1
|
Aouaichia K, Grara N, Bazri KE, Barbieri E, Mamine N, Hemmami H, Capaldo A, Rosati L, Bellucci S. Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life (Basel) 2024; 14:1209. [PMID: 39337991 PMCID: PMC11433119 DOI: 10.3390/life14091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The present study used the adult earthworm Aporrectodea trapezoides as a bioindicator species to look into the possible dangers of ammonium sulfate (AS) fertilizer. Two complementary toxicity tests were conducted to determine the LC50values, growth rate inhibition, morphological alterations, and histopathological texture of worms. The lethality test included four increasing concentrations of AS fertilizer (ranging from 2500 to 7500 mg/kg of dry soil weight (d.w.)), while sub-lethal concentrations were based on 10%, 30%, 40%, and 50% of the 14-day median lethal concentration (LC50), with a control group included for both tests. The LC(50) values for AS fertilizer were significantly higher at 7 days (4831.13 mg/kg d.w.) than at 14 days (2698.67 mg/kg d.w.) of exposure. Notably, earthworms exhibited significant growth rate inhibition under exposure to various concentrations and time durations (14/28 exposure days). Morphological alterations such as clitellar swelling, bloody lesions, whole body coiling and constriction, body strangulation, and fragmentation were accentuated steadily, with higher concentrations. Histopathological manifestations included severe injuries to the circular and longitudinal muscular layers, vacuolation, muscle layer atrophy, degradation of the chloragogenous tissue in the intestine, collapsed digestive epithelium of the pharynx with weak reserve inclusion, and fibrosis of blood vessels. These effects were primarily influenced by increasing concentrations of fertilizer and time exposure. The study highlights the strong relationship between concentration and exposure time responses and underscores the potential of A. trapezoides earthworms as valuable biological control agents against acidic ammonium sulfate fertilizer. Importantly, this research contributes to the use of such biomarkers in evaluating soil toxicity and the biological control of environmental risk assessment associated with chemical fertilizers.
Collapse
Affiliation(s)
- Khaoula Aouaichia
- Laboratory Sciences and Technical Water and Environment, Department of Biology, Faculty of Natural Sciences and Life, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk Ahras 41000, Algeria;
| | - Nedjoud Grara
- Department of Biology, Faculty of Natural and Life Sciences and Earth and Universe Sciences, University of 8 Mai 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
| | - Kamel Eddine Bazri
- Laboratory of Ecology, Department of Plant Biology and Ecology, University Constantine 1, Constantine 25017, Algeria;
| | - Edison Barbieri
- Instituto de Pesca, Governo do Estado de São Paulo, São Paulo 01027-000, Brazil;
| | - Nedjma Mamine
- Laboratory of Aquatic and Terrestrial Ecosystems, Department of Biology, Faculty of Natural Sciences and Life, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk Ahras 41000, Algeria;
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria;
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy; (A.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy; (A.C.); (L.R.)
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| |
Collapse
|
2
|
Rawat J, Kumar V, Ahlawat P, Tripathi LK, Tomar R, Kumar R, Dholpuria S, Gupta PK. Current Trends on the Effects of Metal-Based Nanoparticles on Microbial Ecology. Appl Biochem Biotechnol 2023; 195:6168-6182. [PMID: 36847986 DOI: 10.1007/s12010-023-04386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The growing field of nanotechnology and its many applications have led to the irregular release of nanoparticles (NPs), with unintended effects on the environment and continued contamination of water bodies. Metallic NPs are used more frequently in extreme environmental conditions due to their higher efficiency, which attracts more attention in various applications. Due to improper pre-treatment of biosolids, inefficient wastewater treatment practices, and other unregulated agricultural practices continue to contaminate the environment. In particular, the uncontrolled use of NPs in various industrial applications has led to damage to the microbial flora and caused irreplaceable damage to animals and plants. This study focuses on the effect of different doses, types, and compositions of NP on the ecosystem. The review also mentions the impact of various metallic NPs on microbial ecology, their interactions with microorganisms, ecotoxicity studies, and dosage evaluation of the NPs, mainly focused on the review article. However, further research is still needed to understand the complexity of interactions between NPs and microbes in soil and aquatic ecosystems.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Vikas Kumar
- School of Engineering, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | | | - Lokesh Kumar Tripathi
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Richa Tomar
- Department of Chemistry and Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sunny Dholpuria
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India.
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| |
Collapse
|
3
|
Kanniah P, Balakrishnan S, Subramanian ER, Sudalaimani DK, Radhamani J, Sivasubramaniam S. Preliminary investigation on the impact of engineered PVP-capped and uncapped silver nanoparticles on Eudrilus eugeniae, a terrestrial ecosystem model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25239-25255. [PMID: 35829879 DOI: 10.1007/s11356-022-21898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Recently, the production of silver nanoparticles and their commercial products has generated increased concern and caused a hazardous impact on the ecosystem. Therefore, the present study examines the toxic effect of chemically engineered silver nanoparticles (SNPs) and polyvinylpyrrolidone-capped silver nanoparticles (PVP-SNPs) on the earthworm Eudrilus eugeniae (E. eugeniae). The SNPs and PVP-SNPs were synthesized, and their characterization was determined by UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The toxicity of SNPs and PVP-SNPs was evaluated using E. eugeniae. The present result indicates that the lethal concentration (LC50) of SNPs and PVP-SNPs were achieved at 22.66 and 43.27 μg/mL, respectively. The activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) was increased in SNPs compared to PVP-SNPs. Importantly, we have noticed that the E. eugeniae can amputate its body segments after exposure to SNPs and PVP-SNPs. This exciting phenomenon is named "autotomy," which describes a specific feature of E. eugeniae to escape from the toxic contaminants and predators. Accordingly, we have suggested this unique behavior may facilitate to assess the toxic effect of SNPs and PVP-SNPs in E. eugeniae.
Collapse
Affiliation(s)
- Paulkumar Kanniah
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
| | - Subburathinam Balakrishnan
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Elaiya Raja Subramanian
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Dinesh Kumar Sudalaimani
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Jila Radhamani
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
4
|
Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 2023; 98:747-774. [PMID: 36639936 DOI: 10.1111/brv.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), 1068 Xueyuan Blvd, 518071, Shenzhen, China.,Institute of Protein Biochemistry and Cell Biology (IBBC), CNR, Via Pietro Castellino 111, 80131, Naples, Italy.,Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80132, Napoli, Italy.,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR, SZN), Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubliana, Slovenia
| | - Birgit Kemmerling
- ZMBP - Center for Plant Molecular Biology, Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
5
|
Bakr Z, Abdel-Wahab M, Thabet AA, Hamed M, El-Aal MA, Saad E, Faheem M, Sayed AEDH. Toxicity of silver, copper oxide, and polyethylene nanoparticles on the earthworm Allolobophora caliginosa using multiple biomarkers. APPLIED SOIL ECOLOGY 2023; 181:104681. [DOI: 10.1016/j.apsoil.2022.104681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
6
|
El-Kady MM, Ansari I, Arora C, Rai N, Soni S, Kumar Verma D, Singh P, El Din Mahmoud A. Nanomaterials: A Comprehensive Review of Applications, Toxicity, Impact, and Fate to Environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Shobana N, Prakash P, Samrot AV, Saigeetha S, Sathiyasree M, Thirugnanasambandam R, Sridevi V, Basanta Kumar M, Gokul Shankar S, Dhiva S, Remya R. Nanotoxicity studies of Azadirachta indica mediated silver nanoparticles against Eudrilus eugeniae, Danio rerio and its embryos. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Fang J, Wang B, Fang K, Liu T, Yan S, Wang X. Assessing the bioavailability and biotoxicity of spiromesifen and its main metabolite spiromesifen-enol (M01) reveals the defense mechanisms of earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151910. [PMID: 34838556 DOI: 10.1016/j.scitotenv.2021.151910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
As a promising acaricide and potentially hazardous material, the defense mechanisms of non-target organisms to its exposure are unknown. This study investigates the bioavailability and biotoxicity of spiromesifen and spiromesifen-enol (M01), its main metabolite, in Eisenia fetida. The results showed that M01 was more persistent in the soil environment and E. fetida than spiromesifen. Transcriptome analysis indicated that the spiromesifen- and M01-induced differentially expressed genes (DEGs) were mainly enriched in lysosomal and phagosomal pathways. Analysis of the key common DEGs showed that both spiromesifen and M01 significantly influenced the lysosomes, phagosomes, antioxidant systems, and detoxification systems. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that spiromesifen and M01 damaged E. fetida epidermis and enhanced lysosomal and phagosomal activities. Significant oxidative stress effects were observed at the end of exposure. The hydroxyl free radical (·OH-) content and neutral red retention time (NRRT) could serve as sensitive early biomarkers to predict their pollution. These results revealed the synergistic effects of the epidermis, lysosomes, phagosomes, antioxidant systems, and detoxification system in resisting spiromesifen- and M01-induced damage, which could contribute to the defense mechanisms of non-target organisms against these pollutants.
Collapse
Affiliation(s)
- Jianwei Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Binning Wang
- College of Land Science and Technology, China Agricultural University (CAU), Beijing 100083, China
| | - Kuan Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Tong Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| | - Saihong Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiuguo Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| |
Collapse
|
9
|
Tang W, Wang G, Zhang S, Li T, Xu X, Deng O, Luo L, He Y, Zhou W. Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118766. [PMID: 34973377 DOI: 10.1016/j.envpol.2021.118766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Rare earth elements inevitably release into the soil due to their widespread application. However, it is unclear how they affect the soil animals. The study surveyed the growth and physiological responses of earthworm (Eisenia fetida) exposed into artificial soils spiked with La, Ce, and their mixture, and actual mine soil collected from an abandoned La-Ce mining area (Mianning, Sichuan). The results showed that the 1000-1200 mg/kg combined exposure in two soils induced significant histopathological and phenotypic changes of earthworms. Concentration significantly affected the superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and protein of E. fetida and the effects differentiated with the prolonging duration. These indicators were negatively affected under the La stress ≥800 mg/kg (SOD, POD, and protein), the 1200 mg/kg (SOD), Ce stress ≥1000 mg/kg (protein), and the combination ≥800 mg/kg (SOD, POD) and ≥1000 mg/kg (protein). Artificial combination had -15.04% (SOD), 8.87% (POD), 5.64% (MDA), and -8.34% (protein) difference compared with the contamination soil, respectively. Overall, E. fetida respond sensitively under the La and Ce stress, the antioxidant defense system and the lipid peroxidation were stimulated, and the artificial soil might overestimate eco-toxicological effect.
Collapse
Affiliation(s)
- Wantong Tang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, PR China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, PR China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, PR China
| |
Collapse
|
10
|
Adeel M, Shakoor N, Hussain T, Azeem I, Zhou P, Zhang P, Hao Y, Rinklebe J, Rui Y. Bio-interaction of nano and bulk lanthanum and ytterbium oxides in soil system: Biochemical, genetic, and histopathological effects on Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125574. [PMID: 33756203 DOI: 10.1016/j.jhazmat.2021.125574] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The massive application of rare earth elements (REEs) in electronic industries cause their inevitable release into the environment; however, its effects on soil biota remain largely unaddressed. We investigated the E. fetida detoxification potential of nano and bulk La2O3 and Yb2O3 and their potential impact on biochemical and genetic markers at 50, 100, 200, 500 and 1000 mg kg-1 concentration. We found that earthworms bioremediate 3-15% La2O3 and Yb2O3 contaminated soil at low and medium levels, while this potential was limited at higher levels. Nano and bulk La2O3 and Yb2O3 treatment induced neurotoxicity in earthworm by inhibiting acetylcholinesterase by 49-65% and 22-36% at 500 and 1000 mg kg-1, respectively. Nano La2O3 proved to be highly detrimental, mainly through oxidative stress and subsequent failure of antioxidant system. Nano La2O3 and Yb2O3 at 100 mg kg-1 significantly down-regulated the expression of annetocin mRNA in the parental and progeny earthworms by 50% and 20%, which is crucial for earthworm reproduction. Similarly, expression level of heat shock protein 70 (HSP70) and metallothionein was significantly upregulated in both generations at medium exposure level. Histological observations showed that nano REEs at 200 mg kg-1 induced drastic changes in the intestinal epithelium and typhlosole of E. fetida. To date, our results enhance the understanding of interaction between REEs and earthworms.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- College of Veterinary Sciences, The University Agriculture Peshawar, 25000, Pakistan
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil, and Groundwater Management, Pauluskirchstraße7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Courtois P, Rorat A, Lemiere S, Levard C, Chaurand P, Grobelak A, Lors C, Vandenbulcke F. Accumulation, speciation and localization of silver nanoparticles in the earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3756-3765. [PMID: 32270459 DOI: 10.1007/s11356-020-08548-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The use of silver nanoparticles (AgNPs) in agriculture and many consumer products has led to a significant release of Ag in the environment. Although Ag toxicity in terrestrial organisms has been studied extensively, very little is known about the accumulation capacity and coping mechanisms of organisms in Ag-contaminated soil. In this context, we exposed Eisenia fetida earthworms to artificial OECD soil spiked with a range of concentrations of Ag (AgNPs or AgNO3). The main aims were to (1) identify the location and form of accumulation of Ag in the exposed earthworms and (2) better understand the physiological mechanisms involved in Ag detoxification. The results showed that similar doses of AgNPs or AgNO3 did not have the same effect on E. fetida survival. The two forms of Ag added to soil exhibited substantial differences in speciation at the end of exposure, but the Ag speciation and content of Ag in earthworms were similar, suggesting that biotransformation of Ag occurred. Finally, 3D images of intact earthworms obtained by X-ray micro-computed tomography revealed that Ag accumulated preferentially in the chloragogen tissue, coelomocytes, and nephridial epithelium. Thus, E. fetida bioaccumulates Ag, but a regulation mechanism limits its impact in a very efficient manner. The location of Ag in the organism, the competition between Ag and Cu, and the speciation of internal Ag suggest a link between Ag and the thiol-rich proteins that are widely present in these tissues, most probably metallothioneins, which are key proteins in the sequestration and detoxification of metals.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Christine Lors
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France.
| |
Collapse
|
12
|
Bodó K, Baranzini N, Girardello R, Kokhanyuk B, Németh P, Hayashi Y, Grimaldi A, Engelmann P. Nanomaterials and Annelid Immunity: A Comparative Survey to Reveal the Common Stress and Defense Responses of Two Sentinel Species to Nanomaterials in the Environment. BIOLOGY 2020; 9:biology9100307. [PMID: 32977601 PMCID: PMC7598252 DOI: 10.3390/biology9100307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary Nanotechnology is a dynamically developing field producing large amounts of nanocompounds that are applied in industry, daily life, and health care. During production, use, and waste these materials could end up in water or soil. Large scale contaminations of our environment are a threat to public health. Pollution can have harmful effects on the immune system, as revealed by numerous studies in humans and other vertebrates. The relative simplicity of invertebrate immune functions offers potentially sensitive and accessible means of monitoring the effects and complex interactions of nanoparticles which ultimately affect host resistance. Among terrestrial and freshwater invertebrates, earthworms and leeches are the “keystone” species to evaluate the health of our ecosystems. In this review we compare the conserved stress and immune responses of these invertebrate model organisms toward nanoparticles. The obtained knowledge provides exciting insights into the conserved molecular and cellular mechanisms of nanomaterial-related toxicity in invertebrates and vertebrates. Understanding the unique characteristics of engineered nanoproducts and their interactions with biological systems in our environment is essential to the safe realization of these materials in novel biomedical applications. Abstract Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.
Collapse
Affiliation(s)
- Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Nicoló Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
- Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Bohdana Kokhanyuk
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark;
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
- Correspondence: (A.G.); (P.E.); Tel.: +39-0332-421-325 (A.G.); +36-72-536-288 (P.E.); Fax: +39-0332-421-326 (A.G.); +36-72-536-289 (P.E.)
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
- Correspondence: (A.G.); (P.E.); Tel.: +39-0332-421-325 (A.G.); +36-72-536-288 (P.E.); Fax: +39-0332-421-326 (A.G.); +36-72-536-289 (P.E.)
| |
Collapse
|
13
|
Dash SR, Kundu CN. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 2020; 14:253-260. [PMID: 32463015 PMCID: PMC8676294 DOI: 10.1049/iet-nbt.2019.0303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 09/29/2023] Open
Abstract
The ever-promising opportunities and the uses of NP in our life are increasing but their present and future potential risks on the animals, plants and microorganisms are not well discussed elsewhere. In this review, the authors have systematically discussed the toxic effect of the uses of NP on animals, plants and microorganisms including human health. They have also discussed about the bioaccumulation of these NP in the food chain. Finally, they have provided some possible suggestions for the uses of NP to reduce the detrimental effect on the environment.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India.
| |
Collapse
|
14
|
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121974. [PMID: 32062374 DOI: 10.1016/j.jhazmat.2019.121974] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 05/02/2023]
Abstract
Silver nanoparticles (AgNPs) have attracted remarkable attention due to their powerful antimicrobial action as well as their particular physicochemical properties. This has led to their application in a wide variety of products with promising results. However, their interaction with the environment and toxicity in live terrestrial or aquatic organisms is still a matter of intense debate. More detailed knowledge is still required about the toxicity of AgNPs, their possible uptake mechanisms and their adverse effects in live organisms. Several studies have reported the interactions and potential negative effects of AgNPs in different organisms. In this review, we report and discuss the current state of the art and perspectives for the impact of AgNPs on different organisms present in the environment. Recent progress in interpreting uptake, translocation and accumulation mechanisms in different organisms and/or living animals are discussed, as well as the toxicity of AgNPs and possible tolerance mechanisms in live organisms to cope with their deleterious effects. Finally, we discuss the challenges of accurate physicochemical characterization of AgNPs and their ecotoxicity in environmentally realistic conditions such as soil and water media.
Collapse
Affiliation(s)
- G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile.
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile; Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile
| | - N Durán
- NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - M C Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile; Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile
| | - M Martínez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal d ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
15
|
Garcia-Velasco N, Irizar A, Urionabarrenetxea E, Scott-Fordsmand JJ, Soto M. Selection of an optimal culture medium and the most responsive viability assay to assess AgNPs toxicity with primary cultures of Eisenia fetida coelomocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109545. [PMID: 31446174 DOI: 10.1016/j.ecoenv.2019.109545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Earthworm immune cells (coelomocytes) have become a target system in ecotoxicology due to their sensitivity against a wide range of pollutants, including silver nanoparticles (AgNPs). Presently, in vitro approaches (viability assays in microplate, flow cytometry, cell sorting) with primary cultures of Eisenia fetida coelomocytes have been successfully used to test the toxicity and the dissimilar response of cell subpopulations (amoebocytes and eleocytes) after PVP-PEI coated AgNPs and AgNO3 exposures. In order to obtain reliable data and to accurately assess toxicity with coelomocytes, first an optimal culture medium and the most responsive assay were determined. AgNPs posed a gradual decrease in coelomocytes viability, establishing the LC50 value in RPMI-1640 medium at 6 mg/l and discarding that the observed cytotoxicity was attributable to its coating agent PVP-PEI. Exposure to AgNPs caused selective cytotoxicity in amoebocytes, which correlated with the Ag concentrations measured in sorted amoebocytes and reinforced the idea of dissimilar sensitivities among amoebocytes and eleocytes. Silver nano and ionic forms exerted similar toxicity in coelomocytes. The in vitro approaches with coelomocytes of E. fetida performed in this study have the capacity to predict impairments caused by pollutants at longer exposure levels and thus, provide rapid and valuable information for eco(nano)toxicology.
Collapse
Affiliation(s)
- N Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| | - A Irizar
- Department of Bioscience - Soil Fauna Ecology and Ecotoxicology, Vejlsøvej 25. Building M3.14, 8600, Silkeborg, Denmark
| | - E Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - J J Scott-Fordsmand
- Department of Bioscience - Soil Fauna Ecology and Ecotoxicology, Vejlsøvej 25. Building M3.14, 8600, Silkeborg, Denmark
| | - M Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| |
Collapse
|
16
|
Adeel M, Ma C, Ullah S, Rizwan M, Hao Y, Chen C, Jilani G, Shakoor N, Li M, Wang L, Tsang DCW, Rinklebe J, Rui Y, Xing B. Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: A life cycle study on Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113032. [PMID: 31454581 DOI: 10.1016/j.envpol.2019.113032] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Although, health and environmental hazards of Ni are ironclad; however, that of Nickle oxide nanoparticles (NiO-NPs) are still obscure. Therefore, impact of NiO-NPs exposure (0, 5, 50, 200, 500 and 1000 mg kg-1 soil) on the earthworm (Eisenia fetida) survival (at 28th day), reproduction (at 56th day), histopathology, ultrastructures, antioxidant enzymes and oxidative DNA damage was appraised in full life cycle study. Lower concentrations of NiO-NPs (5, 50 and 200) did not influence the survival, reproduction and growth rate of adult worms significantly. However, reproduction reduced by 40-50% with 500 and 1000 mg kg-1 exposure, which also induced oxidative stress leading to DNA damage in earthworms. Ultrastructural observation and histology of earthworms exposed to higher NiO-NPs concentrations revealed abnormalities in epithelium layer, microvilli and mitochondria with underlying pathologies of epidermis and muscles, as well as adverse effects on the gut barrier. To the best of our knowledge, this is the first study unveiling the adverse effects of NiO-NPs on a soil invertebrate (Eisenia fetida). Our findings clue towards looking extensively into the risks of NiO-NPs on soil organisms bearing agricultural and environmental significance.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Sana Ullah
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Noman Shakoor
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Bourdineaud JP, Štambuk A, Šrut M, Radić Brkanac S, Ivanković D, Lisjak D, Sauerborn Klobučar R, Dragun Z, Bačić N, Klobučar GIV. Gold and silver nanoparticles effects to the earthworm Eisenia fetida - the importance of tissue over soil concentrations. Drug Chem Toxicol 2019; 44:12-29. [PMID: 30945571 DOI: 10.1080/01480545.2019.1567757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To address and to compare the respective impact of gold and silver nanoparticles (Au and Ag NPs) in soil invertebrate, the earthworm Eisenia fetida was exposed to soil containing 2, 10, and 50 mg/kg of Au and Ag in both nanoparticulate and ionic forms for 10 days. Both metal NPs were 2-15 times less bioavailable than their ionic forms, and displayed similar transfer coefficients from soil to earthworm tissues. Both metal NPs triggered the onset of an oxidative stress as illustrated by increased glutathione S-transferase levels, decreased catalase levels, and increased malondialdehyde concentrations. Protein carbonylation distinguished the nanoparticular from the ionic forms as its increase was observed only after exposure to the highest concentration of both metal NPs. Au and Ag NPs triggered DNA modifications even at the lowest concentration, and both repressed the expression of genes involved in the general defense and stress response at high concentrations as did their ionic counterparts. Despite the fact that both metal NPs were less bioavailable than their ionic forms, at equivalent concentrations accumulated within earthworms tissues they exerted equal or higher toxic potential than their ionic counterparts.Capsule: At equivalent concentrations accumulated within earthworm tissues Au and Ag NPs exert equal or higher toxic potential than their ionic forms.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- CNRS, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, University of Bordeaux, Bordeaux, France
| | - Anamaria Štambuk
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | - Maja Šrut
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | - Sandra Radić Brkanac
- Department of Biology, Faculty of Science, Division of Botany, University of Zagreb, Zagreb, Croatia
| | - Dušica Ivanković
- Department for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Damir Lisjak
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | | | - Zrinka Dragun
- Department for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Niko Bačić
- Department for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Göran I V Klobučar
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Evaluation of Toxicity of Chemically Synthesised Gold Nanoparticles Against Eudrilus eugeniae. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, De Nolf W, De La Torre-Roche R, Pagano L, Pignatello J, Uchimiya M, Gardea-Torresdey J, White JC. Bioaccumulation of CeO 2 Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6609-6618. [PMID: 29281882 DOI: 10.1021/acs.jafc.7b04612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interactions of nanoparticles (NPs) with biochar and soil components may substantially influence NP availability and toxicity to biota. In the present study, earthworms ( Eisenia fetida) were exposed for 28 days to a residential or agricultural soil amended with 0-2000 mg of CeO2 NP/kg and with biochar (produced by the pyrolysis of pecan shells at 350 and 600 °C) at various application rates [0-5% (w/w)]. After 28 days, earthworms were depurated and analyzed for Ce content, moisture content, and lipid peroxidation. The results showed minimal toxicity to the worms; however, biochar (350 or 600 °C) was the dominant factor, accounting for 94 and 84% of the variance for the moisture content and lipid peroxidation, respectively, in the exposed earthworms. For both soils with 1000 mg of CeO2/kg at 600 °C, biochar significantly decreased the accumulation of Ce in the worm tissues. Amendment with 350 °C biochar had mixed responses on Ce uptake. Analysis by micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) was used to evaluate Ce localization, speciation, and persistence in CeO2- and biochar-exposed earthworms after depuration for 12, 48, and 72 h. Earthworms from the 500 mg of CeO2/kg and 0% biochar treatments eliminated most Ce after a 48 h depuration period. However, in the same treatment and with 5% BC-600 (biochar pyrolysis temperature of 600 °C), ingested biochar fragments (∼50 μm) with Ce adsorbed to the surfaces were retained in the gut after 72 h. Additionally, Ce remained in earthworms from the 2000 mg of CeO2/kg and 5% biochar treatments after depuration for 48 h. Analysis by μ-XANES showed that, within the earthworm tissues, Ce remained predominantly as Ce4+O2, with only few regions (2-3 μm2) where it was found in the reduced form (Ce3+). The present findings highlight that soil and biochar properties have a significant influence in the internalization of CeO2 NPs in earthworms; such interactions need to be considered when estimating NP fate and effects in the environment.
Collapse
Affiliation(s)
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF) , BP 220, 38043 Grenoble Cedex, France
| | - Jose A Hernandez-Viezcas
- Department of Chemistry, Environmental Science and Engineering Ph.D. Program, University of California Center for Environmental Implications of Nanotechnology (UCCEIN) , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Wout De Nolf
- European Synchrotron Radiation Facility (ESRF) , BP 220, 38043 Grenoble Cedex, France
| | | | - Luca Pagano
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Department of Life Sciences , University of Parma , 43124 Parma , Italy
| | | | - Minori Uchimiya
- Agricultural Research Service (ARS) , United States Department of Agriculture (USDA) , New Orleans , Louisiana 70124 , United States
| | - Jorge Gardea-Torresdey
- Department of Chemistry, Environmental Science and Engineering Ph.D. Program, University of California Center for Environmental Implications of Nanotechnology (UCCEIN) , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | | |
Collapse
|
20
|
Maria VL, Ribeiro MJ, Guilherme S, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:184-191. [PMID: 28796341 DOI: 10.1002/etc.3944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/01/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. Since adopting the standard test for survival and reproduction, a number of additional tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a genotoxicity tool and endpoint have not been used; hence, the goals of the present study included optimization of the in vivo alkaline comet assay in Enchytraeus crypticus. Further, the effect of silver nanomaterial (Ag NM300K, dispersed, 15 nm) was tested and compared with silver nitrate. Hydrogen peroxide was used as a positive control. The various steps were optimized. The fully detailed standard operating procedure is presented. Silver materials caused genotoxicity, this being differentiated for the nano and non-nano forms. Silver nitrate caused genotoxicity after 3 d of exposure in a dose-related manner, although after 7 d the effects were either reduced or repaired. Ag NM300K caused higher genotoxicity after 7 d for the lowest concentration, highlighting a potential nonmonotonic dose-response effect. Overall, the comet assay showed the power to discriminate effects between materials and also toxicity at low relevant doses. Environ Toxicol Chem 2018;37:184-191. © 2017 SETAC.
Collapse
Affiliation(s)
- Vera L Maria
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Maria João Ribeiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Sofia Guilherme
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Garcia-Velasco N, Peña-Cearra A, Bilbao E, Zaldibar B, Soto M. Integrative assessment of the effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida maintained in two standard soils (OECD and LUFA 2.3). CHEMOSPHERE 2017; 181:747-758. [PMID: 28478235 DOI: 10.1016/j.chemosphere.2017.04.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
There is a potential risk to increase the release of silver nanoparticles (Ag NPs) into the environment: For instance. in soils receiving sludge models estimate 0.007 mg Ag NPs kg-1 that will annually increase due to sludge or sludge incineration residues land-disposal. Thus, the concern about the hazards of nanosilver to soils and soil invertebrates is growing. Studies performed up to now have been focused in traditional endpoints, used limit range concentrations and employed different soil types that differ in physico-chemical characteristics. Presently, effects of Ag NPs have been measured at different levels of biological complexity in Eisenia fetida, exposed for 3 and 14 d to high but sublethal (50 mg Ag NPs kg-1) and close to modeled environmental concentrations (0.05 mg Ag NPs kg-1). Since characteristics of the exposure matrix may limit the response of the organisms to these concentrations, experiments were carried out in OECD and LUFA soils, the most used standard soils. High concentrations of Ag NPs increased catalase activity and DNA damage in OECD soils after 14 d while in LUFA 2.3 soils produced earlier effects (weight loss, decrease in cell viability and increase in catalase activity at day 3). At day 14, LUFA 2.3 (low clay and organic matter-OM-) could have provoked starvation of earthworms, masking Ag NPs toxicity. The concentration close to modeled environmental concentrations produced effects uniquely in LUFA 2.3 soil. Accurate physico-chemical characteristics of the standard soils are crucial to assess the toxicity exerted by Ag NPs in E. fetida since low clay and OM contents can be considered toxicity enhancers.
Collapse
Affiliation(s)
- N Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - A Peña-Cearra
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - E Bilbao
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - B Zaldibar
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - M Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| |
Collapse
|
22
|
Samrot AV, Justin C, Padmanaban S, Burman U. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae. APPLIED NANOSCIENCE 2016. [DOI: 10.1007/s13204-016-0542-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
23
|
Garcia-Velasco N, Gandariasbeitia M, Irizar A, Soto M. Uptake route and resulting toxicity of silver nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Tests. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1543-1555. [PMID: 27614742 DOI: 10.1007/s10646-016-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 05/23/2023]
Abstract
Despite the increasing interest in silver nanoparticles toxicity still few works dealt with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to colloids) although disposal of biosolids in landfills has been reported as the major source of silver nanoparticles in terrestrial environments. Presently, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated silver nanoparticles in soil through the implementation of different exposure media Standard Toxicity Tests (Paper Contact and Artificial Soil -OECD-207- and Reproduction -OECD-222- Tests) together with cellular biomarkers measured in extruded coelomocytes. In order to decipher the mode of action of silver nanoparticles in soil and the uptake routes in earthworms, special attention was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, weight loss, and mortality due to the disruption of the tegument could be the result of a dermal absorption of Ag ions released from silver nanoparticles (Paper Contact Test). However, autometallography showed metals mainly localized in the digestive tract after Artificial Soil Test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, silver nanoparticles attached to soil colloids seemed to be internalized in earthworms after ingestion of soil and transferred to the digestive gut epithelium where at high doses they have triggered severe effects at different levels of biological complexity.
Collapse
Affiliation(s)
- Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Maite Gandariasbeitia
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Amaia Irizar
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Manuel Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| |
Collapse
|
24
|
Bouguerra S, Gavina A, Ksibi M, Rasteiro MDG, Rocha-Santos T, Pereira R. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:291-301. [PMID: 27060256 DOI: 10.1016/j.ecoenv.2016.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 05/23/2023]
Abstract
The huge evolution of nanotechnology and the commercialization of nanomaterials (NMs) positively contributed for innovation in several industrial sectors. Facing this rapid development and the emergence of NMs in the market, the release of this nanometric sized materials in the environment and the possible impact on different ecosystem components attracted the attention of researchers in the last few years. In our study we aimed to assess the impact of titanium silicon oxide nanomaterial (nano-TiSiO4) on soil biota to estimate a risk limit for this material. In the present research a battery of standardized ecotoxicological assays aimed at evaluating a wide range of endpoints (avoidance and reproduction of earthworms and collembolans, emergence/growth of four selected terrestrial plants) were carried out, using OECD artificial soil as test substrate spiked with aqueous suspension of different concentrations of nano-TiSiO4. The results showed a maximum avoidance percentage of 40% for earthworms (Esenia andrei) at the highest concentration tested (1000mgkg(-1) soildw of nano-TiSiO4). No significant effect on the reproductive function of both invertebrate species was recorded. Nevertheless, significant phytotoxic data was registered at least for the growth of dicotyledonous plant species (Lactuca sativa and Lycopersicon lycopersicum) with EC20 values ranging between 236 and 414 mg kg(-1) soildw of nano-TiSiO4 for L. sativa dry mass and fresh mass, respectively. Further, the characterization of nano-TiSiO4 in suspensions used to spike the soil, performed by Dynamic Light Scattering, showed the formation of aggregates with important average size diameter, thus demonstrating that the toxic effects observed were likely not size dependent. A deterministic PNEC (predicted no effect concentration) for this NM of 10.02mg kg(-1) soildw of nano-TiSiO4, is suggested, while no more ecotoxicological information exists.
Collapse
Affiliation(s)
- Sirine Bouguerra
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038 Sfax, Tunisia.
| | - Ana Gavina
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| | - Mohamed Ksibi
- Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038 Sfax, Tunisia
| | - Maria da Graça Rasteiro
- Department of Chemical Engineering & CIEPQPF & University of Coimbra, 3030-290 Coimbra, Portugal
| | - Teresa Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ruth Pereira
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| |
Collapse
|
25
|
Molecular characterization and toxicological effects of citrate-coated silver nanoparticles in a terrestrial invertebrate, the earthworm (Eisenia fetida). Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-015-0045-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
26
|
Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1788-804. [PMID: 26425431 PMCID: PMC4578397 DOI: 10.3762/bjnano.6.183] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/30/2015] [Indexed: 05/18/2023]
Abstract
The increasing production and use of engineered nanomaterials (ENMs) inevitably results in their higher concentrations in the environment. This may lead to undesirable environmental effects and thus warrants risk assessment. The ecotoxicity testing of a wide variety of ENMs rapidly evolving in the market is costly but also ethically questionable when bioassays with vertebrates are conducted. Therefore, alternative methods, e.g., models for predicting toxicity mechanisms of ENMs based on their physico-chemical properties (e.g., quantitative (nano)structure-activity relationships, QSARs/QNARs), should be developed. While the development of such models relies on good-quality experimental toxicity data, most of the available data in the literature even for the same test species are highly variable. In order to map and analyse the state of the art of the existing nanoecotoxicological information suitable for QNARs, we created a database NanoE-Tox that is available as Supporting Information File 1. The database is based on existing literature on ecotoxicology of eight ENMs with different chemical composition: carbon nanotubes (CNTs), fullerenes, silver (Ag), titanium dioxide (TiO2), zinc oxide (ZnO), cerium dioxide (CeO2), copper oxide (CuO), and iron oxide (FeO x ; Fe2O3, Fe3O4). Altogether, NanoE-Tox database consolidates data from 224 articles and lists altogether 1,518 toxicity values (EC50/LC50/NOEC) with corresponding test conditions and physico-chemical parameters of the ENMs as well as reported toxicity mechanisms and uptake of ENMs in the organisms. 35% of the data in NanoE-Tox concerns ecotoxicity of Ag NPs, followed by TiO2 (22%), CeO2 (13%), and ZnO (10%). Most of the data originates from studies with crustaceans (26%), bacteria (17%), fish (13%), and algae (11%). Based on the median toxicity values of the most sensitive organism (data derived from three or more articles) the toxicity order was as follows: Ag > ZnO > CuO > CeO2 > CNTs > TiO2 > FeO x . We believe NanoE-Tox database contains valuable information for ENM environmental hazard estimation and development of models for predicting toxic potential of ENMs.
Collapse
Affiliation(s)
- Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Mawson Institute, University of South Australia, Mawson Lakes, 5095 South Australia, Australia
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, California 93106-5131, United States
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
27
|
Hayashi Y, Miclaus T, Engelmann P, Autrup H, Sutherland DS, Scott-Fordsmand JJ. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology 2015; 10:303-11. [PMID: 26119277 DOI: 10.3109/17435390.2015.1054909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect the corona composition, the extent to which nanoparticles influence the cells' protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time-dependent manner (2, 4, 8 and 24 h at a low-cytotoxic concentration), and examined the implication of the temporal changes in transcriptional profiles of secretory proteins with a particular reference to that of lysenin. NM-300K was accumulated in/at the cells and lysenin was, after transient induction, gradually suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role.
Collapse
Affiliation(s)
- Yuya Hayashi
- a iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus , Denmark .,b Department of Bioscience - Soil Fauna Ecology and Ecotoxicology , Aarhus University , Silkeborg , Denmark
| | - Teodora Miclaus
- a iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus , Denmark
| | - Péter Engelmann
- c Department of Immunology and Biotechnology , Clinical Center, University of Pécs , Pécs , Hungary , and
| | - Herman Autrup
- d Department of Public Health , Aarhus University , Aarhus , Denmark
| | - Duncan S Sutherland
- a iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus , Denmark
| | - Janeck J Scott-Fordsmand
- b Department of Bioscience - Soil Fauna Ecology and Ecotoxicology , Aarhus University , Silkeborg , Denmark
| |
Collapse
|
28
|
Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:6858-78. [PMID: 26086707 PMCID: PMC4483735 DOI: 10.3390/ijerph120606858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
The effects of several copper (Cu) and silver (Ag) nanomaterials were assessed using the cellular energy allocation (CEA), a methodology used to evaluate the energetic status and which relates with organisms' overall condition and response to toxic stress. Enchytraeus crypticus (Oligochatea), was exposed to the reproduction effect concentrations EC20/50 of several Cu and Ag materials (CuNO3, Cu-Field, Cu-Nwires and Cu-NPs; AgNO3, Ag NM300K, Ag-NPs Non-coated and Ag-NPs PVP-coated) for 7 days (0-3-7d). The parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets) and the energy consumption (Ec) integrated to obtain the CEA. Results showed that these parameters allowed a clear discrimination between Cu and Ag, but less clearly within each of the various materials. For Cu there was an increase in Ec and protein budget, while for Ag a decrease was observed. The results corroborate known mechanisms, e.g., with Cu causing an increase in metabolic rate whereas Ag induces mitochondrial damage. The various Cu forms seem to activate different mechanisms with size and shape (e.g., Cu-NPs versus Cu-Nwires), causing clearly different effects. For Ag, results are in line with a slower oxidation rate of Ag-NMs in comparison with Ag-salt and hence delayed effects.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, Silkeborg DK-8600, Denmark.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
29
|
Exbrayat JM, Moudilou EN, Lapied E. Harmful Effects of Nanoparticles on Animals. JOURNAL OF NANOTECHNOLOGY 2015; 2015:1-10. [DOI: 10.1155/2015/861092] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Since several years nanoparticles (NPs) are produced by industries and used in several fields of activities. They are finally found in aquatic and terrestrial environments, where they are ingested by living organisms in which they accumulate, before being eliminated. In organisms, NPs represent foreign elements with their own physicochemical properties due to their small size. So NPs may interfere with the normal physiological mechanisms of the embryos, growing animals, and adults, and it is indispensable to understand their potentially direct or indirect harmful effects on living organisms. It has been already shown that NPs could be toxic to bacteria, algae, invertebrates, and vertebrates. In this review, several examples of recent studies are given. We will examine successively the effects of NPs on terrestrial and semiaquatic and aquatic vertebrate and invertebrate animals.
Collapse
Affiliation(s)
- Jean-Marie Exbrayat
- Biologie Générale, UMRS 449, Université Catholique de Lyon, 10 Place des Archives, 69288 Lyon Cedex 02, France
- Reproduction et Développement Comparé, E.P.H.E., 10 Place des Archives, 69288 Lyon Cedex 02, France
| | - Elara N. Moudilou
- Biologie Générale, UMRS 449, Université Catholique de Lyon, 10 Place des Archives, 69288 Lyon Cedex 02, France
- Reproduction et Développement Comparé, E.P.H.E., 10 Place des Archives, 69288 Lyon Cedex 02, France
| | - Emmanuel Lapied
- Norwegian Institute of Bioeconomy Research (NIBIO), Høgskoleveien 7, 1430 Ås, Norway
- Isotope Laboratory, Norwegian University of Life Sciences (NMBU), Fougnerbakken 3, 1430 Ås, Norway
| |
Collapse
|
30
|
van der Ploeg MJC, Handy RD, Waalewijn-Kool PL, van den Berg JHJ, Herrera Rivera ZE, Bovenschen J, Molleman B, Baveco JM, Tromp P, Peters RJB, Koopmans GF, Rietjens IMCM, van den Brink NW. Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:743-752. [PMID: 24318461 DOI: 10.1002/etc.2487] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
The impact of silver nanoparticles (AgNP; at 0 mg Ag/kg, 1.5 mg Ag/kg, 15.4 mg Ag/kg, and 154 mg Ag/kg soil) and silver nitrate (AgNO3 ; 15.4 mg Ag/kg soil) on earthworms, Lumbricus rubellus, was assessed. A 4-wk exposure to the highest AgNP treatment reduced growth and reproduction compared with the control. Silver nitrate (AgNO3 ) exposure also impaired reproduction, but not as much as the highest AgNP treatment. Long-term exposure to the highest AgNP treatment caused complete juvenile mortality. All AgNP treatments induced tissue pathology. Population modeling demonstrated reduced population growth rates for the AgNP and AgNO3 treatments, and no population growth at the highest AgNP treatment because of juvenile mortality. Analysis of AgNP treated soil samples revealed that single AgNP and AgNP clusters were present in the soil, and that the total Ag in soil porewater remained high throughout the long-term experiment. In addition, immune cells (coelomocytes) of earthworms showed sensitivity to both AgNP and AgNO3 in vitro. Overall, the present study indicates that AgNP exposure may affect earthworm populations and that the exposure may be prolonged because of the release of a dissolved Ag fraction to soil porewater.
Collapse
Affiliation(s)
- Merel J C van der Ploeg
- Alterra, Wageningen UR, Wageningen, The Netherlands; Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kwak JI, Lee WM, Kim SW, An YJ. Interaction of citrate-coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity inEisenia andrei. J Appl Toxicol 2014; 34:1145-54. [DOI: 10.1002/jat.2993] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/06/2022]
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| | - Woo-Mi Lee
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| | - Shin Woong Kim
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| | - Youn-Joo An
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| |
Collapse
|
32
|
Olasagasti M, Gatti AM, Capitani F, Barranco A, Pardo MA, Escuredo K, Rainieri S. Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 2014; 34:562-75. [PMID: 24395442 DOI: 10.1002/jat.2975] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/22/2013] [Accepted: 11/15/2013] [Indexed: 01/28/2023]
Abstract
A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.
Collapse
Affiliation(s)
- Maider Olasagasti
- AZTI-Tecnalia, Food Research Division, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Hayashi Y, Heckmann LH, Simonsen V, Scott-Fordsmand JJ. Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:219-26. [PMID: 24041528 DOI: 10.1016/j.ecoenv.2013.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/22/2013] [Accepted: 08/20/2013] [Indexed: 05/23/2023]
Abstract
The molecular mechanism of silver nanoparticle (AgNP) toxicity, particularly its temporal aspect, is currently limited in the literature. This study seeks to identify and profile changes in molecular response patterns over time during soil exposure of the earthworm Eisenia fetida to AgNPs (82±27 nm) with reference to dissolved silver salt (AgNO₃). Principal component analysis of selected gene and enzyme response profiles revealed dissimilar patterns between AgNO₃ and AgNP treatments and also over time. Despite the observed difference in molecular profiles, the body burdens of total Ag were within the same range (10-40 mg/kg dry weight worm) for both treatments with apparent correlation to the induction pattern of metallothionein. AgNO₃ induced the genes and enzymes related to oxidative stress at day 1, after which markers of energy metabolism were all suppressed at day 2. Exposure to AgNPs likewise led to induction of oxidative stress genes at day 2, but with a temporal pattern shift to immune genes at day 14 following metabolic upregulation at day 7. The involvement of oxidative stress and subsequent alterations in immune gene regulation were as predicted by our in vitro study reported previously, highlighting the importance of immunological endpoints in nanosilver toxicity.
Collapse
Affiliation(s)
- Yuya Hayashi
- Department of Bioscience-Terrestrial Ecology, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark; iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
34
|
Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, Mclamore ES, Rickus J, Porterfield DM, Sepúlveda MS. Silver nanoparticle-specific mitotoxicity inDaphnia magna. Nanotoxicology 2013; 8:833-42. [DOI: 10.3109/17435390.2013.832430] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
35
|
Gomes SIL, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:336-344. [PMID: 23644687 DOI: 10.1016/j.jhazmat.2013.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Silver has antimicrobial properties and silver nanoparticles (Ag-NPs) have been some of the most widely used NPs. Information regarding their effects is still insufficient, in particular for soil dwelling organisms. The standard soil Oligochaete Enchytraeus albidus was used to study the effects of Ag in soils, using differential gene expression (microarray) and population (survival, reproduction) response to Ag-NPs (PVP coated) and AgNO₃. Results showed higher toxicity of AgNO₃ (EC₅₀<50 mg/kg) compared to toxicity of Ag-NPs (EC₅₀=225 mg/kg). Based on the biological and material identity, the difference in toxicity between Ag-NPs and AgNO₃ could possibly be explained by a release of Ag(+) ions from the particles or by a slower uptake of Ag-NPs. The indications were that the responses to Ag-NPs reflect an effect of Ag ions and Ag-NPs given the extent of similar/dissimilar genes activated. The particles characterization supports this deduction as there were limited free ions measured in soil extracts, maybe related to little oxidation and/or complexation in the soil matrix. The possibility that gene differences were due to different levels of biological impact (i.e. physiological responses) should not be excluded. Testing of Ag-NPs seem to require longer exposure period to be comparable in terms of effect/risk assessment with other chemicals.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
El-Temsah YS, Joner EJ. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. CHEMOSPHERE 2012; 89:76-82. [PMID: 22595530 DOI: 10.1016/j.chemosphere.2012.04.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 05/31/2023]
Abstract
Although nano-sized zero-valent iron (nZVI) has been used for several years for remediation of contaminated soils and aquifers, only a limited number of studies have investigated secondary environmental effects and ecotoxicity of nZVI to soil organisms. In this study we therefore measured the ecotoxicological effects of nZVI coated with carboxymethyl cellulose on two species of earthworms, Eisenia fetida and Lumbricus rubellus, using standard OECD methods with sandy loam and artificial OECD soil. Earthworms were exposed to nZVI concentrations ranging from 0 to 2000 mg nZVI kg soil(-1) added freshly to soil or aged in non-saturated soil for 30 d prior to exposure. Regarding avoidance, weight changes and mortality, both earthworm species were significantly affected by nZVI concentrations ≥500 mg kg(-1)soil. Reproduction was affected also at 100 mg nZVI kg(-1). Toxicity effects of nZVI were reduced after aging with larger differences between soils compared to non-aged soils. We conclude that doses ≥500 mg nZVI kg(-1) are likely to give acute adverse effects on soil organisms, and that effects on reproduction may occur at significantly lower concentrations.
Collapse
Affiliation(s)
- Yehia S El-Temsah
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Soil and Environment Division, Frederik A. Dahls vei 20, NO-1432 Ås, Norway.
| | | |
Collapse
|
37
|
Hayashi Y, Engelmann P, Foldbjerg R, Szabó M, Somogyi I, Pollák E, Molnár L, Autrup H, Sutherland DS, Scott-Fordsmand J, Heckmann LH. Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4166-4173. [PMID: 22432789 DOI: 10.1021/es3000905] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Little is known about the potential threats of silver nanoparticles (AgNPs) to ecosystem health, with no detailed report existing on the stress and immune responses of soil invertebrates. Here we use earthworm primary cells, cross-referencing to human cell cultures with a particular emphasis on the conserved biological processes, and provide the first in vitro analysis of molecular and cellular toxicity mechanisms in the earthworm Eisenia fetida exposed to AgNPs (83 ± 22 nm). While we observed a clear difference in cytotoxicity of dissolved silver salt on earthworm coelomocytes and human cells (THP-1 cells, differentiated THP-1 cells and peripheral blood mononuclear cells), the coelomocytes and differentiated (macrophage-like) THP-1 cells showed a similar response to AgNPs. Intracellular accumulation of AgNPs in the coelomocytes, predominantly in a phagocytic population, was evident by several methods including transmission electron microscopy. Molecular signatures of oxidative stress and selected biomarker genes probed in a time-resolved manner suggest early regulation of oxidative stress genes and subsequent alteration of immune signaling processes following the onset of AgNP exposure in the coelomocytes and THP-1 cells. Our findings provide mechanistic clues on cellular innate immunity toward AgNPs that is likely to be evolutionarily conserved across the animal kingdom.
Collapse
Affiliation(s)
- Yuya Hayashi
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gomes SIL, Novais SC, Scott-Fordsmand JJ, De Coen W, Soares AMVM, Amorim MJB. Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): differential gene expression through microarray analysis. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:219-27. [PMID: 21911081 DOI: 10.1016/j.cbpc.2011.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/26/2011] [Accepted: 08/26/2011] [Indexed: 12/06/2022]
Abstract
Despite increased utilization of copper (Cu) nanoparticles, their behaviour and effect in the environment is largely unknown. Enchytraeids are extensively used in studies of soil ecotoxicology. Ecotoxicogenomic tools have shown to be valuable in nanotoxicity interpretation. A cDNA microarray for Enchytraeus albidus has recently been developed, which was used in this study. We compared the gene expression profiles of E. albidus when exposed to Cu-salt (CuCl(2)) and Cu-nanoparticles (Cu-NP) spiked soil. Exposure time was 48 h with a concentration range of 400 to 1000 mg Cu/kg. There were more down-regulated than up-regulated genes. The number of differently expressed genes (DEG) decreased with increasing concentration for CuCl(2) exposure, whereas for Cu-NP, the number did not change. The number of common DEG decreased with increasing concentration. Differences were mainly related to transcripts involved in energy metabolism (e.g. monosaccharide transporting ATPase, NADH dehydrogenase subunit 1, cytochrome c). Overall, our results indicated that Cu-salt and Cu-NP exposure induced different gene responses. Indirect estimates of Cu-NP related ion-release indicated little or no free Cu(2+) activity in soil solutions. Hence, it was concluded that the Cu-NP effects were probably caused by the nanoparticles themselves and not by released ions.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
39
|
Kool PL, Ortiz MD, van Gestel CAM. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2713-2719. [PMID: 21724309 DOI: 10.1016/j.envpol.2011.05.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/19/2011] [Accepted: 05/19/2011] [Indexed: 05/31/2023]
Abstract
The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl(2) were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants K(f) of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl(2) respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl(2), respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size.
Collapse
Affiliation(s)
- Pauline L Kool
- Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
40
|
Bigorgne E, Foucaud L, Lapied E, Labille J, Botta C, Sirguey C, Falla J, Rose J, Joner EJ, Rodius F, Nahmani J. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2698-2705. [PMID: 21726923 DOI: 10.1016/j.envpol.2011.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/06/2011] [Accepted: 05/21/2011] [Indexed: 05/31/2023]
Abstract
The increasing production of nanomaterials will in turn increase the release of nanosized byproducts to the environment. The aim of this study was to evaluate the behaviour, uptake and ecotoxicity of TiO(2) byproducts in the earthworm Eisenia fetida. Worms were exposed to suspensions containing 0.1, 1 and 10 mg/L of byproducts for 24 h. Size of TiO(2) byproducts showed aggregation of particles up to 700 μm with laser diffraction. Only worms exposed at 10 mg/L showed bioaccumulation of titanium (ICP-AES), increasing expression of metallothionein and superoxide dismutase mRNA (Real-time PCR) and induction of apoptotic activity (Apostain and TUNEL). TiO(2) byproducts did not induce cytotoxicity on cœlomocytes, but a significant decrease of phagocytosis was observed starting from 0.1 mg/L. In conclusion, bioaccumulation of byproducts and their production of reactive oxygen species could be responsible for the alteration of the antioxidant system in worms.
Collapse
Affiliation(s)
- Emilie Bigorgne
- Laboratoire Interactions Ecotoxicité, Biodiversité, Ecosystèmes, Université Paul Verlaine - Metz, CNRS UMR 7146, Rue du Général Delestraint, 57070 Metz, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li LZ, Zhou DM, Peijnenburg WJGM, van Gestel CAM, Jin SY, Wang YJ, Wang P. Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. ENVIRONMENT INTERNATIONAL 2011; 37:1098-1104. [PMID: 21402408 DOI: 10.1016/j.envint.2011.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The extensive use of nanoparticles (NPs) in a variety of applications has raised great concerns about their environmental fate and biological effects. This study examined the impact of dissolved organic matter (DOM) and salts on ZnO NP dispersion/solubility and toxicity to the earthworm Eisenia fetida. To be able to better evaluate the toxicity of NPs, exposure in agar and on filter paper was proposed for enabling a comparison of the importance of different uptake routes. A dose-related increase in mortality was observed in earthworms exposed in agar with almost 100% mortality after 96 h exposure to the highest concentration (1000 mg ZnO/kg agar). Scanning electron microscopy (SEM) showed that the addition of salts enhanced the aggregation of ZnO NPs in agar and consequently affected the dissolution behavior and biological availability of the particles. On filter paper, mortality was the highest at the lowest exposure concentration (50 mg ZnO/L) and seemed to decrease with increasing exposure levels. TEM images of ZnO showed that the solubility and morphology of NPs were changed dramatically upon the addition of humic acids (HA). The subcellular distribution pattern of Zn in earthworms after 96 h exposure in agar and on filter paper showed that the Zn taken up via dietary ZnO particles (from agar) was mainly found in organelles and the cytosol while the Zn accumulated as soluble Zn from filter paper was mainly distributed in cell membranes and tissues. Antioxidant enzymatic activities (SOD, CAT, and GSH-px) were investigated in the worms surviving the toxicity tests. A slight increase of SOD activities was observed at the lowest exposure dose of ZnO (50mg/kg), followed by a decrease at 100mg/kg in the agar cubes. Activities of both CAT and GSH-Px enzymes were not significantly influenced in the worms exposed to agar, although a slight decrease at 500 and 1000 mg ZnO/kg agar was observed. A similar change trend of SOD activities was observed for the earthworms on filter paper, but a significant decrease began at a higher ZnO NP concentration of 500 mg ZnO/L. The use of soil extracts instead of deionized water (DW) to simulate a realistic exposure system significantly reduced the toxicity of the ZnO NPs on filter paper, which increases the predictive power of filter paper toxicity tests for the environmental risk assessment of NPs.
Collapse
Affiliation(s)
- Lian-Zhen Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Lapied E, Nahmani JY, Moudilou E, Chaurand P, Labille J, Rose J, Exbrayat JM, Oughton DH, Joner EJ. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. ENVIRONMENT INTERNATIONAL 2011; 37:1105-1110. [DOI: 10.1016/j.envint.2011.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/15/2011] [Indexed: 12/12/2022]
|
43
|
Kang K, Lim DH, Choi IH, Kang T, Lee K, Moon EY, Yang Y, Lee MS, Lim JS. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett 2011; 205:227-34. [PMID: 21729742 DOI: 10.1016/j.toxlet.2011.05.1033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 01/08/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials due to their antibacterial properties. In this study, we examined the effects of polyvinylpyrrolidone (PVP)-coated AgNPs (average size 2.3nm) on angiogenesis in both an in vivo model and an in vitro endothelial cell line, SVEC4-10. Increased angiogenesis was detected around the injection site of AgNP-containing Matrigel in vivo. AgNPs also increased the infiltration of endothelial cells and the hemoglobin (Hb) content in AgNP-Matrigel plugs implanted into mice. AgNPs induced endothelial cell tube formation on growth factor-reduced Matrigel, production of reactive oxygen species (ROS), and production of angiogenic factors, such as vascular endothelial growth factor (VEGF) and nitric oxide (NO), in SVEC4-10 cells. In addition, AgNPs promoted the activation of FAK, Akt, ERK1/2, and p38, which are all involved in VEGF receptor (VEGFR)-mediated signaling. Finally, AgNP-treated tumors caused angiogenesis around tumors in B16F10 melanomas after they were injected into mice, and the Hb concentration in the tumors increased in a concentration-dependent manner with AgNP treatment. Thus, our study suggests that exposure to AgNPs can cause angiogenesis through the production of angiogenic factors.
Collapse
Affiliation(s)
- Kyeongah Kang
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Flahaut E. Introduction to the special focus issue: environmental toxicity of nanoparticles. Foreword. Nanomedicine (Lond) 2010; 5:949-50. [PMID: 20735228 DOI: 10.2217/nnm.10.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Affiliation(s)
- Emmanuel Flahaut
- Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux, Universite Paul Sabatier, Cirimat/LCMIE, UMR CNRS 5085, Bâtiment 2R1, 31062 Toulouse Cedex 9, France.
| |
Collapse
|