1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Xi Y, Zhou S, Long J, Zhou L, Tang P, Qian H, Jiang J, Hu Y. Construction of polypyrrole nanoparticles with a rough surface for enhanced chemo-photothermal therapy against triple negative breast cancer. NANOSCALE ADVANCES 2024; 6:d4na00434e. [PMID: 39247870 PMCID: PMC11378020 DOI: 10.1039/d4na00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, characterized by aggressive malignancy and a poor prognosis. Emerging nanomedicine-based combination therapy represents one of the most promising strategies for combating TNBC. Polypyrrole nanoparticles (PPY) are excellent drug delivery vehicles with outstanding photothermal performances. However, the impact of morphology on PPY's drug loading efficiency and photothermal properties remains largely unexplored. In this study, we propose that pluronic P123 can assist in the synthesis of polypyrrole nanoparticles with rough surfaces (rPPY). During the synthesis, P123 formed small micelles around the nanoparticle surface, which were later removed, resulting in small pits and cavities in rPPY. Subsequently, the rPPY was loaded with the chemotherapy drug gemcitabine (Gem@rPPY) for chemo-photothermal therapy against TNBCs. Our results demonstrate that rPPY exhibited superior photothermal performance and significantly enhanced drug loading efficiency by five times compared to smooth PPY nanoparticles. In vitro assessments confirmed Gem@rPPY's robust photothermal properties by efficiently converting light into heat. Cell culture experiments with 4T1 cells and a TNBC mice model revealed significant tumor suppression upon Gem@rPPY administration, emphasizing its efficacy in inducing apoptosis. Toxicity evaluations demonstrated minimal adverse effects both in vitro and in vivo, highlighting the biocompatibility of Gem@rPPY. Overall, this study introduces a promising combination therapy nanoplatform that underscores the importance of surface engineering to enhance therapeutic outcomes and overcome current limitations in TNBC therapy.
Collapse
Affiliation(s)
- Yuanyin Xi
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Shiqi Zhou
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University Chongqing 400037 China
| | - Junhui Long
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army China
| | - Linxi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Hang Qian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Army Medical University Chongqing 400037 China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Ying Hu
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| |
Collapse
|
3
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
4
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
5
|
Zhao C, Liu H, Huang S, Guo Y, Xu L. Metal-Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules 2024; 29:2384. [PMID: 38792244 PMCID: PMC11124105 DOI: 10.3390/molecules29102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, nanomaterials have attracted extensive attention in cancer-targeting therapy and as drug delivery vehicles owing to their unique surface and size properties. Multifunctional combinations of nanomaterials have become a research hotspot as researchers aim to provide a full understanding of their nanomaterial characteristics. In this study, metal-organic framework-capped gold nanorod hybrids were synthesized. Our research explored their ability to kill tumor cells by locally increasing the temperature via photothermal conclusion. The specific peroxidase-like activity endows the hybrids with the ability to disrupt the oxidative balance in vitro. Simultaneously, chemotherapeutic drugs are administered and delivered by loading and transportation for effective combinatorial cancer treatment, thereby enhancing the curative effect and reducing the unpredictable toxicity and side effects of large doses of chemotherapeutic drugs. These studies can improve combinatorial cancer therapy and enhance cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| |
Collapse
|
6
|
Xue X, Persson H, Ye L. Polydopamine functionalized dendritic fibrous silica nanoparticles as a generic platform for nucleic acid-based biosensing. Mikrochim Acta 2024; 191:180. [PMID: 38443718 PMCID: PMC10914921 DOI: 10.1007/s00604-024-06234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Accurate and rapid detection of nucleic acid sequences is of utmost importance in various fields, including disease monitoring, clinical treatment, gene analysis and drug discovery. In this study, we developed a "turn-on" fluorescence biosensor that enables simple and highly efficient detection of nucleic acid biomarkers. Our approach involves the utilization of 6-carboxyfluorescein modified single-stranded DNA (FAM-ssDNA) as molecular recognition element, along with polydopamine-functionalized dendritic fibrous nanosilica (DFNS). FAM-ssDNA serves as both specific molecular recognition element for the target analyte and reporter capable of transducing a detectable signal through Watson-Crick base pairing. The polydopamine-functionalized DFNS (DFNS@DA) exhibits strong binding to FAM-ssDNA via polyvalent metal mediated coordination leading to effective quenching by fluorescence resonance energy transfer. In the presence of a complementary target sequence, FAM-ssDNA forms hybridized structure and detaches from DFNS@DA, which causes an increased fluorescence emission. The analytical system based on FAM-ssDNA and DFNS@DA demonstrates exceptional sensitivity, selectivity, and rapid response for the detection of nucleic acid sequences, leveraging the high adsorption and quenching properties of DFNS@DA. For the first proof of concept, we demonstrated the successful detection of microRNA (miR-21) in cancer cells using the FAM-ssDNA/DFNS@DA system. Our results highlight the promising capabilities of DFNS@DA and nucleic acid-based biosensors, offering a generic and cost-effective solution for the detection of nucleic acid-related biomarkers.
Collapse
Affiliation(s)
- Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Helena Persson
- Division of Oncology, Department of Clinical Sciences, Lund University Cancer Center, 22381, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
7
|
Cao S, Peeters S, Michel-Souzy S, Hamelmann N, Paulusse JMJ, Yang LL, Cornelissen JJLM. Construction of viral protein-based hybrid nanomaterials mediated by a macromolecular glue. J Mater Chem B 2023; 11:7933-7941. [PMID: 37306104 PMCID: PMC10448939 DOI: 10.1039/d2tb02688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
A generic strategy to construct virus protein-based hybrid nanomaterials is reported by using a macromolecular glue inspired by mussel adhesion. Commercially available poly(isobutylene-alt-maleic anhydride) (PiBMA) modified with dopamine (PiBMAD) is designed as this macromolecular glue, which serves as a universal adhesive material for the construction of multicomponent hybrid nanomaterials. As a proof of concept, gold nanorods (AuNRs) and single-walled carbon nanotubes (SWCNTs) are initially coated with PiBMAD. Subsequently, viral capsid proteins from the Cowpea Chlorotic Mottle Virus (CCMV) assemble around the nano-objects templated by the negative charges of the glue. With virtually unchanged properties of the rods and tubes, the hybrid materials might show improved biocompatibility and can be used in future studies toward cell uptake and delivery.
Collapse
Affiliation(s)
- Shuqin Cao
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sandro Peeters
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Sandra Michel-Souzy
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Naomi Hamelmann
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Jos M J Paulusse
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Liu-Lin Yang
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
- College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Jeroen J L M Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
8
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Sui B, Xu Z, Xue Z, Xiang Y, Zhou T, Beltrán AM, Zheng K, Liu X, Boccaccini AR. Mussel-Inspired Polydopamine Composite Mesoporous Bioactive Glass Nanoparticles: An Exploration of Potential Metal-Ion Loading Platform and In Vitro Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:29550-29560. [PMID: 37278380 DOI: 10.1021/acsami.3c03680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploring new approaches to realize the possibility of incorporating biologically active elements into mesoporous silicate bioactive glass nanoparticles (MBG NPs) and guaranteeing their meso- structural integrity and dimensional stability has become an attractive and interesting challenge in biomaterials science. We present a postgrafting strategy for introducing different metal elements into MBG NPs. This strategy is mediated by polydopamine (PDA) coating, achieving uniform loading of copper or copper-cobalt on the particles efficiently and ensuring the stability of MBG NPs in terms of particle size, mesoporous structure, and chemical structure. However, the PDA coating reduced the ion-binding free energy of the MBG NPs for calcium and phosphate ions, resulting in the deposition of minimal CaP clusters on the PDA@MBG NP surface when immersed for 7 days in simulated body fluid, indicating the absence of hydroxyapatite mineralization.
Collapse
Affiliation(s)
- Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, 200011 Shanghai, China
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Zhiyu Xue
- School of Materials and Energy, Advanced Energy Research Institute, Sichuan Provincial Engineering Research Center of Flexible Display Material Genome, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 610054 Chengdu, China
| | - Yong Xiang
- School of Materials and Energy, Advanced Energy Research Institute, Sichuan Provincial Engineering Research Center of Flexible Display Material Genome, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 610054 Chengdu, China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, 200011 Shanghai, China
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine and Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Hanzhong Rd.136, 210029 Nanjing, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, 200011 Shanghai, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Acter S, Moreau M, Ivkov R, Viswanathan A, Ngwa W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1656. [PMID: 37242072 PMCID: PMC10223368 DOI: 10.3390/nano13101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.
Collapse
Affiliation(s)
- Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Merlo A, González-Martínez E, Saad K, Gomez M, Grewal M, Deering J, DiCecco LA, Hosseinidoust Z, Sask KN, Moran-Mirabal JM, Grandfield K. Functionalization of 3D Printed Scaffolds Using Polydopamine and Silver Nanoparticles for Bone-Interfacing Applications. ACS APPLIED BIO MATERIALS 2023; 6:1161-1172. [PMID: 36881860 DOI: 10.1021/acsabm.2c00988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The prevention of bacterial colonization and the stimulation of osseointegration are two major requirements for bone-interfacing materials to reduce the incidence of complications and promote the restoration of the patient's health. The present investigation developed an effective, two-step functionalization of 3D printed scaffolds intended for bone-interfacing applications using a simple polydopamine (PDA) dip-coating method followed by the formation of silver nanoparticles (AgNPs) after a second coating step in silver nitrate. 3D printed polymeric substrates coated with a ∼20 nm PDA layer and 70 nm diameter AgNPs proved effective in hindering Staphylococcus aureus biofilm formation, with a 3000-8000-fold reduction in the number of bacterial colonies formed. The implementation of porous geometries significantly accelerated osteoblast-like cell growth. Microscopy characterization further elucidated homogeneity, features, and penetration of the coating inside the scaffold. A proof-of-concept coating on titanium substrates attests to the transferability of the method to other materials, broadening the range of applications both in and outside the medical sector. The antibacterial efficiency of the coating is likely to lead to a decrease in the number of bacterial infections developed after surgery in the presence of these coatings on prosthetics, thus translating to a reduction in revision surgeries and improved health outcomes.
Collapse
Affiliation(s)
- Alessandra Merlo
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kamal Saad
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Manjot Grewal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Kyla N Sask
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
12
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
13
|
Sultana R, Yadav D, Puranik N, Chavda V, Kim J, Song M. A Review on the Use of Gold Nanoparticles in Cancer Treatment. Anticancer Agents Med Chem 2023; 23:2171-2182. [PMID: 37842886 DOI: 10.2174/0118715206268664231004040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Zoology, SKM Govt College, Nawapara, Raipur, 493881, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, 462026, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| |
Collapse
|
14
|
Applications of polydopaminic nanomaterials in mucosal drug delivery. J Control Release 2023; 353:842-849. [PMID: 36529384 DOI: 10.1016/j.jconrel.2022.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Polydopamine (PDA) is a biopolymer with unique physicochemical properties, including free-radical scavenging, high photothermal conversion efficiency, biocompatibility, biodegradability, excellent fluorescent and theranostic capacity due to their abundant surface chemistry. Thus, PDA is used for a myriad of applications including drug delivery, biosensing, imaging and cancer therapy. Recent reports present a new functionality of PDA as a coating nanomaterial, with major implications in mucosal drug delivery applications, particularly muco-adhesion and muco-penetration. However, this application has received minimal traction in the literature. In this review, we present the physicochemical and functional properties of PDA and highlight its key biomedical applications, especially in cancer therapy. A detailed presentation of the role of PDA as a promising coating material for nanoparticulate carriers intended for mucosal delivery forms the core aspect of the review. Finally, a reflection on key considerations and challenges in the utilizing PDA for mucosal drug delivery, along with the possibilities of translation to clinical studies is expounded.
Collapse
|
15
|
Qin Y, Zhao Z, Wang T, Li S, Yan M, Hao C, Bao X, He S, Zhang M, Yang Y. Efficient Lithium/Sodium-Ion Storage by Core-Shell Carbon Nanospheres@TiO 2 Decorate by Epitaxial WSe 2 Nanosheets Derived from Bimetallic Polydopamine Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204980. [PMID: 36399636 DOI: 10.1002/smll.202204980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Metal-polydopamine coordination chemistry attracts great attention owing to the synergistic effect of adjustable components and advantageous structures. However, few efforts have been devoted to exploring bimetal-polydopamine composites, especially for multistructural composites with high-capacity components and high stability. In this regard, the TiO2 @C-WSe2 core-shell nanospheres are designed and fabricated based on Ti-W-polydopamine composites after selenization, in which the TiO2 nanoparticles are encapsulated or embedded in the carbon nanospheres and the external WSe2 nanosheets are grown epitaxially on the carbon surfaces, featuring multiple channels for ion diffusion and abundant active edges for electrochemical reactions. The introduction of WSe2 not only greatly improves the capacity but also results in exponential growth of the active edge. As a result, the as-prepared TiO2 @C-WSe2 displayed long-term cycling performance in lithium-ion batteries. Furthermore, the anode is assembled into sodium-ion batteries, manifesting a stable capacity of 352 mA h g-1 at 1.0 A g-1 even after 2000 cycles, one of the best performances for polydopamine-based composites. Enhanced performance can be attributed to the synergies of high-capacity components and different dimensional materials. This work highlights that the rational design of functional structures provides a novel inspiration for electrodes with effective nanoarchitectures.
Collapse
Affiliation(s)
- Yifan Qin
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zejun Zhao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Teng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Sijia Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Meng Yan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chentao Hao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaobing Bao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Mingchang Zhang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
16
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
17
|
Kapoor U, Jayaraman A. Impact of Polydopamine Nanoparticle Surface Pattern and Roughness on Interactions with Poly(ethylene glycol) in Aqueous Solution: A Multiscale Modeling and Simulation Study. J Phys Chem B 2022; 126:6301-6313. [PMID: 35969690 DOI: 10.1021/acs.jpcb.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant research effort in the past few years has been devoted to engineering synthetic mimics of naturally occurring eumelanin. One such effort has involved the assembly of oligomers of 5,6-dihydroxyindole (DHI), a synthetic precursor of polydopamine (PDA), into melanin-mimicking nanoparticles for use in a variety of applications with desired optical, photonic, thermal, and electrical properties. In many of these applications, the PDA nanoparticles are mixed with other polymers or oligomers, thus motivating this specific study to understand how the surface characteristics of the assembled PDA-nanoparticles affect their interaction with poly(ethylene glycol) (PEG) chains in aqueous solution. We use molecular dynamics (MD) simulations to study the interaction of linear 20-mer PEG chains with different PDA-nanoparticles assembled using four types of oligomers of 5,6-DHI: two isomers of 5,6-DHI 2-mers with the monomers bonding either at the 2-2' position (A-type isomer) or 7-7' position (B-type isomer), denoted as A:2-mer and B:2-mer, respectively, and a 4-mer and an 8-mer of B-type chemistry denoted as B:4-mer and B:8-mer, respectively. Using explicit-solvent atomistic MD simulations, we find that PDA-nanoparticle surfaces assembled from B:8-mer exhibit smaller density fluctuations of water molecules and, as a result, are relatively more hydrophilic than the PDA-nanoparticle surfaces assembled from A:2-mer, B:2-mer, and B:4-mer. The surface composition of PDA-nanoparticles assembled from A:2-mer contains relatively fewer hydroxyl (-OH) groups compared to PDA-nanoparticles assembled from a B:2-mer, B:4-mer, or B:8-mer, yet the sample of PEG chains show more collapsed and adsorbed conformations on A:2-mer nanoparticles' surface. To explain the atomistically observed behavior of PEG chains on the nanoparticles' surfaces, we use coarse-grained (CG) MD simulations and explain the roles of the pattern formed by the attractive sites (e.g.,-OH groups) exposed on the surface and the roughness of the surface on interactions with a genric PEG-like copolymer chain. By comparing atomistic and CG MD simulation results, we confirm that the -OH groups' pattern on the surface of the PDA-nanoparticle assembled from A:2-mer is patchier than the random or string-like patterns on the PDA-nanoparticle assembled from B:2-mer, B:4-mer, or B:8-mer, and it is this -OH groups' surface pattern that dictates the PEG chain conformations and adsorption on the PDA-nanoparticle surface. Overall, these results guide the design of chemically and physically heterogeneous nanoparticle surfaces for the desired polymer interaction and conformations.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Zhou R, Zhang M, Xi J, Li J, Ma R, Ren L, Bai Z, Qi K, Li X. Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. NANOSCALE RESEARCH LETTERS 2022; 17:68. [PMID: 35882718 PMCID: PMC9325935 DOI: 10.1186/s11671-022-03706-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 05/28/2023]
Abstract
Gold nanorods (AuNRs) are ideal inorganic nanophotothermal agents with unique characteristics, including local surface plasmon resonance effects, easy scale preparation and functional modification, and good biocompatibility. This review summarizes several recent advances in AuNRs-based photothermal therapy (PTT) research. Functionalized AuNRs photothermal agents have optimized biocompatibility and targeting properties. The multifunctional AuNRs nanoplatform composite structure meets the requirements for synergistic effects of PTT, photoacoustic imaging, and other therapeutic methods. Photothermal therapy with AuNRs (AuNRs-PTT) is widely used to treat tumors and inflammatory diseases; its tumor-targeting, tumor metastasis inhibition, and photothermal tumor ablation abilities have remarkable curative effects. An in-depth study of AuNRs in living systems and the interactions between biological structure, nanomaterial, and near-infrared irradiation could lay the foundation for further clinical research and the broad application of AuNRs in PTT.
Collapse
Affiliation(s)
- Ruili Zhou
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Meigui Zhang
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ruixia Ma
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Longfei Ren
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
| | - Kuo Qi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China.
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
20
|
Ramezani-Aliakbari M, Varshosaz J, Mirian M, Khodarahmi G, Rostami M. pH-responsive Glucosamine Anchored Polydopamine Coated Mesoporous Silica Nanoparticles for delivery of Anderson-type Polyoxomolybdate in Breast Cancer. J Microencapsul 2022; 39:433-451. [PMID: 35762905 DOI: 10.1080/02652048.2022.2096139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIM This study aimed to develop novel pH-sensitive Glucosamine (Glu) targeted Polydopamine (PDA) coated mesoporous silica (SBA-15) nanoparticles (NPs) for selective delivery of anticancer Anderson-type manganese polyoxomolybdate (POMo) to breast cancer. METHODS The POMo@SBA-PDA-Glu NPs were prepared via direct hydrothermal synthesis of SBA, POMo loading, in situ PDA post functionalization, and Glu anchoring; the chemical structures were fully studied by different characterization methods. The anticancer activity was studied by MTT method and Annexin V-FITC apoptosis detection kit. RESULTS The optimized NPs had a hydrodynamic size (HS) of 195 nm, a zeta potential (ZP) of -18.9 mV, a loading content percent (LC%) of 45%, and a pH-responsive release profile. The targeted NPs showed increased anticancer activity against breast cancer cell lines compared to the free POMo with the highest cellular uptake and apoptosis level in the MDA-MB-231 cells. CONCLUSIONS POMo@SBA-PDA-Glu NPs could be a promising anticancer candidate for further studies.
Collapse
Affiliation(s)
- Maryam Ramezani-Aliakbari
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Ph.D student of Medicinal chemistry, Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Varshosaz
- Ph.D student of Medicinal chemistry, Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences and, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Ren M, Chen Z, Ge C, Hu W, Xu J, Yang L, Luan M, Wang N. Visualizing MiRNA Regulation of Apoptosis for Investigating the Feasibility of MiRNA-Targeted Therapy Using a Fluorescent Nanoprobe. Pharmaceutics 2022; 14:pharmaceutics14071349. [PMID: 35890245 PMCID: PMC9323288 DOI: 10.3390/pharmaceutics14071349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
MiRNA-targeted therapy is an active research field in precision cancer therapy. Studying the effect of miRNA expression changes on apoptosis is important for evaluating miRNA-targeted therapy and realizing personalized precision therapy for cancer patients. Here, a new fluorescent nanoprobe was designed for the simultaneous imaging of miRNA-21 and apoptotic protein caspase-3 in cancer cells by using gold nanoparticles as the core and polydopamine as the shell. Confocal imaging indicated that the nanoprobe could be successfully applied for in situ monitoring of miRNA regulation of apoptosis. This design strategy is critical for investigating the feasibility of miRNA-targeted therapy, screening new anti-cancer drugs targeting miRNA, and developing personalized treatment plans.
Collapse
Affiliation(s)
- Mingyao Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Zhe Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Chuandong Ge
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
- Correspondence: (M.L.); (N.W.)
| | - Nianxing Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
- Correspondence: (M.L.); (N.W.)
| |
Collapse
|
22
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
23
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
24
|
Polydopamine-Coated Magnetic Iron Oxide Nanoparticles: From Design to Applications. NANOMATERIALS 2022; 12:nano12071145. [PMID: 35407264 PMCID: PMC9000600 DOI: 10.3390/nano12071145] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Magnetic iron oxide nanoparticles have been extensively investigated due to their applications in various fields such as biomedicine, sensing, and environmental remediation. However, they need to be coated with a suitable material in order to make them biocompatible and to add new functionalities on their surface. This review is intended to give a comprehensive overview of recent advantages and applications of iron oxide nanoparticles coated by polydopamine film. The synthesis method of magnetic nanoparticles, their functionalization with bioinspired materials and (in particular) with polydopamine are discussed. Finally, some interesting applications of polydopamine-coated magnetic iron oxide nanoparticles will be pointed out.
Collapse
|
25
|
Han M, Li Y, Lu S, Yuan B, Cheng S, Cao C. Amyloid Protein-Biofunctionalized Polydopamine Nanoparticles Demonstrate Minimal Plasma Protein Fouling and Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13743-13757. [PMID: 35263991 DOI: 10.1021/acsami.2c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) shows great application potential in photothermal therapy (PTT) of tumors due to its excellent photothermal performance. However, PDA rich in a large number of catechin structures, with strong adhesion, can readily attach to plasma proteins in blood to form protein corona, which greatly hinders the transfer efficiency to tumors and reduces the bioavailability. In this paper, a simple, rapid phase-transitioned albumin biomimetic nanocorona (TBSA) is used for the surface camouflage of PDA nanoparticles for minimal plasma protein fouling and efficient PTT. TBSA coating is formed by the BSA-derived amyloid through the hydrophobic aggregation near the isoelectric point and the rupture of disulfide bonds by tris(2-carboxyethyl) phosphine. The stable PDA@TBSA complexes are formed by camouflaging TBSA onto the surface of PDA through hydrophobic, electrostatic, and covalent binding between TBSA and PDA, which showed excellent anti-plasma protein adsorption properties profited from the surface charge of PDA@TBSA approaching equilibrium and the surface passivation of BSA. The plasma protein thickness of the PDA@TBSA surface is 6 times lower than that of PDA at adsorption saturation. In vitro and in vivo experiments have revealed that PDA@TBSA has an excellent photothermal antitumor effect compared to PDA. Both PDA and PDA@TBSA treatment plus 808 nm laser irradiation result in more than 70% inhibition on tumor cell proliferation. In addition, PDA@TBSA does not cause a significant inflammatory response and tissue damage. Taken together, the TBSA coating endows PDA with low-fouling functions in blood and improves the residence time of PDA in blood and enrichment in the tumor tissue. This work offers a novel and efficient strategy for the design of functional nanosystems exploiting the speciality of the biomolecular corona formation around nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shun Lu
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
26
|
Zhao H, Bai N, Zhang Q, Wang Y, Jiang W, Yang J. Preparation of mussel-inspired silver/polydopamine antibacterial biofilms on Ti-6Al-4V for dental applications. RSC Adv 2022; 12:6641-6648. [PMID: 35424626 PMCID: PMC8982268 DOI: 10.1039/d1ra06634j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
The properties of osseointegration and antibacterial ability is vital import for dental materials. Herein, we designed the multilayer TC4-Ag-polydopamine coatings, to provide TC4 with slow-release antibacterial properties whilst maintaining cytocompatibility. In brief, thickness of Ag inner layer can be easily controlled by magnetron sputtering technology. The resulting top polydopamine layer protected the Ag well from corrosion and gave a sustained release of Ag+ up to one month. In addition, the prepared TC4-Ag-polydopamine samples with Ag thickness of 20 and 30 nm, showed high hydrophilic performance with the contact-angle less than 20°, low cytotoxicity and good cytocompatibility. Expectedly, it could become a prospective candidate for future slow-release antibacterial dental materials.
Collapse
Affiliation(s)
- Hongmei Zhao
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Na Bai
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Ying Wang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Wenjing Jiang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Jianjun Yang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| |
Collapse
|
27
|
Nkanga CI, Chung YH, Shukla S, Zhou J, Jokerst JV, Steinmetz NF. The in vivo fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomater Sci 2021; 9:7134-7150. [PMID: 34591046 PMCID: PMC8600448 DOI: 10.1039/d1bm01113h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant virus nanoparticles (VNPs) have multiple advantages over their synthetic counterparts including the cost-effective large-scale manufacturing of uniform particles that are easy to functionalize. Tobacco mosaic virus (TMV) is one of the most promising VNP scaffolds, reflecting its high aspect ratio and ability to carry and/or display multivalent therapeutic ligands and contrast agents. Here we investigated the circulation, protein corona, immunogenicity, and organ distribution/clearance of TMV particles internally co-labeled with cyanine 5 (Cy5) and chelated gadolinium (Gd) for dual tracking by fluorescence imaging and optical emission spectrometry, with or without an external coating of polydopamine (PDA) to confer photothermal and photoacoustic capabilities. The PDA-coated particles (Gd-Cy5-TMV-PDA) showed a shorter plasma circulation time and broader distribution to organs of the reticuloendothelial system (liver, lungs, and spleen) than uncoated Gd-Cy5-TMV particles (liver and spleen only). The Gd-Cy5-TMV-PDA particles were surrounded by 2-10-fold greater protein corona (containing mainly immunoglobulins) compared to Gd-Cy5-TMV particles. However, the enzyme-linked immunosorbent assay (ELISA) revealed that PDA-coated particles bind 2-fold lesser to anti-TMV antibodies elicited by particle injection than uncoated particles, suggesting that the PDA coat enables evasion from systemic antibody surveillance. Gd-Cy5-TMV-PDA particles were cleared from organs after 8 days compared to 5 days for the uncoated particles. The slower tissue clearance of the coated particles makes them ideal for theranostic applications by facilitating sustained local delivery in addition to multimodal imaging and photothermal capabilities. We have demonstrated the potential of PDA-coated proteinaceous nanoparticles for multiple biomedical applications.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| |
Collapse
|
28
|
Polydopamine Coated CeO 2 as Radical Scavenger Filler for Aquivion Membranes with High Proton Conductivity. MATERIALS 2021; 14:ma14185280. [PMID: 34576507 PMCID: PMC8469177 DOI: 10.3390/ma14185280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
CeO2 nanoparticles were coated with polydopamine (PDA) by dopamine polymerization in water dispersions of CeO2 and characterized by Infrared and Near Edge X-ray Absorption Fine Structure spectroscopy, Transmission Electron Microscopy, Thermogravimetric analysis and X-ray diffraction. The resulting materials (PDAx@CeO2, with x = PDA wt% = 10, 25, 50) were employed as fillers of composite proton exchange membranes with Aquivion 830 as ionomer, to reduce the ionomer chemical degradation due to hydroxyl and hydroperoxyl radicals. Membranes, loaded with 3 and 5 wt% PDAx@CeO2, were prepared by solution casting and characterized by conductivity measurements at 80 and 110 °C, with relative humidity ranging from 50 to 90%, by accelerated ex situ degradation tests with the Fenton reagent, as well as by in situ open circuit voltage stress tests. In comparison with bare CeO2, the PDA coated filler mitigates the conductivity drop occurring at increasing CeO2 loading especially at 110 °C and 50% relative humidity but does not alter the radical scavenger efficiency of bare CeO2 for loadings up to 4 wt%. Fluoride emission rate data arising from the composite membrane degradation are in agreement with the corresponding changes in membrane mass and conductivity.
Collapse
|
29
|
Liu Y, Choi CKK, Hong H, Xiao Y, Kwok ML, Liu H, Tian XY, Choi CHJ. Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles. ACS NANO 2021; 15:13871-13890. [PMID: 34379407 DOI: 10.1021/acsnano.1c06081] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polydopamine (PDA)-coated nanoparticles (NPs) are emerging carriers of therapeutic agents for nanomedicine applications due to their biocompatibility and abundant entry to various cell types, yet it remains unknown whether their cellular entry engages cell-surface receptors. As monomeric dopamine (DA) is an endogenous ligand of dopamine receptor and raw ingredient of PDA, we elucidate the interaction between polyethylene glycol-stabilized, PDA-coated gold NPs (Au@PDA@PEG NPs) and dopamine receptors, particularly D2 (D2DR). After proving the binding of Au@PDA@PEG NPs to recombinant and cellular D2DR, we employ antibody blocking, gene knockdown, and gene overexpression to establish the role of D2DR in the cellular uptake of Au@PDA@PEG NPs in vitro. By preparing a series of PEG-coated AuNPs that contain different structural analogues of DA (Au@PEG-X NPs), we demonstrate that catechol and amine groups collectively enhance the binding of NPs to D2DR and their cellular uptake. By intravenously injecting Au@PDA@PEG NPs to Balb/c mice, we reveal their in vivo binding to D2DR in the liver by competitive inhibition and immunohistochemistry together with their preferential association to D2DR-rich resident Kupffer cells by flow cytometry, a result consistent with the profuse expression of D2DR by resident Kupffer cells. Catechol and amine groups jointly contribute to the preferential association of NPs to D2DR-rich Kupffer cells. Our data highlight the importance of D2DR expression and DA-related functional groups in mediating the cell-nano interactions of PDA-based nanomedicines.
Collapse
|
30
|
Yilmaz MT, Akman PK, Bozkurt F, Karasu S. An effective polydopamine coating to improve stability and bioactivity of carvacrol‐loaded zein nanoparticles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mustafa Tahsin Yilmaz
- Department of Industrial Engineering Faculty of Engineering King Abdulaziz University Jeddah 21589 Saudi Arabia
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty Yıldız Technical University İstanbul 34210 Turkey
| | - Perihan Kubra Akman
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty Yıldız Technical University İstanbul 34210 Turkey
| | - Fatih Bozkurt
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty Yıldız Technical University İstanbul 34210 Turkey
- Department of Food Engineering, Faculty of Engineering and Architecture Mus Alparslan University Mus 49250 Turkey
| | - Salih Karasu
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty Yıldız Technical University İstanbul 34210 Turkey
| |
Collapse
|
31
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
32
|
Mahmoud NN, Aqabani H, Hikmat S, Abu-Dahab R. Colloidal Stability and Cytotoxicity of Polydopamine-Conjugated Gold Nanorods against Prostate Cancer Cell Lines. Molecules 2021; 26:1299. [PMID: 33670890 PMCID: PMC7957783 DOI: 10.3390/molecules26051299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men. Cell invasion is an important step in the process of cancer metastasis. Herein, gold nanorods (GNRs) and polyethylene glycol (PEG)-coated GNRs were conjugated with polydopamine (PDA). The PDA-nanoconjugates demonstrated excellent colloidal stability upon lyophilization and dispersion in cell culture media with or without the addition of fetal bovine albumin (FBS), compared to unconjugated GNRs. PDA-nanoconjugates exhibited a considerable cytotoxicity against DU-145 and PC3 prostate cancer cell lines over a concentration range of 48 μg/mL-12 μg/mL, while they were biocompatible over a concentration range of 3.0 μg/mL-0.185 μg/mL. Furthermore, PDA-nanoconjugates demonstrated possible anti-invasion activity towards prostate cancer cell lines, particularly DU-145 cell line, by reducing cell migration and cell adhesion properties. The PDA-nanoconjugates could be considered a promising nano-platform toward cancer treatment by reducing the invasion activity; it could also be considered a drug delivery system for chemotherapeutic agents.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (H.A.); (S.H.)
| | - Hakam Aqabani
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (H.A.); (S.H.)
| | - Suhair Hikmat
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (H.A.); (S.H.)
| | - Rana Abu-Dahab
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
33
|
Zafar M, Ijaz M, Iqbal T. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces 2020; 199:111502. [PMID: 33387795 DOI: 10.1016/j.colsurfb.2020.111502] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Polydopamine (PDA) has shown great potentials in biomedical fields due largely to its unique physicochemical properties, including high photothermal transfer efficiency, excellent drug binding capacity, versatile adhesion ability, sensitive pH responsibility and great biocompatibility and biodegradability. These properties confer PDA-based nanoparticles the potentials either as the drug carriers for advanced drug delivery or as the bioactive agents for photothermal therapy, imaging and biosensing. This review aims to provide a comprehensive understanding of PDA, its polymerization mechanisms and the potentials of PDA-based nano-systems in treating various diseases, including cancer, diabetes, inflammation, bacterial infection and Parkinson's disease. In addition, the concerns of PDA in biomedical use are also discussed.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Antineoplastic behavior of polydopamine nanoparticles prepared in different water/alcohol media. Colloids Surf B Biointerfaces 2020; 199:111506. [PMID: 33338881 DOI: 10.1016/j.colsurfb.2020.111506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Polydopamine nanoparticles (PD NPs) have been synthesized in the present work through the oxidative polymerization of dopamine in aqueous media containing five different types of alcohol in a constant solvent volume ratio. We have shown that the type of alcohol, along with the ammonium hydroxide concentration used in the synthesis process, conditions particle size. Additionally, it has been found that the type of alcohol employed influences the well-known capacity of polydopamine nanoparticles to adsorb iron. As a consequence, since a ferroptosis-like mechanism may account for the cytotoxicity of these nanoparticles, the type of alcohol could also have a determining role in their antineoplastic activity. Here, the existence of a correlation between the ability of polydopamine nanoparticles to load Fe3+ and their toxic effect on breast cancer cells has been proven. For instance, nanoparticles synthesized using 2-propanol adsorbed more Fe3+ and had the greatest capacity to reduce breast tumor cell viability. Moreover, none of the nanoparticle synthesized with the different alcohols significantly decreased normal cell survival. Cancer cells present greater iron-dependence than healthy cells and this fact may explain why polydopamine nanoparticles toxicity, in which Fenton chemistry could be implicated, seems tumor-specific.
Collapse
|
36
|
Qasim M, Duong DD, Lee JY, Lee NY. Fabrication of polycaprolactone nanofibrous membrane‐embedded microfluidic device for water filtration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muhammad Qasim
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| | - Duong Duy Duong
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| |
Collapse
|
37
|
Kaushik N, Nhat Nguyen L, Kim JH, Choi EH, Kumar Kaushik N. Strategies for Using Polydopamine to Induce Biomineralization of Hydroxyapatite on Implant Materials for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E6544. [PMID: 32906793 PMCID: PMC7555775 DOI: 10.3390/ijms21186544] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
In the field of tissue engineering, there are several issues to consider when designing biomaterials for implants, including cellular interaction, good biocompatibility, and biochemical activity. Biomimetic mineralization has gained considerable attention as an emerging approach for the synthesis of biocompatible materials with complex shapes, categorized organization, controlled shape, and size in aqueous environments. Understanding biomineralization strategies could enhance opportunities for novel biomimetic mineralization approaches. In this regard, mussel-inspired biomaterials have recently attracted many researchers due to appealing features, such as strong adhesive properties on moist surfaces, improved cell adhesion, and immobilization of bioactive molecules via catechol chemistry. This molecular designed approach has been a key point in combining new functionalities into accessible biomaterials for biomedical applications. Polydopamine (PDA) has emerged as a promising material for biomaterial functionalization, considering its simple molecular structure, independence of target materials, cell interactions for adhesion, and robust reactivity for resulting functionalization. In this review, we highlight the strategies for using PDA to induce the biomineralization of hydroxyapatite (HA) on the surface of various implant materials with good mechanical strength and corrosion resistance. We also discuss the interactions between the PDA-HA coating, and several cell types that are intricate in many biomedical applications, involving bone defect repair, bone regeneration, cell attachment, and antibacterial activity.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, University of Suwon, Hwaseong 18323, Korea; (N.K.); (J.H.K.)
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
- Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - June Hyun Kim
- Department of Biotechnology, University of Suwon, Hwaseong 18323, Korea; (N.K.); (J.H.K.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| |
Collapse
|
38
|
Lu Z, Quek AJ, Meaney SP, Tabor RF, Follink B, Teo BM. Polynorepinephrine as an Efficient Antifouling-Coating Material and Its Application as a Bacterial Killing Photothermal Agent. ACS APPLIED BIO MATERIALS 2020; 3:5880-5886. [DOI: 10.1021/acsabm.0c00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Adam J. Quek
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Shane P. Meaney
- Level 2, Rupert Myers Building (South Wing), UNSW, Sydney, NSW 2052, Australia
| | - Rico F. Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Bart Follink
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
39
|
Kang MS, Lee SY, Kim KS, Han DW. State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics 2020; 12:pharmaceutics12080701. [PMID: 32722426 PMCID: PMC7463491 DOI: 10.3390/pharmaceutics12080701] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023] Open
Abstract
Research on cancer theragnosis with gold nanoparticles (AuNPs) has rapidly increased, as AuNPs have many useful characteristics for various biomedical applications, such as biocompatibility, tunable optical properties, enhanced permeability and retention (EPR), localized surface plasmon resonance (LSPR), photothermal properties, and surface enhanced Raman scattering (SERS). AuNPs have been widely utilized in cancer theragnosis, including phototherapy and photoimaging, owing to their enhanced solubility, stability, biofunctionality, cancer targetability, and biocompatibility. In this review, specific characteristics and recent modifications of AuNPs over the past decade are discussed, as well as their application in cancer theragnostics and future perspectives. In the future, AuNP-based cancer theragnosis is expected to facilitate the development of innovative and novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - So Yun Lee
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (K.S.K.); (D.-W.H.); Tel.: +82-051-510-2496 (K.S.K.); +82-51-510-7725 (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (K.S.K.); (D.-W.H.); Tel.: +82-051-510-2496 (K.S.K.); +82-51-510-7725 (D.-W.H.)
| |
Collapse
|
40
|
Singh N, Millot N, Maurizi L, Lizard G, Kumar R. Taurine-Conjugated Mussel-Inspired Iron Oxide Nanoparticles with an Elongated Shape for Effective Delivery of Doxorubicin into the Tumor Cells. ACS OMEGA 2020; 5:16165-16175. [PMID: 32656438 PMCID: PMC7346241 DOI: 10.1021/acsomega.0c01747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 05/04/2023]
Abstract
Multifunctional iron oxide magnetic nanoparticles, among them nanorods, were prepared with a mussel-inspired polydopamine (pDA) surface coating agent for cancer therapeutics. Taurine, a free sulfur-containing ß amino acid, was grafted on the pDA at the iron oxide nanoparticle surface to enhance its biocompatibility and targeted delivery action. Doxorubicin (DOX), an anticancer drug, was loaded on the prepared nanovehicles with an entrapment efficiency of 70.1%. Drug release kinetics were then analyzed using UV-vis and fluorescence spectroscopies, suggesting the pH-responsive behavior of the developed nanovehicle. The developed system was then tested on PC-3 cell lines to check its cellular response. Confocal microscopy observations and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and Annexin V-FITC assays used to evaluate cell toxicity and apoptosis reveal a dose-dependent nature of nanorods and can overcome the side effects of using free DOX with a targeted action.
Collapse
Affiliation(s)
- Nimisha Singh
- Department
of Applied Chemistry, S. V. National Institute
of Technology, Surat 395007, Gujarat, India
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université
Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, Dijon 21078, France
| | - Nadine Millot
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université
Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, Dijon 21078, France
| | - Lionel Maurizi
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université
Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, Dijon 21078, France
| | - Gérard Lizard
- Laboratory
Bio-PeroxIL, EA7270, Université Bourgogne Franche-Comté/Inserm, 6 Bd Gabriel, Dijon 21000, France
| | - Rajender Kumar
- Department
of Applied Chemistry, S. V. National Institute
of Technology, Surat 395007, Gujarat, India
- Department
of Chemistry and Chemical Science, School of Physical and Material
Sciences, Central University of Himachal
Pradesh, Kangra, Himachal Pradesh 176215, India
| |
Collapse
|
41
|
Shi X, Zou J, Chen X, Zheng H, Jin Z, Li F, Piao JG. The Effect of Size on the Surface Enhanced Raman Scattering Property of SiO 2@PDA@AgNP Core-Shell-Satellite Nanocomposite. CHEM LETT 2020. [DOI: 10.1246/cl.200040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaowei Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Jiafeng Zou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Xiaojie Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Zhexiu Jin
- Department of Cardiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 350003, P. R. China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
42
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
43
|
Huang W, Leng T, Gao M, Hu Q, Liu L, Dou H. Scalable dextran-polypyrrole nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility. Carbohydr Polym 2020; 241:116224. [PMID: 32507183 DOI: 10.1016/j.carbpol.2020.116224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Polypyrroles have shown great potential in photoacoustic imaging and photothermal therapy owing to its excellent photothermal conversion capabilities. However, the synthesis of polypyrrole-based nano-assemblies which have colloidal stability in biological buffers requires a number of steps, including the polymerization of pyrrole monomers, self-assembly of polypyrrole-based copolymers, and even an additional step to increase the biocompatibility of the nano-assemblies. Herein, a "polymerization/assembly" two-in-one synthesis is proposed for the first time to achieve the one-step synthesis of a new family of polypyrrole-based nano-assemblies, dextran-polypyrrole nano-assemblies (Dex-PPy NAs), under ambient conditions and in aqueous media. In addition, the approach employs tetravalent cerium ions as initiators which can initiate the polymerization of pyrrole monomers through the initiation of free radicals from dextran molecular chains. The resultant Dex-PPy NAs have a photothermal conversion efficiency reaching as high as 41 % and an excellent photostability. More importantly, the NAs with controllable nanoscale dimensions display no signs of cytotoxicity in both in vitro and in vivo studies owing to their biocompatible dextran "shell". An in vivo study further confirmed that the Dex-PPy NAs have excellent real-time photoacoustic imaging and photothermal therapy capabilities for malignant tumors. Therefore, this study represents an important step towards the scalable synthesis of polypyrrole-based nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility.
Collapse
Affiliation(s)
- Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Leng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiangqiang Hu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
44
|
Steeves AJ, Variola F. Elucidating structure–function relationships governing the interfacial response of human mesenchymal stem cells to polydopamine coatings. J Mater Chem B 2020; 8:199-215. [DOI: 10.1039/c9tb02188d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deposition of mussel-inspired polydopamine (PDA) has rapidly emerged as a simple yet effective strategy to functionalize the surface of biomaterials.
Collapse
Affiliation(s)
- Alexander J. Steeves
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Ottawa-Carleton Institute for Biomedical Engineering
| | - Fabio Variola
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Ottawa-Carleton Institute for Biomedical Engineering
| |
Collapse
|
45
|
Zhang D, Zheng Y, Lin Z, Lan S, Zhang X, Zheng A, Li J, Liu G, Yang H, Liu X, Liu J. Artificial Engineered Natural Killer Cells Combined with Antiheat Endurance as a Powerful Strategy for Enhancing Photothermal-Immunotherapy Efficiency of Solid Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902636. [PMID: 31468667 DOI: 10.1002/smll.201902636] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Although photothermal therapy (PTT) is preclinically applied in solid tumor treatment, incomplete tumor removal of PTT and heat endurance of tumor cells induces significant tumor relapse after treatment, therefore lowering the therapeutic efficiency of PTT. Herein, a programmable therapeutic strategy that integrates photothermal therapeutic agents (PTAs), DNAzymes, and artificial engineered natural killer (A-NK) cells for immunotherapy of hepatocellular carcinoma (HCC) is designed. The novel PTAs, termed as Mn-CONASHs, with 2D structure are synthesized by the coordination of tetrahydroxyanthraquinone and Mn2+ ions. By further adsorbing polyetherimide/DNAzymes on the surface, the DNAzymes@Mn-CONASHs exhibit excellent light-to-heat conversion ability, tumor microenvironment enhanced T1 -MRI guiding ability, and antiheat endurance ability. Furthermore, the artificial engineered NK cells with HCC specific targeting TLS11a-aptamer decoration are constructed for specifically eliminating any possible residual tumor cells after PTT, to systematically enhance the therapeutic efficacy of PTT and avoid tumor relapse. Taken together, the potential of A-NK cells combined with antiheat endurance as a powerful strategy for immuno-enhancing photothermal therapy efficiency of solid tumors is highlighted, and the current strategy might provide promising prospects for cancer therapy.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Shanyou Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, 361005, P. R. China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| |
Collapse
|
46
|
Abstract
Many diseases and conditions affect a relatively localized area of the body. They can be treated either by direct deposition of drug in the target area, or by giving the drug systemically. Here we review nanoparticle-based approaches to achieving both. We highlight advantages and disadvantages that nanoscale solutions have for locally administered therapies, with emphasis on the former. We discuss strategies to enable systemically delivered nanoparticles to deliver their payloads at specific locations in the body, including triggering (local and remote) and targeting.
Collapse
Affiliation(s)
- Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Kord Forooshani P, Polega E, Thomson K, Bhuiyan MSA, Pinnaratip R, Trought M, Kendrick C, Gao Y, Perrine KA, Pan L, Lee BP. Antibacterial Properties of Mussel-Inspired Polydopamine Coatings Prepared by a Simple Two-Step Shaking-Assisted Method. Front Chem 2019; 7:631. [PMID: 31608272 PMCID: PMC6773806 DOI: 10.3389/fchem.2019.00631] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
A simple two-step, shaking-assisted polydopamine (PDA) coating technique was used to impart polypropylene (PP) mesh with antimicrobial properties. In this modified method, a relatively large concentration of dopamine (20 mg ml−1) was first used to create a stable PDA primer layer, while the second step utilized a significantly lower concentration of dopamine (2 mg ml−1) to promote the formation and deposition of large aggregates of PDA nanoparticles. Gentle shaking (70 rpm) was employed to increase the deposition of PDA nanoparticle aggregates and the formation of a thicker PDA coating with nano-scaled surface roughness (RMS = 110 nm and Ra = 82 nm). Cyclic voltammetry experiment confirmed that the PDA coating remained redox active, despite extensive oxidative cross-linking. When the PDA-coated mesh was hydrated in phosphate saline buffer (pH 7.4), it was activated to generate 200 μM hydrogen peroxide (H2O2) for over 48 h. The sustained release of low doses of H2O2 was antibacterial against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. PDA coating achieved 100% reduction (LRV ~3.15) when incubated against E. coli and 98.9% reduction (LRV ~1.97) against S. epi in 24 h.
Collapse
Affiliation(s)
- Pegah Kord Forooshani
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Elizabeth Polega
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Kevin Thomson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Md Saleh Akram Bhuiyan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Mikhail Trought
- Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| | - Chito Kendrick
- Department of Electrical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Yuesheng Gao
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| | - Lei Pan
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
48
|
Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019; 309:203-219. [PMID: 31362077 DOI: 10.1016/j.jconrel.2019.07.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
Nanocarriers sensitive to near infrared light (NIR) are useful templates for chemo-photothermal therapy (PTT) and imaging of tumors due to the ability to change the absorbed NIR energy to heat. The conventional photo-absorbing reagents lack the efficient loading and release of drug before reaching the target site leading to insufficient therapeutic outcomes. To overcome these limitations, the surface of nanocarriers can be modified with different polymers with wide functionalities to provide systems with diagnostic, therapeutic, and theranostic capabilities. Among various polymers, polydopamine (PDA) has been more interested due to complex structure with various chemical moieties, and the capacity to be used through different coating mechanism. In this review, we describe the complex structure, chemical properties, and coating mechanisms of PDA. Moreover, the advantage and surface modification of some relevant nanosystems based on carbon materials, gold, iron oxide, manganese, and upconverting nanomaterials by using PDA will be discussed, in detail.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
49
|
Li ST, Jin XZ, Shao YW, Qi XD, Yang JH, Wang Y. Gold nanoparticle/reduced graphene oxide hybrids for fast light-actuated shape memory polymers with enhanced photothermal conversion and mechanical stiffness. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Ho LWC, Liu Y, Han R, Bai Q, Choi CHJ. Nano-Cell Interactions of Non-Cationic Bionanomaterials. Acc Chem Res 2019; 52:1519-1530. [PMID: 31058496 DOI: 10.1021/acs.accounts.9b00103] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in nanotechnology have empowered the design of bionanomaterials by assembling different types of natural biomolecules (e.g., nucleic acids, proteins, and lipids) as building blocks into nanoparticles (NPs) of 1-100 nm in diameter. Such bionanomaterials form the basis of useful nanomedicine applications, such as targeted delivery, gene regulation, molecular diagnostics, and immunomodulation. To achieve optimal performance in these applications, it is imperative that the NPs be delivered effectively to the organs, tissues, and cells of interest. A rational approach to facilitating the delivery of NPs is to develop a detailed and comprehensive understanding in their fundamental interactions with the biological system (or nano-bio interactions). Rigorous nano-bio research can provide mechanistic insights for circumventing the bottlenecks associated with inefficient and nonspecific delivery of NPs, catalyzing the clinical translation of nanomedicines. Cationic liposomes and lipid NPs are conventional carriers of therapeutic cargoes into cells due to their high ability to penetrate the cell membrane, a barrier comprised by an anionic phospholipid bilayer. Yet, cationic NPs tend to cause cytotoxicity and immune responses that may hamper their clinical translation. Contrary to cationic NPs, non-cationic NPs (be they near-neutral or anionic in surface charge) generally exhibit higher biocompatibility but enter mammalian cells in much less pronounced amounts. Intriguingly, some types of non-cationic NPs exhibit high biocompatibility and cellular uptake properties, all attractive features for intracellular delivery. In this Account, we present our studies of the interactions of non-cationic bionanomaterials with cells (or nano-cell interactions). To start with, we introduce the use of near-neutral poly(ethylene glycol)-coated NPs for probing the roles of two rarely explored physicochemical parameters on cellular uptake, namely, extracellular compression and alkylation. We next present the nano-cell interactions of two representative types of anionic bionanomaterials that effectively enter mammalian cells and have found widespread applications in the past decade, including DNA-coated NPs and polydopamine (PDA)-coated NPs. In our cell-based studies, we dissect the route of intracellular trafficking, pathway proteins that dictate cellular uptake, and trafficking of NPs. We further touch on our recent quantitative analysis of the cellular-level distribution of NPs in various organs and tissues of diseased animal models. Our results offer important design rules of NPs for achieving effective intracellular delivery and may even guide us to explore nanomedicine applications that we did not conceive before, such as using DNA-coated NPs for targeting atherosclerotic plaques and PDA-coated plasmonic nanoworms for photothermal killing of cancer cells. We conclude with our perspectives in elucidating nano-bio interactions via a reductionist approach, calling for closer attention to the role of functional groups and more refined studies on the organelle-level distribution of NPs and the genetic basis of in vivo distribution of NPs.
Collapse
Affiliation(s)
- Lok Wai Cola Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yao Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ruifang Han
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Qianqian Bai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|