1
|
Kehagia E, Papakyriakopoulou P, Valsami G. Advances in intranasal vaccine delivery: A promising non-invasive route of immunization. Vaccine 2023:S0264-410X(23)00529-7. [PMID: 37179163 PMCID: PMC10173027 DOI: 10.1016/j.vaccine.2023.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The importance of vaccination has been proven particularly significant the last three years, as it is revealed to be the most efficient weapon for the prevention of several infections including SARS-COV-2. Parenteral vaccination is the most applicable method of immunization, for the prevention of systematic and respiratory infections, or central nervous system disorders, involving T and B cells to a whole-body immune response. However, the mucosal vaccines, such as nasal vaccines, can additionally activate the immune cells localized on the mucosal tissue of the upper and lower respiratory tract. This dual stimulation of the immune system, along with their needle-free administration favors the development of novel nasal vaccines to produce long-lasting immunity. In recent years, the nanoparticulate systems have been extensively involved in the formulation of nasal vaccines as polymeric, polysaccharide and lipid ones, as well as in the form of proteosomes, lipopeptides and virosomes. Advanced delivery nanosystems have been designed and evaluated as carriers or adjuvants for nasal vaccination. To this end, several nanoparticulate vaccines are undergone clinical trials as promising candidates for nasal immunization, while nasal vaccines against influenza type A and B and hepatitis B have been approved by health authorities. This comprehensive literature review aims to summarize the critical aspects of these formulations and highlight their potential for the future establishment of nasal vaccination. Both preclinical (in vitro and in vivo) and clinical studies are incorporated, summarized, and critically discussed, as well as the limitations of nasal immunization.
Collapse
Affiliation(s)
- Eleni Kehagia
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece.
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| |
Collapse
|
2
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
3
|
Aziz T, Nadeem AA, Sarwar A, Perveen I, Hussain N, Khan AA, Daudzai Z, Cui H, Lin L. Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 2023; 11:354. [PMID: 36830891 PMCID: PMC9953552 DOI: 10.3390/biomedicines11020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily focuses on aging genetics, physical parameters, and the use of nanoparticles as delivery systems of drugs and vaccines via the nasal cavity. Studies have identified various genes involved in centenarian and average-aged people. VEGF is a key mediator involved in angiogenesis. Different therapeutic approaches induce vascular function and angiogenesis. FOLR1 gene codes for folate receptor alpha protein that helps in regulating the transport of vitamin B folate, 5-methyltetrahydrofolate and folate analogs inside the cell. This gene also aids in slowing the aging process down by cellular regeneration and promotes healthy aging by reducing aging symptoms. It has been found through the literature that GATA 6, Yamanaka factors, and FOLR1 work in synchronization to induce healthy and delayed aging. The role and applications of genes including CBS, CISD, SIRT 1, and SIRT 6 play a significant role in aging.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zubaida Daudzai
- Department of Bioresources and Biotechnology, King Mongkut University of Technology, Bangkok 10140, Thailand
| | - Haiying Cui
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
5
|
Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:1-20. [PMID: 35194485 PMCID: PMC8853224 DOI: 10.1134/s1990747822020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
The review considers liposomes as systems of substantial interest as adjuvant carriers in vaccinology due to their versatility and maximal biocompatibility. Research and development on the use of liposomes and lipid nanoparticles to create subunit vaccines for the prevention and treatment of infectious diseases has been going on for several decades. In recent years, the area has seen serious progress due to the improvement of the technology of industrial production of various high-grade lipids suitable for parenteral administration and the emergence of new technologies and equipment for the production of liposomal preparations. When developing vaccines, it is necessary to take into account how the body’s immune system (innate and adaptive immunity) functions. The review briefly describes some of the fundamental mechanisms underlying the mobilization of immunity when encountering an antigen, as well as the influence of liposome carriers on the processes of internalization of antigens by immunocompetent cells and ways of immune response induction. The results of the studies on the interactions of liposomes with antigen-presenting cells in function of the liposome size, charge, and phase state of the bilayer, which depends on the lipid composition, are often contradictory and should be verified in each specific case. The introduction of immunostimulant components into the composition of liposomal vaccine complexes—ligands of the pathogen-associated molecular pattern receptors—permits modulation of the strength and type of the immune response. The review briefly discusses liposome-based vaccines approved for use in the clinic for the treatment and prevention of infectious diseases, including mRNA-loaded lipid nanoparticles. Examples of liposomal vaccines that undergo various stages of clinical trials are presented.
Collapse
Affiliation(s)
- D S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
7
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
9
|
Zaman M, Huber VC, Heiden DL, DeHaan KN, Chandra S, Erickson D, Ozberk V, Pandey M, Bailly B, Martin G, Langshaw EL, Zaid A, von Itzstein M, Good MF. Combinatorial liposomal peptide vaccine induces IgA and confers protection against influenza virus and bacterial super-infection. Clin Transl Immunology 2021; 10:e1337. [PMID: 34527244 PMCID: PMC8432089 DOI: 10.1002/cti2.1337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives The upper respiratory tract is the major entry site for Streptococcus pyogenes and influenza virus. Vaccine strategies that activate mucosal immunity could significantly reduce morbidity and mortality because of these pathogens. The severity of influenza is significantly greater if a streptococcal infection occurs during the viraemic period and generally viral infections complicated by a subsequent bacterial infection are known as super-infections. We describe an innovative vaccine strategy against influenza virus:S. pyogenes super-infection. Moreover, we provide the first description of a liposomal multi-pathogen-based platform that enables the incorporation of both viral and bacterial antigens into a vaccine and constitutes a transformative development. Methods Specifically, we have explored a vaccination strategy with biocompatible liposomes that express conserved streptococcal and influenza A virus B-cell epitopes on their surface and contain encapsulated diphtheria toxoid as a source of T-cell help. The vaccine is adjuvanted by inclusion of the synthetic analogue of monophosphoryl lipid A, 3D-PHAD. Results We observe that this vaccine construct induces an Immunoglobulin A (IgA) response in both mice and ferrets. Vaccination reduces viral load in ferrets from influenza challenge and protects mice from both pathogens. Notably, vaccination significantly reduces both mortality and morbidity associated with a super-infection. Conclusion The vaccine design is modular and could be adapted to include B-cell epitopes from other mucosal pathogens where an IgA response is required for protection.
Collapse
Affiliation(s)
- Mehfuz Zaman
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Victor C Huber
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Dustin L Heiden
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Katerina N DeHaan
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Sanyogita Chandra
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Demi Erickson
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Victoria Ozberk
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Manisha Pandey
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Benjamin Bailly
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Gael Martin
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Emma L Langshaw
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Ali Zaid
- The Emerging Viruses, Inflammation and Therapeutics GroupMenzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- School of Medical SciencesGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
| | | | - Michael F Good
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| |
Collapse
|
10
|
A dual-adjuvanting strategy for peptide-based subunit vaccines against group A Streptococcus: Lipidation and polyelectrolyte complexes. Bioorg Med Chem 2020; 28:115823. [DOI: 10.1016/j.bmc.2020.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
|
11
|
The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar Drugs 2020; 18:md18120605. [PMID: 33260406 PMCID: PMC7759871 DOI: 10.3390/md18120605] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mucosal delivery of antigens can induce both humoral and cellular immune responses. Particularly, the nasal cavity is a strongly inductive site for mucosal immunity among several administration routes, as it is generally the first point of contact for inhaled antigens. However, the delivery of antigens to the nasal cavity has some disadvantages such as rapid clearance and disposition of inhaled materials. For these reasons, remarkable efforts have been made to develop antigen delivery systems which suit the nasal route. The use of nanoparticles as delivery vehicles enables protection of the antigen from degradation and sustains the release of the loaded antigen, eventually resulting in improved vaccine and/or drug efficacy. Chitosan, which exhibits low toxicity, biodegradability, good cost performance, and strong mucoadhesive properties, is a useful material for nanoparticles. The present review provides an overview of the mucosal immune response induced by nanoparticles, recent advances in the use of nanoparticles, and nasal delivery systems with chitosan nanoparticles.
Collapse
|
12
|
Bartlett S, Skwarczynski M, Toth I. Lipids as Activators of Innate Immunity in Peptide Vaccine Delivery. Curr Med Chem 2020; 27:2887-2901. [PMID: 30362416 DOI: 10.2174/0929867325666181026100849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/16/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Innate immune system plays an important role in pathogen detection and the recognition of vaccines, mainly through pattern recognition receptors (PRRs) that identify pathogen components (danger signals). One of the typically recognised bacterial components are lipids in conjugation with peptides, proteins and saccharides. Lipidic compounds are readily recognised by the immune system, and thus are ideal candidates for peptide- based vaccine delivery. Thus, bacterial or synthetic lipids mixed with, or conjugated to, antigens have shown adjuvant properties. These systems have many advantages over traditional adjuvants, including low toxicity and good efficacy for stimulating mucosal and systemic immune responses. METHODS The most recent literature on the role of lipids in stimulation of immune responses was selected for this review. The vast majority of reviewed papers were published in the last decade. Older but significant findings are also cited. RESULTS This review focuses on the development of lipopeptide vaccine systems including application of palmitic acid, bacterial lipopeptides, glycolipids and the lipid core peptide and their routes of administration. The use of liposomes as a delivery system that incorporates lipopeptides is discussed. The review also includes a brief description of immune system in relation to vaccinology and discussion on vaccine delivery routes. CONCLUSION Lipids and their conjugates are an ideal frontrunner in the development of safe and efficient vaccines for different immunisation routes.
Collapse
Affiliation(s)
- Stacey Bartlett
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD, 4072, Australia
| | - Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD, 4072, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD, 4072, Australia.,The University of Queensland, School of Pharmacy, Woolloongabba, QLD 4102, Australia.,The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
| |
Collapse
|
13
|
Abeyratne E, Tharmarajah K, Freitas JR, Mostafavi H, Mahalingam S, Zaid A, Zaman M, Taylor A. Liposomal Delivery of the RNA Genome of a Live-Attenuated Chikungunya Virus Vaccine Candidate Provides Local, but Not Systemic Protection After One Dose. Front Immunol 2020; 11:304. [PMID: 32194557 PMCID: PMC7066069 DOI: 10.3389/fimmu.2020.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/06/2020] [Indexed: 11/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative pathogen of chikungunya fever, a mosquito-borne viral disease causing highly debilitating arthralgia that can persist for months and progress to chronic arthritis. Our previous studies have identified the CHIKV live-attenuated vaccine candidate CHIKV-NoLS. Like most live-attenuated vaccines, attenuated replication of CHIKV-NoLS has the potential to limit scalable production. To overcome production limits, as well as other drawbacks of live-attenuated vaccines, we developed an in vivo liposome RNA delivery system to deliver the self-replicating RNA genome of CHIKV-NoLS directly into mice, allowing the recipients' body to produce the live-attenuated vaccine particles. CAF01 liposomes were able to deliver replication-competent CHIKV-NoLS RNA in vitro. Immunodeficient AG129 mice inoculated with liposome-delivered CHIKV-NoLS RNA developed viremia and disease signs representative of this lethal model of CHIKV infection, demonstrating de novo vaccine particle production in vivo. In immunocompetent C57BL/6 mice, liposome-delivered CHIKV-NoLS RNA inoculation was associated with reduced IgM and IgG levels with low antibody CHIKV-neutralizing capacity, compared to vaccination with the original live-attenuated vaccine CHIKV-NoLS. One dose of liposome-delivered CHIKV-NoLS RNA did not provide systemic protection from CHIKV wild-type (WT) challenge but was found to promote an early onset of severe CHIKV-induced footpad swelling. Liposome-delivered CHIKV-NoLS RNA inoculation did, however, provide local protection from CHIKV-WT challenge in the ipsilateral foot after one dose. Results suggest that in the presence of low CHIKV-specific neutralizing antibody levels, local inflammatory responses, likely brought on by liposome adjuvants, have a role in the protection of CHIKV-induced footpad swelling in the ipsilateral foot of mice inoculated with liposome-delivered CHIKV-NoLS RNA. Low IgG and CHIKV-specific neutralizing antibody levels may be responsible for early onset of severe swelling in the feet of CHIKV-WT-challenged mice. These results support previous studies that suggest CHIKV is vulnerable to antibody-mediated enhancement of disease. Further studies using booster regimes aim to demonstrate the potential for liposomes to deliver the self-replicating RNA genome of live-attenuated vaccines and offer a novel immunization strategy.
Collapse
Affiliation(s)
- Eranga Abeyratne
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Kothila Tharmarajah
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Joseph R Freitas
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Helen Mostafavi
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Ali Zaid
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| |
Collapse
|
14
|
Bartlett S, Skwarczynski M, Xie X, Toth I, Loukas A, Eichenberger RM. Development of natural and unnatural amino acid delivery systems against hookworm infection. PRECISION NANOMEDICINE 2020. [DOI: 10.33218/prnano3(1).191210.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peptide-based vaccines consist of short antigen fragments derived from a specific pathogen. Alone, these peptide fragments are poorly or non-immunogenic; however, when incorporated into a proper delivery system, they can trigger strong immune responses. To eliminate the need for toxic and often ineffective oral adjuvants, we designed single molecule-based self-adjuvating vaccines against hookworms using natural and unnatural hydrophobic amino acids. Two vaccine conjugates were synthesized, consisting of B-cell epitope p3, derived from the hookworm Na-APR-1 protein; universal T-helper peptide P25; and either double copies of unnatural lipoamino acid (2-amino-D,L-eicosanoic acid), or ten copies of the natural amino acid leucine. After challenge with the model hookworm, Nippostrongylus brasiliensis, mice orally immunized with the conjugates, but without adjuvant, generated antibody responses against the hookworm epitope, resulting in significantly reduced worm and egg burdens compared to control mice. We have demonstrated that vaccine nanoparticles composed exclusively of natural amino acids can be effective even when administered orally.
Collapse
Affiliation(s)
| | | | - Xin Xie
- The University of Queensland,, St Lucia, Australia
| | - Istvan Toth
- The University of Queensland,, St Lucia, Australia
| | | | | |
Collapse
|
15
|
Azuar A, Zhao L, Hei TT, Nevagi RJ, Bartlett S, Hussein WM, Khalil ZG, Capon RJ, Toth I, Skwarczynski M. Cholic Acid-based Delivery System for Vaccine Candidates against Group A Streptococcus. ACS Med Chem Lett 2019; 10:1253-1259. [PMID: 31531193 DOI: 10.1021/acsmedchemlett.9b00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Peptide-based subunit vaccines require an immunostimulant (adjuvant) and/or delivery system to protect the antigenic peptide from degradation and induce the desired immunity. Currently available adjuvants are either too toxic for human use (experimental adjuvants) or they are limited for use in particular vaccines or licensed countries (commercial adjuvants). Therefore, there is an immediate need for novel adjuvants that are both safe and effective. Herein, we assessed the ability of cholic acid (a major bile acid) as a nontoxic, biodegradable, human-derived, potent vaccine delivery system. An antigenic peptide derived from Group A Streptococcus was conjugated to hydrophobic cholic acid via solid phase peptide synthesis to produce lipopeptide that self-assembled into rod-like nanoparticles under aqueous conditions. Following intranasal immunization in mice, this lipopeptide was capable of inducing the production of opsonic epitope-specific antibodies on its own and in liposomal formulation. The cholic acid-based conjugate induced significantly stronger humoral immune responses than cholera toxin-based adjuvant. Thus, we demonstrated, for the first time, capability of the human-derived lipid to act as a built-in immunoadjuvant for vaccines.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Tsui Ting Hei
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Reshma J. Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Stacey Bartlett
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
16
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
17
|
Nevagi RJ, Khalil ZG, Hussein WM, Powell J, Batzloff MR, Capon RJ, Good MF, Skwarczynski M, Toth I. Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomater 2018; 80:278-287. [PMID: 30266637 DOI: 10.1016/j.actbio.2018.09.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 01/03/2023]
Abstract
Peptide-based vaccines have the potential to overcome the limitations of classical vaccines; however, their use is hampered by a lack of carriers and adjuvants suitable for human use. In this study, an efficient self-adjuvanting peptide vaccine delivery system was developed based on the ionic interactions between cationic trimethyl chitosan (TMC) and a peptide antigen coupled with synthetically defined anionic α-poly-(l-glutamic acid) (PGA). The antigen, possessing a conserved B-cell epitope derived from the group A streptococcus (GAS) pathogen and a universal T-helper epitope, was conjugated to PGA using cycloaddition reaction. The produced anionic conjugate formed nanoparticles (NP-1) through interaction with cationic TMC. These NP-1 induced higher systemic and mucosal antibody titers compared to antigen adjuvanted with standard mucosal adjuvant cholera toxin B subunit or antigen mixed with TMC. The produced serum antibodies were also opsonic against clinically isolated GAS strains. Further, a reduction in bacterial burden was observed in nasal secretions, pharyngeal surface and nasopharyngeal-associated lymphoid tissue of mice immunized with NP-1 in GAS challenge studies. Thus, conjugation of defined-length anionic polymer to peptide antigen as a means of formulating ionic interaction-based nanoparticles with cationic polymer is a promising strategy for peptide antigen delivery. STATEMENT OF SIGNIFICANCE: A self-adjuvanting delivery system is required for peptide vaccines to enhance antigen delivery to immune cells and generate systemic and mucosal immunity. Herein, we developed a novel self-adjuvanting nanoparticulate delivery system for peptide antigens by combining polymer-conjugation and complexation strategies. We conjugated peptide antigen with anionic α-poly-(l-glutamic acid) that in turn, formed nanoparticles with cationic trimethyl chitosan by ionic interactions, without using external crosslinker. On intranasal administration to mice, these nanoparticles induced systemic and mucosal immunity, at low dose. Additionally, nanoparticles provided protection to vaccinated mice against group A streptococcus infection. Thus, this concept should be particularly useful in developing nanoparticles for the delivery of peptide antigens.
Collapse
Affiliation(s)
- Reshma J Nevagi
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jessica Powell
- Institute of Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael R Batzloff
- Institute of Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Robert J Capon
- Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Michael F Good
- Institute of Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
18
|
Zepeda-Cervantes J, Vaca L. Induction of adaptive immune response by self-aggregating peptides. Expert Rev Vaccines 2018; 17:723-738. [PMID: 30074424 DOI: 10.1080/14760584.2018.1507742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Recently, subunit vaccines are replacing some of the traditional vaccines because they offer a higher margin of safety. However, generally subunit vaccines have low antigenicity. Adjuvants are used in vaccine formulations to increase their immunogenicity, but current research suggests that adjuvants could induce serious side effects in susceptible individuals; therefore, the improvement of antigens and adjuvants is important. AREAS COVERED Here we reviewed some self-aggregating peptides (SAPs) used as antigen delivery systems. SAPs are based on a short sequence of amino acids, which have self-aggregating properties, inducing self-interaction among peptide molecules by means of non-covalent interactions to generate nanoparticles (NPs). EXPERT COMMENTARY SAPs increase the immunogenicity of fused/conjugated antigens because they can interact with antigen-presenting cells and induce adaptive immunity based on both humoral and cellular responses. As an example, we report an antigen delivery system based on SAPs forming NPs. These NPs are synthesized using a recombinant baculovirus. We fused the green fluorescent protein to the first 110 amino acids of polyhedrin protein from Autographa californica nucleopolyhedrovirus, which has self-aggregating properties. We showed that these NPs prompt high antibody levels without inducing inflammation, similarly to some SAPs reported here.
Collapse
Affiliation(s)
- Jesus Zepeda-Cervantes
- a Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX , Coyoacán , Mexico
| | - Luis Vaca
- a Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX , Coyoacán , Mexico
| |
Collapse
|
19
|
Lin LCW, Chattopadhyay S, Lin JC, Hu CMJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthc Mater 2018; 7:e1701395. [PMID: 29508547 DOI: 10.1002/adhm.201701395] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Indexed: 02/06/2023]
Abstract
As the dawn of the postantibiotic era we approach, antibacterial vaccines are becoming increasingly important for managing bacterial infection and reducing the need for antibiotics. Despite the success of vaccination, vaccines remain unavailable for many pressing microbial diseases, including tuberculosis, chlamydia, and staphylococcus infections. Amid continuing research efforts in antibacterial vaccine development, the advancement of nanomaterial engineering has brought forth new opportunities in vaccine designs. With increasing knowledge in antibacterial immunity and immunologic adjuvants, innovative nanoparticles are designed to elicit the appropriate immune responses for effective antimicrobial defense. Rationally designed nanoparticles are demonstrated to overcome delivery barriers to shape the adaptive immunity. This article reviews the advances in nanoparticle- and nanomaterial-based antibacterial vaccines and summarizes the development of nanoparticulate adjuvants for immune potentiation against microbial pathogens. In addition, challenges and progress in ongoing antibacterial vaccine development are discussed to highlight the opportunities for future vaccine designs.
Collapse
Affiliation(s)
- Leon Chien-Wei Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| |
Collapse
|
20
|
Abstract
Most pathogens gain access to the human body and initiate systemic infections through mucosal sites. A large number of currently marketed licensed vaccines are parenterally administered; they generate strong systemic immunity but not mucosal immunity. Nasal vaccination is an appealing strategy for the induction of mucosal-specific immunity; however, its development is mostly challenged by several factors, such as inefficient antigen uptake, its rapid mucociliary clearance, size-restricted permeation across epithelial barriers and absence of safe human mucosal adjuvants. Therefore, a safer mucosal-adjuvanting strategy or efficient mucosal delivery platform is much warranted. This review summarizes challenges and the rationale for nasal vaccine development with a special focus on the use of nanoparticles based on polymers and lipids for mucosal vaccine delivery.
Collapse
|
21
|
Abstract
AIM Peptide-based vaccines are designed to carry the minimum required antigen to trigger the desired immune responses; however, they are usually poorly immunogenic and require appropriate delivery system. RESULTS Peptides, B-cell epitope (J14) derived from group A streptococcus M-protein and universal T-helper (PADRE) epitope, were conjugated to a variety of linear and branched polyacrylates. All produced conjugates formed submicron-sized particles and induced a high level of IgG titres in mice after subcutaneous immunization. These polymer-peptide conjugates demonstrated high opsonization capacity against group A streptococcus clinical isolates. CONCLUSION We have successfully demonstrated that submicron-sized polymer-peptide conjugates were capable of inducing strong humoral immune responses after single immunization.
Collapse
|
22
|
Azegami T, Yuki Y, Nakahashi R, Itoh H, Kiyono H. Nanogel-based nasal vaccines for infectious and lifestyle-related diseases. Mol Immunol 2017; 98:19-24. [PMID: 29096936 DOI: 10.1016/j.molimm.2017.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Because the mucosa is the major entry route for most pathogens, the development of mucosal vaccines is a rational approach for protecting against these undesired agents. Mucosal administration of vaccine antigen is useful for non-infectious chronic diseases as well, because of its advantages over injection routes, including comparable efficacy in the induction of systemic immune responses, less pain, and no risk of adverse events at the injection site. However, because it is difficult to effectively induce and regulate antigen-specific mucosal and systemic immune responses when antigen alone is mucosally administered, an appropriate form of mucosal delivery vehicle must be used. Antigen delivery systems involving nanogels, which act as artificial chaperones and mucosal adhesives, are a promising approach to overcoming this problem. Here, we introduce current perspectives regarding the development of nanogel-based nasal vaccines for both infectious and lifestyle-related diseases.
Collapse
Affiliation(s)
- Tatsuhiko Azegami
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Rika Nakahashi
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
23
|
Schulze K, Ebensen T, Chandrudu S, Skwarczynski M, Toth I, Olive C, Guzman CA. Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2463-2474. [PMID: 28887213 DOI: 10.1016/j.nano.2017.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
Despite the broad knowledge about the pathogenicity of Streptococcus pyogenes there is still a controversy about the correlate of protection in GAS infections. We aimed in further improving the immune responses stimulated against GAS comparing different vaccine formulations including bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and BPPCysMPEG, a derivative of the macrophage-activating lipopeptide (MALP-2), as adjuvants, respectively, to be administered with and without the universal T helper cell epitope P25 along with the optimized B cell epitope J14 of the M protein and B and T cell epitopes of SfbI. Lipopeptide based nano carrier systems (LCP) were used for efficient antigen delivery across the mucosal barrier. The stimulated immune responses were efficient in protecting mice against a respiratory challenge with a lethal dose of a heterologous S. pyogenes strain. Moreover, combination of the LCP based peptide vaccine with c-di-AMP allowed reduction of antigen dose at the same time maintaining vaccine efficacy.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Saranya Chandrudu
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Luc ia, QLD, Australia
| | - Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Luc ia, QLD, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Luc ia, QLD, Australia; The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, Australia; The University of Queensland, School of Pharmacy, Woolloongabba, QLD, Australia
| | - Colleen Olive
- Central Laboratory, Pathology Queensland, Health Support Queensland, Department of Health, Queensland Government, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
24
|
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530:128-138. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
Nasal administration of vaccines is convenient for the potential stimulation of mucosal and systemic immune protection. Moreover the easy accessibility of the intranasal route renders it optimal for pandemic vaccination. Nanoparticles have been identified as ideal delivery systems and adjuvants for vaccine application. Heterogeneous protocols have been used for animal studies. This complicates the understanding of the formulation influence on the immune response and the comparison of the different nanoparticles approaches developed. Moreover anatomical and immunological differences between rodents and humans provide an additional hurdle in the rational development of nasal nanovaccines. This review will give a comprehensive expertise of the state of the art in nasal nanovaccines in animals and humans focusing on the nanomaterial used.
Collapse
Affiliation(s)
- B Bernocchi
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France
| | - R Carpentier
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France.
| | - D Betbeder
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France; University of Artois, 62000 Arras, France
| |
Collapse
|
25
|
Zhao G, Chandrudu S, Skwarczynski M, Toth I. The application of self-assembled nanostructures in peptide-based subunit vaccine development. Eur Polym J 2017; 93:670-681. [PMID: 32226094 PMCID: PMC7094324 DOI: 10.1016/j.eurpolymj.2017.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Smaller polymer-peptide conjugates-based nanoparticles are often more immunogenic. Lipid-antigen conjugates-based nanoparticles can interact with immune receptors. Peptides with β-sheet conformation usually form nanofibers. α-Helical and random coil peptides tend to self-assemble into nanoparticles. Peptide-based nanostructures are usually poorer inducers of immune responses.
Peptide based-vaccines are becoming one of the most widely investigated prophylactic and therapeutic health care interventions against a variety of diseases, including cancer. However, the lack of a safe and highly efficient adjuvant (immune stimulant) is regarded as the biggest obstacle to vaccine development. The incorporation of a peptide antigen in a nanostructure-based delivery system was recently shown to overcome this obstacle. Nanostructures are often formed from antigens conjugated to molecules such as polymers, lipids, and peptide, with the help of self-assembly phenomenon. This review describes the application of self-assembly process for the production of peptide-based vaccine candidates and the ability of these nanostructures to stimulate humoral and cellular immune responses.
Collapse
Key Words
- (C18)2, N,N-dioctadecyl succinamic acid
- APC, antigen-presenting cell
- BMA, butyl methacrylate
- C16, 2-(R/S)-hexadecanoic acid
- CFA, complete Freund's adjuvant
- Conjugation
- CuAAC, copper-catalyzed azide-alkyne cycloaddition
- DLS, dynamic light scattering
- ELISA, enzyme-linked immunosorbent assay
- FDA, Food and Drug Administration
- GAS, group A streptococcus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- HPV, human papilloma virus
- IFA, incomplete Freund’s adjuvant
- IgG, immunoglobulin G
- LCP, lipid core peptide
- Lipopeptide
- Nanofiber
- Nanoparticle
- OVA, ovalbumin
- PADRE, pan DR epitope
- PBS, phosphate-buffered saline
- PDSMA, pyridyl disulfide methacrylamide
- PEG-PPS, poly(ethylene glycol)-stabilized poly(propylene sulfide) core nanoparticle
- Pam2Cys, dipalmitoyl-S-glyceryl cysteine
- Pam3Cys, tripalmitoyl-S-glyceryl cysteine
- PbCSP, Plasmodium berghei circumsporozoite protein
- Polymer
- SAP, self-assembling polypeptide
- SARS, severe acute respiratory syndrome
- Self-assembly
- T-VEC, talimogene laherparepvec
- TEM, transmission electron microscopy
- TLR2, toll-like receptor 2
- TLR4, toll-like receptor 4
- TLR9, toll-like receptor 9
- VLP, virus-like particle
- Vaccine
Collapse
Affiliation(s)
- Guangzu Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Saranya Chandrudu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Brisbane, Queensland 4102, Australia
- Corresponding author at: School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 2017; 110-111:169-187. [PMID: 27356149 DOI: 10.1016/j.addr.2016.06.013] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
Self-assembled peptides have shown outstanding characteristics for vaccine delivery and drug targeting. Peptide molecules can be rationally designed to self-assemble into specific nanoarchitectures in response to changes in their assembly environment including: pH, temperature, ionic strength, and interactions between host (drug) and guest molecules. The resulting supramolecular nanostructures include nanovesicles, nanofibers, nanotubes, nanoribbons, and hydrogels and have a diverse range of mechanical and physicochemical properties. These molecules can be designed for cell-specific targeting by including adhesion ligands, receptor recognition ligands, or peptide-based antigens in their design, often in a multivalent display. Depending on their design, self-assembled peptide nanostructures have advantages in biocompatibility, stability against enzymatic degradation, encapsulation of hydrophobic drugs, sustained drug release, shear-thinning viscoelastic properties, and/or adjuvanting properties. These molecules can also act as intracellular transporters and respond to changes in the physiological environment. Furthermore, this class of materials has shown sequence- and structure-dependent impacts on the immune system that can be tailored to non-immunogenic for drug targeting, and immunogenic for vaccine delivery. This review explores self-assembled peptide nanostructures (beta sheets, alpha helices, peptide amphiphiles, amino acid pairing, elastin like polypeptides, cyclic peptides, short peptides, Fmoc peptides, and peptide hydrogels) and their application in vaccine delivery and drug targeting.
Collapse
|
27
|
Zaman M, Ozberk V, Langshaw EL, McPhun V, Powell JL, Phillips ZN, Ho MF, Calcutt A, Batzloff MR, Toth I, Hill GR, Pandey M, Good MF. Novel platform technology for modular mucosal vaccine that protects against streptococcus. Sci Rep 2016; 6:39274. [PMID: 27976706 PMCID: PMC5157026 DOI: 10.1038/srep39274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023] Open
Abstract
The upper respiratory tract (URT) is the major entry site for human pathogens and strategies to activate this network could lead to new vaccines capable of preventing infection with many pathogens. Group A streptococcus (GAS) infections, causing rheumatic fever, rheumatic heart disease, and invasive disease, are responsible for substantial morbidity and mortality. We describe an innovative vaccine strategy to induce mucosal antibodies of significant magnitude against peptide antigens of GAS using a novel biocompatible liposomal platform technology. The approach is to encapsulate free diphtheria toxoid (DT), a standard vaccine antigen, within liposomes as a source of helper T-cell stimulation while lipidated peptide targets for B-cells are separately displayed on the liposome surface. As DT is not physically conjugated to the peptide, it is possible to develop modular epitopic constructs that simultaneously activate IgA-producing B-cells of different and complementary specificity and function that together neutralize distinct virulence factors. An inflammatory cellular immune response is also induced. The immune response provides profound protection against streptococcal infection in the URT. The study describes a new vaccine platform for humoral and cellular immunity applicable to the development of vaccines against multiple mucosal pathogens.
Collapse
Affiliation(s)
- Mehfuz Zaman
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Emma L Langshaw
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Virginia McPhun
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jessica L Powell
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mei Fong Ho
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, QLD 4072, Australia.,The University of Queensland, School of Pharmacy, Woolloongabba, QLD 4102, Australia.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Brisbane QLD 4029, Australia.,Bone Marrow Transplant Unit, Royal Brisbane Hospital, Brisbane, QLD 4006, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
28
|
Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. Int J Pharm 2016; 513:410-420. [PMID: 27659862 DOI: 10.1016/j.ijpharm.2016.09.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
Rheumatic heart disease represents a leading cause of mortality caused by Group A Streptococcus (GAS) infections transmitted through the respiratory route. Although GAS infections can be treated with antibiotics these are often inadequate. An efficacious GAS vaccine holds more promise, with intranasal vaccination especially attractive, as it mimics the natural route of infections and should be able to induce mucosal IgA and systemic IgG immunity. Nanoparticles were prepared by either encapsulating or coating lipopeptide-based vaccine candidate (LCP-1) on the surface of poly(lactic-co-glycolic acid) (PLGA). In vitro study showed that encapsulation of LCP-1 vaccine into nanoparticles improved uptake and maturations of antigen-presenting cells. The immunogenicity of lipopeptide incorporated PLGA-based nanoparticles was compared with peptides co-administered with mucosal adjuvant cholera toxin B in mice upon intranasal administration. Higher levels of J14-specific salivary mucosal IgA and systemic antibody IgG titres were observed for groups immunized with encapsulated LCP-1 compared to LCP-1 coated nanoparticles or free LCP-1. Systemic antibodies obtained from LCP-1 encapsulated PLGA NPs inhibited the growth of bacteria in six different GAS strains. Our results show that PLGA-based lipopeptide delivery is a promising approach for rational design of a simple, effective and patient friendly intranasal GAS vaccine resulting in mucosal IgA response.
Collapse
|
29
|
Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomater 2016; 41:161-8. [PMID: 27063491 DOI: 10.1016/j.actbio.2016.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/25/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Group A streptococcus (GAS), an exclusively human pathogen, causes a wide range of diseases ranging from trivial to life threatening. Treatment of infection is often ineffective following entry of bacteria into the bloodstream. To date, there is no vaccine available against GAS. In this study, cationic liposomes encapsulating lipopeptide-based vaccine candidates against GAS have been employed for intranasal vaccine delivery. Cationic liposomes were prepared with dimethyldioctadecylammonium bromide (DDAB) using the film hydration method. Female Swiss mice were immunized intranasally with the liposomes. In contrast to unmodified peptides, lipopeptides entrapped by liposomes induced both mucosal and systemic immunity, IgA and IgG (IgG1 and IgG2a) production in mice, respectively. High levels of antibody (IgA and IgG) titres were detected even five months post immunization. Thus, the combination of lipopeptides and liposomes generates a very promising delivery system for intranasal vaccines. STATEMENT OF SIGNIFICANCE Group A streptococcus, causing rheumatic heart diseases, kills approximately half a million people annually. There is no vaccine available against the infection. Mucosal immunity is vital in ensuring an individual is protected as this gram positive bacteria initially colonizes at the throat. Herein, we demonstrated that lipopeptides entrapped by liposomes induced both mucosal and systemic immunity. High levels of antibody (IgA and IgG) titres were detected even five months post immunization and lead vaccine candidate was able to induce humoral immune responses even after single immunization. Thus, the combination of lipopeptides and liposomes generates a very promising delivery system for intranasal vaccines.
Collapse
Affiliation(s)
- Khairunnisa Abdul Ghaffar
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD 4072, Australia
| | - Nirmal Marasini
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD 4072, Australia
| | - Ashwini Kumar Giddam
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD 4072, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast 4215, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast 4215, Australia
| | - Mariusz Skwarczynski
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD 4072, Australia; The University of Queensland, School of Pharmacy, Brisbane, QLD 4072, Australia; The University of Queensland, Institute for Molecular Biosciences, St Lucia, QLD 4072, Australia.
| |
Collapse
|
30
|
Chan A, Hussein WM, Ghaffar KA, Marasini N, Mostafa A, Eskandari S, Batzloff MR, Good MF, Skwarczynski M, Toth I. Structure–activity relationship of lipid core peptide-based Group A Streptococcus vaccine candidates. Bioorg Med Chem 2016; 24:3095-101. [DOI: 10.1016/j.bmc.2016.03.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022]
|
31
|
Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomater Sci 2016; 4:785-802. [PMID: 26891972 DOI: 10.1039/c5bm00507h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines.
Collapse
Affiliation(s)
- Liu Yang
- College of Light Industry and Food Sciences, South China University of Technology, Uangzhou 510640, China.
| | | | | | | | | |
Collapse
|
32
|
Azmi F, Elliott AG, Khalil ZG, Hussein WM, Kavanagh A, Huang JX, Quezada M, Blaskovich MAT, Capon RJ, Cooper MA, Skwarczynski M, Toth I. Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine (Lond) 2015; 10:3359-71. [DOI: 10.2217/nnm.15.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To explore the potential of de novo designed cyclic lipopeptides and its linear counterparts as antibacterial agents. Materials & methods: The lipopeptides were synthesized via solid-phase peptide synthesis and the cyclization was achieved by using succinic acid linker. The antimicrobial activities of the lipopeptides were evaluated in vitro against a variety selection of Gram-negative and Gram-positive bacteria including clinical isolates of multidrug-resistant strains. Results: The synthesized lipopeptides were able to self-assemble into nanoparticles in an aqueous environment, with three exhibiting potent antibacterial activity against Gram-positive bacteria, including clinically relevant multidrug-resistant bacteria. Conclusion: The lead compounds have the potential to be developed as new antibacterials that are effective against Gram-positive bacteria, including multidrug-resistant isolates.
Collapse
Affiliation(s)
- Fazren Azmi
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
- Faculty of Pharmacy, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
| | - Angela Kavanagh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Michelle Quezada
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Mark AT Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Fuaad AAHA, Pearson MS, Pickering DA, Becker L, Zhao G, Loukas AC, Skwarczynski M, Toth I. Lipopeptide Nanoparticles: Development of Vaccines against Hookworm Parasite. ChemMedChem 2015; 10:1647-54. [DOI: 10.1002/cmdc.201500227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 01/31/2023]
|
34
|
The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorg Med Chem 2015; 23:1307-12. [DOI: 10.1016/j.bmc.2015.01.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
35
|
Affiliation(s)
- Istvan Toth
- School of Pharmacy, Australia Centre of Excellence, The University of Queensland, Wooloongabba, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072; Australia
| |
Collapse
|