1
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
3
|
Schuler BA, Bastarache L, Wang J, He J, Van Driest SL, Denny JC. Population genetic testing and SERPINA1 sequencing identifies unidentified alpha-1 antitrypsin deficiency alleles and gene-environment interaction with hepatitis C infection. PLoS One 2023; 18:e0286469. [PMID: 37651384 PMCID: PMC10470904 DOI: 10.1371/journal.pone.0286469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD), a relatively common autosomal recessive genetic disorder, is underdiagnosed in symptomatic individuals. We sought to compare the risk of liver transplantation associated with hepatitis C infection with AATD heterozygotes and homozygotes and determine if SERPINA1 sequencing would identify undiagnosed AATD. We performed a retrospective cohort study in a deidentified Electronic Health Record (EHR)-linked DNA biobank with 72,027 individuals genotyped for the M, Z, and S alleles in SERPINA1. We investigated liver transplantation frequency by genotype group and compared with hepatitis C infection. We performed SERPINA1 sequencing in carriers of pathogenic AATD alleles who underwent liver transplantation. Liver transplantation was associated with the Z allele (ZZ: odds ratio [OR] = 1.31, p<2e-16; MZ: OR = 1.02, p = 1.2e-13) and with hepatitis C (OR = 1.20, p<2e-16). For liver transplantation, there was a significant interaction between genotype and hepatitis C (ZZ: interaction OR = 1.23, p = 4.7e-4; MZ: interaction OR = 1.11, p = 6.9e-13). Sequencing uncovered a second, rare, pathogenic SERPINA1 variant in six of 133 individuals with liver transplants and without hepatitis C. Liver transplantation was more common in individuals with AATD risk alleles (including heterozygotes), and AATD and hepatitis C demonstrated evidence of a gene-environment interaction in relation to liver transplantation. The current AATD screening strategy may miss diagnoses whereas SERPINA1 sequencing may increase diagnostic yield for AATD, stratify risk for liver disease, and inform clinical management for individuals with AATD risk alleles and liver disease risk factors.
Collapse
Affiliation(s)
- Bryce A. Schuler
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Janey Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joshua C. Denny
- All of Us Research Program, National Institutes of Health, Bethesda, Maryland, United States of America
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Urtasun A, Olivera GG, Sendra L, Aliño SF, Berlanga P, Gargallo P, Hervás D, Balaguer J, Juan-Ribelles A, Andrés MDM, Cañete A, Herrero MJ. Personalized Medicine in Infant Population with Cancer: Pharmacogenetic Pilot Study of Polymorphisms Related to Toxicity and Response to Chemotherapy. Cancers (Basel) 2023; 15:cancers15051424. [PMID: 36900216 PMCID: PMC10000841 DOI: 10.3390/cancers15051424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Pharmacogenetics is a personalized medicine tool that aims to optimize treatments by adapting them to each individual's genetics, maximizing their efficacy while minimizing their toxicity. Infants with cancer are especially vulnerable, and their co-morbidities have vital repercussions. The study of their pharmacogenetics is new in this clinical field. METHODS A unicentric, ambispective study of a cohort of infants receiving chemotherapy (from January 2007 to August 2019). The genotypes of 64 patients under 18 months of age were correlated with severe drug toxicities and survival. A pharmacogenetics panel was configured based on PharmGKB, drug labels, and international experts' consortiums. RESULTS Associations between SNPs and hematological toxicity were found. Most meaningful were: MTHFR rs1801131 GT increasing the anemia risk (OR 1.73); rs1517114 GC, XPC rs2228001 GT, increasing neutropenia risk (OR 1.50 and 4.63); ABCB1 rs1045642 AG, TNFRSF11B rs2073618 GG, CYP2B6 rs4802101 TC and SOD2 rs4880 GG increasing thrombocytopenia risk (OR 1.70, 1.77, 1.70, 1.73, respectively). Regarding survival, MTHFR rs1801133 GG, TNFRSF11B rs2073618 GG, XPC rs2228001 GT, CYP3A4 rs2740574 CT, CDA rs3215400 del.del, and SLC01B1 rs4149015 GA were associated with lower overall survival probabilities (HR 3.12, 1.84, 1.68, 2.92, 1.90, and 3.96, respectively). Lastly, for event-free survival, SLC19A1 rs1051266 TT and CDA rs3215400 del.del increased the relapse probability (HR 1.61 and 2.19, respectively). CONCLUSIONS This pharmacogenetic study is a pioneer in dealing with infants under 18 months of age. Further studies are needed to confirm the utility of the findings in this work to be used as predictive genetic biomarkers of toxicity and therapeutic efficacy in the infant population. If confirmed, their use in therapeutic decisions could improve the quality of life and prognosis of these patients.
Collapse
Affiliation(s)
- Andrea Urtasun
- Pediatrics Department, Pediatric Oncology Unit, University Clinic of Navarra, Av. de Pío XII, 36, 31008 Pamplona, Spain
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Gladys G. Olivera
- Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Luis Sendra
- Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Correspondence: (L.S.); (S.F.A.)
| | - Salvador F. Aliño
- Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Correspondence: (L.S.); (S.F.A.)
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Institute Gustave Roussy Center, Rue Edouard Vaillant 114, 94800 Villejuif, France
| | - Pablo Gargallo
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Health in Code Group, Oncology Department, 46980 Paterna, Spain
| | - David Hervás
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Julia Balaguer
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Antonio Juan-Ribelles
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - María del Mar Andrés
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - María José Herrero
- Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
5
|
Siemens A, Anderson SJ, Rassekh SR, Ross CJD, Carleton BC. A Systematic Review of Polygenic Models for Predicting Drug Outcomes. J Pers Med 2022; 12:jpm12091394. [PMID: 36143179 PMCID: PMC9505711 DOI: 10.3390/jpm12091394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Polygenic models have emerged as promising prediction tools for the prediction of complex traits. Currently, the majority of polygenic models are developed in the context of predicting disease risk, but polygenic models may also prove useful in predicting drug outcomes. This study sought to understand how polygenic models incorporating pharmacogenetic variants are being used in the prediction of drug outcomes. A systematic review was conducted with the aim of gaining insights into the methods used to construct polygenic models, as well as their performance in drug outcome prediction. The search uncovered 89 papers that incorporated pharmacogenetic variants in the development of polygenic models. It was found that the most common polygenic models were constructed for drug dosing predictions in anticoagulant therapies (n = 27). While nearly all studies found a significant association with their polygenic model and the investigated drug outcome (93.3%), less than half (47.2%) compared the performance of the polygenic model against clinical predictors, and even fewer (40.4%) sought to validate model predictions in an independent cohort. Additionally, the heterogeneity of reported performance measures makes the comparison of models across studies challenging. These findings highlight key considerations for future work in developing polygenic models in pharmacogenomic research.
Collapse
Affiliation(s)
- Angela Siemens
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Spencer J. Anderson
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - S. Rod Rassekh
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Colin J. D. Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bruce C. Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence:
| |
Collapse
|
6
|
Barker CIS, Groeneweg G, Maitland-van der Zee AH, Rieder MJ, Hawcutt DB, Hubbard TJ, Swen JJ, Carleton BC. Pharmacogenomic testing in paediatrics: clinical implementation strategies. Br J Clin Pharmacol 2021; 88:4297-4310. [PMID: 34907575 PMCID: PMC9544158 DOI: 10.1111/bcp.15181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
Pharmacogenomics (PGx) relates to the study of genetic factors determining variability in drug response. Implementing PGx testing in paediatric patients can enhance drug safety, helping to improve drug efficacy or reduce the risk of toxicity. Despite its clinical relevance, the implementation of PGx testing in paediatric practice to date has been variable and limited. As with most paediatric pharmacological studies, there are well‐recognised barriers to obtaining high‐quality PGx evidence, particularly when patient numbers may be small, and off‐label or unlicensed prescribing remains widespread. Furthermore, trials enrolling small numbers of children can rarely, in isolation, provide sufficient PGx evidence to change clinical practice, so extrapolation from larger PGx studies in adult patients, where scientifically sound, is essential. This review paper discusses the relevance of PGx to paediatrics and considers implementation strategies from a child health perspective. Examples are provided from Canada, the Netherlands and the UK, with consideration of the different healthcare systems and their distinct approaches to implementation, followed by future recommendations based on these cumulative experiences. Improving the evidence base demonstrating the clinical utility and cost‐effectiveness of paediatric PGx testing will be critical to drive implementation forwards. International, interdisciplinary collaborations will enhance paediatric data collation, interpretation and evidence curation, while also supporting dedicated paediatric PGx educational initiatives. PGx consortia and paediatric clinical research networks will continue to play a central role in the streamlined development of effective PGx implementation strategies to help optimise paediatric pharmacotherapy.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Department of Medical & Molecular Genetics, King's College London, London, UK.,Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gabriella Groeneweg
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Anke H Maitland-van der Zee
- Respiratory Medicine/Pediatric Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael J Rieder
- Departments of Paediatrics, Physiology and Pharmacology and Medicine, Western University, London, Ontario, Canada.,Molecular Medicine Group, Robarts Research Institute, London, Ontario, Canada
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK.,NIHR Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
| | - Tim J Hubbard
- Department of Medical & Molecular Genetics, King's College London, London, UK.,Genomics England, London, UK
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Network for Personalized Therapeutics, Leiden, The Netherlands
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
An Integrated Transcriptomic Approach to Identify Molecular Markers of Calcineurin Inhibitor Nephrotoxicity in Pediatric Kidney Transplant Recipients. Int J Mol Sci 2021; 22:ijms22115414. [PMID: 34063776 PMCID: PMC8196602 DOI: 10.3390/ijms22115414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/29/2023] Open
Abstract
Calcineurin inhibitors are highly efficacious immunosuppressive agents used in pediatric kidney transplantation. However, calcineurin inhibitor nephrotoxicity (CNIT) has been associated with the development of chronic renal allograft dysfunction and decreased graft survival. This study evaluated 37 formalin-fixed paraffin-embedded biopsies from pediatric kidney transplant recipients using gene expression profiling. Normal allograft samples (n = 12) served as negative controls and were compared to biopsies exhibiting CNIT (n = 11). The remaining samples served as positive controls to validate CNIT marker specificity and were characterized by other common causes of graft failure such as acute rejection (n = 7) and interstitial fibrosis/tubular atrophy (n = 7). MiRNA profiles served as the platform for data integration. Oxidative phosphorylation and mitochondrial dysfunction were the top molecular pathways associated with overexpressed genes in CNIT samples. Decreased ATP synthesis was identified as a significant biological function in CNIT, while key toxicology pathways included NRF2-mediated oxidative stress response and increased permeability transition of mitochondria. An integrative analysis demonstrated a panel of 13 significant miRNAs and their 33 CNIT-specific gene targets involved with mitochondrial activity and function. We also identified a candidate panel of miRNAs/genes, which may serve as future molecular markers for CNIT diagnosis as well as potential therapeutic targets.
Collapse
|
8
|
Implementing Pharmacogenomics Testing: Single Center Experience at Arkansas Children's Hospital. J Pers Med 2021; 11:jpm11050394. [PMID: 34064668 PMCID: PMC8150685 DOI: 10.3390/jpm11050394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenomics (PGx) is a growing field within precision medicine. Testing can help predict adverse events and sub-therapeutic response risks of certain medications. To date, the US FDA lists over 280 drugs which provide biomarker-based dosing guidance for adults and children. At Arkansas Children’s Hospital (ACH), a clinical PGx laboratory-based test was developed and implemented to provide guidance on 66 pediatric medications for genotype-guided dosing. This PGx test consists of 174 single nucleotide polymorphisms (SNPs) targeting 23 clinically actionable PGx genes or gene variants. Individual genotypes are processed to provide per-gene discrete results in star-allele and phenotype format. These results are then integrated into EPIC- EHR. Genomic indicators built into EPIC-EHR provide the source for clinical decision support (CDS) for clinicians, providing genotype-guided dosing.
Collapse
|
9
|
Liko I, Lee YM, Stutzman DL, Blackmer AB, Deininger KM, Reynolds AM, Aquilante CL. Providers' perspectives on the clinical utility of pharmacogenomic testing in pediatric patients. Pharmacogenomics 2021; 22:263-274. [PMID: 33657875 DOI: 10.2217/pgs-2020-0112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To assess providers' knowledge, attitudes, perceptions, and experiences related to pharmacogenomic (PGx) testing in pediatric patients. Materials & methods: An electronic survey was sent to multidisciplinary healthcare providers at a pediatric hospital. Results: Of 261 respondents, 71.3% were slightly or not at all familiar with PGx, despite 50.2% reporting prior PGx education or training. Most providers, apart from psychiatry, perceived PGx to be at least moderately useful to inform clinical decisions. However, only 26.4% of providers had recent PGx testing experience. Unfamiliarity with PGx and uncertainty about the clinical value of testing were common perceived challenges. Conclusion: Low PGx familiarity among pediatric providers suggests additional education and electronic resources are needed for PGx examples in which data support testing in children.
Collapse
Affiliation(s)
- Ina Liko
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA.,Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Yee Ming Lee
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Danielle L Stutzman
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA.,Department of Pharmacy, Children's Hospital Colorado, Aurora, CO 80045, USA.,Pediatric Mental Health Institute, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Allison B Blackmer
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA.,Department of Pharmacy, Children's Hospital Colorado, Aurora, CO 80045, USA.,Special Care Clinic, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Ann M Reynolds
- Special Care Clinic, Children's Hospital Colorado, Aurora, CO 80045, USA.,Department of Pediatrics, University of Colorado School of Medicine & Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Smeets NJL, Schreuder MF, Dalinghaus M, Male C, Lagler FB, Walsh J, Laer S, de Wildt SN. Pharmacology of enalapril in children: a review. Drug Discov Today 2020; 25:S1359-6446(20)30336-6. [PMID: 32835726 DOI: 10.1016/j.drudis.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Enalapril is an angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of (paediatric) hypertension, heart failure and chronic kidney diseases. Because its disposition, efficacy and safety differs across the paediatric continuum, data from adults cannot be automatically extrapolated to children. This review highlights paediatric enalapril pharmacokinetic data and demonstrates that these are inadequate to support with certainty an age-related effect on enalapril/enalaprilat pharmacokinetics. In addition, our review shows that evidence to support effective and safe prescribing of enalapril in children is limited, especially in young children and heart failure patients; studies in these groups are either absent or show conflicting results. We provide explanations for observed differences between age groups and indications, and describe areas for future research.
Collapse
Affiliation(s)
- Nori J L Smeets
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute of Molecular Sciences, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC - Sophia, Rotterdam, the Netherlands
| | - Christoph Male
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Stephanie Laer
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands; Department of Intensive Care and Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Balevic SJ, Cohen-Wolkowiez M. Innovative Study Designs Optimizing Clinical Pharmacology Research in Infants and Children. J Clin Pharmacol 2018; 58 Suppl 10:S58-S72. [PMID: 30248192 PMCID: PMC6310922 DOI: 10.1002/jcph.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Almost half of recent pediatric trials failed to achieve labeling indications, in large part because of inadequate study design. Therefore, innovative study methods are crucial to optimizing trial design while also reducing the potential harms inherent with drug investigation. Several methods exist to optimize the amount of pharmacokinetic data collected from the smallest possible volume and with the fewest number of procedures, including the use of opportunistic and sparse sampling, alternative and noninvasive matrices, and microvolume assays. In addition, large research networks using master protocols promote collaboration, reduce regulatory burden, and increase trial efficiency for both early- and late-phase trials. Large pragmatic trials that leverage electronic health records can capitalize on central management strategies to reduce costs, enroll patients with rare diseases on a large scale, and augment study generalizability. Further, trial efficiency and safety can be optimized through Bayesian adaptive techniques that permit planned protocol changes based on analyses of prior and accumulated data. In addition to these trial design features, advances in modeling and simulation have paved the way for systems-based and physiologically based models that individualize pediatric dosing recommendations and support drug approval. Last, given the low prevalence of many pediatric diseases, collecting deidentified genetic and clinical data on a large scale is a potentially transformative way to augment clinical pharmacology research in children.
Collapse
Affiliation(s)
- Stephen J. Balevic
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
Volpi S, Bult CJ, Chisholm RL, Deverka PA, Ginsburg GS, Jacob HJ, Kasapi M, McLeod HL, Roden DM, Williams MS, Green ED, Rodriguez LL, Aronson S, Cavallari LH, Denny JC, Dressler LG, Johnson JA, Klein TE, Leeder JS, Piquette-Miller M, Perera M, Rasmussen-Torvik LJ, Rehm HL, Ritchie MD, Skaar TC, Wagle N, Weinshilboum R, Weitzel KW, Wildin R, Wilson J, Manolio TA, Relling MV. Research Directions in the Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects. Clin Pharmacol Ther 2018; 103:778-786. [PMID: 29460415 DOI: 10.1002/cpt.1048] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022]
Abstract
Response to a drug often differs widely among individual patients. This variability is frequently observed not only with respect to effective responses but also with adverse drug reactions. Matching patients to the drugs that are most likely to be effective and least likely to cause harm is the goal of effective therapeutics. Pharmacogenomics (PGx) holds the promise of precision medicine through elucidating the genetic determinants responsible for pharmacological outcomes and using them to guide drug selection and dosing. Here we survey the US landscape of research programs in PGx implementation, review current advances and clinical applications of PGx, summarize the obstacles that have hindered PGx implementation, and identify the critical knowledge gaps and possible studies needed to help to address them.
Collapse
Affiliation(s)
- Simona Volpi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol J Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, USA
| | - Rex L Chisholm
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Geoffrey S Ginsburg
- Duke Center for Applied Genomic and Precision Medicine, Duke University, Durham, North Carolina, USA
| | - Howard J Jacob
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Melpomeni Kasapi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida, USA
| | - Dan M Roden
- Department of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Eric D Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Lyman Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| | - Joshua C Denny
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Lynn G Dressler
- Mission Health, Personalized Medicine Program, Asheville, North Carolina, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, Missouri, USA
| | | | - Minoli Perera
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Heidi L Rehm
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nikhil Wagle
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristin W Weitzel
- Department of Pharmacotherapy & Translational Research, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Robert Wildin
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Vermont Medical Center, Burlington, Vermont, USA
| | | | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary V Relling
- Pharmaceutical Sciences Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Aka I, Bernal CJ, Carroll R, Maxwell-Horn A, Oshikoya KA, Van Driest SL. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children. J Pers Med 2017; 7:jpm7040014. [PMID: 29099060 PMCID: PMC5748626 DOI: 10.3390/jpm7040014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 01/23/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug-CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC) data and surveyed 10 years of electronic health records (EHR) data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug-CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone). For these drugs, reports of the drug-CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole). For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.
Collapse
Affiliation(s)
- Ida Aka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Christiana J Bernal
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Angela Maxwell-Horn
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Kazeem A Oshikoya
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Sara L Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Rodieux F, Wilbaux M, van den Anker JN, Pfister M. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin Pharmacokinet 2015; 54:1183-204. [PMID: 26138291 PMCID: PMC4661214 DOI: 10.1007/s40262-015-0298-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonates, infants, and children differ from adults in many aspects, not just in age, weight, and body composition. Growth, maturation and environmental factors affect drug kinetics, response and dosing in pediatric patients. Almost 80% of drugs have not been studied in children, and dosing of these drugs is derived from adult doses by adjusting for body weight/size. As developmental and maturational changes are complex processes, such simplified methods may result in subtherapeutic effects or adverse events. Kidney function is impaired during the first 2 years of life as a result of normal growth and development. Reduced kidney function during childhood has an impact not only on renal clearance but also on absorption, distribution, metabolism and nonrenal clearance of drugs. 'Omics'-based technologies, such as proteomics and metabolomics, can be leveraged to uncover novel markers for kidney function during normal development, acute kidney injury, and chronic diseases. Pharmacometric modeling and simulation can be applied to simplify the design of pediatric investigations, characterize the effects of kidney function on drug exposure and response, and fine-tune dosing in pediatric patients, especially in those with impaired kidney function. One case study of amikacin dosing in neonates with reduced kidney function is presented. Collaborative efforts between clinicians and scientists in academia, industry, and regulatory agencies are required to evaluate new renal biomarkers, collect and share prospective pharmacokinetic, genetic and clinical data, build integrated pharmacometric models for key drugs, optimize and standardize dosing strategies, develop bedside decision tools, and enhance labels of drugs utilized in neonates, infants, and children.
Collapse
Affiliation(s)
- Frederique Rodieux
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland.
| | - Melanie Wilbaux
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland
| | - Johannes N van den Anker
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland.
- Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA.
- Intensive Care, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Marc Pfister
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland
- Quantitative Solutions LP, Menlo Park, CA, USA
| |
Collapse
|
15
|
Burgess KS, Philips S, Benson EA, Desta Z, Gaedigk A, Gaedigk R, Segar MW, Liu Y, Skaar TC. Age-Related Changes in MicroRNA Expression and Pharmacogenes in Human Liver. Clin Pharmacol Ther 2015; 98:205-15. [PMID: 25968989 PMCID: PMC4512918 DOI: 10.1002/cpt.145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 11/10/2022]
Abstract
Developmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric [1-17 years], and adult [28-80 years]; n = 30 each). In all, 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g., hsa-miR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n = 10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1,000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition.
Collapse
Affiliation(s)
- K S Burgess
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Philips
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - E A Benson
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Z Desta
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - A Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - R Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - M W Segar
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Y Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - T C Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Abstract
Drug metabolism importantly determines drug concentrations. The efficacy and safety of many drugs prescribed for children are, therefore, dependent on intraindividual and interindividual variation in drug-metabolising enzyme activity. During growth and development, changes in drug-metabolising enzyme activity result in age-related differences in drug disposition, most pronounced in preterm infants and young infants. The shape of the developmental trajectory is unique to the drug-metabolising enzyme involved in the metabolism of individual drugs. Other factors impacting drug metabolism are underlying disease, drug-drug interactions and genetic variation. The interplay of age with these other factors may result in unexpected variation in drug metabolism in children of different ages. Extrapolation of adult data to guide drug dosing in children should be done with caution. The younger the child, the less reliable is the extrapolation. This review aims to identify the primary sources of variability of drug metabolism in children, the knowledge of which can ultimately guide the practitioner towards effective and safe drug therapy.
Collapse
Affiliation(s)
- Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - D Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J S Leeder
- Department of Pediatrics, Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
17
|
Mele C, Goldschmidt K. Pharmacogenomics in pediatrics: personalized medicine showing eminent promise. J Pediatr Nurs 2014; 29:378-82. [PMID: 24880100 DOI: 10.1016/j.pedn.2014.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/17/2022]
|