1
|
Pham BQ, Yi SA, Ordureau A, An H. mTORC1 regulates the pyrimidine salvage pathway by controlling UCK2 turnover via the CTLH-WDR26 E3 ligase. Cell Rep 2025; 44:115179. [PMID: 39808525 PMCID: PMC11840829 DOI: 10.1016/j.celrep.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation. However, the involvement of mTORC1 in regulating the salvage pathway remains unclear. Here, we report that mTORC1 controls the half-life of uridine cytidine kinase 2 (UCK2), the rate-limiting enzyme in the salvage pathway. Specifically, UCK2 is degraded via the CTLH-WDR26 E3 complex during mTORC1 inhibition, which is prevented when mTORC1 is active. We also find that UCK1, an isoform of UCK2, affects the turnover of UCK2 by influencing its cellular localization. Importantly, altered UCK2 levels through the mTORC1-CTLH E3 pathway affect pyrimidine salvage and the efficacy of pyrimidine analog prodrugs. Therefore, mTORC1-CTLH E3-mediated degradation of UCK2 adds another layer of complexity to mTORC1's role in regulating pyrimidine metabolism.
Collapse
Affiliation(s)
- Brittany Q Pham
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sang Ah Yi
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heeseon An
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA damage response network mediates the lethality of 5-FU in colorectal cancer. Cell Rep Med 2024; 5:101778. [PMID: 39378883 PMCID: PMC11514606 DOI: 10.1016/j.xcrm.2024.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
5-fluorouracil (5-FU), a major anti-cancer therapeutic, is believed to function primarily by inhibiting thymidylate synthase, depleting deoxythymidine triphosphate (dTTP), and causing DNA damage. Here, we show that clinical combinations of 5-FU with oxaliplatin or irinotecan show no synergy in human colorectal cancer (CRC) trials and sub-additive killing in CRC cell lines. Using selective 5-FU metabolites, phospho- and ubiquitin proteomics, and primary human CRC organoids, we demonstrate that 5-FU-mediated CRC cell killing primarily involves an RNA damage response during ribosome biogenesis, causing lysosomal degradation of damaged rRNAs and proteasomal degradation of ubiquitinated ribosomal proteins. Tumor types clinically responsive to 5-FU treatment show upregulated rRNA biogenesis while 5-FU clinically non-responsive tumor types do not, instead showing greater sensitivity to 5-FU's DNA damage effects. Finally, we show that treatments upregulating ribosome biogenesis, including KDM2A inhibition, promote RNA-dependent cell killing by 5-FU, demonstrating the potential for combinatorial targeting of this ribosomal RNA damage response for improved cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A Merrick
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D Handly
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G Cannell
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M Hosios
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G Vander Heiden
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H Yilmaz
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Zheng J, Wang Q, Yan L, Pan Q, Chen X, Chen Q. The Biological Behavior and Clinical Application Prospects of Deoxythymidine Kinase Gene in Tumors. Technol Cancer Res Treat 2024; 23:15330338241265396. [PMID: 39420855 PMCID: PMC11497513 DOI: 10.1177/15330338241265396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant tumors have become a significant risk factor for human mortality. Although there have been notable advancements in the treatment of tumors, patient prognosis remains poor. In recent years, gene diagnosis and gene therapy have brought great benefits to patients. Deoxythymidine kinase (DTYMK) is a highly promising biomarker, has been studied by many scholars, and plays a crucial role in the occurrence and development of various types of cancer. The abnormal expression of DTYMK is involved in tumor occurrence and development, and may also serve as a biomarker for tumor diagnosis, treatment, and prognosis. Several experimental studies have shown that DTYMK can impact tumor progression by regulating mechanisms such as cell cycle, tumor microenvironment, immune infiltration, and signaling pathways. Therefore, this article focuses on clarifying the mechanism of DTYMK in tumors and exploring its clinical application value to help patients prolong their survival cycle and improve their quality of life.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingxin Yan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Pan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxu Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Quanfang Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
De Mattia E, Polesel J, Silvestri M, Roncato R, Scarabel L, Calza S, Spina M, Puglisi F, Toffoli G, Cecchin E. The burden of rare variants in DPYS gene is a novel predictor of the risk of developing severe fluoropyrimidine-related toxicity. Hum Genomics 2023; 17:99. [PMID: 37946254 PMCID: PMC10633914 DOI: 10.1186/s40246-023-00546-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Despite a growing number of publications highlighting the potential impact on the therapy outcome, rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity. METHODS The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinetics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3-5 toxicity (NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of common and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework). RESULTS SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with toxicity compared with controls (P = 0.047, Mann-Whitney test). Carrying at least one rare DPYS variant was associated with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T variants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and P = 0.0001, respectively) toxicity. CONCLUSION This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluoropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising predictive markers that warrant further investigation.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Marco Silvestri
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
- Department of Medicine, University of Udine, Via Delle Scienze, 206, 33100, Udine, UD, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
5
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA Damage Response Network Mediates the Lethality of 5-FU in Clinically Relevant Tumor Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538590. [PMID: 37162991 PMCID: PMC10168374 DOI: 10.1101/2023.04.28.538590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
5-fluorouracil (5-FU) is a successful and broadly used anti-cancer therapeutic. A major mechanism of action of 5-FU is thought to be through thymidylate synthase (TYMS) inhibition resulting in dTTP depletion and activation of the DNA damage response. This suggests that 5-FU should synergize with other DNA damaging agents. However, we found that combinations of 5-FU and oxaliplatin or irinotecan failed to display any evidence of synergy in clinical trials, and resulted in sub-additive killing in a panel of colorectal cancer (CRC) cell lines. In seeking to understand this antagonism, we unexpectedly found that an RNA damage response during ribosome biogenesis dominates the drug's efficacy in tumor types for which 5-FU shows clinical benefit. 5-FU has an inherent bias for RNA incorporation, and blocking this greatly reduced drug-induced lethality, indicating that accumulation of damaged RNA is more deleterious than the lack of new RNA synthesis. Using 5-FU metabolites that specifically incorporate into either RNA or DNA revealed that CRC cell lines and patient-derived colorectal cancer organoids are inherently more sensitive to RNA damage. This difference held true in cell lines from other tissues in which 5-FU has shown clinical utility, whereas cell lines from tumor tissues that lack clinical 5-FU responsiveness typically showed greater sensitivity to the drug's DNA damage effects. Analysis of changes in the phosphoproteome and ubiquitinome shows RNA damage triggers the selective ubiquitination of multiple ribosomal proteins leading to autophagy-dependent rRNA catabolism and proteasome-dependent degradation of ubiquitinated ribosome proteins. Further, RNA damage response to 5-FU is selectively enhanced by compounds that promote ribosome biogenesis, such as KDM2A inhibitors. These results demonstrate the presence of a strong RNA damage response linked to apoptotic cell death, with clear utility of combinatorially targeting this response in cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A. Merrick
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D. Handly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C. Patterson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G. Cannell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M. Hosios
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, Computational Medicine Program, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Silgado-Guzmán DF, Angulo-Aguado M, Morel A, Niño-Orrego MJ, Ruiz-Torres DA, Contreras Bravo NC, Restrepo CM, Ortega-Recalde O, Fonseca-Mendoza DJ. Characterization of ADME Gene Variation in Colombian Population by Exome Sequencing. Front Pharmacol 2022; 13:931531. [PMID: 35846994 PMCID: PMC9280300 DOI: 10.3389/fphar.2022.931531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
In genes related to drug pharmacokinetics, molecular variations determine interindividual variability in the therapeutic efficacy and adverse drug reactions. The assessment of single-nucleotide variants (SNVs) is used with growing frequency in pharmacogenetic practice, and recently, high-throughput genomic analyses obtained through next-generation sequencing (NGS) have been recognized as powerful tools to identify common, rare and novel variants. These genetic profiles remain underexplored in Latin-American populations, including Colombia. In this study, we investigated the variability of 35 genes included in the ADME core panel (absorption, distribution, metabolism, and excretion) by whole-exome sequencing (WES) of 509 unrelated Colombian individuals with no previous reports of adverse drug reactions. Rare variants were filtered according to the minor allele frequencies (MAF) <1% and potential deleterious consequences. The functional impact of novel and rare missense variants was assessed using an optimized framework for pharmacogenetic variants. Bioinformatic analyses included the identification of clinically validated variants described in PharmGKB and ClinVar databases. Ancestry from WES data was inferred using the R package EthSEQ v2.1.4. Allelic frequencies were compared to other populations reported in the public gnomAD database. Our analysis revealed that rare missense pharmacogenetic variants were 2.1 times more frequent than common variants with 121 variants predicted as potentially deleterious. Rare loss of function (LoF) variants were identified in 65.7% of evaluated genes. Regarding variants with clinical pharmacogenetic effect, our study revealed 89 sequence variations in 28 genes represented by missense (62%), synonymous (22.5%), splice site (11.2%), and indels (3.4%). In this group, ABCB1, ABCC2, CY2B6, CYP2D6, DPYD, NAT2, SLC22A1, and UGTB2B7, are the most polymorphic genes. NAT2, CYP2B6 and DPYD metabolizer phenotypes demonstrated the highest variability. Ancestry analysis indicated admixture in 73% of the population. Allelic frequencies exhibit significant differences with other Latin-American populations, highlighting the importance of pharmacogenomic studies in populations of different ethnicities. Altogether, our data revealed that rare variants are an important source of variability in pharmacogenes involved in the pharmacokinetics of drugs and likely account for the unexplained interindividual variability in drug response. These findings provide evidence of the utility of WES for pharmacogenomic testing and into clinical practice.
Collapse
Affiliation(s)
| | - Mariana Angulo-Aguado
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - María José Niño-Orrego
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel-Armando Ruiz-Torres
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Nora Constanza Contreras Bravo
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Martin Restrepo
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Oscar Ortega-Recalde, ; Dora Janeth Fonseca-Mendoza,
| | - Dora Janeth Fonseca-Mendoza
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Oscar Ortega-Recalde, ; Dora Janeth Fonseca-Mendoza,
| |
Collapse
|
7
|
Fu Y, Wei XD, Guo L, Wu K, Le J, Ma Y, Kong X, Tong Y, Wu H. The Metabolic and Non-Metabolic Roles of UCK2 in Tumor Progression. Front Oncol 2022; 12:904887. [PMID: 35669416 PMCID: PMC9163393 DOI: 10.3389/fonc.2022.904887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Enhanced nucleoside metabolism is one of the hallmarks of cancer. Uridine-cytidine kinase 2 (UCK2) is a rate-limiting enzyme of the pyrimidine salvage synthesis pathway to phosphorylate uridine and cytidine to uridine monophosphate (UMP) and cytidine monophosphate (CMP), respectively. Recent studies have shown that UCK2 is overexpressed in many types of solid and hematopoietic cancers, closely associates with poor prognosis, and promotes cell proliferation and migration in lung cancer and HCCs. Although UCK2 is thought to catalyze sufficient nucleotide building blocks to support the rapid proliferation of tumor cells, we and other groups have recently demonstrated that UCK2 may play a tumor-promoting role in a catalytic independent manner by activating oncogenic signaling pathways, such as STAT3 and EGFR-AKT. By harnessing the catalytic activity of UCK2, several cytotoxic ribonucleoside analogs, such as TAS-106 and RX-3117, have been developed for UCK2-mediated cancer chemotherapy. Moreover, we have demonstrated that the concurrent targeting of the catalytic dependent and independent features of UCK2 could synergistically inhibit tumor growth. These findings suggest that UCK2 may serve as a potential therapeutic target for cancer treatment. In this mini-review, we introduced the genomic localization and protein structure of UCK2, described the role of UCK2 in tumor development, discussed the application of UCK2 in anti-tumor treatment, and proposed concurrent targeting of the catalytic and non-catalytic roles of UCK2 as a potential therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Yi Fu
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xin-dong Wei
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Central Laboratory, Department of Liver Diseases, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luoting Guo
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kai Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiamei Le
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujie Ma
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
- *Correspondence: Hailong Wu, ; Ying Tong,
| | - Hailong Wu
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Hailong Wu, ; Ying Tong,
| |
Collapse
|
8
|
Jurczyk M, Król M, Midro A, Kurnik-Łucka M, Poniatowski A, Gil K. Cardiotoxicity of Fluoropyrimidines: Epidemiology, Mechanisms, Diagnosis, and Management. J Clin Med 2021; 10:jcm10194426. [PMID: 34640443 PMCID: PMC8509845 DOI: 10.3390/jcm10194426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a growing public health problem; it is responsible annually for millions of deaths worldwide. Fluoropyrimidines are highly effective and commonly prescribed anti-neoplastic drugs used in a wide range of chemotherapy regimens against several types of malignancies. 5-fluorouracil and its prodrugs affect neoplastic cells in multiple ways by impairing their proliferation, principally through the inhibition of thymidylate synthase. Fluoropyrimidine-induced cardiotoxicity was described more than 50 years ago, but many details such as incidence, mechanisms, and treatment are unclear and remain disputed. Severe cardiotoxicity is not only life-threatening, but also leads to withdrawal from an optimal chemotherapy regimen and decreases survival rate. Differences in the frequency of cardiotoxicity are explained by different chemotherapy schedules, doses, criteria, and populations. Proposed pathophysiological mechanisms include coronary vasospasm, endothelial damage, oxidative stress, Krebs cycle disturbances, and toxic metabolites. Such varied pathophysiology of the cardiotoxicity phenomenon makes prevention and treatment more difficult. Cardiovascular disturbances, including chest pain, arrhythmias, and myocardial infarction, are among the most common side effects of this class of anti-neoplastic medication. This study aims to summarize the available data on fluoropyrimidine cardiotoxicity with respect to symptoms, incidence, metabolism, pathophysiological mechanism, diagnosis, management, and resistance.
Collapse
|
9
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|
10
|
Mitachi K, Ariake K, Shima H, Sato S, Miura T, Maeda S, Ishida M, Mizuma M, Ohtsuka H, Kamei T, Igarashi K, Unno M. Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer. Sci Rep 2021; 11:6541. [PMID: 33753854 PMCID: PMC7985196 DOI: 10.1038/s41598-021-86099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
The collagen gel droplet-embedded drug sensitivity test (CD-DST) was revealed to be useful for predicting the effect of S-1 adjuvant chemotherapy for pancreatic ductal adenocarcinoma (PDAC). However, collection of an adequate number of PDAC cells is difficult due to the surrounding fibroblasts. Thus, the aim of this study was to discover novel biomarkers to predict chemosensitivity based on the CD-DST results. Proteomics analysis was performed using liquid chromatography tandem mass spectrometry (LC–MS/MS). Candidate proteins were validated in patients with 5-FU CD-DST results via immunohistochemistry (IHC). The relationships between the candidate proteins and the effect of the adjuvant S-1 were investigated via IHC. Among the 2696 proteins extracted by LC–MS/MS, C1TC and SAHH could accurately predict the CD-DST results. Recurrence-free survival (RFS) was significantly improved in the IHC-positive group compared with the IHC-negative group in both factors. The negative group did not show a significant difference from the group that did not receive S-1. The double-positive group was associated with significantly prolonged RFS compared to the no adjuvant chemotherapy group. C1TC and SAHH have been shown to be useful biomarkers for predicting 5-FU sensitivity as a substitute for the CD-DST in adjuvant chemotherapy for PDAC.
Collapse
Affiliation(s)
- Katsutaka Mitachi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoko Sato
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shimpei Maeda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Carboxylesterase 1 polymorphisms are associated with clinical outcomes in gastroenteric cancer patients treated with capecitabine. Cancer Chemother Pharmacol 2021; 87:681-687. [PMID: 33586000 DOI: 10.1007/s00280-021-04247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The aim of this study was to test whether CES1, UMPS, DPYS and TPYS polymorphisms influence the outcomes of gastroenteric cancer patients. METHODS We consecutively enrolled 338 patients who were diagnosed with colorectal and gastric cancer from January 2016 to December 2018 at the Harbin Medical University Cancer Hospital, China. RESULTS We found that the patients with CES1 rs7187684 CC genotype had a higher proportion of stage III-IV and relapse rate significantly compared with CT/TT genotype, and the patients with rs7187684 CC genotype had a higher level of CA199 than CT/TT genotype after adjusted for tumor stage, and medication, age, sex, smoking, and drinking. Moreover, the patients with rs7187684 CC genotype had shorter event-free survival (EFS) than CT/TT genotype, and a significant shorter EFS was also found in the patients with rs2244613 TT genotype than GG or GT genotype. Subset analysis results showed that the male, less-drinking or gastric cancer patients with rs7187684 CC genotype had shorter EFS than the patients with CT/TT genotype. Compared with the patients with CES1 rs2244613 TT genotype, the stage I-II patients with GG/GT genotype had longer progression-free survival (PFS), and the male patients with GG/GT genotype had longer EFS. Multivariate Cox regression analysis showed that stage III-IV and tumor metastasis could reduce the patients' PFS and EFS. CONCLUSIONS The identified CES1 polymorphisms might provide guide for the identification of gastroenteric cancer patients who were likely to benefit from capecitabine-based chemotherapy.
Collapse
|
12
|
Kim Y, Kim D, Cao B, Carvajal R, Kim M. PDXGEM: patient-derived tumor xenograft-based gene expression model for predicting clinical response to anticancer therapy in cancer patients. BMC Bioinformatics 2020; 21:288. [PMID: 32631229 PMCID: PMC7336455 DOI: 10.1186/s12859-020-03633-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cancer is a highly heterogeneous disease with varying responses to anti-cancer drugs. Although several attempts have been made to predict the anti-cancer therapeutic responses, there remains a great need to develop highly accurate prediction models of response to the anti-cancer drugs for clinical applications toward a personalized medicine. Patient derived xenografts (PDXs) are preclinical cancer models in which the tissue or cells from a patient’s tumor are implanted into an immunodeficient or humanized mouse. In the present study, we develop a bioinformatics analysis pipeline to build a predictive gene expression model (GEM) for cancer patients’ drug responses based on gene expression and drug activity data from PDX models. Results Drug sensitivity biomarkers were identified by performing an association analysis between gene expression levels and post-treatment tumor volume changes in PDX models. We built a drug response prediction model (called PDXGEM) in a random-forest algorithm by using a subset of the drug sensitvity biomarkers with concordant co-expression patterns between the PDXs and pretreatment cancer patient tumors. We applied the PDXGEM to several cytotoxic chemotherapies as well as targeted therapy agents that are used to treat breast cancer, pancreatic cancer, colorectal cancer, or non-small cell lung cancer. Significantly accurate predictions of PDXGEM for pathological response or survival outcomes were observed in extensive independent validations on multiple cancer patient datasets obtained from retrospective observational studies and prospective clinical trials. Conclusion Our results demonstrated the strong potential of using molecular profiles and drug activity data of PDX tumors in developing a clinically translatable predictive cancer biomarkers for cancer patients. The PDXGEM web application is publicly available at http://pdxgem.moffitt.org.
Collapse
Affiliation(s)
- Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, 33612-9416, USA.
| | - Daewon Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| | - Biwei Cao
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, 33612-9416, USA
| | - Rodrigo Carvajal
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, 33612-9416, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
13
|
Asleh K, Brauer HA, Sullivan A, Lauttia S, Lindman H, Nielsen TO, Joensuu H, Thompson EA, Chumsri S. Predictive Biomarkers for Adjuvant Capecitabine Benefit in Early-Stage Triple-Negative Breast Cancer in the FinXX Clinical Trial. Clin Cancer Res 2020; 26:2603-2614. [PMID: 32005747 DOI: 10.1158/1078-0432.ccr-19-1945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/11/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent studies have demonstrated a benefit of adjuvant capecitabine in early breast cancer, particularly in patients with triple-negative breast cancer (TNBC). However, TNBC is heterogeneous and more precise predictive biomarkers are needed. EXPERIMENTAL DESIGN Tumor tissues collected from TNBC patients in the FinXX trial, randomized to adjuvant anthracycline-taxane-based chemotherapy with or without capecitabine, were analyzed using a 770-gene panel targeting multiple biological mechanisms and additional 30-custom genes related to capecitabine metabolism. Hypothesis-generating exploratory analyses were performed to assess biomarker expression in relation to treatment effect using the Cox regression model and interaction tests adjusted for multiplicity. RESULTS One hundred eleven TNBC samples were evaluable (57 without capecitabine and 54 with capecitabine). The median follow-up was 10.2 years. Multivariate analysis showed significant improvement in recurrence-free survival (RFS) favoring capecitabine in four biologically important genes and metagenes, including cytotoxic cells [hazard ratio (HR) = 0.38; 95% confidence intervals (CI), 0.16-0.86, P-interaction = 0.01], endothelial (HR = 0.67; 95% CI, 0.20-2.22, P-interaction = 0.02), mast cells (HR = 0.78; 95% CI, 0.49-1.27, P-interaction = 0.04), and PDL2 (HR = 0.31; 95% CI, 0.12-0.81, P-interaction = 0.03). Furthermore, we identified 38 single genes that were significantly associated with capecitabine benefit, and these were dominated by immune response pathway and enzymes involved in activating capecitabine to fluorouracil, including TYMP. However, these results were not significant when adjusted for multiple testing. CONCLUSIONS Genes and metagenes related to antitumor immunity, immune response, and capecitabine activation could identify TNBC patients who are more likely to benefit from adjuvant capecitabine. Given the reduced power to observe significant findings when correcting for multiplicity, our findings provide the basis for future hypothesis-testing validation studies on larger clinical trials.
Collapse
Affiliation(s)
- Karama Asleh
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Amy Sullivan
- NanoString Technologies Inc., Seattle, Washington
| | - Susanna Lauttia
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Saranya Chumsri
- Robert and Monica Jacoby Center for Breast Health, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
14
|
Phan TTV, Huynh TC, Manivasagan P, Mondal S, Oh J. An Up-To-Date Review on Biomedical Applications of Palladium Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E66. [PMID: 31892149 PMCID: PMC7023275 DOI: 10.3390/nano10010066] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
Palladium nanoparticles (PdNPs) have intrinsic features, such as brilliant catalytic, electronic, physical, mechanical, and optical properties, as well as diversity in shape and size. The initial researches proved that PdNPs have impressive potential for the development of novel photothermal agents, photoacoustic agents, antimicrobial/antitumor agents, gene/drug carriers, prodrug activators, and biosensors. However, very few studies have taken the benefit of the unique characteristics of PdNPs for applications in the biomedical field in comparison with other metals like gold, silver, or iron. Thus, this review aims to highlight the potential applications in the biomedical field of PdNPs. From that, the review provides the perceptual vision for the future development of PdNPs in this field.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam;
| | - Thanh-Canh Huynh
- Center for Construction, Mechanics and Materials, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam;
| | - Panchanathan Manivasagan
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 48513, Korea; (P.M.); (S.M.)
| | - Sudip Mondal
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 48513, Korea; (P.M.); (S.M.)
| | - Junghwan Oh
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 48513, Korea; (P.M.); (S.M.)
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
15
|
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2019; 206:107447. [PMID: 31756363 DOI: 10.1016/j.pharmthera.2019.107447] [Citation(s) in RCA: 538] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.
Collapse
Affiliation(s)
- Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
16
|
Wu Y, Jamal M, Xie T, Sun J, Song T, Yin Q, Li J, Pan S, Zeng X, Xie S, Zhang Q. Uridine-cytidine kinase 2 (UCK2): A potential diagnostic and prognostic biomarker for lung cancer. Cancer Sci 2019; 110:2734-2747. [PMID: 31278886 PMCID: PMC6726693 DOI: 10.1111/cas.14125] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer has the highest morbidity and mortality among all cancers. Discovery of early diagnostic and prognostic biomarkers of lung cancer can greatly facilitate the survival rate and reduce its mortality. In our study, by analyzing Gene Expression Omnibus and Oncomine databases, we found a novel potential oncogene uridine-cytidine kinase 2 (UCK2), which was overexpressed in lung tumor tissues compared to adjacent nontumor tissues or normal lung. Then we confirmed this finding in clinical samples. Specifically, UCK2 was identified as highly expressed in stage IA lung cancer with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.9). We also found that high UCK2 expression was related to poorer clinicopathological features, such as higher T stage and N stage and higher probability of early recurrence. Furthermore, we found that patients with high UCK2 expression had poorer first progression survival and overall survival than patients with low UCK2 expression. Univariate and multivariate Cox regression analyses showed that UCK2 was an independent risk factor related with worse DFS and OS. By gene set enrichment analysis, tumor-associated biological processes and signaling pathways were enriched in the UCK2 overexpression group, which indicated that UCK2 might play a vital role in lung cancer. Furthermore, in cytology experiments, we found that knockdown of UCK2 could suppress the proliferation and migration of lung cancer cells. In conclusion, our study indicated that UCK2 might be a potential early diagnostic and prognostic biomarker for lung cancer.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Muhammad Jamal
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Tian Xie
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Jiaxing Sun
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Tianbao Song
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Qian Yin
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Jingyuan Li
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Shan Pan
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Xingruo Zeng
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
| | - Songping Xie
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qiuping Zhang
- Department of ImmunologySchool of Basic Medical ScienceWuhan UniversityWuhanChina
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan UniversityWuhanChina
| |
Collapse
|
17
|
Tanas AS, Sigin VO, Kalinkin AI, Litviakov NV, Slonimskaya EM, Ibragimova MK, Ignatova EO, Simonova OA, Kuznetsova EB, Kekeeva TV, Larin SS, Poddubskaya EV, Trotsenko ID, Rudenko VV, Karandasheva KO, Petrova KD, Tsyganov MM, Deryusheva IV, Kazantseva PV, Doroshenko AV, Tarabanovskaya NA, Chesnokova GG, Sekacheva MI, Nemtsova MV, Izhevskaya VL, Kutsev SI, Zaletaev DV, Strelnikov VV. Genome-wide methylotyping resolves breast cancer epigenetic heterogeneity and suggests novel therapeutic perspectives. Epigenomics 2019; 11:605-617. [PMID: 30729807 DOI: 10.2217/epi-2018-0213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To provide a breast cancer (BC) methylotype classification by genome-wide CpG islands bisulfite DNA sequencing. Materials & methods: XmaI-reduced representation bisulfite sequencing DNA methylation sequencing method was used to profile DNA methylation of 110 BC samples and 6 normal breast samples. Intrinsic DNA methylation BC subtypes were elicited by unsupervised hierarchical cluster analysis, and cluster-specific differentially methylated genes were identified. Results & conclusion: Overall, six distinct BC methylotypes were identified. BC cell lines constitute a separate group extremely highly methylated at the CpG islands. In turn, primary BC samples segregate into two major subtypes, highly and moderately methylated. Highly and moderately methylated superclusters, each incorporate three distinct epigenomic BC clusters with specific features, suggesting novel perspectives for personalized therapy.
Collapse
Affiliation(s)
- Alexander S Tanas
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir O Sigin
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Alexey I Kalinkin
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nikolai V Litviakov
- Laboratory of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Elena M Slonimskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Marina K Ibragimova
- Laboratory of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Ekaterina O Ignatova
- Clinical Pharmacology & Chemotherapy, Federal State Budgetary institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga A Simonova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana V Kekeeva
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Sergey S Larin
- Gene Therapy Laboratory, Institute of Gene Biology, Moscow, Russia.,Molecular Immunology Laboratory, Federal Scientific Clinical Centre of Pediatric Hematology Oncology Immunology Named after Dmitry Rogachev, Moscow, Russia
| | - Elena V Poddubskaya
- Clinic of Personalized Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,VitaMed LLC, Moscow, Russia
| | | | - Viktoria V Rudenko
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | | | - Kseniya D Petrova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Department of Biological and Medical Physics, Moscow Institute of Physics & Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Matvey M Tsyganov
- Laboratory of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Irina V Deryusheva
- Laboratory of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Polina V Kazantseva
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Artem V Doroshenko
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Natalia A Tarabanovskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Galina G Chesnokova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina I Sekacheva
- Clinic of Personalized Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina V Nemtsova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vera L Izhevskaya
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Sergey I Kutsev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry V Zaletaev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladimir V Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia.,Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Huang S, Li J, Tam NL, Sun C, Hou Y, Hughes B, Wang Z, Zhou Q, He X, Wu L. Uridine-cytidine kinase 2 upregulation predicts poor prognosis of hepatocellular carcinoma and is associated with cancer aggressiveness. Mol Carcinog 2019; 58:603-615. [PMID: 30556610 DOI: 10.1002/mc.22954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
Patients with advanced hepatocellular carcinoma (HCC) continue to have a dismal prognosis. Potential biomarkers to determine prognosis and select targeted therapies are urgently needed for patients with HCC. This study aimed to elucidate the role of UCK2 in HCC prognosis and tumor progression. We performed a screen of public databases to identify functional genes associated with HCC tumorigenesis, progression, and outcome. We identified uridine-cytidine kinase 2 (UCK2) as a gene of interest for further study. UCK2 promoting HCC aggressiveness was demonstrated by evaluation of clinical samples, in vitro experiments, in vivo tumorigenicity, and transcript analysis. UCK2 expression was generally elevated in HCC and was significantly correlated with poor survival and inferior clinicopathological characteristics of HCC patients. A multivariate analysis revealed that high UCK2 expression was an independent factor for poor prognosis. In HCC cell lines, UCK2 knockdown suppressed cell migration and invasion and inhibited cell proliferation, while UCK2 overexpression had an opposite effect. Animal model experiments confirmed that knockdown of UCK2 suppressed tumor growth in vivo. The bioinformatics analysis demonstrated that UCK2 might associated with metabolsim, splicesome, and adherens junction. UCK2 is highly associated with HCC malignant behavior and is a potential prognostic predictor for HCC patients in the clinic.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Li
- Deptartment of Hepatobiliary Surgery, The 5th Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Nga Lei Tam
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bridget Hughes
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zekang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Zhou Q, Jiang H, Zhang J, Yu W, Zhou Z, Huang P, Wang J, Xiao Z. Uridine-cytidine kinase 2 promotes metastasis of hepatocellular carcinoma cells via the Stat3 pathway. Cancer Manag Res 2018; 10:6339-6355. [PMID: 30568496 PMCID: PMC6267774 DOI: 10.2147/cmar.s182859] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction Uridine-cytidine kinase 2 (Uck2) has been demonstrated to activate antitumor prodrugs and regulate chemosensitivity in cancer cells. However, the expression and function of Uck2 in hepatocellular carcinoma (HCC) remain unknown. In this study, we were the first to systematically elucidate the role of Uck2 in HCC. Patients and methods Uck2 gene expression was queried between normal liver tissues and HCC in a web-based data mining platform (www.oncomine.org). Uck2 gene expression in tissue microarray was determined by immunohistochemical staining. The clinical and prognostic significance of Uck2 expression was statistically analyzed. Stable cell lines with increased Uck2 expression were established using lentivirus-based vectors, and RNAi technology was used to transiently downregulate Uck2 expression. Cell migration and invasion were assessed by using wound-healing and transwell assays, respectively. mRNA and protein expression levels were determined using quantitative real-time PCR and Western blotting, respectively. Results We report the upregulation of Uck2 expression in HCC tissues. We explored the relationship between Uck2 levels and the clinicopathological features of HCC patients. High Uck2 notably correlated with early recurrence and poor prognosis in HCC patients. Uck2 expression in HCC cell lines regulated the cell migration and invasion capacities in vitro. The stable overexpression of Uck2 in Bel-7402 cells promoted their metastasis ability in vivo. Furthermore, the Uck2 upregulation increased the MMP2/9 expression and activated the Stat3 signaling pathway. In addition, WP1066, a Stat3 inhibitor, neutralized the effects of Uck2 on the MMP2/9 expression and the migration and invasion capacities of HCC cells. Conclusion Our data suggest that Uck2 promotes HCC cell migration and invasion via the Stat3 signaling pathway and might be a novel potential target in HCC therapy.
Collapse
Affiliation(s)
- Qiming Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| | - Hai Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jianlong Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| | - Wei Yu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| | - Pinbo Huang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| | - Zhiyu Xiao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ; .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China, ;
| |
Collapse
|
20
|
A pan-cancer study of the transcriptional regulation of uricogenesis in human tumours: pathological and pharmacological correlates. Biosci Rep 2018; 38:BSR20171716. [PMID: 30104401 PMCID: PMC6146287 DOI: 10.1042/bsr20171716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
Uric acid (UA) is the end product of the catabolism of purines, and its serum levels are commonly increased in cancer patients. We aimed to explore the transcriptional regulation of tumour uricogenesis in human tumours, and relate uricogenesis with tumour pathological and pharmacological findings. Using data from The Cancer Genome Atlas (TCGA), we analysed the expression levels of xanthine dehydrogenase (XDH) and adenine phosphoribosyltransferase (APRT), two key enzymes in UA production and the purine salvage pathway, respectively. We found large differences between tumour types and individual tumours in their expression of XDH and APRT. Variations in locus-specific DNA methylation and gene copy number correlated with the expression levels of XDH and APRT in human tumours respectively. We explored the consequences of this differential regulation of uricogenesis. Tumours with high levels of XDH mRNA were characterised by higher expression of several genes encoding pro-inflammatory and immune cytokines, and increased levels of tumour infiltration with immune cells. Finally, we studied cancer drug sensitivity using data from the National Cancer Institute-60 (NCI-60) database. A specific correlation was found between the expression levels of APRT and cell sensitivity to the chemotherapeutic agent 5-fluorouracil (5-FU). Our findings underline the existence of great differences in uricogenesis between different types of human tumours. The study of uricogenesis offers promising perspectives for the identification of clinically relevant molecular biomarkers and for tumour stratification in the therapeutic context.
Collapse
|
21
|
Huang Y, Feng Y, Ren H, Zhang M, Li H, Qiao Y, Feng T, Yang J, Wang W, Wang S, Liu Y, Song Y, Li Y, Jin J, Tan W, Lin D. Associations of Genetic Variations in MicroRNA Seed Regions With Acute Adverse Events and Survival in Patients With Rectal Cancer Receiving Postoperative Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2018; 100:1026-1033. [PMID: 29485044 DOI: 10.1016/j.ijrobp.2017.12.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the seed regions of microRNAs and acute adverse events (AEs) and survival in patients with rectal cancer receiving postoperative chemoradiation therapy. METHODS AND MATERIALS Eighteen SNPs were genotyped in 365 patients with rectal cancer receiving postoperative chemoradiation therapy. The associations between genotypes and AEs were estimated by odds ratios and 95% confidence intervals (CIs), which were computed by using multivariate logistic regression models. The hazard ratios and 95% CIs to assess the death of patients for different genotypes were calculated by Cox proportional regression models. Overall survival and disease-free survival of patients with different genotypes were estimated by Kaplan-Meier plots, and the statistical significance was determined by using the log-rank test. RESULTS In these patients, the most common grade ≥2 AEs were diarrhea (44.1%), leukopenia (29.6%), and dermatitis (18.9%). With false discovery rate correction, SNP rs2273626 was significantly associated with a decreased risk of grade ≥2 leukopenia (odds ratio, 0.48; 95% CI, 0.31-0.74; P = .0009). In addition, SNP rs202195689 was associated with overall survival and disease-free survival in patients receiving postoperative chemoradiation therapy, with the hazard ratios for death being 2.02 (95% CI, 1.36-3.01; P = .0006) and 1.91 (95% CI, 1.36-2.70; P = .0002), respectively. However, no significant association between these SNPs and diarrhea and dermatitis was observed. CONCLUSIONS These results suggest that rs2273626 and rs202195689 in microRNA seed regions might serve as independent biomarkers for predicting AEs and prognosis in patients with rectal cancer receiving postoperative chemoradiation therapy. Independent replication of these findings is required to confirm these results.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanru Feng
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Ren
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Qiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihu Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueping Liu
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongwen Song
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Hernando-Cubero J, Matos-García I, Alonso-Orduña V, Capdevila J. The Role of Fluoropirimidines in Gastrointestinal Tumours: from the Bench to the Bed. J Gastrointest Cancer 2018; 48:135-147. [PMID: 28397102 DOI: 10.1007/s12029-017-9946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Gastrointestinal tumours are one of the most common types of cancer. Therapeutic options include surgery, radiotherapy, local ablation techniques, targeted agents, and chemotherapy. Fluoroprimidines are one of the most active drug families in digestive tumours and remains the cornerstone of the most commonly used chemotherapy schemes. METHODS We review the molecular basis of thymidylate synthase inhibition and the mechanisms of action of 5-fluorouracil, next generation oral fluoropyrimidines (capecitabine, tegafur and the latest S-1 and TAS-102) and antifolates. RESULTS In addition, mechanisms and biomarkers of resistance and toxicity are explored. Finally, new fluoropyrimidines development and clinical trials ongoing in digestive tumours are reviewed. CONCLUSIONS Further research is necessary to avoid resistance mechanisms, improve clinical outcomes and continue reducing toxicities. Until new drugs become available, the optimization of current therapies should be a priority.
Collapse
Affiliation(s)
- Jorge Hernando-Cubero
- Medical Oncology Department, Miguel Servet University Hospital, Paseo Isabel la Católica 1-3, 5009, Zaragoza, Spain.
| | - Ignacio Matos-García
- Medical Oncology Department, Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Vicente Alonso-Orduña
- Medical Oncology Department, Miguel Servet University Hospital, Paseo Isabel la Católica 1-3, 5009, Zaragoza, Spain
| | - Jaume Capdevila
- Medical Oncology Department, Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron 119-129, 08035, Barcelona, Spain
| |
Collapse
|
23
|
Elander N, Aughton K, Greenhalf W. Development of Novel Therapeutic Response Biomarkers. PANCREATIC CANCER 2018:1273-1304. [DOI: 10.1007/978-1-4939-7193-0_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Shen G, He P, Mao Y, Li P, Luh F, Ding G, Liu X, Yen Y. Overexpression of Uridine-Cytidine Kinase 2 Correlates with Breast Cancer Progression and Poor Prognosis. J Breast Cancer 2017; 20:132-141. [PMID: 28690649 PMCID: PMC5500396 DOI: 10.4048/jbc.2017.20.2.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/06/2017] [Indexed: 01/17/2023] Open
Abstract
Purpose Uridine-cytidine kinase (UCK) 2 is a rate-limiting enzyme involved in the salvage pathway of pyrimidine-nucleotide biosynthesis. Recent studies have shown that UCK2 is overexpressed in many types of cancer and may play a crucial role in activating antitumor prodrugs in human cancer cells. In the current study, we evaluated the potential prognostic value of UCK2 in breast cancer. Methods We searched public databases to explore associations between UCK2 gene expression and clinical parameters in patients with breast cancer. Gene set enrichment analysis (GSEA) was performed to identify biological pathways associated with UCK2 gene expression levels. Survival analyses were performed using 10 independent large-scale breast cancer microarray datasets. Results We found that UCK2 mRNA expression was elevated in breast cancer tissue compared with adjacent nontumorous tissue or breast tissue from healthy controls. High UCK2 levels were correlated with estrogen receptor negativity (p<0.001), advanced tumor grade (p<0.001), and poor tumor differentiation (p<0.001). GSEA revealed that UCK2-high breast cancers were enriched for gene sets associated with metastasis, progenitor-like phenotypes, and poor prognosis. Multivariable Cox proportional hazards regression analyses of microarray datasets verified that high UCK2 gene expression was associated with poor overall survival in a dose-response manner. The prognostic power of UCK2 was superior to that of TNM staging and comparable to that of multiple gene signatures. Conclusion These findings suggest that UCK2 may be a promising prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Guosong Shen
- Prenatal Diagnostic Center, Huzhou Women and Children Hospital, Huzhou, China
| | - Pingya He
- Prenatal Diagnostic Center, Huzhou Women and Children Hospital, Huzhou, China
| | - Yingying Mao
- Department of Epidemiology and Biostatistics, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peipei Li
- Hangzhou Hope Biotechnology Company, Hangzhou, China
| | - Frank Luh
- Biomarkers Development, California Cancer Institute, Sino-American Cancer Foundation, Temple City, USA.,General Medicine Division, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guohui Ding
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiyong Liu
- Biomarkers Development, California Cancer Institute, Sino-American Cancer Foundation, Temple City, USA
| | - Yun Yen
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Pellicer M, García-González X, García MI, Robles L, Grávalos C, García-Alfonso P, Pachón V, Longo F, Martínez V, Blanco C, Iglesias I, Sanjurjo M, López-Fernández LA. Identification of new SNPs associated with severe toxicity to capecitabine. Pharmacol Res 2017; 120:133-137. [DOI: 10.1016/j.phrs.2017.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 01/19/2023]
|
26
|
Melling N, Rashed M, Schroeder C, Hube-Magg C, Kluth M, Lang D, Simon R, Möller-Koop C, Steurer S, Sauter G, Jacobsen F, Büscheck F, Wittmer C, Clauditz T, Krech T, Tsourlakis MC, Minner S, Huland H, Graefen M, Budäus L, Thederan I, Salomon G, Schlomm T, Wilczak W. High-Level γ-Glutamyl-Hydrolase (GGH) Expression is Linked to Poor Prognosis in ERG Negative Prostate Cancer. Int J Mol Sci 2017; 18:ijms18020286. [PMID: 28146062 PMCID: PMC5343822 DOI: 10.3390/ijms18020286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
γ-glutamyl-hydrolase (GGH) is a ubiquitously-expressed enzyme that regulates intracellular folate metabolism for cell proliferation, DNA synthesis, and repair. Employing GGH immunohistochemistry on a tissue microarray with 12,427 prostate cancers, we found that GGH expression was negative to low in normal prostate epithelium, whereas 88.3% of our 10,562 interpretable cancers showed GGH expression. GGH staining was considered as low intensity in 49.6% and as high intensity in 38.6% of cancers. High GGH expression was linked to the TMPRSS2:ERG-fusion positive subset of cancers (p < 0.0001), advanced pathological tumor stage, and high Gleason grade (p < 0.0001 each). Further analysis revealed that these associations were merely driven by the subset of ERG-negative cancers, High GGH expression was weakly linked to early biochemical recurrence in ERG negative cancers (p < 0.0001) and independent from established histo-pathological parameters. Moreover, GGH expression was linked to features of genetic instability, including presence of recurrent deletions at 3p, 5q, 6q, and 10q (PTEN, p ≤ 0.01 each), as well as to accelerated cell proliferation as measured by Ki67 immunohistochemistry (p < 0.0001). In conclusion, the results of our study identify GGH as an ERG subtype specific molecular marker with modest prognostic relevance, which may have clinical relevance if analyzed in combination with other molecular markers.
Collapse
Affiliation(s)
- Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Masoud Rashed
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Cornelia Schroeder
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Dagmar Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Lars Budäus
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Georg Salomon
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- Department of Urology, Section for translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| |
Collapse
|
27
|
Kotelevets L, Chastre E, Desmaële D, Couvreur P. Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. Int J Pharm 2016; 514:24-40. [DOI: 10.1016/j.ijpharm.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 12/15/2022]
|
28
|
Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 2016; 8:57-84. [PMID: 26753006 DOI: 10.1177/1758834015614530] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. This is in spite of widespread, effective measures of preventive screening, and also major advances in treatment options. Despite advances in cytotoxic and targeted therapy, resistance to chemotherapy remains one of the greatest challenges in long-term management of incurable metastatic disease and eventually contributes to death as tumors accumulate means of evading treatment. We performed a comprehensive literature search on the data available through PubMed, Medline, Scopus, and the ASCO Annual Symposium abstracts through June 2015 for the purpose of this review. We discuss the current state of knowledge of clinically relevant mechanisms of resistance to cytotoxic and targeted therapies now in use for the treatment of CRC.
Collapse
Affiliation(s)
- William A Hammond
- Division of Hematology/ Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Abhisek Swaika
- Division of Hematology/ Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Kabir Mody
- Division of Hematology/ Oncology, Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| |
Collapse
|
29
|
Bai W, Wu Y, Zhang P, Xi Y. Correlations between expression levels of thymidylate synthase, thymidine phosphorylase and dihydropyrimidine dehydrogenase, and efficacy of 5-fluorouracil-based chemotherapy for advanced colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12333-12345. [PMID: 26722420 PMCID: PMC4680365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The efficacy of 5-fluorouracil (5-FU)-based chemotherapy for colorectal cancer (CRC) widely varies among patients; therefore, it is difficult to accurately predict chemotherapeutic responses. Some recent studies have found that key enzymes in the various metabolic pathways activated by 5-FU present potential predictors of treatment outcome. Of these enzymes, thymidylate synthase (TS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are known to play important roles in the efficacy of therapeutic agents. Here, we measured expression levels of TS, TP, and DPD in formalin-fixed, paraffin-embedded, CRC specimens and paracancerous tissue with normal mucosa by immunohistochemical and fluorescence real-time quantitative polymerase chain reaction techniques. We found no significant differences in TS, TP, and DPD expression levels between CRC specimens and paracancerous tissues (P > 0.05), although overall survival and the chemotherapeutic effect were relatively poor in CRC patients with relatively high expression levels of TS, TP, and DPD, as compared to those with comparatively low expression levels (P < 0.05). Therefore, TS, TP, and DPD mRNA levels appear to be suitable indicators of the efficacy of 5-FU-based chemotherapy and prognosis of CRC.
Collapse
Affiliation(s)
- Wenqi Bai
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Yueqin Wu
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Ping Zhang
- Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical UniversityTaiyuan, Shanxi, China
| |
Collapse
|
30
|
Balboa-Beltrán E, Duran G, Lamas MJ, Carracedo A, Barros F. Long Survival and Severe Toxicity Under 5-Fluorouracil-Based Therapy in a Patient With Colorectal Cancer Who Harbors a Germline Codon-Stop Mutation in TYMS. Mayo Clin Proc 2015. [PMID: 26210704 DOI: 10.1016/j.mayocp.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the first clinical description of a patient with cancer with a heterozygous germline codon-stop mutation in the TYMS gene. The mutation g.657795_657826del, c.53_84del (NM_001071.2), p.Gln18Argfs*42 causes loss of function of one of the TYMS alleles, resulting in a truncated protein. This gene codifies for the target enzyme of 5-fluorouracil (5-FU), the basic treatment in colorectal cancer. The patient, diagnosed with metastatic colorectal cancer, had diarrhea and neutropenia grade 4 and mucositis and neurological toxicity grade 3 under 5-FU-based therapy and exceeded by more than 50% the average survival after metastasectomy. On the basis of the patient's characteristics and the key role of TYMS in 5-FU activity, we hypothesize that this mutation may contribute to the drug response and toxicities suffered by the patient.
Collapse
Affiliation(s)
- Emilia Balboa-Beltrán
- Genomic Medicine Group, CIBERER, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Goretti Duran
- Hospital Pharmacy Service, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - María Jesús Lamas
- Hospital Pharmacy Service, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Genomic Medicine Group, CIBERER, University of Santiago de Compostela, Santiago de Compostela, Spain; Galician Public Foundation for Genomic Medicine, SERGAS, Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - Francisco Barros
- Galician Public Foundation for Genomic Medicine, SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
31
|
Vanden Heuvel JP, Thompson JT, Albrecht P, Mandetta D, Kamerow H, Ford JP. Differential nucleobase protection against 5-fluorouracil toxicity for squamous and columnar cells: implication for tissue function and oncogenesis. Invest New Drugs 2015; 33:1003-11. [PMID: 26123924 PMCID: PMC4768230 DOI: 10.1007/s10637-015-0259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022]
Abstract
Purpose The goal of these studies was to test if local excess of a normal nucleobase substrate prevents the toxicity of protracted 5FU exposure used in human cancer treatment. Methods Messenger RNA expression studies were performed of 5FU activating enzymes in human colon cancer cells lines (CaCo-2, HT-29), primary human gingival cells (HEGP), and normal esophageal and gastric clinical tissue samples. Excess nucleobase was then used in vitro to protect cells from 5FU toxicity. Results Pyrimidine salvage pathways predominate in squamous cells of the gingiva (HEGP) and esophageal tissue. Excess salvage nucleobase uracil but not adenine prevented 5FU toxicity in HEGP cells. Pyrimidine de novo synthesis predominates in columnar Caco-2, HT-29 and gastric tissue. Excess nucleobase adenine but not uracil prevented 5FU toxicity to Caco-2 and HT-29 cells. Conclusion The directed application of the normal nucleobase uracil to the squamous cells of the oral mucosa and palms and soles together with the delivery of the normal nucleobase adenine to the columnar cells of the GI tract may enable the safe delivery of higher 5FU dose intensity. These results also suggest a feature of tissue function where squamous cells grow largely by recycling overlying tissue cell components. Columnar cells use absorbed surface nutrients for de novo growth. A disruption of this tissue function can result in growth derived from an underlying nutrient source. That change would also cause the loss of the region of cell turnover at the tissue surface. Subsequent cell proliferation with limiting nutrient availability could promote oncogenesis in such initiated tissue.
Collapse
Affiliation(s)
- John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Penn State University, 325 Life Sciences Building, University Park, PA, 16802, USA.,INDIGO Biosciences, Inc., 1981 Pine Hall Road, State College, PA, 16801, USA
| | - Jerry T Thompson
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Penn State University, 325 Life Sciences Building, University Park, PA, 16802, USA
| | - Prajakta Albrecht
- INDIGO Biosciences, Inc., 1981 Pine Hall Road, State College, PA, 16801, USA
| | - Donald Mandetta
- Mount Nittany Medical Center, 1850 East Park Avenue, State College, PA, 16803, USA
| | - Harry Kamerow
- Mount Nittany Medical Center, 1850 East Park Avenue, State College, PA, 16803, USA
| | - John P Ford
- Mount Nittany Medical Center, 1850 East Park Avenue, State College, PA, 16803, USA. .,Asymmetric Therapeutics LLC, 141 Main St., PO Box J, Unadilla, NY, 13849, USA.
| |
Collapse
|
32
|
Abstract
Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5'- and 3'-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients.Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3'-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5'-UTR polymorphisms).For neither the 3'- nor the 5'-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance.The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold, in our population. These data circumscribe the influence of these polymorphisms in the clinical outcome of 5-FU and question their use for establishing 5-FU dosage, above all when additional genetic factors are not considered.
Collapse
Affiliation(s)
- Emilia Balboa-Beltrán
- From the Grupo de Medicina Xenómica (EB-B, RC, AC), CIBERER, Universidad de Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica (AC, FB), SERGAS, Santiago de Compostela, Spain; and Center of Excellence in Genomic Medicine Research (CEGMR) (AC), King Abdulaziz University, Jeddah, KSA
| | | | | | | |
Collapse
|
33
|
Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol 2014; 20:9775-827. [PMID: 25110414 PMCID: PMC4123365 DOI: 10.3748/wjg.v20.i29.9775] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
During the past two decades the first sequencing of the human genome was performed showing its high degree of inter-individual differentiation, as a result of large international research projects (Human Genome Project, the 1000 Genomes Project International HapMap Project, and Programs for Genomic Applications NHLBI-PGA). This period was also a time of intensive development of molecular biology techniques and enormous knowledge growth in the biology of cancer. For clinical use in the treatment of patients with colorectal cancer (CRC), in addition to fluoropyrimidines, another two new cytostatic drugs were allowed: irinotecan and oxaliplatin. Intensive research into new treatment regimens and a new generation of drugs used in targeted therapy has also been conducted. The last 20 years was a time of numerous in vitro and in vivo studies on the molecular basis of drug resistance. One of the most important factors limiting the effectiveness of chemotherapy is the primary and secondary resistance of cancer cells. Understanding the genetic factors and mechanisms that contribute to the lack of or low sensitivity of tumour tissue to cytostatics is a key element in the currently developing trend of personalized medicine. Scientists hope to increase the percentage of positive treatment response in CRC patients due to practical applications of pharmacogenetics/pharmacogenomics. Over the past 20 years the clinical usability of different predictive markers has been tested among which only a few have been confirmed to have high application potential. This review is a synthetic presentation of drug resistance in the context of CRC patient chemotherapy. The multifactorial nature and volume of the issues involved do not allow the author to present a comprehensive study on this subject in one review.
Collapse
|
34
|
Pardini B, Bermejo JL, Naccarati A, Di Gaetano C, Rosa F, Legrand C, Novotny J, Vodicka P, Kumar R. Inherited variability in a master regulator polymorphism (rs4846126) associates with survival in 5-FU treated colorectal cancer patients. Mutat Res 2014; 766-767:7-13. [PMID: 25847265 DOI: 10.1016/j.mrfmmm.2014.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/23/2014] [Accepted: 05/30/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Treatment with 5-fluorouracil (5-FU) is known to improve survival in many cancers including colorectal cancer. Response to the treatment, overall survival and recurrence show inter-individual variation. METHODS In this study we employed a strategy to search eQTL variants influencing the expression of a large number of genes. We identified four single nucleotide polymorphisms, defined as master regulators of transcription, and genotyped them in a set of 218 colorectal cancer patients undergoing adjuvant 5-FU based therapy. RESULTS Our results showed that the minor allele variant of the rs4846126 polymorphism was associated with poor overall and progression-free survival. Patients that were homozygous for the variant allele showed an over two fold increased risk of death (HR 2.20 95%CI 1.05-4.60) and progression (HR 2.88, 95% 1.47-5.63). The integration of external information from publicly available gene expression repositories suggested that the rs4846126 polymorphism deserves further investigation. This variant potentially regulates the gene expression of 273 genes with some of them possibly associated to the patient's response to 5-FU treatment or colorectal cancer. CONCLUSIONS Present results show that mining of public data repositories in combination with own data can be a fruitful approach to identify markers that affect therapy outcome. In particular, a genetic screen of master regulators may help in order to search for the polymorphisms involved in treatment response in cancer patients.
Collapse
Affiliation(s)
- Barbara Pardini
- Human Genetics Foundation, Turin, Italy; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alessio Naccarati
- Human Genetics Foundation, Turin, Italy; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Cornelia Di Gaetano
- Human Genetics Foundation, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Carine Legrand
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Novotny
- Department of Oncology, General Teaching Hospital, Prague, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; First Medical Faculty, Charles University, Prague, Czech Republic
| | - Rajiv Kumar
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Galbiatti ALS, Caldas HC, Maniglia JV, Pavarino EC, Goloni-Bertollo EM. Gene expression profile of 5-fluorouracil metabolic enzymes in laryngeal cancer cell line: predictive parameters for response to 5-fluorouracil-based chemotherapy. Biomed Pharmacother 2014; 68:515-9. [PMID: 24751000 DOI: 10.1016/j.biopha.2014.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is an antifolate chemotherapeutic that has become established in many therapeutic regimes, but sensitivity variations and development of resistance are common problems that limit the efficiency of the treatments. Inter-individual variations to 5-FU outcome have been attributed to different expression profiles of genes related to folate metabolism. METHODS To elucidate the mechanisms of variations to 5-FU outcome, the authors investigated MTHFR, DHFR, TYMS and SLC19A1 folate genes expression for 5-FU response in laryngeal cancer cell line (Hep-2). Concentrations of 10, 50, and 100 ng/mL of 5-FU chemotherapeutic were added separately in Hep-2 cell line for 24 hours at 37 °C. Cell sensibility was evaluated with fluorescein isothiocyanate (FITC) label Bcl-2 by flow cytometry. The real-time quantitative PCR (qPCR) technique was performed for quantification of gene expression using TaqMan(®) Gene Expression Assay. ANOVA and Bonferroni's post hoc tests were utilized to statistical analysis. RESULTS The numbers of viable Hep-2 cells with 10, 50, and 100 ng/mL concentrations of 5-FU chemotherapy were 15.87, 28.3 and 68.9%, respectively. Statistical analysis showed significant association between control group and increased expression for TYMS gene in cells treated with 100 ng/mL/5-FU chemotherapy (P<0.05). CONCLUSIONS The authors found association between the highest 5-FU dose chemotherapy and increased expression levels for TYMS folate gene in laryngeal cancer cell line. Although these experiments were performed in vitro, the results suggest that genetic factors are thought to play an important role in drug metabolism and may be useful for predicting treatment outcomes.
Collapse
Affiliation(s)
- Ana Lívia Silva Galbiatti
- FAMERP- São José do Rio Preto Medical School Genetics and Molecular Biology Research Unit - UPGEM AV Brigadeiro Faria Lima, 5416 São José do Rio Preto, 15090000 Brazil.
| | | | | | - Erika Cristina Pavarino
- FAMERP- São José do Rio Preto Medical School Genetics and Molecular Biology Research Unit - UPGEM AV Brigadeiro Faria Lima, 5416 São José do Rio Preto, 15090000 Brazil
| | - Eny Maria Goloni-Bertollo
- FAMERP- São José do Rio Preto Medical School Genetics and Molecular Biology Research Unit - UPGEM AV Brigadeiro Faria Lima, 5416 São José do Rio Preto, 15090000 Brazil
| |
Collapse
|
36
|
Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, Jacquemier J, Thomassin-Piana J, Pinna G, Jalaguier A, Lambaudie E, Houvenaeghel G, Xerri L, Harel-Bellan A, Chaffanet M, Viens P, Birnbaum D. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 2013; 73:7290-300. [PMID: 24142344 DOI: 10.1158/0008-5472.can-12-4704] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem-like cells (CSC) have been widely studied, but their clinical relevance has yet to be established in breast cancer. Here, we report the establishment of primary breast tumor-derived xenografts (PDX) that encompass the main diversity of human breast cancer and retain the major clinicopathologic features of primary tumors. Successful engraftment was correlated with the presence of ALDH1-positive CSCs, which predicted prognosis in patients. The xenografts we developed showed a hierarchical cell organization of breast cancer with the ALDH1-positive CSCs constituting the tumorigenic cell population. Analysis of gene expression from functionally validated CSCs yielded a breast CSC signature and identified a core transcriptional program of 19 genes shared with murine embryonic, hematopoietic, and neural stem cells. This generalized stem cell program allowed the identification of potential CSC regulators, which were related mainly to metabolic processes. Using an siRNA genetic screen designed to target the 19 genes, we validated the functional role of this stem cell program in the regulation of breast CSC biology. Our work offers a proof of the functional importance of CSCs in breast cancer, and it establishes the reliability of PDXs for use in developing personalized CSC therapies for patients with breast cancer.
Collapse
Affiliation(s)
- Emmanuelle Charafe-Jauffret
- Authors' Affiliations: INSERM, U1068, CRCM, Molecular Oncology, Institut Paoli-Calmettes, Biopathology, Aix-Marseille Univ, UM 105, F-13284, Départements d'Oncologie Médicale, Chirugie oncologique, and Radiologie, Institut Paoli-Calmettes, Marseille; and Plateforme ARN interference PArI, CEA SACLAY, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One 2012; 7:e40521. [PMID: 22905093 PMCID: PMC3414492 DOI: 10.1371/journal.pone.0040521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/11/2012] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed, a multi-folate inhibitor combined with a platinum compound is the first-line treatment of malignant mesothelioma, but median survival is still one year. Intrinsic and acquired resistance to pemetrexed is common, but its biological basis is obscure. Here we report for the first time a genome-wide profile of acquired resistance in the tumour from an exceptional case with advanced pleural mesothelioma and almost six years survival after 39 cycles of second-line pemetrexed/carboplatin treatment. Methodology and Principal Findings Genome-wide analysis with Illumina BeadChip Kit of 25,000 genes was performed on mRNA from pre-treatment and post-resistance biopsies from this individual as well on case and control samples from our previously published study (in total 17 samples). Cell specific expression of proteins encoded by selected genes were analysed by immunohistochemistry. Serial serum levels of CA125, CYFRA21-1 and SMRP levels were examined. TS protein, the main target of pemetrexed was overexpressed. Proteins and genes related to DNA damage response, elongation and telomere extension and repair related directly and indirectly to platinum resistance were overexpressed, as the CHK1 protein and the genes CHEK2, LIG3, POLD1, POLA2, FANCD2, PRPF19, RECQ5 respectively, the last two not previously described in mesothelioma. We observed a down-regulation of leukocyte transendothelial migration and cell adhesion molecules pathways. Silencing of NT5C in two mesothelioma cell lines did not sensitize the cells to Pemetrexed. Proposed resistance markers are TS, KRT7/ CK7, TYMP/ thymidine phosphorylase and down-regulated SPARCL1 and CDKN1B. Moreover, comparison of the primary expression of the sensitive versus a primary resistant case showed multi-fold overexpressed DNA repair, cell cycle, cytokinesis, and spindle formation in the latter. Serum CA125 and SMRP reflected the clinical and radiological course and tumour burden. Conclusions Genome-wide microarray of mesothelioma pre- and post-resistance biopsies indicated a novel resistance signature to pemetrexed/carboplatin that deserve validation in a larger cohort.
Collapse
|