1
|
Rashid SA, Blanchard AT, Combs JD, Fernandez N, Dong Y, Cho HC, Salaita K. DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins. ACS NANO 2022; 16:5335-5348. [PMID: 35324164 PMCID: PMC11238821 DOI: 10.1021/acsnano.1c04303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (∼12, ∼56, and ∼160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, α-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Natasha Fernandez
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Berthou F, Sobolewski C, Abegg D, Fournier M, Maeder C, Dolicka D, Correia de Sousa M, Adibekian A, Foti M. Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk. Int J Mol Sci 2022; 23:ijms23073959. [PMID: 35409319 PMCID: PMC8999584 DOI: 10.3390/ijms23073959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Flavien Berthou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Cyril Sobolewski
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Margot Fournier
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Christine Maeder
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Dobrochna Dolicka
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Marta Correia de Sousa
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(22)-379-52-04
| |
Collapse
|
3
|
A Systems Approach to Interrogate Gene Expression Patterns in African American Men Presenting with Clinically Localized Prostate Cancer. Cancers (Basel) 2021; 13:cancers13205143. [PMID: 34680291 PMCID: PMC8533960 DOI: 10.3390/cancers13205143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Men of African origin have a 2–3 times greater chance of developing prostate cancer than those of European origin, and of patients that are diagnosed with the disease, men of African descent are 2 times more likely to die compared to white men. Men of African origin are still greatly underrepresented in genetic studies and clinical trials. This, unfortunately, means that new discoveries in cancer treatment are missing key information on the group with a greater chance of mortality. The objective of this study was to increase our knowledge of prostate cancer in men undergoing a prostate biopsy. We carried out RNA sequencing of biopsy specimens and examined racial differences in prostate gene expression. A gene expression signature was uncovered which separated the men based on their race. Furthermore, within men of African descent this signature separated men with the most severe clinical characteristics. Abstract An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins.
Collapse
|
4
|
Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins. Genes (Basel) 2020; 11:genes11020178. [PMID: 32045989 PMCID: PMC7073971 DOI: 10.3390/genes11020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Sphingolipids are bioactive lipids associated with cellular membranes and plasma lipoproteins, and their synthesis and degradation are tightly regulated. We have previously determined that low plasma concentrations of certain ceramide species predict the development of nephropathy in diabetes patients with normal albumin excretion rates at baseline. Herein, we tested the hypothesis that altering the sphingolipid content of circulating lipoproteins can alter the metabolic and signaling pathways in podocytes, whose dysfunction leads to an impairment of glomerular filtration. Cultured human podocytes were treated with lipoproteins from healthy subjects enriched in vitro with C16 ceramide, or D-erythro 2-hydroxy C16 ceramide, a ceramide naturally found in skin. The RNA-Seq data demonstrated differential expression of genes regulating sphingolipid metabolism, sphingolipid signaling, and mTOR signaling pathways. A multiplex analysis of mTOR signaling pathway intermediates showed that the majority (eight) of the pathway phosphorylated proteins measured (eleven) were significantly downregulated in response to C16 ceramide-enriched HDL2 compared to HDL2 alone and hydroxy ceramide-enriched HDL2. In contrast, C16 ceramide-enriched HDL3 upregulated the phosphorylation of four intermediates in the mTOR pathway. These findings highlight a possible role for lipoprotein-associated sphingolipids in regulating metabolic and signaling pathways in podocytes and could lead to novel therapeutic targets in glomerular kidney diseases.
Collapse
|
5
|
da Silveira WA, Vazquez-Hidalgo E, Bartolotta E, Renaud L, Paolini P, Hardiman G. The effects of rosiglitazone on the neonatal rat cardiomyocyte transcriptome: a temporal analysis. Pharmacogenomics 2019; 20:1125-1141. [PMID: 31755367 PMCID: PMC7026769 DOI: 10.2217/pgs-2019-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Aim: The objective was to determine via high-throughput RNA sequencing the temporal effects of rosiglitazone (Avandia®) on the neonatal rat ventricular myocyte transcriptome. Materials & methods: Neonatal rat ventricular myocytes (NRVMs) were exposed to rosiglitazone in vitro. Meta analyses utilized temporal comparisons of 0.5 h control versus 0.5 h treatment, 0.5 h treatment versus 24 h treatment and 24 h treatment versus 48 h treatment. Results: Time dependent responses were observed. At 0.5 h, the PI3K-AKT signaling pathway was impacted. At 24 h endoplasmic reticulum activity and protein degradation were altered. At 48 h, oxytocin signaling was perturbed. Conclusion: The effects of rosiglitazone occured early and increased in magnitude over time. A protective molecular response was triggered at 24 h and maintained until 48 h. In parallel, a response that can cause cardiac damage was activated. Our findings suggest that rosiglitazone has deleterious effects.
Collapse
Affiliation(s)
- Willian Abraham da Silveira
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
- Faculty of Medicine, Health & Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Belfast, Northern Ireland, UK
| | - Esteban Vazquez-Hidalgo
- Department of Biology, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Elesha Bartolotta
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Ludivine Renaud
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Paul Paolini
- Department of Biology, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
- Faculty of Medicine, Health & Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Belfast, Northern Ireland, UK
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Shamchuk AL, Blunt BJ, Lyons DD, Wang MQ, Gasheva A, Lewis CR, Tomlin K, Hazard ES, Hardiman G, Tierney KB. Nucleobase-containing compounds evoke behavioural, olfactory, and transcriptional responses in model fishes. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sensory system of animals detects a massive and unknown array of chemical cues that evoke a diversity of physiological and behavioural responses. One group of nitrogen-containing carbon ring chemicals—nucleobases—are thought to be involved in numerous behaviours yet have received little attention. We took a top-down approach to examine responses evoked by nucleobases at behavioural, tissue, and gene expression levels. Fish generally avoided nucleobases, and this behaviour, when observed, was driven by purines but not pyrimidines. At the tissue level, olfactory neuron generator potential responses tended to be concentration specific and robust at concentrations lower than amino acid detection ranges. In terms of gene expression, more than 2000 genes were significantly upregulated following nucleobase exposure, some of which were expected (e.g., genes involved in purine binding) and some of which were not (e.g., tubulin-related genes). Humanized RNA pathway analysis showed that we had exposed the animal to a nucleobase. Our data indicate that responses to nucleobase-containing compounds may be highly structure based and are evident from changes in behaviour to mRNA expression. Many of these responses were surprising, and all provide numerous routes for further research endeavour.
Collapse
Affiliation(s)
- Angela L. Shamchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Brian J. Blunt
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Danielle D. Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mo Qi Wang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Anastasia Gasheva
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Carlie R. Lewis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Kirsten Tomlin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - E. Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Library Science and Informatics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Keith B. Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
7
|
Acute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint model. Oncotarget 2017; 7:8455-65. [PMID: 26863456 PMCID: PMC4890979 DOI: 10.18632/oncotarget.7225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022] Open
Abstract
Stress arises from an external demand placed on an organism that triggers physiological, cognitive and behavioural responses in order to cope with that request. It is thus an adaptive response useful for the survival of an organism. The objective of this study was to identify and characterize global changes in gene expression in the hippocampus in response to acute stress stimuli, by employing a mouse model of short-term restraint stress. In our experimental design mice were subjected to a one time exposure of restraint stress and the regulation of gene expression in the hippocampus was examined 3, 12 and 24 hours thereafter. Microarray analysis revealed that mice which had undergone acute restraint stress differed from non-stressed controls in global hippocampal transcriptional responses. An up-regulation of transcripts contributing directly or indirectly to neurogenesis and neuronal protection including, Ttr, Rab6, Gh, Prl, Ndufb9 and Ndufa6, was observed. Systems level analyses revealed a significant enrichment for neurogenesis, neuron morphogenesis- and cognitive functions-related biological process terms and pathways. This work further supports the hypothesis that acute stress mediates a positive action on the hippocampus favouring the formation and the preservation of neurons, which will be discussed in the context of current data from the literature.
Collapse
|
8
|
Janakiraman H, House RP, Talwar S, Courtney SM, Hazard ES, Hardiman G, Mehrotra S, Howe PH, Gangaraju V, Palanisamy V. Repression of caspase-3 and RNA-binding protein HuR cleavage by cyclooxygenase-2 promotes drug resistance in oral squamous cell carcinoma. Oncogene 2016; 36:3137-3148. [PMID: 27941877 PMCID: PMC5453834 DOI: 10.1038/onc.2016.451] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
A well-studied RNA-binding protein Hu Antigen-R (HuR), controls post-transcriptional gene regulation and undergoes stress-activated caspase-3 dependent cleavage in cancer cells. The cleavage products of HuR are known to promote cell death however, the underlying molecular mechanisms facilitating caspase-3 activation and HuR cleavage remains unknown. Here, we show that HuR cleavage associated with active caspase-3 in oral cancer cells treated with ionizing radiation and chemotherapeutic drug, paclitaxel. We determined that oral cancer cells overexpressing cyclooxygenase-2 (COX-2) limited the cleavage of caspase-3 and HuR, which reduced the rate of cell death in paclitaxel resistant oral cancer cells. Specific inhibition of COX-2 by celecoxib, promoted apoptosis through activation of caspase-3 and cleavage of HuR in paclitaxel-resistant oral cancer cells, both in vitro and in vivo. In addition, oral cancer cells overexpressing cellular HuR increased the half-life of COX-2 mRNA, promoted COX-2 protein expression and exhibited enhanced tumor growth in vivo in comparison with cells expressing a cleavable form of HuR. Finally, our ribonucleoprotein immunoprecipitation and sequencing (RIP-seq) analyses of HuR in oral cancer cells treated with ionizing radiation (IR), determined that HuR cleavage product-1 (HuR-CP1) bound and promoted the expression of mRNAs encoding proteins involved in apoptosis. Our results indicated that, cellular non-cleavable HuR controls COX-2 mRNA expression and enzymatic activity. In addition, overexpressed COX-2 protein repressed the cleavage of caspase-3 and HuR to promote drug resistance and tumor growth. Altogether, our observations support the use of the COX-2 inhibitor celecoxib, in combination with paclitaxel, for the management of paclitaxel resistant oral cancer cells.
Collapse
Affiliation(s)
- H Janakiraman
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - R P House
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - S Talwar
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - S M Courtney
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - E S Hazard
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA.,Library Science and Informatics, Medical University of South Carolina, Charleston, SC, USA
| | - G Hardiman
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA.,Departments of Medicine and Public Health, Medical University of South Carolina, Charleston, SC, USA
| | - S Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - P H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - V Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - V Palanisamy
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
9
|
Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H, Liu C, Shukla P, Sayed N, Churko JM, Shao N, Woo NA, Chao AS, Gold JD, Karakikes I, Snyder MP, Wu JC. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell 2016; 19:311-25. [PMID: 27545504 PMCID: PMC5087997 DOI: 10.1016/j.stem.2016.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023]
Abstract
Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kun-Hsing Yu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John H Ahrens
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole A Woo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander S Chao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph D Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Xu EG, Mager EM, Grosell M, Pasparakis C, Schlenker LS, Stieglitz JD, Benetti D, Hazard ES, Courtney SM, Diamante G, Freitas J, Hardiman G, Schlenk D. Time- and Oil-Dependent Transcriptomic and Physiological Responses to Deepwater Horizon Oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7842-7851. [PMID: 27348429 DOI: 10.1021/acs.est.6b02205] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Lela S Schlenker
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - John D Stieglitz
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - E Starr Hazard
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Sean M Courtney
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Graciel Diamante
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Juliane Freitas
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Gary Hardiman
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine & Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
11
|
Hardiman G, Savage SJ, Hazard ES, Wilson RC, Courtney SM, Smith MT, Hollis BW, Halbert CH, Gattoni-Celli S. Systems analysis of the prostate transcriptome in African-American men compared with European-American men. Pharmacogenomics 2016; 17:1129-1143. [PMID: 27359067 DOI: 10.2217/pgs-2016-0025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM African-Americans (AA) have increased prostate cancer risk and a greater mortality rate than European-Americans (EA). AA exhibit a high prevalence of vitamin D deficiency. We examined the global prostate transcriptome in AA and EA, and the effect of vitamin D3 supplementation. PATIENTS & METHODS Twenty-seven male subjects (ten AA and 17 EA), slated to undergo prostatectomy were enrolled in the study. Fourteen subjects received vitamin D3 (4000 IU daily) and 13 subjects received placebo for 2 months prior to surgery. RESULTS AA show higher expression of genes associated with immune response and inflammation. CONCLUSION Systems level analyses support the concept that Inflammatory processes may contribute to disease progression in AA. These transcripts can be modulated by a short course of vitamin D3 supplementation.
Collapse
Affiliation(s)
- Gary Hardiman
- Department of Medicine & Public Health, Medical University of South Carolina, Charleston, SC, USA.,Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Stephen J Savage
- Department of Urology.,Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - E Starr Hazard
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA.,Library Science and Informatics, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Wilson
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sean M Courtney
- Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael T Smith
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Bruce W Hollis
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Chanita Hughes Halbert
- Ralph H Johnson VA Medical Center, Charleston, SC, USA.,Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sebastiano Gattoni-Celli
- Ralph H Johnson VA Medical Center, Charleston, SC, USA.,Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Ubaldi M, Ricciardelli E, Pasqualini L, Sannino G, Soverchia L, Ruggeri B, Falcinelli S, Renzi A, Ludka C, Ciccocioppo R, Hardiman G. Biomarkers of hippocampal gene expression in a mouse restraint chronic stress model. Pharmacogenomics 2016; 16:471-82. [PMID: 25916519 DOI: 10.2217/pgs.15.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Acute stress provides many beneficial effects whereas chronic stress contributes to a variety of human health issues including anxiety, depression, gastrointestinal problems, cardiac disease, sleep disorders and obesity. The goal of this work was to identify, using a rodent model, hippocampal gene signatures associated with prolonged chronic stress representing candidate biomarkers and therapeutic targets for early diagnosis and pharmacological intervention for stress induced disease. MATERIALS & METHODS Mice underwent 'restraint stress' over 7 consecutive days and hippocampal gene-expression changes were analyzed at 3, 12 and 24 h following the final restraint treatment. RESULTS Data indicated that mice exposed to chronic restraint stress exhibit a differential gene-expression profile compared with non-stressed controls. The greatest differences were observed 12 and 24 h following the final stress test. CONCLUSION Our study indicated that Gpr88, Ttr, Gh and Tac1 mRNAs were modulated in mice exposed to chronic restraint stress. These transcripts represent a panel of biomarkers and druggable targets for further analysis in the context of chronic stress associated disease in humans.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|