immunity against immune-suppressive breast cancers. J Clin Invest 2024; 134:e176390. [PMID: 38530357 PMCID: PMC11093616 DOI: 10.1172/jci176390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-β signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.
Collapse
Affiliation(s)
- Yueming Zhu
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ping Xie
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrey A. Ivanov
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Amad Uddin
- Department of Pharmacology and Chemical Biology and
| | - Qiao Jiao
- Department of Pharmacology and Chemical Biology and
| | - Junlong Jack Chi
- Department of Pharmacology and Chemical Biology and
- Driskill Graduate Program (DPG), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lidan Zeng
- Department of Pharmacology and Chemical Biology and
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - William J. Gradishar
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Curtis J. Henry
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics
| | - Theresa W. Gillespie
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Surgery, and
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Manali Ajay Bhave
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Bin Zhang
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yong Wan
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Kim DK, Choi H, Lee W, Choi H, Hong SB, Jeong JH, Han J, Han JW, Ryu H, Kim JI, Mook-Jung I. Brain hypothyroidism silences the immune response of microglia in Alzheimer's disease animal model. SCIENCE ADVANCES 2024; 10:eadi1863. [PMID: 38489366 PMCID: PMC10942107 DOI: 10.1126/sciadv.adi1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Thyroid hormone (TH) imbalance is linked to the pathophysiology of reversible dementia and Alzheimer's disease (AD). It is unclear whether tissue hypothyroidism occurs in the AD brain and how it affects on AD pathology. We find that decreased iodothyronine deiodinase 2 is correlated with hippocampal hypothyroidism in early AD model mice before TH alterations in the blood. TH deficiency leads to spontaneous activation of microglia in wild-type mice under nonstimulated conditions, resulting in lowered innate immune responses of microglia in response to inflammatory stimuli or amyloid-β. In AD model mice, TH deficiency aggravates AD pathology by reducing the disease-associated microglia population and microglial phagocytosis. We find that TH deficiency reduces microglial ecto-5'-nucleotidase (CD73) and inhibition of CD73 leads to impaired innate immune responses in microglia. Our findings reveal that TH shapes microglial responses to inflammatory stimuli including amyloid-β, and brain hypothyroidism in early AD model mice aggravates AD pathology by microglial dysfunction.
Collapse
Affiliation(s)
- Dong Kyu Kim
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Hyunjung Choi
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Woochan Lee
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Hayoung Choi
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Seok Beom Hong
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - June-Hyun Jeong
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Jihui Han
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Jong Won Han
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Jiang B, Tang M, Shi S, Xie H, Pan S, Zhang L, Sheng J. Effects of abnormal expression of CD73 on malignant phenotype of nasopharyngeal carcinoma. J Mol Histol 2023; 54:633-644. [PMID: 37874500 DOI: 10.1007/s10735-023-10165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/30/2023] [Indexed: 10/25/2023]
Abstract
Cluster of differentiation (CD) 73, encoded by the NT5E gene, plays important enzymatic and non-enzymatic roles in cells. There is growing evidence show that CD73 is a key regulator in the development of tumor. Nasopharyngeal carcinoma (NPC) is one of the most common cancers in east and southeast Asia. It is urgent to know more about the mechanism of NPC development and find diagnostic markers for the patients. In this research, we carried out western blot, immunohistochemistry and qRT-PCR to investigate the expression level of CD73 and found that NPC tissues had higher level of CD73 than normal tissues. We also detected the relationship between its expression level with the clinicopathological features and prognosis of NPC patients. The results showed that CD73 expression was related to the clinical stages, lymph node metastasis and survival state of NPC patients. More importantly, patients with higher expression of CD73 had poorer prognosis. Then, CD73 was knocked down in NPC cells (CNE2 and CNE1), and its effects on cell proliferation and migration were investigated by CCK8, colony formation, Transwell and wound-healing assays. We found that knocking down the expression of CD73 in NPC cells could inhibit cells malignant phenotype. Collectively, CD73 plays important roles in NPC malignant behavior and might act as a novel target for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Mingming Tang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Lin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Haimen People's Hospital, Nantong, Jiangsu Province, China.
| | - Juping Sheng
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
7
|
Dong X, Xia S, Du S, Zhu MH, Lai X, Yao SQ, Chen HZ, Fang C. Tumor Metabolism-Rewriting Nanomedicines for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2023; 9:1864-1893. [PMID: 37901179 PMCID: PMC10604035 DOI: 10.1021/acscentsci.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/31/2023]
Abstract
Cancer immunotherapy has become an established therapeutic paradigm in oncologic therapy, but its therapeutic efficacy remains unsatisfactory in the majority of cancer patients. Accumulating evidence demonstrates that the metabolically hostile tumor microenvironment (TME), characterized by acidity, deprivation of oxygen and nutrients, and accumulation of immunosuppressive metabolites, promotes the dysfunction of tumor-infiltrating immune cells (TIICs) and thereby compromises the effectiveness of immunotherapy. This indicates the potential role of tumor metabolic intervention in the reinvigoration of antitumor immunity. With the merits of multiple drug codelivery, cell and organelle-specific targeting, controlled drug release, and multimodal therapy, tumor metabolism-rewriting nanomedicines have recently emerged as an attractive strategy to strengthen antitumor immune responses. This review summarizes the current progress in the development of multifunctional tumor metabolism-rewriting nanomedicines for evoking antitumor immunity. A special focus is placed on how these nanomedicines reinvigorate innate or adaptive antitumor immunity by regulating glucose metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism at the tumor site. Finally, the prospects and challenges in this emerging field are discussed.
Collapse
Affiliation(s)
- Xiao Dong
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shu Xia
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shubo Du
- School
of Bioengineering, Dalian University of
Technology, Dalian 116024, China
| | - Mao-Hua Zhu
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Xing Lai
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hong-Zhuan Chen
- Institute
of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chao Fang
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
- Key
Laboratory of Basic Pharmacology of Ministry of Education & Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
8
|
Ploeg EM, Samplonius DF, Xiong X, Ke X, Hendriks MAJM, Britsch I, van Wijngaarden AP, Zhang H, Helfrich W. Bispecific antibody CD73xEGFR more selectively inhibits the CD73/adenosine immune checkpoint on cancer cells and concurrently counteracts pro-oncogenic activities of CD73 and EGFR. J Immunother Cancer 2023; 11:e006837. [PMID: 37734877 PMCID: PMC10514638 DOI: 10.1136/jitc-2023-006837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND CD73 is an ecto-enzyme that is involved in the conversion of pro-inflammatory extracellular ATP (eATP) excreted by cancer cells under stress to anti-inflammatory adenosine (ADO). A broad variety of solid cancer types was shown to exploit CD73 overexpression as a suppressive immune checkpoint. Consequently, CD73-antagonistic antibodies, most notably oleclumab, are currently evaluated in several multicenter trials for clinical applicability. However, the efficacy of conventional monospecific CD73-inhibiting antibodies may be limited due to on-target/off-tumor binding to CD73 on normal cells. Therefore, a novel approach that more selectively directs CD73 immune checkpoint inhibition towards cancer cells is warranted. METHODS To address this issue, we constructed a novel tetravalent bispecific antibody (bsAb), designated bsAb CD73xEGFR. Subsequently, the anticancer activities of bsAb CD73xEGFR were evaluated using in vitro and in vivo tumor models. RESULTS In vitro treatment of various carcinoma cell types with bsAb CD73xEGFR potently inhibited the enzyme activity of CD73 (~71%) in an EGFR-directed manner. In this process, bsAb CD73xEGFR induced rapid internalization of antigen/antibody complexes, which resulted in a prolonged concurrent displacement of both CD73 and EGFR from the cancer cell surface. In addition, bsAb CD73xEGFR sensitized cancer to the cytotoxic activity of various chemotherapeutic agents and potently inhibited the proliferative/migratory capacity (~40%) of cancer cells. Unexpectedly, we uncovered that treatment of carcinoma cells with oleclumab appeared to enhance several pro-oncogenic features, including upregulation and phosphorylation of EGFR, tumor cell proliferation (~20%), and resistance towards cytotoxic agents and ionizing radiation (~39%). Importantly, in a tumor model using immunocompetent BALB/c mice inoculated with syngeneic CD73pos/EGFRpos CT26 cancer cells, treatment with bsAb CD73xEGFR outperformed oleclumab (65% vs 31% tumor volume reduction). Compared with oleclumab, treatment with bsAb CD73xEGFR enhanced the intratumoral presence of CD8pos T cells and M1 macrophages. CONCLUSIONS BsAb CD73xEGFR outperforms oleclumab as it inhibits the CD73/ADO immune checkpoint in an EGFR-directed manner and concurrently counteracts several oncogenic activities of EGFR and CD73. Therefore, bsAb CD73xEGFR may be of significant clinical potential for various forms of difficult-to-treat solid cancer types.
Collapse
Affiliation(s)
- Emily Maria Ploeg
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Douwe Freerk Samplonius
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xiao Xiong
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Faculty of Medical Science and Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Isabel Britsch
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne Paulien van Wijngaarden
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hao Zhang
- Department of General Surgery, Jinan University First Affiliated Hospital, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Zhou L, Liu X, Guan T, Xu H, Wei F. CD73 Dysregulates Monocyte Anti-Tumor Activity in Multiple Myeloma. Cancer Manag Res 2023; 15:729-738. [PMID: 37492194 PMCID: PMC10363556 DOI: 10.2147/cmar.s411547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose Multiple myeloma (MM) is characterized by immune cell dysfunction in the tumor microenvironment (TME). We aimed at evaluating the effect of CD73, an overexpressed factor in some tumors, on anti-tumor immune function in the TME of MM. Patients and Methods We analyzed the expression of CD73 in T-, B-, and natural killer (NK)-lymphocytes and monocytes in bone marrow (BM), peripheral blood (PB) from MM patients and healthy controls, and residual CD138+ cells using flow cytometry. The anti-tumor activity of these monocytes was confirmed by co-culture with RPMI-8226 cells treated with a CD73 inhibitor. We determined the interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ levels using a cytometric bead array. Monocyte phagocytosis in cell culture sediment was then observed and measured. Results CD73 was highly expressed in T-, B-, and NK-lymphocytes and monocytes from the BM and PB isolated from patients with MM. Compared with healthy controls, MM samples exhibited significantly higher CD73 expression and TNF-α, IFN-γ, IL-10 levels in monocytes. Inhibiting CD73 in BM immune cells from MM samples significantly increased the secretion of IL-2, TNF-α, and IFN-γ, as well as the killing ability of immune cells. However, monocyte phagocytosis was seldom observed. Inhibiting CD73 in MM monocytes significantly increased the secretion of IL-2, TNF-α, and IFN-γ in monocytes and improved monocyte killing and phagocytosis. Conclusion Monocytes from MM exhibited weakened anti-tumor effects, and CD73 was involved in forming an immunosuppressive microenvironment. Inhibiting CD73 partly restored the anti-tumor activity of monocytes, a potential strategy for the treatment of MM.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hematology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - XiaoLan Liu
- Shanxi Key Laboratory of Precise and Diagnosis and Therapy of Lymphoma, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Tao Guan
- Shanxi Key Laboratory of Precise and Diagnosis and Therapy of Lymphoma, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - HaiLing Xu
- Department of Hematology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Fang Wei
- Department of Hematology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
10
|
Ploeg EM, Britsch I, van Wijngaarden AP, Ke X, Hendriks MAJM, Samplonius DF, Helfrich W. A Novel Bispecific Antibody for EpCAM-Directed Inhibition of the CD73/Adenosine Immune Checkpoint in Ovarian Cancer. Cancers (Basel) 2023; 15:3651. [PMID: 37509310 PMCID: PMC10378099 DOI: 10.3390/cancers15143651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
PD-1/PD-L1-inhibiting antibodies have shown disappointing efficacy in patients with refractory ovarian cancer (OC). Apparently, OC cells exploit nonoverlapping immunosuppressive mechanisms to evade the immune system. In this respect, the CD73-adenosine inhibitory immune checkpoint is of particular interest, as it rapidly converts pro-inflammatory ATP released from cancer cells to immunosuppressive adenosine (ADO). Moreover, cancer-cell-produced ADO is known to form a highly immunosuppressive extra-tumoral 'halo' that chronically inhibits the anticancer activity of various immune effector cells. Thus far, conventional CD73-blocking antibodies such as oleclumab show limited clinical efficacy, probably due to the fact that it indiscriminately binds to and blocks CD73 on a massive surplus of normal cells. To address this issue, we constructed a novel bispecific antibody (bsAb) CD73xEpCAM that inhibits CD73 expressed on the OC cell surface in an EpCAM-directed manner. Importantly, bsAb CD73xEpCAM showed potent capacity to inhibit the CD73 enzyme activity in an EpCAM-directed manner and restore the cytotoxic activity of ADO-suppressed anticancer T cells. Additionally, treatment with bsAb CD73xEpCAM potently inhibited the proliferative capacity of OC cells and enhanced their sensitivity to cisplatin, doxorubicin, 5FU, and ionizing radiation. BsAb CD73xEpCAM may be useful in the development of tumor-directed immunotherapeutic approaches to overcome the CD73-mediated immunosuppression in patients with refractory OC.
Collapse
Affiliation(s)
- Emily Maria Ploeg
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Isabel Britsch
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne Paulien van Wijngaarden
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Mark Alexander Johannes Martinus Hendriks
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Douwe Freerk Samplonius
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
11
|
Cabioglu N, Bayram A, Emiroglu S, Onder S, Karatay H, Oner G, Tukenmez M, Muslumanoglu M, Igci A, Aydiner A, Saip P, Yavuz E, Ozmen V. Diverging prognostic effects of CD155 and CD73 expressions in locally advanced triple-negative breast cancer. Front Oncol 2023; 13:1165257. [PMID: 37519808 PMCID: PMC10374450 DOI: 10.3389/fonc.2023.1165257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Background Immune checkpoint inhibition, combined with novel biomarkers, may provide alternative pathways for treating chemotherapy-resistant triple-negative breast cancer (TNBC). This study investigates the expression of new immune checkpoint receptors, including CD155 and CD73, which play a role in T and natural killer (NK) cell activities, in patients with residual TNBC after neoadjuvant chemotherapy (NAC). Methods The expression of biomarkers was immunohistochemically examined by staining archival tissue from surgical specimens (n = 53) using specific monoclonal antibodies for PD-L1, CD155, and CD73. Results Of those, 59.2% (29/49) were found to be positive (>1%) for PD-L1 on the tumour and tumour-infiltrating lymphocytes (TILs), while CD155 (30/53, 56.6%) and CD73 (24/53, 45.3%) were detected on tumours. Tumour expressions of CD155 and CD73 significantly correlated with PD-L1 expression on the tumour (p = 0.004 for CD155, p = 0.001 for CD73). Patients with CD155 positivity ≥10% were more likely to have a poor chemotherapy response, as evidenced by higher MDACC Residual Cancer Burden Index scores and Class II/III than those without CD155 expression (100% vs 82.6%, p = 0.03). At a median follow-up time of 80 months (range, 24-239), patients with high CD73 expression showed improved 10-year disease-free survival (DFS) and disease-specific survival (DSS) rates compared to those with low CD73 expression. In contrast, patients with CD155 (≥10%) expression exhibited a decreasing trend in 10-year DFS and DSS compared to cases with lower expression, although statistical significance was not reached. However, patients with coexpression of CD155 (≥10%) and low CD73 were significantly more likely to have decreased 10-year DFS and DSS rates compared to others (p = 0.005). Conclusion These results demonstrate high expression of CD73 and CD155 in patients with residual tumours following NAC. CD155 expression was associated with a poor response to NAC and poor prognosis in this chemotherapy-resistant TNBC cohort, supporting the use of additional immune checkpoint receptor inhibitor therapy. Interestingly, the interaction between CD155 and CD73 at lower levels resulted in a worse outcome than either marker alone, which calls for further investigation in future studies.
Collapse
Affiliation(s)
- Neslihan Cabioglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Aysel Bayram
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Selman Emiroglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Huseyin Karatay
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Pathology, Basaksehir Cam Sakura Hospital, Istanbul, Türkiye
| | - Gizem Oner
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Mustafa Tukenmez
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Mahmut Muslumanoglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Abdullah Igci
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of General Surgery, American Hospital, Istanbul, Türkiye
| | - Adnan Aydiner
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Pinar Saip
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Vahit Ozmen
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of General Surgery, Istanbul Florence Nightingale Hospital, Istanbul, Türkiye
| |
Collapse
|
12
|
Sarkar OS, Donninger H, Al Rayyan N, Chew LC, Stamp B, Zhang X, Whitt A, Li C, Hall M, Mitchell RA, Zippelius A, Eaton J, Chesney JA, Yaddanapudi K. Monocytic MDSCs exhibit superior immune suppression via adenosine and depletion of adenosine improves efficacy of immunotherapy. SCIENCE ADVANCES 2023; 9:eadg3736. [PMID: 37390211 PMCID: PMC10313166 DOI: 10.1126/sciadv.adg3736] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy is effective against many cancers for a subset of patients; a large percentage of patients remain unresponsive to this therapy. One contributing factor to ICI resistance is accumulation of monocytic myeloid-derived suppressor cells (M-MDSCs), a subset of innate immune cells with potent immunosuppressive activity against T lymphocytes. Here, using lung, melanoma, and breast cancer mouse models, we show that CD73-expressing M-MDSCs in the tumor microenvironment (TME) exhibit superior T cell suppressor function. Tumor-derived PGE2, a prostaglandin, directly induces CD73 expression in M-MDSCs via both Stat3 and CREB. The resulting CD73 overexpression induces elevated levels of adenosine, a nucleoside with T cell-suppressive activity, culminating in suppression of antitumor CD8+ T cell activity. Depletion of adenosine in the TME by the repurposed drug PEGylated adenosine deaminase (PEG-ADA) increases CD8+ T cell activity and enhances response to ICI therapy. Use of PEG-ADA can therefore be a therapeutic option to overcome resistance to ICIs in cancer patients.
Collapse
Affiliation(s)
- Omar S. Sarkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Howard Donninger
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Program, University of Louisville, Louisville, KY, USA
| | - Numan Al Rayyan
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Natural Agricultural Research Center, P.O. Box 639, Baq'a 19381, Jordan
| | - Lewis C. Chew
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Bryce Stamp
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Aaron Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Chi Li
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Program, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Melissa Hall
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Robert A. Mitchell
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred Zippelius
- Center for Immunotherapy, Cancer Center Medical Oncology, University Hospital Basel, Switzerland
| | - John Eaton
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jason A. Chesney
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer. Front Immunol 2023; 14:1163585. [PMID: 37187740 PMCID: PMC10175829 DOI: 10.3389/fimmu.2023.1163585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care, and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
14
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
15
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
16
|
Roma S, Camisaschi C, Mancuso P, Trabanelli S, Vanazzi A, Villa S, Prati D, Fiori S, Lorenzini D, Tabanelli V, Pileri S, Tarella C, Jandus C, Bertolini F. Dampening of cytotoxic innate lymphoid cells: A new tumour immune escape mechanism in B cell non-Hodgkin's lymphoma. Cell Immunol 2022; 382:104615. [PMID: 36228388 DOI: 10.1016/j.cellimm.2022.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
The role and regulation of innate immune cells is poorly understood in B-cell non-Hodgkin lymphoma (NHL). As natural killer (NK) cells, helper innate lymphoid cells (ILCs) are lymphocytes endowed with either anti- or pro-tumour activity and involved in inflammatory processes. In our ex vivo analysis of NK cells and ILCs from NHL patients, we observed that, in comparison to healthy donors (HD), the frequency of the cytotoxic subset of NK cells, the CD16+ NK, decreased in patients' peripheral blood. In general, circulating NK cells showed a pro-tumorigenic phenotype, while ILCs displayed a more activated/cytotoxic phenotype. Conversely, at the tumour site, in patients' lymph nodes, ILCs showed a low expression of granzyme.In vitromixed lymphocyte-tumour cell cultures with HD PBMCs and NHL cell lines demonstrated that ILC cytotoxic potential was lowered by the presence of tumour cells but, in the absence of T regulatory cells (Tregs), their cytolytic potential was recovered. Our data shed novel light on dysfunctional innate immunity in NHL. We suggest a new mechanism of tumour immuno-escape based on the reduction of cell cytotoxicity involving ILCs and likely controlled by Tregs.
Collapse
Affiliation(s)
- Stefania Roma
- Laboratory of Hematology- Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Chiara Camisaschi
- Laboratory of Hematology- Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Patrizia Mancuso
- Laboratory of Hematology- Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Sara Trabanelli
- Dept. of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Anna Vanazzi
- Division of Clinical Hematology- Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Stefania Villa
- Department of Transfusion Medicine and Hematology Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Fiori
- Division of Haematopathology, IRCCS European Institute of Oncology, Milan, Italy
| | - Daniele Lorenzini
- Division of Haematopathology, IRCCS European Institute of Oncology, Milan, Italy
| | - Valentina Tabanelli
- Division of Haematopathology, IRCCS European Institute of Oncology, Milan, Italy
| | - Stefano Pileri
- Division of Haematopathology, IRCCS European Institute of Oncology, Milan, Italy
| | - Corrado Tarella
- Division of Clinical Hematology- Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Camilla Jandus
- Dept. of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Francesco Bertolini
- Laboratory of Hematology- Oncology, IRCCS European Institute of Oncology, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy.
| |
Collapse
|
17
|
Sánchez-León ML, Jiménez-Cortegana C, Cabrera G, Vermeulen EM, de la Cruz-Merino L, Sánchez-Margalet V. The effects of dendritic cell-based vaccines in the tumor microenvironment: Impact on myeloid-derived suppressor cells. Front Immunol 2022; 13:1050484. [PMID: 36458011 PMCID: PMC9706090 DOI: 10.3389/fimmu.2022.1050484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 09/27/2023] Open
Abstract
Dendritic cells (DCs) are a heterogenous population of professional antigen presenting cells whose main role is diminished in a variety of malignancies, including cancer, leading to ineffective immune responses. Those mechanisms are inhibited due to the immunosuppressive conditions found in the tumor microenvironment (TME), where myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature myeloid cells known to play a key role in tumor immunoevasion by inhibiting T-cell responses, are extremely accumulated. In addition, it has been demonstrated that MDSCs not only suppress DC functions, but also their maturation and development within the myeloid linage. Considering that an increased number of DCs as well as the improvement in their functions boost antitumor immunity, DC-based vaccines were developed two decades ago, and promising results have been obtained throughout these years. Therefore, the remodeling of the TME promoted by DC vaccination has also been explored. Here, we aim to review the effectiveness of different DCs-based vaccines in murine models and cancer patients, either alone or synergistically combined with other treatments, being especially focused on their effect on the MDSC population.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Elba Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Victor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
18
|
Mei Y, Zhao L, Jiang M, Yang F, Zhang X, Jia Y, Zhou N. Characterization of glucose metabolism in breast cancer to guide clinical therapy. Front Surg 2022; 9:973410. [PMID: 36277284 PMCID: PMC9580338 DOI: 10.3389/fsurg.2022.973410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer (BRCA) ranks as a leading cause of cancer death in women worldwide. Glucose metabolism is a noticeable characteristic of the occurrence of malignant tumors. In this study, we aimed to construct a novel glycometabolism-related gene (GRG) signature to predict overall survival (OS), immune infiltration and therapeutic response in BRCA patients. Materials and methods The mRNA sequencing and corresponding clinical data of BRCA patients were obtained from public cohorts. Lasso regression was applied to establish a GRG signature. The immune infiltration was evaluated with the ESTIMATE and CIBERSORT algorithms. The drug sensitivity was estimated using the value of IC50, and further forecasted the therapeutic response of each patient. The candidate target was selected in Cytoscape. A nomogram was constructed via the R package of “rms”. Results We constructed a six-GRG signature based on CACNA1H, CHPF, IRS2, NT5E, SDC1 and ATP6AP1, and the high-risk patients were correlated with poorer OS (P = 2.515 × 10−7). M2 macrophage infiltration was considerably superior in high-risk patients, and CD8+ T cell infiltration was significantly higher in low-risk patients. Additionally, the high-risk group was more sensitive to Lapatinib. Fortunately, SDC1 was recognized as candidate target and patients had a better OS in the low-SDC1 group. A nomogram integrating the GRG signature was developed, and calibration curves were consistent between the actual and predicted OS. Conclusions We identified a novel GRG signature complementing the present understanding of the targeted therapy and immune biomarker in breast cancer. The GRGs may provide fresh insights for individualized management of BRCA patients.
Collapse
Affiliation(s)
- Yingying Mei
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lantao Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yizhen Jia
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Correspondence: Na Zhou Yizhen Jia
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Correspondence: Na Zhou Yizhen Jia
| |
Collapse
|
19
|
Gammelgaard OL, Terp MG, Renn C, Labrijn AF, Hamaker O, Nielsen AY, Vever H, Hansen SW, Gjerstorff MF, Müller CE, Parren PW, Ditzel HJ. Targeting two distinct epitopes on human CD73 with a bispecific antibody improves anticancer activity. J Immunother Cancer 2022; 10:jitc-2022-004554. [PMID: 36096528 PMCID: PMC9472124 DOI: 10.1136/jitc-2022-004554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Immunosuppressive extracellular adenosine is generated by the enzymatic activity of CD73. In preclinical models, antibodies (Abs) targeting different epitopes on CD73 exert anticancer activity through distinct mechanisms such as inhibition of enzymatic activity, engagement of Fc receptors, and spatial redistribution of CD73. Methods Using controlled Fab arm exchange, we generated biparatopic bispecific antibodies (bsAbs) from parental anti-CD73 Abs with distinct anticancer activities. The resulting anticancer activity was evaluated using in vitro and in vivo models. Results We demonstrate that different anticancer activities can be combined in a biparatopic bsAb. Remarkably, the bsAb significantly improved the enzyme inhibitory activity compared with the parental Abs, which led to neutralization of adenosine-mediated T-cell suppression as demonstrated by proliferation and interferon gamma (IFN-γ) production and prolonged survival of tumor-bearing mice. Additionally, the bsAb caused more efficient internalization of cell surface CD73 and stimulated potent Fc-mediated engagement of human immune effector cells in vitro and in vivo. Conclusions Our data collectively demonstrate that complementary anticancer mechanisms of action of distinct anti-CD73 Abs can be combined and enhanced in a biparatopic bsAb. The multiple mechanisms of action and superior activity compared with the monospecific parental Abs make the bsAb a promising candidate for therapeutic targeting of CD73 in cancer. This concept may greatly improve future Ab design.
Collapse
Affiliation(s)
- Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | | | - Oliver Hamaker
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Aaraby Y Nielsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henriette Vever
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Soren Wk Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Paul Whi Parren
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark .,Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Liu Z, Wu X, Wang Q, Li Z, Liu X, Sheng X, Zhu H, Zhang M, Xu J, Feng X, Wu B, Lv X. CD73-Adenosine A 1R Axis Regulates the Activation and Apoptosis of Hepatic Stellate Cells Through the PLC-IP 3-Ca 2+/DAG-PKC Signaling Pathway. Front Pharmacol 2022; 13:922885. [PMID: 35784730 PMCID: PMC9245432 DOI: 10.3389/fphar.2022.922885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver fibrosis (ALF) is a form of alcohol-related liver disease (ALD) that generally occurs in response to heavy long-term drinking. Ecto-5'-nucleotidase (NT5E), also known as CD73, is a cytomembrane protein linked to the cell membrane via a GPI anchor that regulates the conversion of extracellular ATP to adenosine. Adenosine and its receptors are important regulators of the cellular response. Previous studies showed that CD73 and adenosine A1 receptor (A1R) were important in alcohol-related liver disease, however the exact mechanism is unclear. The aim of this study was to elucidate the role and mechanism of the CD73-A1R axis in both a murine model of alcohol and carbon tetrachloride (CCl4) induced ALF and in an in vitro model of fibrosis induced by acetaldehyde. The degree of liver injury was determined by measuring serum AST and ALT levels, H & E staining, and Masson's trichrome staining. The expression levels of fibrosis indicators and PLC-IP3-Ca2+/DAG-PKC signaling pathway were detected by quantitative real-time PCR, western blotting, ELISA, and calcium assay. Hepatic stellate cell (HSC) apoptosis was detected using the Annexin V-FITC/PI cell apoptosis detection kit. Knockdown of CD73 significantly attenuated the accumulation of α-SMA and COL1a1 damaged the histological architecture of the mouse liver induced by alcohol and CCl4. In vitro, CD73 inhibition attenuated acetaldehyde-induced fibrosis and downregulated A1R expression in HSC-T6 cells. Inhibition of CD73/A1R downregulated the expression of the PLC-IP3-Ca2+/DAG-PKC signaling pathway. In addition, silencing of CD73/A1R promoted apoptosis in HSC-T6 cells. In conclusion, the CD73-A1R axis can regulate the activation and apoptosis of HSCs through the PLC-IP3-Ca2+/DAG-PKC signaling pathway.
Collapse
Affiliation(s)
- Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qi Wang
- Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xueqi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiaodong Sheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Junrui Xu
- General Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Baoming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Rizzo A, Massafra R, Fanizzi A, Rinaldi L, Cusmai A, Latorre A, Zaccaria GM, Ronchi M, Telegrafo M, Gadaleta-Caldarola G, Giotta F, Lorusso V, Palmiotti G. Adenosine pathway inhibitors: novel investigational agents for the treatment of metastatic breast cancer. Expert Opin Investig Drugs 2022; 31:707-713. [DOI: 10.1080/13543784.2022.2078191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Lucia Rinaldi
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Agnese Latorre
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gian Maria Zaccaria
- Unit of Hematology and Cell Therapy, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy
| | - Maria Ronchi
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Michele Telegrafo
- DETO, Department of Emergency and Organ Transplantations, Breast Care Unit, Aldo Moro University of Bari Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gennaro Gadaleta-Caldarola
- Medical Oncology Unit, ‘Mons. R. Dimiccoli’ Hospital, Barletta (BT), Azienda Sanitaria Locale Barletta, 76121, Italy
| | - Francesco Giotta
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gennaro Palmiotti
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
22
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
23
|
Li J, Smalley I, Chen Z, Wu JY, Phadke MS, Teer JK, Nguyen T, Karreth FA, Koomen JM, Sarnaik AA, Zager JS, Khushalani NI, Tarhini AA, Sondak VK, Rodriguez PC, Messina JL, Chen YA, Smalley KSM. Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy. Clin Cancer Res 2022; 28:2131-2146. [PMID: 35247927 PMCID: PMC9106889 DOI: 10.1158/1078-0432.ccr-21-3145] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Acral melanoma is a rare subtype of melanoma that arises on the non-hair-bearing skin of the palms, soles, and nail beds. In this study, we used single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape of acral melanoma and identify novel immunotherapeutic targets. EXPERIMENTAL DESIGN We performed scRNA-seq on nine clinical specimens (five primary, four metastases) of acral melanoma. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by analysis of The Cancer Genome Atlas (TCGA) and single-cell datasets. Cell-cell interactions were inferred and compared with those in nonacral cutaneous melanoma. RESULTS Multiple phenotypic subsets of T cells, natural killer (NK) cells, B cells, macrophages, and dendritic cells with varying levels of activation/exhaustion were identified. A comparison between primary and metastatic acral melanoma identified gene signatures associated with changes in immune responses and metabolism. Acral melanoma was characterized by a lower overall immune infiltrate, fewer effector CD8 T cells and NK cells, and a near-complete absence of γδ T cells compared with nonacral cutaneous melanomas. Immune cells associated with acral melanoma exhibited expression of multiple checkpoints including PD-1, LAG-3, CTLA-4, V-domain immunoglobin suppressor of T cell activation (VISTA), TIGIT, and the Adenosine A2A receptor (ADORA2). VISTA was expressed in 58.3% of myeloid cells and TIGIT was expressed in 22.3% of T/NK cells. CONCLUSIONS Acral melanoma has a suppressed immune environment compared with that of cutaneous melanoma from nonacral skin. Expression of multiple, therapeutically tractable immune checkpoints were observed, offering new options for clinical translation.
Collapse
Affiliation(s)
- Jiannong Li
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zhihua Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jheng-Yu Wu
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Manali S. Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jamie K. Teer
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Thanh Nguyen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Florian A. Karreth
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - John M. Koomen
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Amod A. Sarnaik
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jonathan S. Zager
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Nikhil I. Khushalani
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Ahmad A. Tarhini
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Vernon K. Sondak
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Paulo C. Rodriguez
- The Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jane L. Messina
- The Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Y. Ann Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Keiran S. M. Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
24
|
Identification and validation of ecto-5' nucleotidase as an immunotherapeutic target in multiple myeloma. Blood Cancer J 2022; 12:50. [PMID: 35365613 PMCID: PMC8976016 DOI: 10.1038/s41408-022-00635-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Interaction of plasmacytoid dendritic cells (pDCs) with multiple myeloma (MM) cells, T- or NK-effector cells in the bone marrow (BM) microenvironment induces tumor cell growth, as well as inhibits innate and adaptive immune responses. Defining pDC-MM interaction-triggered immunosuppressive mechanism(s) will enable design of interventional therapies to augment anti-MM immunity. In the present study, we show that pDC-MM interactions induce metabolic enzyme Ecto-5' Nucleotidase/CD73 in both pDCs and MM cells. Gene expression database from MM patients showed that CD73 levels inversely correlate with overall survival. Using our pDC-MM coculture models, we found that blockade of CD73 with anti-CD73 Abs: decreases adenosine levels; activates MM patient pDCs; triggers cytotoxic T lymphocytes (CTL) activity against autologous patient MM cells. Combination of anti-CD73 Abs and an immune-stimulating agent TLR-7 agonist enhances autologous MM-specific CD8+ CTL activity. Taken together, our preclinical data suggest that the therapeutic targeting of CD73, alone or in combination with TLR-7 agonist, represents a promising novel strategy to restore host anti-MM immunity.
Collapse
|
25
|
Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists. Mod Pathol 2022; 35:142-151. [PMID: 34493822 DOI: 10.1038/s41379-021-00882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Checkpoint inhibitor-based immunotherapy is increasingly used in the treatment of gynecologic cancers, and most often targets the PD-1/PD-L1 axis. Pathologists should be familiar with the biomarkers required to determine candidacy for these treatments based on existing FDA approvals, including mismatch repair protein immunohistochemistry, microsatellite instability testing, tumor mutation burden testing, and PD-L1 immunohistochemistry. This review summarizes the rationale behind these treatments and their associated biomarkers and delivers guidance on how to utilize and readout these tests. It also introduces additional biomarkers which may provide information regarding immunotherapeutic vulnerability in the future such as neoantigen load; POLE mutation status; and immunohistochemical expression of immunosuppressive checkpoints like LAG-3, TIM-3, TIGIT, and VISTA; immune-activating checkpoints such as CD27, CD40, CD134, and CD137; enzymes such as IDO-1 and adenosine-related compounds; and MHC class I.
Collapse
|
26
|
Wu Z, Tan J, Zhuang Y, Zhong M, Xiong Y, Ma J, Yang Y, Gao Z, Zhao J, Ye Z, Zhou H, Zhu Y, Lu H, Hong X. Identification of crucial genes of pyrimidine metabolism as biomarkers for gastric cancer prognosis. Cancer Cell Int 2021; 21:668. [PMID: 34906153 PMCID: PMC8670209 DOI: 10.1186/s12935-021-02385-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Metabolic reprogramming has been reported in various kinds of cancers and is related to clinical prognosis, but the prognostic role of pyrimidine metabolism in gastric cancer (GC) remains unclear. Methods Here, we employed DEG analysis to detect the differentially expressed genes (DEGs) in pyrimidine metabolic signaling pathway and used univariate Cox analysis, Lasso-penalizes Cox regression analysis, Kaplan–Meier survival analysis, univariate and multivariate Cox regression analysis to explore their prognostic roles in GC. The DEGs were experimentally validated in GC cells and clinical samples by quantitative real-time PCR. Results Through DEG analysis, we found NT5E, DPYS and UPP1 these three genes are highly expressed in GC. This conclusion has also been verified in GC cells and clinical samples. A prognostic risk model was established according to these three DEGs by Univariate Cox analysis and Lasso-penalizes Cox regression analysis. Kaplan–Meier survival analysis suggested that patient cohorts with high risk score undertook a lower overall survival rate than those with low risk score. Stratified survival analysis, Univariate and multivariate Cox regression analysis of this model confirmed that it is a reliable and independent clinical factor. Therefore, we made nomograms to visually depict the survival rate of GC patients according to some important clinical factors including our risk model. Conclusion In a word, our research found that pyrimidine metabolism is dysregulated in GC and established a prognostic model of GC based on genes differentially expressed in pyrimidine metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02385-x.
Collapse
Affiliation(s)
- Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yifan Zhuang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, 361000, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yubo Xiong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, 361000, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China
| | - Jingsong Ma
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, 361000, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China
| | - Yan Yang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiang An South Road, Xiamen, 361102, China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, 530000, China
| | - Jiabao Zhao
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, 361000, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China
| | - Zhijian Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China.,National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, 530000, China
| | - Huiwen Zhou
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, 361000, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Haijie Lu
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, 361102, China
| | - Xuehui Hong
- School of Medicine, Guangxi University, Nanning, 530004, China. .,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, 361000, China. .,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubin South Road, Xiamen, 361004, Fujian, China.
| |
Collapse
|
27
|
Yang H, Ma W, Sun B, Fan L, Xu K, Hall SRR, Al-Hurani MF, Schmid RA, Peng RW, Hida T, Wang Z, Yao F. Smoking signature is superior to programmed death-ligand 1 expression in predicting pathological response to neoadjuvant immunotherapy in lung cancer patients. Transl Lung Cancer Res 2021; 10:3807-3822. [PMID: 34733630 PMCID: PMC8512473 DOI: 10.21037/tlcr-21-734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Background There is a paucity of biomarkers that can predict the degree of pathological response [e.g., pathological complete response (pCR) or major response (pMR)] to immunotherapy. Neoadjuvant immunotherapy provides an ideal setting for exploring responsive biomarkers because the pathological responses can be directly and accurately evaluated. Methods We retrospectively collected the clinicopathological characteristics and treatment outcomes of non-small cell lung cancer (NSCLC) patients who received neoadjuvant immunotherapy or chemo-immunotherapy followed by surgery between 2018 and 2020 at a large academic thoracic cancer center. Clinicopathological factors associated with pathological response were analyzed. Results A total of 39 patients (35 males and 4 females) were included. The most common histological subtype was lung squamous cell carcinoma (LUSC) (n=28, 71.8%), followed by lung adenocarcinoma (LUAD) (n=11, 28.2%). After neoadjuvant treatment, computed tomography (CT) scan-based evaluation showed poor agreement with the postoperatively pathological examination (weighted kappa =0.0225; P=0.795), suggesting the poor performance of CT scans in evaluating the response to immunotherapy. Importantly, we found that the smoking signature displayed a better performance than programmed death-ligand 1 (PD-L1) expression in predicting the pathological response (area under the curve: 0.690 vs. 0.456; P=0.0259), which might have resulted from increased tumor mutational burden (TMB) and/or microsatellite instability (MSI) relating to smoking exposure. Conclusions These findings suggest that CT scan-based evaluation is not able to accurately reflect the pathological response to immunotherapy and that smoking signature is a superior marker to PD-L1 expression in predicting the benefit of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Ma
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Beibei Sun
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liwen Fan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sean R R Hall
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Mohammad Faisal Al-Hurani
- Department of General and Special Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Toyoaki Hida
- Lung Cancer Center, Central Japan International Medical Center, Minokamo, Gifu, Japan
| | - Zhexin Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Liu S, Li D, Liu J, Wang H, Horecny I, Shen R, Zhang R, Wu H, Hu Q, Zhao P, Zhang F, Yan Y, Feng J, Zhuang L, Li J, Zhang L, Tao W. A Novel CD73 Inhibitor SHR170008 Suppresses Adenosine in Tumor and Enhances Anti-Tumor Activity with PD-1 Blockade in a Mouse Model of Breast Cancer. Onco Targets Ther 2021; 14:4561-4574. [PMID: 34466002 PMCID: PMC8403083 DOI: 10.2147/ott.s326178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cells, and promote anti-PD-1 mAb therapy-induced immune escape. Consequently, developing a CD73 inhibitor as monotherapy and a potential beneficial combination partner with immune-checkpoint inhibitors needs investigation. Methods CD73 inhibitors were evaluated in vitro with soluble and membrane-bound CD73 enzymes, as well as its PD biomarker responses in human peripheral blood mononuclear cells (PBMC) by flow cytometry and ELISA. The binding modes of the molecules were analyzed via molecular modeling. The anti-tumor activity and synergistic effect of SHR170008 in combination with anti-PD-1 mAb were evaluated in a syngeneic mouse breast cancer model. Results SHR170008 was discovered during the initial structural modifications on the link between the ribose and the α-phosphate of AMPCP, which significantly improved the stability of the compound confirmed by the metabolite identification study. Further modifications on the adenine base of AMPCP improved the potency due to forming stronger interactions with CD73 protein. It exhibited potent inhibitory activities on soluble and endogenous membrane-bound CD73 enzymes, and induced IFNγ production, reversed AMP-suppressed CD25+ and CD8+/CD25+ expression, and enhanced granzyme B production on CD8+ T cells in human PBMC. SHR170008 showed dose-dependent anti-tumor efficacy with suppression of adenosine in the tumors in EMT6 mouse breast tumor model. The increase of adenosine in tumor tissue by anti-PD-1 mAb alone was suppressed by SHR170008 in the combination groups. Simultaneous inhibition of CD73 and PD-1 neutralization synergistically enhanced antitumor immunity and biomarkers in response, and exposures of SHR170008 were correlated with the efficacy readouts. Conclusion Our findings suggest that CD73 may serve as an immune checkpoint by generating adenosine, which suppresses the antitumor activity of anti-PD-1 mAb, and inhibition of CD73 may be a potential beneficial combination partner with immune-checkpoint inhibitors to improve their therapeutic outcomes in general.
Collapse
Affiliation(s)
- Suxing Liu
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Di Li
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Jian Liu
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Huiyun Wang
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Ivana Horecny
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Ru Shen
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Rumin Zhang
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Heping Wu
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Qiyue Hu
- Department of Molecular Modeling, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| | - Peng Zhao
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Fengqi Zhang
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Yinfa Yan
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Jun Feng
- Department of Process Chemistry, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| | - Linghang Zhuang
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Jing Li
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Lianshan Zhang
- R&D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| | - Weikang Tao
- R&D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| |
Collapse
|
29
|
Ploeg EM, Ke X, Britsch I, Hendriks MAJM, Van der Zant FA, Kruijff S, Samplonius DF, Zhang H, Helfrich W. Bispecific antibody CD73xEpCAM selectively inhibits the adenosine-mediated immunosuppressive activity of carcinoma-derived extracellular vesicles. Cancer Lett 2021; 521:109-118. [PMID: 34464670 DOI: 10.1016/j.canlet.2021.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) carry potent immunosuppressive factors that affect the antitumor activities of immune cells. A significant part of the immunoinhibitory activity of EVs is attributable to CD73, a GPI-anchored ecto-5'-nucleotidase involved in the conversion of tumor-derived proinflammatory extracellular ATP (eATP) to immunosuppressive adenosine (ADO). The CD73-antagonist antibody oleclumab inhibits cell surface-exposed CD73 and is currently undergoing clinical testing for cancer immunotherapy. However, a strategy to selectively inhibit CD73 exposed on EVs is not available. Here, we present a novel bispecific antibody (bsAb) CD73xEpCAM designed to bind with high affinity the common EV surface marker EpCAM and concurrently inhibit CD73. Unlike oleclumab, bsAb CD73xEpCAM potently inhibited the immunosuppressive activity of EVs from CD73pos/EpCAMpos carcinoma cell lines and patient-derived colorectal cancer cells. Taken together, selective blockade of EV-exposed CD73 by bsAb CD73xEpCAM may be useful as an alternate or complementary targeted approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Emily M Ploeg
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands
| | - Xiurong Ke
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands; Shantou University Medical College, Shantou, Guangdong, China
| | - Isabel Britsch
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands
| | - Mark A J M Hendriks
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands
| | - Femke A Van der Zant
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands
| | - Schelto Kruijff
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands
| | - Douwe F Samplonius
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands
| | - Hao Zhang
- Institute of Precision Cancer and Pathology, Department of Pathology, School of Medicine, Department of General Surgery, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
| | - Wijnand Helfrich
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology, Groningen, the Netherlands.
| |
Collapse
|
30
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Brauneck F, Haag F, Woost R, Wildner N, Tolosa E, Rissiek A, Vohwinkel G, Wellbrock J, Bokemeyer C, Schulze zur Wiesch J, Ackermann C, Fiedler W. Increased frequency of TIGIT +CD73-CD8 + T cells with a TOX + TCF-1low profile in patients with newly diagnosed and relapsed AML. Oncoimmunology 2021; 10:1930391. [PMID: 34211801 PMCID: PMC8218695 DOI: 10.1080/2162402x.2021.1930391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 10/30/2022] Open
Abstract
The inhibitory receptor TIGIT, as well as theectonucleotidases CD39 and CD73 constitute potential exhaustion markers for T cells. Detailed analysis of these markers can shed light into dysregulation of the T-cell response in acute myeloid leukemia (AML) and will help to identify potential therapeutic targets. The phenotype and expression of transcription factors was assessed on different T-cell populations derived from peripheral blood (PB, n = 38) and bone marrow (BM, n = 43). PB and BM from patients with AML diagnosis, in remission and at relapse were compared with PB from healthy volunteers (HD) (n = 12) using multiparameter flow cytometry. An increased frequency of terminally differentiated (CD45R-CCR7-)CD8+ T cells was detected in PB and BM regardless of the disease state. Moreover, we detected an increased frequency of two distinct T-cell populations characterized by the co-expression of PD-1 or CD39 on TIGIT+CD73-CD8+ T cells in newly diagnosed and relapsed AML in comparison to HDs. In contrast to the PD-1+TIGIT+CD73-CD8+ T-cell population, the frequency of CD39+TIGIT+CD73-CD8+ T cells was normalized in remission. PD-1+- and CD39+TIGIT+CD73-CD8+ T cells exhibited additional features of exhaustion by decreased expression of CD127 and TCF-1 and increased intracellular expression of the transcription factor TOX. CD8+ T cells in AML exhibit a key signature of two subpopulations, PD-1+TOX+TIGIT+CD73-CD8+- and CD39+TOX+TIGIT+CD73-CD8+ T cells that were increased at different stages of the disease. These results provide a rationale to analyze TIGIT blockade in combination with inhibition of the purinergic signaling and depletion of TOX to improve T-cell mediated cytotoxicity in AML. Abbreviations: AML: Acute myeloid leukemia; pAML: newly diagnosed AML; rAML: relapse AML; lrAML: AML in remission; HD: healthy donor; PB: peripheral blood; BM: bone marrow; TIGIT: T-cell immunoreceptor with Ig and ITIM domains; PD-1: Programmed cell death protein 1; CD73: ecto-5'-nucleotidase; CD39: ectonucleoside triphosphate diphosphohydrolase 1; ATP: adenosine triphosphate; ADO: adenosine; CD127: interleukin-7 receptor; CAR-T cell: chimeric antigen receptor T cell; TCF-1: transcription factor T-cell factor 1; TOX: Thymocyte selection-associated high mobility group box protein; NFAT: nuclear factor of activated T cells; NA: Naïve; CM: Central Memory; EM Effector Memory; EMRA: Terminal Effector Memory cells; FMO: Fluorescence minus one; PVR: poliovirus receptor; PVRL2: poliovirus receptor-related 2; IFN-γ: Interferon-γ; IL-2: interleukin-2; MCF: multiparametric flow cytometry; TNFα: Tumornekrosefaktor α; RT: room temperature.
Collapse
Affiliation(s)
- F. Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - R. Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N. Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E. Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - A. Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - G. Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C. Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C. Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W. Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Rosemblatt MV, Parra-Tello B, Briceño P, Rivas-Yáñez E, Tucer S, Saavedra-Almarza J, Hörmann P, Martínez BA, Lladser Á, Rosemblatt M, Cekic C, Bono MR, Sauma D. Ecto-5'-Nucleotidase (CD73) Regulates the Survival of CD8+ T Cells. Front Cell Dev Biol 2021; 9:647058. [PMID: 33928082 PMCID: PMC8076893 DOI: 10.3389/fcell.2021.647058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Ecto-5′-nucleotidase (CD73) is an enzyme present on the surface of tumor cells whose primary described function is the production of extracellular adenosine. Due to the immunosuppressive properties of adenosine, CD73 is being investigated as a target for new antitumor therapies. We and others have described that CD73 is present at the surface of different CD8+ T cell subsets. Nonetheless, there is limited information as to whether CD73 affects CD8+ T cell proliferation and survival. In this study, we assessed the impact of CD73 deficiency on CD8+ T cells by analyzing their proliferation and survival in antigenic and homeostatic conditions. Results obtained from adoptive transfer experiments demonstrate a paradoxical role of CD73. On one side, it favors the expression of interleukin-7 receptor α chain on CD8+ T cells and their homeostatic survival; on the other side, it reduces the survival of activated CD8+ T cells under antigenic stimulation. Also, upon in vitro antigenic stimulation, CD73 decreases the expression of interleukin-2 receptor α chain and the anti-apoptotic molecule Bcl-2, findings that may explain the reduced CD8+ T cell survival observed in this condition. These results indicate that CD73 has a dual effect on CD8+ T cells depending on whether they are subject to an antigenic or homeostatic stimulus, and thus, special attention should be given to these aspects when considering CD73 blockade in the design of novel antitumor therapies.
Collapse
Affiliation(s)
- Mariana V Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Brian Parra-Tello
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elizabeth Rivas-Yáñez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Suat Tucer
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pilar Hörmann
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Brandon A Martínez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Álvaro Lladser
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X. If small molecules immunotherapy comes, can the prime be far behind? Eur J Med Chem 2021; 218:113356. [PMID: 33773287 DOI: 10.1016/j.ejmech.2021.113356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Anti-cancer immunotherapy, which includes cellular immunotherapy, immune checkpoint inhibitors and cancer vaccines, has transformed the treatment strategies of several malignancies in the past decades. Immune checkpoints blockade (ICB) is the most commonly tested therapy and has the potential to induce a durable immune response in different types of cancers. However, all approved immune checkpoint inhibitors (ICIs) are monoclonal antibodies (mAbs), which are fraught with disadvantages including lack of oral bioavailability, prolonged tissue retention and poor membrane permeability. Therefore, the research focus has shifted to developing small molecule inhibitors to obviate the limitations of mAbs. Given the complexity of the tumor micro-environment (TME), the combination of ICIs with various small molecule agonists/inhibitors are currently being tested in clinical trials to improve treatment outcomes and prevent tumor recurrence. In this review, we have summarized the mechanisms and therapeutic potential of several molecular targets, along with the current status of small molecule inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyan Yang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), PR China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, PR China
| | - Shengquan Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Center of Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
34
|
Wang Y, Wang C, Zhu Y, Zhang Y, Chen B, Wu Y, Yao J, Miao Z. Discovery of natural product ellagic acid as a potent CD73 and CD39 dual inhibitor. Bioorg Med Chem Lett 2021; 34:127758. [PMID: 33359608 DOI: 10.1016/j.bmcl.2020.127758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/18/2022]
Abstract
The ATP-adenosine pathway has been recently identified as an attractive immune-oncology target and several drug candidates have been entered clinic trials. Inspired by the report of the first small-molecule CD73inhibitor AB680, we describe the discovery of natural product ellagic acid as a dual CD73 and CD39 inhibitor with an IC50 value of 1.85 ± 0.21 μM and 0.50 ± 0.22 μM, respectively. The result of cytotoxicity assays indicated that ellagic acid is a valuable lead compound with low cytotoxicity effect for immune therapy.
Collapse
Affiliation(s)
- Yuan Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, People's Republic of China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yazhao Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yanming Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Baobao Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Jianzhong Yao
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, People's Republic of China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
35
|
Lee JS, Chowdhury N, Roberts JS, Yilmaz Ö. Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells. Virulence 2021; 11:414-429. [PMID: 32419582 PMCID: PMC7239027 DOI: 10.1080/21505594.2020.1763061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell surface nucleotide-metabolizing enzyme, ectonucleotidase-CD73, has emerged as a central component of the cellular homeostatic-machinery that counterbalances the danger-molecule (extracellular-ATP)-driven proinflammatory response in immune cells. While the importance of CD73 in microbial host fitness and symbiosis is gradually being unraveled, there remains a significant gap in knowledge of CD73 and its putative role in epithelial cells. Here, we depict a novel host-pathogen adaptation mechanism where CD73 takes a center role in the intracellular persistence of Porphyromonas gingivalis, a major colonizer of oral mucosa, using human primary gingival epithelial cell (GEC) system. Temporal analyses revealed, upon invasion into the GECs, P. gingivalis can significantly elevate the host-surface CD73 activity and expression. The enhanced and active CD73 significantly increases P. gingivalis intracellular growth in the presence of substrate-AMP and simultaneously acts as a negative regulator of reactive oxygen species (ROS) generation upon eATP treatment. The inhibition of CD73 by siRNA or by a specific inhibitor markedly increases ROS production. Moreover, CD73 and P. gingivalis cross-signaling significantly modulates pro-inflammatory interleukin-6 (IL-6) in the GECs. Conversely, exogenous treatment of the infected GECs with IL-6 suppresses the intracellular bacteria via amplified ROS generation. However, the decreased bacterial levels can be restored by overexpressing functionally active CD73. Together, these findings illuminate how the local extracellular-purine-metabolism, in which CD73 serves as a core molecular switch, can alter intracellular microbial colonization resistance. Further, host-adaptive pathogens such as P. gingivalis can target host ectonucleotidases to disarm specific innate defenses for successful intracellular persistence in mucosal epithelia.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
36
|
Almquist DR, Ahn DH, Bekaii-Saab TS. The Role of Immune Checkpoint Inhibitors in Colorectal Adenocarcinoma. BioDrugs 2021; 34:349-362. [PMID: 32246441 DOI: 10.1007/s40259-020-00420-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, immune checkpoint inhibitors (ICI) have proven to be promising agents in a number of solid tumor malignancies. Pembrolizumab and nivolumab are ICIs that target programmed cell death protein 1 and both have been approved by the US Food and Drug Administration for the treatment of microsatellite instability-high/DNA mismatch repair deficient (MSI-H/dMMR) colorectal cancer (CRC). In MSI-H/dMMR CRC, these agents were found to have considerable antitumor activity and are now used in the treatment of this disease. However, MSI-H/dMMR tumors account for only 5% of metastatic CRC and the remaining patients are identified as being microsatellite stable/DNA mismatch repair proficient (MSS/pMMR). In MSS/pMMR CRC, ICIs were found to have no antitumor activity and they are not currently used in the treatment of the disease. However, ongoing research is expanding our knowledge of how the human immune system interacts with cancer cells. Identifying mechanisms to improve our immune response to MSS/pMMR CRC is of utmost importance. In this review, we discuss available clinical data and the emerging role of immune-based strategies to overcome the resistance to ICI therapy in the treatment of MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daniel R Almquist
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Daniel H Ahn
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
37
|
Stefano JE, Lord DM, Zhou Y, Jaworski J, Hopke J, Travaline T, Zhang N, Wong K, Lennon A, He T, Bric-Furlong E, Cherrie C, Magnay T, Remy E, Brondyk W, Qiu H, Radošević K. A highly potent CD73 biparatopic antibody blocks organization of the enzyme active site through dual mechanisms. J Biol Chem 2020; 295:18379-18389. [PMID: 33122192 PMCID: PMC7939394 DOI: 10.1074/jbc.ra120.012395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
The dimeric ectonucleotidase CD73 catalyzes the hydrolysis of AMP at the cell surface to form adenosine, a potent suppressor of the immune response. Blocking CD73 activity in the tumor microenvironment can have a beneficial effect on tumor eradication and is a promising approach for cancer therapy. Biparatopic antibodies binding different regions of CD73 may be a means to antagonize its enzymatic activity. A panel of biparatopic antibodies representing the pairwise combination of 11 parental monoclonal antibodies against CD73 was generated by Fab-arm exchange. Nine variants vastly exceeded the potency of their parental antibodies with ≥90% inhibition of activity and subnanomolar EC50 values. Pairing the Fabs of parents with nonoverlapping epitopes was both sufficient and necessary whereas monovalent antibodies were poor inhibitors. Some parental antibodies yielded potent biparatopics with multiple partners, one of which (TB19) producing the most potent. The structure of the TB19 Fab with CD73 reveals that it blocks alignment of the N- and C-terminal CD73 domains necessary for catalysis. A separate structure of CD73 with a Fab (TB38) which complements TB19 in a particularly potent biparatopic shows its binding to a nonoverlapping site on the CD73 N-terminal domain. Structural modeling demonstrates a TB19/TB38 biparatopic antibody would be unable to bind the CD73 dimer in a bivalent manner, implicating crosslinking of separate CD73 dimers in its mechanism of action. This ability of a biparatopic antibody to both crosslink CD73 dimers and fix them in an inactive conformation thus represents a highly effective mechanism for the inhibition of CD73 activity.
Collapse
Affiliation(s)
- James E Stefano
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Dana M Lord
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Yanfeng Zhou
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA.
| | - Julie Jaworski
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Joern Hopke
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Tara Travaline
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Ningning Zhang
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Karen Wong
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Amanda Lennon
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Timothy He
- Translational Sciences, Sanofi R&D, Cambridge, Massachusetts, USA
| | | | | | - Tristan Magnay
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | | | - William Brondyk
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | - Huawei Qiu
- Biologics Research, Sanofi R&D Framingham, Massachusetts, USA
| | | |
Collapse
|
38
|
Chandran N, Iyer M, Siama Z, Vellingiri B, Narayanasamy A. Purinergic signalling pathway: therapeutic target in ovarian cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The lack of early diagnostic tools and the development of chemoresistance have made ovarian cancer (OC) one of the deadliest gynaecological cancers. The tumour microenvironment is characterised by the extracellular release of high levels of ATP, which is followed by the activation of P1 adenosinergic and P2 purinergic signalling systems. The sequential hydrolysis of ATP by the ectonucleotidases CD39 and CD73 generates adenosine, which creates an immune suppressive microenvironment by inhibiting the T and NK cell responses via the A2A adenosine receptor.
Main body of the abstract
In OC, adenosine-induced pAMPK pathway leads to the inhibition of cell growth and proliferation, which offers new treatment options to prevent or overcome chemoresistance. The activation of P2Y12 and P2Y1 purinergic receptors expressed in the platelets promotes epithelial-mesenchymal transition (EMT). The inhibitors of these receptors will be the effective therapeutic targets in managing OC. Furthermore, research on these signalling systems indicates an expanding field of opportunities to specifically target the purinergic receptors for the treatment of OC.
Short conclusion
In this review, we have described the complex purinergic signalling mechanism involved in the development of OC and discussed the merits of targeting the components involved in the purinergic signalling pathway.
Collapse
|
39
|
Methylation of the NT5E Gene Is Associated with Poor Prognostic Factors in Breast Cancer. Diagnostics (Basel) 2020; 10:diagnostics10110939. [PMID: 33198064 PMCID: PMC7697174 DOI: 10.3390/diagnostics10110939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cluster of differentiation (CD) 73, which is encoded by the NT5E gene, regulates production of immunosuppressive adenosine and is an emerging checkpoint in cancer immunotherapy. Despite the significance of CD73 in immuno-oncology, the roles of the NT5E gene methylation in breast cancer have not been well-defined yet. Therefore, we aimed to investigate the prognostic significance of the NT5E gene methylation in breast cancer. The DNA methylation status of the NT5E gene was analyzed using pyrosequencing in breast cancer tissues. In addition, the levels of inflammatory markers and lymphocyte infiltration were evaluated. The mean methylation level of the NT5E gene was significantly higher in breast cancer than in normal breast tissues. In the analysis of relevance with clinicopathologic characteristics, the mean methylation levels of the NT5E gene were significantly higher in patients with large tumor size, high histologic grade, negative estrogen receptor expression, negative Bcl-2 expression, and premenopausal women. There was no difference in disease-free survival according to the methylation status of the NT5E gene. We found that the NT5E gene methylation was related to breast cancer development and associated with poor prognostic factors in breast cancer. Our results suggest that the NT5E gene methylation has potential as an epigenetic biomarker in breast cancer.
Collapse
|
40
|
Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, Tobin NP, Blake E, Seitz C, Thomas R, Wagner AK, Andersson J, de Boniface J, Bergh J, Murray S, Alici E, Childs R, Johansson M, Westerberg LS, Haglund F, Hartman J, Lundqvist A. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest 2020; 130:1185-1198. [PMID: 31770109 DOI: 10.1172/jci128895] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
High levels of ecto-5'-nucleotidase (CD73) have been implicated in immune suppression and tumor progression, and have also been observed in cancer patients who progress on anti-PD-1 immunotherapy. Although regulatory T cells can express CD73 and inhibit T cell responses via the production of adenosine, less is known about CD73 expression in other immune cell populations. We found that tumor-infiltrating NK cells upregulate CD73 expression and the frequency of these CD73-positive NK cells correlated with larger tumor size in breast cancer patients. In addition, the expression of multiple alternative immune checkpoint receptors including LAG-3, VISTA, PD-1, and PD-L1 was significantly higher in CD73-positive NK cells than in CD73-negative NK cells. Mechanistically, NK cells transport CD73 in intracellular vesicles to the cell surface and the extracellular space via actin polymerization-dependent exocytosis upon engagement of 4-1BBL on tumor cells. These CD73-positive NK cells undergo transcriptional reprogramming and upregulate IL-10 production via STAT3 transcriptional activity, suppressing CD4-positive T cell proliferation and IFN-γ production. Taken together, our results support the notion that tumors can hijack NK cells as a means to escape immunity and that CD73 expression defines an inducible population of NK cells with immunoregulatory properties within the tumor microenvironment.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emily Blake
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | - Ron Thomas
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | | - Jana de Boniface
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Surgery, Capio St. Goran's Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shannon Murray
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington, USA
| | | | - Richard Childs
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Lisa S Westerberg
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Laboratory, Södersjukhuset, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Huang MY, Jiang XM, Wang BL, Sun Y, Lu JJ. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Ther 2020; 219:107694. [PMID: 32980443 DOI: 10.1016/j.pharmthera.2020.107694] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has been approved as the standard-of-care for the treatment of non-small cell lung cancer (NSCLC). Yet, the population of patients who benefit from the treatment remains modest, some of whom would get relapsed and progressed eventually. Combination therapy has emerged as an effective way to broaden beneficiaries from PD-1/PD-L1 immunotherapy and overcome or delay the resistance. In this review, we discuss the PD-1/PD-L1 blockade in combination with conventional chemotherapy, targeted therapy or immunotherapy. Meanwhile, we illustrate their underlying mechanisms in regulating the process of the cancer-immunity cycle, providing the rationale for the PD-1/PD-L1 blockade-based combination therapy. The challenges of combination regimens are also addressed.
Collapse
Affiliation(s)
- Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bing-Lin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
42
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
43
|
Tumorigenesis and Progression As A Consequence of Hypoxic TME:A Prospective View upon Breast Cancer Therapeutic Targets. Exp Cell Res 2020; 395:112192. [PMID: 32738345 DOI: 10.1016/j.yexcr.2020.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Intratumoral hypoxia has a significant impact on the development and progression of breast cancer (BC). Rather than exerting limited regional impact, hypoxia create an aggressive macroenvironment for BC. Hypoxia-inducible factors-1(HIF-1) is extensively induced under hypoxia condition of BC, activating the transcription of multiple oncogenes. Thereinto, CD73 is the one which could be secreted into the microenvironment and is in favor of the growth, metastasis, resistance to therapies, as well as the stemness maintenance of BC. In this review, we address the significance of hypoxia/HIF-1/CD73 axis for BC, and provide a novel perspective into BC therapeutic strategies.
Collapse
|
44
|
Tahkola K, Ahtiainen M, Kellokumpu I, Mecklin JP, Laukkarinen J, Laakkonen J, Kenessey I, Jalkanen S, Salmi M, Böhm J. Prognostic impact of CD73 expression and its relationship to PD-L1 in patients with radically treated pancreatic cancer. Virchows Arch 2020; 478:209-217. [PMID: 32676968 PMCID: PMC7969575 DOI: 10.1007/s00428-020-02888-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022]
Abstract
Immune suppressing molecule CD73 is overexpressed in various cancers and associated with poor survival. Little is so far known about the predictive value of CD73 in pancreatic ductal adenocarcinoma (PDAC). The purpose of this study was to investigate the prognostic significance of CD73 in PDAC. The study material consisted of 110 radically treated patients for PDAC. Tissue microarray blocks were constructed and stained immunohistochemically using CD73 antibody. Staining intensity and numbers of stained tumour cells, inflammatory cells, stroma, and blood vessels were assessed. High-level CD73 expression in tumour cells was positively associated with PD-L1 expression, perineural invasion, and histopathological grade. CD73 positivity in tumour-infiltrating lymphocytes was significantly associated with lymph node metastasis. Lymphocytic CD73 positivity was also associated with staining positivity in both stroma and vascular structures. In addition, CD73 positivity in vascular structures and stroma were associated with each other. There were no significant associations between CD73 positive tumour cells and CD73 positivity in any other cell types. PD-L1 expression was associated with CD73 staining positivity in stroma (p = 0.007) and also with histopathological grade (p = 0.033) and T class (p = 0.016) of the primary tumour. CD73 positivity in tumour cells was significantly associated with poor disease-specific (p = 0.021) and overall survival (p = 0.016). In multivariate analysis, CD73 positivity in tumour cells was an independent negative prognostic factor together with histopathological grade, TNM stage, and low immune cell score. In conclusion, high CD73 expression in tumour cells is associated with poor survival in PDAC independently of the number of tumour-infiltrating lymphocytes or TNM stage.
Collapse
Affiliation(s)
- Kyösti Tahkola
- Department of Surgery, Central Finland Central Hospital, Keskussairaalantie 19, 40620, Jyväskylä, Finland. .,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Ilmo Kellokumpu
- Department of Surgery, Central Finland Central Hospital, Keskussairaalantie 19, 40620, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Central Finland Central Hospital, Keskussairaalantie 19, 40620, Jyväskylä, Finland.,Sport &Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Laukkarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Joni Laakkonen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Istvan Kenessey
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Central Hospital, Jyväskylä, Finland
| |
Collapse
|
45
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
46
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
47
|
Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071757. [PMID: 32630618 PMCID: PMC7409312 DOI: 10.3390/cancers12071757] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
One of the greatest challenges in the cancer immunotherapy field is the need to biologically rationalize and broaden the clinical utility of immune checkpoint inhibitors (ICIs). The balance between metabolism and immune response has critical implications for overcoming the major weaknesses of ICIs, including their lack of universality and durability. The last decade has seen tremendous advances in understanding how the immune system's ability to kill tumor cells requires the conspicuous metabolic specialization of T-cells. We have learned that cancer cell-associated metabolic activities trigger shifts in the abundance of some metabolites with immunosuppressory roles in the tumor microenvironment. Yet very little is known about the tumor cell-intrinsic metabolic traits that control the immune checkpoint contexture in cancer cells. Likewise, we lack a comprehensive understanding of how systemic metabolic perturbations in response to dietary interventions can reprogram the immune checkpoint landscape of tumor cells. We here review state-of-the-art molecular- and functional-level interrogation approaches to uncover how cell-autonomous metabolic traits and diet-mediated changes in nutrient availability and utilization might delineate new cancer cell-intrinsic metabolic dependencies of tumor immunogenicity. We propose that clinical monitoring and in-depth molecular evaluation of the cancer cell-intrinsic metabolic traits involved in primary, adaptive, and acquired resistance to cancer immunotherapy can provide the basis for improvements in therapeutic responses to ICIs. Overall, these approaches might guide the use of metabolic therapeutics and dietary approaches as novel strategies to broaden the spectrum of cancer patients and indications that can be effectively treated with ICI-based cancer immunotherapy.
Collapse
|
48
|
Panigrahi S, Bazdar DA, Albakri M, Ferrari B, Antonelli CJ, Freeman ML, Dubyak G, Zender C, Sieg SF. CD8 + CD73 + T cells in the tumor microenvironment of head and neck cancer patients are linked to diminished T cell infiltration and activation in tumor tissue. Eur J Immunol 2020; 50:2055-2066. [PMID: 32548862 DOI: 10.1002/eji.202048626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/07/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Recent studies have implicated a role for adenosine-dependent immunosuppression in head and neck tumor microenvironments. We describe expression of CD73, an enzyme critical to the generation of adenosine from extracellular AMP, in T cells and other cell types within human head and neck tumors. Flow cytometric analyses of tumor-infiltrating cells indicate that CD3+ cells are the predominant source of CD73 among immune infiltrating cells and that CD73 expression, especially among CD8+ T cells, is inversely related to indices of T cell infiltration and T cell activation in the microenvironment of head and neck tumors. We provide evidence that CD73 expression on peripheral T cells and levels of soluble CD73 in circulation are correlated with CD73 expression on CD8+ T cells in tumors. Moreover, fluorescent microscopy studies reveal that CD8+ CD73+ cells are observed in close proximity to tumor cells as well as in surrounding tissue. In vitro studies with peripheral blood T cells indicate that anti-CD3-stimulation causes loss of CD73 expression, especially among cells that undergo proliferation and that exogenous AMP can impair T cell proliferation, while sustaining CD73 expression. These data suggest that CD8+ CD73+ T cells may be especially important mediators of immunosuppression in human head and neck cancer.
Collapse
Affiliation(s)
- Soumya Panigrahi
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Douglas A Bazdar
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Marwah Albakri
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Taibah University, KSA, College of Applied Medical Sciences, Department of Medical Laboratory Technology
| | - Brian Ferrari
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Christopher J Antonelli
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Michael L Freeman
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - George Dubyak
- Case Western Reserve University School of Medicine, Department of Physiology and Biophysics, Cleveland, Ohio
| | - Chad Zender
- MED-Otolaryngology, University of Cincinnati, Cincinnati, Ohio
| | - Scott F Sieg
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| |
Collapse
|
49
|
Festag J, Thelemann T, Schell M, Raith S, Michel S, Jaschinski F, Klar R. Preventing ATP Degradation by ASO-Mediated Knockdown of CD39 and CD73 Results in A2aR-Independent Rescue of T Cell Proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:656-669. [PMID: 32739778 PMCID: PMC7393471 DOI: 10.1016/j.omtn.2020.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023]
Abstract
The adenosine axis contributes to the suppression of antitumor immune responses. The ectonucleotidase CD39 degrades extracellular adenosine triphosphate (ATP) to adenosine monophosphate (AMP), which is degraded to adenosine by CD73. Adenosine binds to, e.g., the A2a receptor (A2aR), which reportedly suppresses effector immune cells. We investigated effects of ATP, AMP, and adenosine analogs on T cell proliferation, apoptosis, and proinflammatory cytokine secretion. CD39 and CD73 expression were suppressed using antisense oligonucleotides (ASOs), and A2aR was blocked using small molecules. Addition of ATP to T cells reduced proliferation and induced apoptosis. Intriguingly, those effects were reverted by suppression of CD39 and/or CD73 expression but not A2aR inhibition. Adenosine analogs did not suppress proliferation but inhibited secretion of proinflammatory cytokines. Here, we suggest that suppression of T cell proliferation is not directly mediated by A2aR but by intracellular downstream metabolites of adenosine, as blockade of the equilibrative nucleoside transporter (ENT) or adenosine kinase rescued proliferation and prevented induction of apoptosis. In conclusion, adenosine might primarily affect cytokine secretion directly via adenosine receptors, whereas adenosine metabolites might impair T cell proliferation and induce apoptosis. Therefore, inhibition of CD39 and/or CD73 has evident advantages over A2aR blockade to fully revert suppression of antitumor immune responses by the adenosine axis.
Collapse
Affiliation(s)
- Julia Festag
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany
| | - Tamara Thelemann
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany
| | - Monika Schell
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany
| | - Stefanie Raith
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany
| | - Frank Jaschinski
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany
| | - Richard Klar
- Secarna Pharmaceuticals GmbH & Co. KG, 82152 Planegg/Martinsried, Germany.
| |
Collapse
|
50
|
Soleimani A, Farshchi HK, Mirzavi F, Zamani P, Ghaderi A, Amini Y, Khorrami S, Mashayekhi K, Jaafari MR. The therapeutic potential of targeting CD73 and CD73-derived adenosine in melanoma. Biochimie 2020; 176:21-30. [PMID: 32585229 DOI: 10.1016/j.biochi.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Abstract
The hypoxic environment of melanoma results in CD73 upregulation on the surface of various tumor microenvironment (TME) cells including tumor cells, stromal cells and infiltrated immune cells. Consequently, CD73 through both enzymatic and none enzymatic functions affect melanoma progression. Overaccumulation of CD73-derived adenosine through interaction with its four G coupled receptors (A1AR, A2AAR, A2BAR, and A3AR) mediate tumor growth, immune suppression, angiogenesis, and metastasis. This paper aims to comprehensively review the therapeutic potential of CD73 ectonucleotidase targeting in melanoma. To reach this goal, firstly, we summarize the structure, function, regulation, and clinical outcome of CD73 ectonucleotidase. Then, we depict the metabolism and signaling of CD73-derived adenosine along with its progressive role in development of melanoma. Furthermore, the therapeutic potentials of CD73 -adenosine axis targeting is assessed in both preclinical and clinical studies. Targeting CD73-derived adenosine via small molecule inhibitor or monoclonal antibodies studies especially in combination with immune checkpoint blockers including PD-1 and CTLA-4 have shown desirable results for management of melanoma in preclinical studies and several clinical trials have recently been started to evaluate the therapeutic potential of CD73-derived adenosine targeting in solid tumors. Indeed, targeting of CD73-derived adenosine signaling could be considered as a new therapeutic target in melanoma.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helale Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|