1
|
Li S, Shen Y, Zheng S, Zhu Q, Cai L, Wang Y, Zhao X. ZjFAS2 is involved in the fruit coloration in Ziziphus jujuba Mill. by regulating anthocyanin accumulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1142757. [PMID: 36968382 PMCID: PMC10036858 DOI: 10.3389/fpls.2023.1142757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Fruit color is one of the most important traits of jujube (Ziziphus jujuba Mill.). However, the differences in the pigments of different varieties of Jujube are not well studied. In addition, the genes responsible for fruit color and their underlying molecular mechanisms remain unclear. In this study, two jujube varieties, namely "Fengmiguan" (FMG) and "Tailihong" (TLH), were considered. The metabolites from jujube fruits were investigated using ultra-high-performance liquid chromatography/tandem mass spectrometry. Transcriptome was used to screen anthocyanin regulatory genes. The gene function was confirmed by overexpression and transient expression experiments. The gene expression was analyzed by quantitative reverse transcription polymerase chain reaction analyses and subcellular localization. Yeast-two-hybrid and bimolecular fluorescence complementation were used to screen and identify the interacting protein. These cultivars differed in color owing to their respective anthocyanin accumulation patterns. Three and seven types of anthocyanins were found in FMG and TLH, respectively, which played a key role in the process of fruit coloration. ZjFAS2 positively regulates anthocyanin accumulation. The expression profile of ZjFAS2 exhibited its different expression trends in different tissues and varieties. Subcellular localization experiments showed that ZjFAS2 was localized to the nucleus and membrane. A total of 36 interacting proteins were identified, and the possibility of ZjFAS2 interacting with ZjSHV3 to regulate jujube fruit coloration was studied. Herein, we investigated the role of anthocyanins in the different coloring patterns of the jujube fruits and provided a foundation for elucidating the molecular mechanism underlying jujube fruit coloration.
Collapse
|
2
|
Zhang Y, Qin Y, Li D, Wang W, Gao X, Hao C, Feng H, Wang Y, Li T. Fine mapping and cloning of a novel BrSCC1 gene for seed coat color in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:11. [PMID: 36658295 DOI: 10.1007/s00122-023-04287-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.
Collapse
Affiliation(s)
- Yinghuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yao Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Dongxiao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China
| |
Collapse
|
3
|
Lee YJ, Lee WJ, Le QT, Hong SW, Lee H. Growth Performance Can Be Increased Under High Nitrate and High Salt Stress Through Enhanced Nitrate Reductase Activity in Arabidopsis Anthocyanin Over-Producing Mutant Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:644455. [PMID: 34276717 PMCID: PMC8280297 DOI: 10.3389/fpls.2021.644455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 06/02/2023]
Abstract
Nitrogen is one of the most important macro-nutrients for plant growth and crop productivity. The amount of synthetic nitrogen fertilizers supplied to crops has dramatically increased, leading to a notable rise in crop yields. However, excessive nitrogen use has an enormous negative impact on ecosystems and human health through the emission of intense greenhouse gases, such as nitric oxide derived from the nitrate (NO3 -) assimilation cascade. Additionally, owing to the development of extensive irrigation in agriculture, crops are known to suffer from high salt stress. The effect of excessive nitrogen fertilizer application has been studied in some crops, but the effect of high nitrate level and salt stress on plant stress tolerance has not been studied in detail. Therefore, in this study we aimed to study the effects of high concentrations of NO3 - on salt stress tolerance in Arabidopsis. In addition, since anthocyanin functions as a reactive oxygen species (ROS) scavenger under abiotic stress conditions, we investigated whether enhanced anthocyanin content helps Arabidopsis to withstand higher salt stress levels under high NO3 - concentrations by using pap1-D/fls1ko double mutant plants, which accumulate excessive amount of anthocyanin. We found that Col-0 plants are more sensitive to salt stress under high NO3 - concentrations. Although both the pap1-D/fls1ko and fls1ko plants accumulated higher anthocyanin levels and radical scavenging activities than Col-0 plants under both normal and salt stress conditions, the fls1ko plants exhibited much better growth than the pap1-D/fls1ko plants. It appears that the enhanced NR activities and transcript levels of NIA1 and NIA2 in pap1-D/fls1ko and fls1ko plants led to an increase in the synthesis of proteins and proline, which increases osmolytes against salt stress. Our results demonstrate that optimal levels of anthocyanin accumulation can enhance growth performance of plants under high NO3 - and salt stress conditions.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Won Je Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| |
Collapse
|
4
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Actinidia chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3677-3691. [PMID: 33749265 DOI: 10.1021/acs.jafc.0c07037] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB (AcMYBF110 expressed in fruit characteristically), one bHLH (AcbHLH1), two upstream regulators of AcbHLH1 (AcbHLH4 and AcbHLH5), and one WDR (AcWDR1) are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit. AcMYBF110 plays an important role in the regulation of anthocyanin accumulation by specifically activating the promoters of several anthocyanin pathway genes including AcCHS, AcF3'H, AcANS, AcUFGT3a, AcUFGT6b, and AcGST1. Coexpression of AcbHLH1, AcbHLH4, or AcbHLH5 together with AcMYBF110 induces much greater anthocyanin accumulation in both tobacco leaves and in Actinidia arguta fruit compared with AcMYBF110 alone. Moreover, this activation is further enhanced by adding AcWDR1. We found that both AcMYBF110 and AcWDR1 interact with all three AcbHLH factors, while AcMYBF110 also interacts with AcWDR1 to form three different MBW complexes that have different regulatory roles in anthocyanin accumulation of kiwifruit. The AcMYBF110-AcbHLH1-AcWDR1 complex directly targets the promoters of anthocyanin synthetic genes. Other features of the regulatory pathways identified include promotion of AcMYBF110, AcbHLH1,and AcWDR1 activities by this MBW complex, providing for both reinforcement and feedback regulation, whereas the AcMYBF110-AcbHLH4/5-AcWDR1 complex is indirectly involved in the regulation of anthocyanin synthesis by activating the promoters of AcbHLH1 and AcWDR1 to amplify the regulation signals of the first MBW complex.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Yingwei Qi
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610 Guangdong, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| |
Collapse
|
5
|
Chen C, Shi X, Zhou T, Li W, Li S, Bai G. Full-length transcriptome analysis and identification of genes involved in asarinin and aristolochic acid biosynthesis in medicinal plant Asarum sieboldii. Genome 2020; 64:639-653. [PMID: 33320770 DOI: 10.1139/gen-2020-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asarum sieboldii, a well-known traditional Chinese medicinal herb, is used for curing inflammation and ache. It contains both the bioactive ingredient asarinin and the toxic compound aristolochic acid. To address further breeding demand, genes involved in the biosynthetic pathways of asarinin and aristolochic acid should be explored. Therefore, the full-length transcriptome of A. sieboldii was sequenced using PacBio Iso-Seq to determine the candidate transcripts that encode the biosynthetic enzymes of asarinin and aristolochic acid. In this study, 63 023 full-length transcripts were generated with an average length of 1371 bp from roots, stems, and leaves, of which 49 593 transcripts (78.69%) were annotated against public databases. Furthermore, 555 alternative splicing (AS) events, 10 869 long noncoding RNAs (lncRNAs) as well as their 11 291 target genes, and 17 909 simple sequence repeats (SSRs) were identified. The data also revealed 97 candidate transcripts related to asarinin metabolism, of which six novel genes that encoded enzymes involved in asarinin biosynthesis were initially reported. In addition, 56 transcripts related to aristolochic acid biosynthesis were also identified, including CYP81B. In summary, these transcriptome data provide a useful resource to study gene function and genetic engineering in A. sieboldii.
Collapse
Affiliation(s)
- Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Xinwei Shi
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Tao Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, 710061, Xi'an City, Shaanxi Province, China
| | - Weimin Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Sifeng Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| |
Collapse
|
6
|
Thakur V, Bains S, Pathania S, Sharma S, Kaur R, Singh K. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa. Int J Biol Macromol 2020; 150:52-67. [DOI: 10.1016/j.ijbiomac.2020.01.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
7
|
Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.). Genes Genomics 2020; 42:413-424. [PMID: 31997158 DOI: 10.1007/s13258-020-00915-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Taproot skin color is a major trait for assessing the commercial and nutritional quality of radish, and red-skinned radish is confirmed to improve consumer's interest and health. However, little is known about the molecular mechanisms responsible for controlling the formation of red-skinned radish. OBJECTIVE This study aimed to identify the differentially expressed anthocyanin biosynthetic genes between red- and white-skinned radishes and understand the molecular regulatory mechanism underlying red-skinned radish formation. METHODS Based on the published complete genome sequence of radish, the digital gene expression profiles of Yangzhouyuanbai (YB, white-skinned) and Sading (SD, red-skinned) were analyzed using Illumina sequencing. RESULTS A total of 3666 DEGs were identified in SD compared with YB. Interestingly, 46 genes encoded enzymes related to anthocyanin biosynthesis and 241 genes encoded transcription factors were identified. KEGG pathway analysis showed that the formation of red-skinned radish was mainly controlled by pelargonidin-derived anthocyanin biosynthetic pathway genes. This process included the upregulation of PAL, C4H, 4CL, CHS, CHI, F3H, DFR, LDOX, and UGT enzymes in SD. CHS genes were specifically expressed in SD, and it might be the key point for red pigment accumulation in red-skinned radish. Furthermore, MYB1/2/75, bHLH (TT8), and WD 40 showed higher expression in SD than in YB. Meanwhile, the corresponding low-abundance anthocyanin biosynthesis enzymes and upregulation of MYB4 might be the factors influencing the formation of white-skinned radish. CONCLUSION These findings provide new insights into the molecular mechanisms and regulatory network of anthocyanin biosynthesis in red-skinned radish.
Collapse
|
8
|
Song Z, Luo Y, Wang W, Fan N, Wang D, Yang C, Jia H. NtMYB12 Positively Regulates Flavonol Biosynthesis and Enhances Tolerance to Low Pi Stress in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2020; 10:1683. [PMID: 32038672 PMCID: PMC6993060 DOI: 10.3389/fpls.2019.01683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/29/2019] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. The concentration of flavonol, a natural plant antioxidant, is closely related to phosphorus nutritional status. However, the regulatory networks of flavonol biosynthesis under low Pi stress are still unclear. In this study, we identified a PFG-type MYB gene, NtMYB12, whose expression was significantly up-regulated under low Pi conditions. Overexpression of NtMYB12 dramatically increased flavonol concentration and the expression of certain flavonol biosynthetic genes (NtCHS, NtCHI, and NtFLS) in transgenic tobacco. Moreover, overexpression of NtMYB12 also increased the total P concentration and enhanced tobacco tolerance of low Pi stress by increasing the expression of Pht1-family genes (NtPT1 and NtPT2). We further demonstrated that NtCHS-overexpressing plants and NtPT2-overexpressing plants also had increased flavonol and P accumulation and higher tolerance to low Pi stress, showing a similar phenotype to NtMYB12-overexpressing transgenic tobacco under low Pi stress. These results suggested that tobacco NtMYB12 acts as a phosphorus starvation response enhancement factor and regulates NtCHS and NtPT2 expression, which results in increased flavonol and P accumulation and enhances tolerance to low Pi stress.
Collapse
Affiliation(s)
- Zhaopeng Song
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yong Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Weifeng Wang
- Guangxi Branch of China National Tobacco Corporation, Nanning, China
| | - Ningbo Fan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Tobacco Biology & Processing in Ministry of Agriculture, Qingdao, China
| | - Daibin Wang
- Chongqing Branch of China National Tobacco Corporation, Chongqing, China
| | - Chao Yang
- Chongqing Branch of China National Tobacco Corporation, Chongqing, China
| | - Hongfang Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Rahim MA, Resentini F, Dalla Vecchia F, Trainotti L. Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 10:1143. [PMID: 31681342 PMCID: PMC6813659 DOI: 10.3389/fpls.2019.01143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/21/2019] [Indexed: 05/27/2023]
Abstract
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Biology, University of Padova, Padova, Italy
| | | | - Francesca Dalla Vecchia
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| | - Livio Trainotti
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Pazhany AS, Henry RJ. Genetic Modification of Biomass to Alter Lignin Content and Structure. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adhini S. Pazhany
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, 4072 Queensland, Australia
- ICAR - Sugarcane Breeding Institute, Coimbatore, 641 007 Tamil Nadu, India
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, 4072 Queensland, Australia
| |
Collapse
|
11
|
Li S, Wu Y, Kuang J, Wang H, Du T, Huang Y, Zhang Y, Cao X, Wang Z. SmMYB111 Is a Key Factor to Phenolic Acid Biosynthesis and Interacts with Both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8069-8078. [PMID: 30001627 DOI: 10.1021/acs.jafc.8b02548] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors that include myeloblastosis (MYB), basic helix-loop-helix (bHLH), and tryptophan-aspartic acid (WD)-repeat protein often form a ternary complex to regulate the phenylpropanoid pathway. However, only a few MYB and bHLH members involved in the biosynthesis of salvianolic acid B (Sal B) have been reported, and little is known about Sal B pathway regulation by the WD40 protein transparent testa glabra 1 (TTG1)-dependent transcriptional complexes in Salvia miltiorrhiza. We isolated SmTTG1 from that species for detailed functional characterization. Enhanced or reduced expression of SmTTG1 was achieved by gain- or loss-of-function assays, respectively, revealing that SmTTG1 is necessary for Sal B biosynthesis. Interaction partners of the SmTTG1 protein were screened by yeast two-hybrid (Y2H) assays with the cDNA library of S. miltiorrhiza. A new R2R3-MYB transcription factor, SmMYB111, was found through this screening. Transgenic plants overexpressing or showing reduced expression of SmMYB111 upregulated or deregulated, respectively, the yields of Sal B. Both Y2H and bimolecular fluorescent complementation experiments demonstrated that SmMYB111 interacts with SmTTG1 and SmbHLH51, a positive regulator of the phenolic acid pathway. Our data verified the function of SmTTG1 and SmMYB111 in regulating phenolic acid biosynthesis in S. miltiorrhiza. Furthermore, ours is the first report of the potential ternary transcription complex SmTTG1-SmMYB111-SmbHLH51, which is involved in the production of Sal B in that species.
Collapse
Affiliation(s)
- Shasha Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yucui Wu
- School of Landscape and Ecological Engineering , Hebei University of Engineering , Handan , Hebei 056038 , People's Republic of China
| | - Jing Kuang
- Ningxia Polytechnic , Yinchuan , Ningxia 750001 , People's Republic of China
| | - Huaiqin Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Tangzhi Du
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yaya Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| |
Collapse
|
12
|
Pulice G, Pelaz S, Matías-Hernández L. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production. FRONTIERS IN PLANT SCIENCE 2016; 7:329. [PMID: 27047510 PMCID: PMC4796020 DOI: 10.3389/fpls.2016.00329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/03/2016] [Indexed: 05/03/2023]
Abstract
Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further efforts should be addressed toward optimization of the most cost-effective biofarming approaches for synthesis and production of medicines against the malaria parasite.
Collapse
Affiliation(s)
- Giuseppe Pulice
- Sequentia Biotech, Parc Científic de BarcelonaBarcelona, Spain
| | - Soraya Pelaz
- Plant Development and Signal Transduction Department, Centre for Research in Agricultural GenomicsBarcelona, Spain
- Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain
| | - Luis Matías-Hernández
- Sequentia Biotech, Parc Científic de BarcelonaBarcelona, Spain
- Plant Development and Signal Transduction Department, Centre for Research in Agricultural GenomicsBarcelona, Spain
| |
Collapse
|
13
|
He Q, Zhang Z, Zhang L. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:132-45. [PMID: 26709726 DOI: 10.1021/acs.jafc.5b04674] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution.
Collapse
Affiliation(s)
- Qiong He
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Zhanfeng Zhang
- College of Plant Protection, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Lugang Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
14
|
Wang S, Chang Y, Ellis B. Overview of OVATE FAMILY PROTEINS, A Novel Class of Plant-Specific Growth Regulators. FRONTIERS IN PLANT SCIENCE 2016; 7:417. [PMID: 27065353 PMCID: PMC4814488 DOI: 10.3389/fpls.2016.00417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/18/2016] [Indexed: 05/22/2023]
Abstract
OVATE FAMILY PROTEINS (OFPs) are a class of proteins with a conserved OVATE domain. OVATE protein was first identified in tomato as a key regulator of fruit shape. OFPs are plant-specific proteins that are widely distributed in the plant kingdom including mosses and lycophytes. Transcriptional activity analysis of Arabidopsis OFPs (AtOFPs) in protoplasts suggests that they act as transcription repressors. Functional characterization of OFPs from different plant species including Arabidopsis, rice, tomato, pepper, and banana suggests that OFPs regulate multiple aspects of plant growth and development, which is likely achieved by interacting with different types of transcription factors including the KNOX and BELL classes, and/or directly regulating the expression of target genes such as Gibberellin 20 oxidase (GA20ox). Here, we examine how OVATE was originally identified, summarize recent progress in elucidation of the roles of OFPs in regulating plant growth and development, and describe possible mechanisms underpinning this regulation. Finally, we review potential new research directions that could shed additional light on the functional biology of OFPs in plants.
Collapse
Affiliation(s)
- Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
- *Correspondence: Shucai Wang,
| | - Ying Chang
- College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Brian Ellis
- Michael Smith Laboratories, The University of British Columbia, VancouverBC, Canada
| |
Collapse
|
15
|
Zhou H, Peng Q, Zhao J, Owiti A, Ren F, Liao L, Wang L, Deng X, Jiang Q, Han Y. Multiple R2R3-MYB Transcription Factors Involved in the Regulation of Anthocyanin Accumulation in Peach Flower. FRONTIERS IN PLANT SCIENCE 2016; 7:1557. [PMID: 27818667 PMCID: PMC5073212 DOI: 10.3389/fpls.2016.01557] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 05/21/2023]
Abstract
Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19, and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA) biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as dihydroflavonol 4-reductase. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies). In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Qian Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Albert Owiti
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Sino-African Joint Research Center, Chinese Academy of SciencesWuhan, China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Sino-African Joint Research Center, Chinese Academy of SciencesWuhan, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Sino-African Joint Research Center, Chinese Academy of SciencesWuhan, China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Sino-African Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Yuepeng Han,
| |
Collapse
|
16
|
Lai B, Du LN, Liu R, Hu B, Su WB, Qin YH, Zhao JT, Wang HC, Hu GB. Two LcbHLH Transcription Factors Interacting with LcMYB1 in Regulating Late Structural Genes of Anthocyanin Biosynthesis in Nicotiana and Litchi chinensis During Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2016; 7:166. [PMID: 26925082 PMCID: PMC4757707 DOI: 10.3389/fpls.2016.00166] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/31/2016] [Indexed: 05/20/2023]
Abstract
Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs) as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2, and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, and this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.
Collapse
Affiliation(s)
- Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Li-Na Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Rui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Wen-Bing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Yong-Hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hui-Cong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Gui-Bing Hu, ; Hui-Cong Wang,
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Gui-Bing Hu, ; Hui-Cong Wang,
| |
Collapse
|
17
|
Kim YJ, Kim YB, Li X, Choi SR, Park S, Park JS, Lim YP, Park SU. Accumulation of Phenylpropanoids by White, Blue, and Red Light Irradiation and Their Organ-Specific Distribution in Chinese Cabbage (Brassica rapa ssp. pekinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6772-8. [PMID: 26158208 DOI: 10.1021/acs.jafc.5b02086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study investigated optimum light conditions for enhancing phenylpropanoid biosynthesis and the distribution of phenylpropanoids in organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Blue light caused a high accumulation of most phenolic compounds, including p-hydroxybenzoic acid, ferulic acid, quercetin, and kaempferol, at 12 days after irradiation (DAI). This increase was coincident with a noticeable increase in expression levels of BrF3H, BrF3'H, BrFLS, and BrDFR. Red light led to the highest ferulic acid content at 12 DAI and to elevated expression of the corresponding genes during the early stages of irradiation. White light induced the highest accumulation of kaempferol and increased expression of BrPAL and BrDFR at 9 DAI. The phenylpropanoid content analysis in different organs revealed organ-specific accumulation of p-hydroxybenzoic acid, quercetin, and kaempferol. These results demonstrate that blue light is effective at increasing phenylpropanoid biosynthesis in Chinese cabbage, with leaves and flowers representing the most suitable organs for the production of specific phenylpropanoids.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- †Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-754, Korea
| | - Yeon Bok Kim
- §Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Bisanro 92, Eumseong, Chungbuk 369-873, Republic of Korea
| | - Xiaohua Li
- †Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-754, Korea
| | - Su Ryun Choi
- ‡Department of Horticulture, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Suhyoung Park
- ⊗Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), 475 Imok-dong, Jangan-gu, Suwon 440-706, Korea
| | - Jong Seok Park
- ‡Department of Horticulture, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yong Pyo Lim
- ‡Department of Horticulture, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Sang Un Park
- †Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-754, Korea
| |
Collapse
|
18
|
Zhang Y, Hu Z, Zhu M, Zhu Z, Wang Z, Tian S, Chen G. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (Brassica oleracea var. gongylodes L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4160-9. [PMID: 25853486 DOI: 10.1021/acs.jafc.5b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Kohlrabi (Brassica oleracea var. gongylodes L.) is an important dietary vegetable cultivated and consumed widely for the round swollen stem. Purple kohlrabi shows abundant anthocyanin accumulation in the leaf and swollen stem. Here, different kinds of anthocyanins were separated and identified from the purple kohlrabi cultivar (Kolibri) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. In order to study the molecular mechanism of anthocyanin biosynthesis in purple kohlrabi, the expression of anthocyanin biosynthetic genes and regulatory genes in purple kohlrabi and a green cultivar (Winner) was examined by quantitative PCR. In comparison with the colorless parts in the two cultivars, most of the anthocyanin biosynthetic genes and two transcription factors were drastically upregulated in the purple tissues. To study the effects of light shed on the anthocyanin accumulation of kohlrabi, total anthocyanin contents and transcripts of associated genes were analyzed in sprouts of both cultivars grown under light and dark conditions.
Collapse
Affiliation(s)
- Yanjie Zhang
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Zongli Hu
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Mingku Zhu
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Zhiguo Zhu
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Zhijin Wang
- ‡The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, 401329 Chongqing, People's Republic of China
| | - Shibing Tian
- ‡The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, 401329 Chongqing, People's Republic of China
| | - Guoping Chen
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| |
Collapse
|
19
|
Zhou H, Lin-Wang K, Liao L, Gu C, Lu Z, Allan AC, Han Y. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. FRONTIERS IN PLANT SCIENCE 2015; 6:908. [PMID: 26579158 PMCID: PMC4620396 DOI: 10.3389/fpls.2015.00908] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/12/2015] [Indexed: 05/22/2023]
Abstract
Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd., Mt Albert Research CentreAuckland, New Zealand
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Ziqi Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Ltd., Mt Albert Research CentreAuckland, New Zealand
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- *Correspondence: Yuepeng Han,
| |
Collapse
|
20
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
21
|
Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. PLANT, CELL & ENVIRONMENT 2011; 34:1176-90. [PMID: 21410713 DOI: 10.1111/j.1365-3040.2011.02316.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus × domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.
Collapse
Affiliation(s)
- Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Private Bag, Auckland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Morker KH, Roberts MR. Light exerts multiple levels of influence on the Arabidopsis wound response. PLANT, CELL & ENVIRONMENT 2011; 34:717-728. [PMID: 21241328 DOI: 10.1111/j.1365-3040.2011.02276.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Light plays important roles in modulating plant responses to attack by pests and pathogens. Here, we test the hypothesis that darkness modifies the response to wounding, and examine possible mechanisms for such an effect. We investigated changes in the Arabidopsis transcriptome following a light-dark transition and the response to wounding either in the light or in the dark. The transcriptional response to the light-dark transition strongly resembles responses associated with carbon depletion. The dark shift and wound responses acted largely independently, but more complex interactions were identified at a number of levels. Darkness attenuates the overall transcriptional response to wounding, and we identified genes and physiological processes, such as anthocyanin accumulation, that exhibit light-dependent wound responses. Transcriptional activation of light-dependent wound-induced genes requires a chloroplast-derived signal originating from photosynthetic electron transport. We also present evidence of a role for the circadian clock in modifying wound responses. Our results show that darkness impacts on the wound response at a number of levels, which may imply differences in induced herbivore defences during the day and night.
Collapse
Affiliation(s)
- Krishna H Morker
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | |
Collapse
|
23
|
Sawai S, Saito K. Triterpenoid biosynthesis and engineering in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:25. [PMID: 22639586 PMCID: PMC3355669 DOI: 10.3389/fpls.2011.00025] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/16/2011] [Indexed: 05/18/2023]
Abstract
Triterpenoid saponins are a diverse group of natural products in plants and are considered defensive compounds against pathogenic microbes and herbivores. Because of their various beneficial properties for humans, saponins are used in wide-ranging applications in addition to medicinally. Saponin biosynthesis involves three key enzymes: oxidosqualene cyclases, which construct the basic triterpenoid skeletons; cytochrome P450 monooxygenases, which mediate oxidations; and uridine diphosphate-dependent glycosyltransferases, which catalyze glycosylations. The discovery of genes committed to saponin biosynthesis is important for the stable supply and biotechnological application of these compounds. Here, we review the identified genes involved in triterpenoid biosynthesis, summarize the recent advances in the biotechnological production of useful plant terpenoids, and discuss the bioengineering of plant triterpenoids.
Collapse
Affiliation(s)
| | - Kazuki Saito
- Plant Science Center, RIKENYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Kazuki Saito, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. e-mail:
| |
Collapse
|
24
|
Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K. Phytochemical genomics in Arabidopsis thaliana: A case study for functional identification of flavonoid biosynthesis genes. PURE APPL CHEM 2007. [DOI: 10.1351/pac200779040811] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The completion of the whole genome sequence of Arabidopsis thaliana has made it possible to explore the phytochemical genomics in this species by determining gene-to-metabolite correlation through the comprehensive analysis of metabolite accumulation and gene expression. In this study, flavonoid profiling of wild-type plants and T-DNA insertion mutants was analyzed using ultra-performance liquid chromatography (UPLC)/photodiode array detection (PDA)/electrospray ionization (ESI)/multiple-stage mass spectrometry (MSn). Detailed analysis of the metabolite changes in the mutants suggested the functions of genes that have been mutated. In silico coexpression analysis of genes involved in flavonoid metabolism in Arabidopsis was performed using a publicly available transcriptome database of DNA microarrays. We inferred a coexpression framework model of the genes involved in the pathways of flavonol, anthocyanin, and proanthocyanidin synthesis, suggesting specific functions and coregulation of the genes of pathway enzymes and transcription factors. The metabolic profiling of the omt1 mutant lacking a methyltransferase gene narrowed down by the coexpression analysis showed that AtOMT1 (At5g54160) is involved not only in the production of lignins and sinapoyl esters but also in the methylation of flavonols forming isorhamnetin. These results suggest that the functional genomics approach by detailed target-metabolite profiling with transcriptome coexpression analysis provides an efficient way of identifying novel gene functions involved in plant metabolism.
Collapse
Affiliation(s)
- Takayuki Tohge
- 1RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Keiko Yonekura-Sakakibara
- 1RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Rie Niida
- 1RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Akiko Watanabe-Takahashi
- 1RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- 2Graduate School of Pharmaceutical Sciences,Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
25
|
Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:637-46. [PMID: 16384906 PMCID: PMC1361330 DOI: 10.1104/pp.105.072579] [Citation(s) in RCA: 481] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 05/05/2023]
Abstract
Sugars act as signaling molecules, whose signal transduction pathways may lead to the activation or inactivation of gene expression. Whole-genome transcript profiling reveals that the flavonoid and anthocyanin biosynthetic pathways are strongly up-regulated following sucrose (Suc) treatment. Besides mRNA accumulation, Suc affects both flavonoid and anthocyanin contents. We investigated the effects of sugars (Suc, glucose, and fructose) on genes coding for flavonoid and anthocyanin biosynthetic enzymes in Arabidopsis (Arabidopsis thaliana). The results indicate that the sugar-dependent up-regulation of the anthocyanin synthesis pathway is Suc specific. An altered induction of several anthocyanin biosynthetic genes, consistent with in vivo sugar modulation of mRNA accumulation, is observed in the phosphoglucomutase Arabidopsis mutant accumulating high levels of soluble sugars.
Collapse
Affiliation(s)
- Cinzia Solfanelli
- Department of Crop Plant Biology, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | |
Collapse
|
26
|
Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Mérillon JM, Hamdi S. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. PLANT PHYSIOLOGY 2006; 140:499-511. [PMID: 16384897 PMCID: PMC1361319 DOI: 10.1104/pp.105.067231] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 05/05/2023]
Abstract
The ripening of grape (Vitis vinifera) berry is characterized by dramatic changes in gene expression, enzymatic activities, and metabolism that lead to the production of compounds essential for berry quality. The phenylpropanoid metabolic pathway is one of the components involved in these changes. In this study, we describe the cloning and functional characterization of VvMYB5a, a cDNA isolated from a grape L. cv Cabernet Sauvignon berry library. VvMYB5a encodes a protein belonging to a small subfamily of R2R3-MYB transcription factors. Expression studies in grapevine indicate that the VvMYB5a gene is mainly expressed during the early steps of berry development in skin, flesh, and seeds. Overexpression of VvMYB5a in tobacco (Nicotiana tabacum) affects the expression of structural genes controlling the synthesis of phenylpropanoid and impacts on the metabolism of anthocyanins, flavonols, tannins, and lignins. Overexpressing VvMYB5a induces a strong accumulation of several phenolic compounds, including keracyanin (cyanidin-3-rhamnoglucoside) and quercetin-3-rhamnoglucoside, which are the main anthocyanin and flavonol compounds in tobacco. In addition, VvMYB5a overexpression increases the biosynthesis of condensed tannins and alters lignin metabolism. These findings suggest that VvMYB5a may be involved in the control of different branches of the phenylpropanoid pathway in grapevine.
Collapse
Affiliation(s)
- Laurent Deluc
- Unité Mixte de Recherche 619, Physiologie et Biotechnologie Végétales, Université Bordeaux 1, Université Bordeaux 2, Institut National de la Recherche Agonomique, Centre de Recherche de Bordeaux, 33883 Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. PLANT PHYSIOLOGY 2005; 139:1840-52. [PMID: 16299184 PMCID: PMC1310563 DOI: 10.1104/pp.105.066688] [Citation(s) in RCA: 437] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sugar-induced anthocyanin accumulation has been observed in many plant species. We observed that sucrose (Suc) is the most effective inducer of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) seedlings. Other sugars and osmotic controls are either less effective or ineffective. Analysis of Suc-induced anthocyanin accumulation in 43 Arabidopsis accessions shows that considerable natural variation exists for this trait. The Cape Verde Islands (Cvi) accession essentially does not respond to Suc, whereas Landsberg erecta is an intermediate responder. The existing Landsberg erecta/Cvi recombinant inbred line population was used in a quantitative trait loci analysis for Suc-induced anthocyanin accumulation (SIAA). A total of four quantitative trait loci for SIAA were identified in this way. The locus with the largest contribution to the trait, SIAA1, was fine mapped and using a candidate gene approach, it was shown that the MYB75/PAP1 gene encodes SIAA1. Genetic complementation studies and analysis of a laboratory-generated knockout mutation in this gene confirmed this conclusion. Suc, in a concentration-dependent way, induces MYB75/PAP1 mRNA accumulation. Moreover, MYB75/PAP1 is essential for the Suc-mediated expression of the dihydroflavonol reductase gene. The SIAA1 locus in Cvi probably is a weak or loss-of-function MYB75/PAP1 allele. The C24 accession similarly shows a very weak response to Suc-induced anthocyanin accumulation encoded by the same locus. Sequence analysis showed that the Cvi and C24 accessions harbor mutations both inside and downstream of the DNA-binding domain of the MYB75/PAP1 protein, which most likely result in loss of activity.
Collapse
Affiliation(s)
- Sheng Teng
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Voll LM, Allaire EE, Fiene G, Weber APM. The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism. PLANT PHYSIOLOGY 2004; 136:3058-69. [PMID: 15448200 PMCID: PMC523367 DOI: 10.1104/pp.104.047506] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 05/18/2023]
Abstract
Amino acids and amino acid analogs have been used in numerous genetic screens to isolate mutants deficient in amino acid biosynthetic pathways or in the regulation of amino acid metabolism. Several of these mutants exhibit relaxed feedback control of branched amino acid biosynthetic pathways and are thus resistant to accumulation of pathway end products. For example, feedback-regulated enzymes of the shikimate pathway are anthranilate synthase on the branch leading to Trp and chorismate mutase on the branch leading to Phe and Tyr. A feedback-insensitive mutant of anthranilate synthase alpha, trp5-1, is resistant to toxic Trp analogs. Mutants resistant to Phe have not previously been reported, and this article describes the isolation of the recessive Arabidopsis Phe insensitive growth mutant pig1-1 by a forward genetic screen. pig1-1 was not only tolerant to Phe, Tyr, and Trp, but also to other, not biosynthetically related amino acids. Amino acid contents in pig1-1 were significantly elevated with respect to wild-type controls but, in contrast to the wild type, dramatically decreased when plants were supplemented with 2 mm Phe. Protein contents were similar in the mutant and the wild type at all tested conditions. Phe catabolism was similar to the wild type in pig1-1 roots but was significantly increased in pig1-1 shoots. Phenylalanine uptake into the root, its root-to-shoot translocation, and Phe and phenylpropanoid contents were unaltered in pig1-1, indicating that pig1-1 is not affected in amino acid translocation or the shikimate pathway. Instead, the response of pig1-1 toward amino acid feeding indicates that amino acid metabolism is generally deregulated in pig1-1.
Collapse
Affiliation(s)
- Lars M Voll
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | | | | | |
Collapse
|
29
|
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. PLANT PHYSIOLOGY 2004; 136:2483-99. [PMID: 15375205 PMCID: PMC523316 DOI: 10.1104/pp.104.047019] [Citation(s) in RCA: 640] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 05/17/2023]
Abstract
Transcriptome analysis, using Affymetrix ATH1 arrays and a real-time reverse transcription-PCR platform for >1,400 transcription factors, was performed to identify processes affected by long-term nitrogen-deprivation or short-term nitrate nutrition in Arabidopsis. Two days of nitrogen deprivation led to coordinate repression of the majority of the genes assigned to photosynthesis, chlorophyll synthesis, plastid protein synthesis, induction of many genes for secondary metabolism, and reprogramming of mitochondrial electron transport. Nitrate readdition led to rapid, widespread, and coordinated changes. Multiple genes for the uptake and reduction of nitrate, the generation of reducing equivalents, and organic acid skeletons were induced within 30 min, before primary metabolites changed significantly. By 3 h, most genes assigned to amino acid and nucleotide biosynthesis and scavenging were induced, while most genes assigned to amino acid and nucleotide breakdown were repressed. There was coordinate induction of many genes assigned to RNA synthesis and processing and most of the genes assigned to amino acid activation and protein synthesis. Although amino acids involved in central metabolism increased, minor amino acids decreased, providing independent evidence for the activation of protein synthesis. Specific genes encoding expansin and tonoplast intrinsic proteins were induced, indicating activation of cell expansion and growth in response to nitrate nutrition. There were rapid responses in the expression of many genes potentially involved in regulation, including genes for trehalose metabolism and hormone metabolism, protein kinases and phosphatases, receptor kinases, and transcription factors.
Collapse
|