1
|
Huang J, Jiang H, Wang H, Xue Q, Hu M, Li Y. Aucubin produces anti-osteoporotic effects under mechanical stretch stress and orthodontic tooth movement. Chem Biol Interact 2024; 393:110955. [PMID: 38492842 DOI: 10.1016/j.cbi.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Aucubin (AU), an iridoid glycoside extracted from Eucommia ulmoides, exerts anti-osteoporotic effects by promoting osteogenesis, as reported in previous studies. Here, we investigated the effects of AU under mechanical stretch stress. MC3T3-E1 cells were treated with dexamethasone (DEX) in vitro and subjected to mechanical stretch stress to establish an osteoporotic orthodontic force cell model. AU treatment increased the mRNA and protein expressions of BMP2, OPN, RUNX2, COL-1 and other osteogenic differentiation factors in MC3T3-E1 cells. Furthermore, we established an in vivo orthodontic tooth movement (OTM) model of osteoporosis. Serum parameter detection of ALP concentration, radiography of the femur, hematoxylin-eosin (HE) staining, and micro-CT of the maxilla confirmed that AU could partially reverse the damage induced by DEX. Immunohistochemical (IHC) analysis showed that AU increased the expression of COL-1, OCN, and OPN on the tension side of the periodontium. In conclusion, AU treatment promotes osteogenic differentiation under mechanical stretch stress and positively affects bone remodeling during OTM in DEX-induced osteoporosis.
Collapse
Affiliation(s)
- Jiamiao Huang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Huan Jiang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Haoyu Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Qing Xue
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China; School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Nakamura T, Hotokezaka Y, Karadeniz C, Hotokezaka H, Ueda-Ichinose Y, Nishioka-Sakamoto K, Yoshida N. Early-stage periodontal ligament compression predicts orthodontically induced root resorption in rats. Angle Orthod 2024; 94:240-246. [PMID: 37963565 PMCID: PMC10893921 DOI: 10.2319/040223-233.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/01/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVES To determine the effect of orthodontic pressure on periodontal ligament (PDL) compression in rats and assess correlation between PDL compression and orthodontically induced root resorption (OIRR). MATERIALS AND METHODS Eight female Wistar rats aged 10 weeks underwent surgery to place 2 mini-screws at the center of the palatal plate. 25 cN coil springs connecting the maxillary first molars and mini-screws were applied bilaterally to generate mesial force. Maxillary first molars were assigned to undergo either bodily or tipping movements. Micro-computed tomography (μCT) scans were taken on days 0, 3, 7, and 14, and histological sections were taken on day 14. OIRR was measured from histological sections, and the corresponding PDL compression ratio was quantified using μCT images. RESULTS The PDL was compressed by approximately 76% in tipping movement and 55% in bodily movement after 3 days, and by approximately 47% in bodily and tipping movements after 7 days of orthodontic force application. The extent of OIRR in tipping movement was significantly greater than that in bodily movement. A strong positive correlation between OIRR and PDL compression ratio was observed on day 3; however, no correlation was observed on day 7. CONCLUSIONS A strong correlation between PDL compression ratio and OIRR was observed at an early stage after the application of orthodontic force regardless of the tooth movement type (bodily or tipping), implying the importance of early stage PDL compression in the induction of OIRR.
Collapse
|
3
|
Wichelhaus A, Guggenbühl S, Hötzel L, Seidel CL, Sabbagh H, Hoffmann L. Comparing Torque Transmission of Different Bracket Systems in Combination with Various Archwires Considering Play in the Bracket Slot: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:684. [PMID: 38591559 PMCID: PMC10856117 DOI: 10.3390/ma17030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/10/2024]
Abstract
This study aims to examine the play between various archwires and bracket systems, exploring potential variations in angle values for specific torque and torque values for a given angle along different bracket systems. Therefore, seven brackets systems were evaluated in conjunction with different stainless steel archwires of varying dimensions (0.016″ × 0.022″, 0.018″ × 0.025″, and 0.019″ × 0.025″). Biomechanical behavior during torque development and transmission was assessed using a six-component force/torque sensor. Torque angles (5-45°) were specified with subsequent torque measurement, and the sequence was reversed by setting the torque (5-30 Nmm) and measuring the angle. A reference measurement with 0 Nmm torque served to evaluate bracket slot play. Bracket play (0 Nmm) during palatal load ranged between 20.06° and 32.50° for 0.016″ × 0.022″ wire, 12.83° and 21.11° for 0.018″ × 0.025″ wire, and 8.39° and 18.73° for 0.019″ × 0.025″ wire. The BioQuick® bracket exhibited the highest play, while Wave SL® and Damon® Q brackets demonstrated the lowest play (p < 0.001). Significant differences (p < 0.001) between the brackets were observed in the torque angles required to achieve torques of 5-20 Nmm. In summary, each bracket system has a different torque transmission, which is of great clinical importance in order to achieve correct torque transmission and avoid complications such as root resorption.
Collapse
Affiliation(s)
- Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80366 Munich, Germany; (A.W.); (L.H.); (C.L.S.); (H.S.)
| | - Simon Guggenbühl
- Orthodontia Private Practice, Engelbergstrasse 28a, 6370 Stans, Switzerland;
| | - Linus Hötzel
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80366 Munich, Germany; (A.W.); (L.H.); (C.L.S.); (H.S.)
| | - Corinna L. Seidel
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80366 Munich, Germany; (A.W.); (L.H.); (C.L.S.); (H.S.)
| | - Hisham Sabbagh
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80366 Munich, Germany; (A.W.); (L.H.); (C.L.S.); (H.S.)
| | - Lea Hoffmann
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80366 Munich, Germany; (A.W.); (L.H.); (C.L.S.); (H.S.)
| |
Collapse
|
4
|
Wang H, Li T, Jiang Y, Chen S, Zou S, Bonewald LF, Duan P. Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. J Dent Res 2023; 102:1376-1386. [PMID: 37735908 DOI: 10.1177/00220345231195765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is the major iatrogenic complication of orthodontic treatment, seriously endangering tooth longevity and impairing masticatory function. Osteoclasts are thought to be the primary effector cells that initiate the pathological process of OIIRR; however, the cellular and molecular mechanisms responsible for OIIRR remain unclear. Our previous studies revealed that cementocytes, the major mechanically responsive cells in cementum, respond to compressive stress to activate and influence osteoclasts locally. For this study, we hypothesized that the sphingosine-1-phosphate (S1P) signaling pathway, a key mechanotransduction pathway in cementocytes, may regulate osteoclasts under the different magnitudes of either physiologic compressive stress that causes tooth movement or pathologic stress that causes OIIRR. Here, we show a biphasic effect of higher compression force stimulating the synthesis and secretion of S1P, whereas lower compression force reduced signaling in IDG-CM6 cementocytes. Using conditioned media from force-loaded cementocytes, we verified the cell-to-cell communication between cementocytes and osteoclasts and show that selective knockdown of S1PR1 and Rac1 plays a role in cementocyte-driven osteoclastogenesis via the S1P/S1PR1/Rac1 axis. Most importantly, the use of inhibitors of this axis reduced or prevented the pathological process of OIIRR. The intercellular communication mechanisms between cementocytes and osteoclasts may serve as a promising therapeutic target for OIIRR.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Y Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L F Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P Duan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Haas E, Schmid A, Stocker T, Wichelhaus A, Sabbagh H. Force-Controlled Biomechanical Simulation of Orthodontic Tooth Movement with Torque Archwires Using HOSEA (Hexapod for Orthodontic Simulation, Evaluation and Analysis). Bioengineering (Basel) 2023; 10:1055. [PMID: 37760157 PMCID: PMC10525810 DOI: 10.3390/bioengineering10091055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the dynamic behavior of different torque archwires for fixed orthodontic treatment using an automated, force-controlled biomechanical simulation system. A novel biomechanical simulation system (HOSEA) was used to simulate dynamic tooth movements and measure torque expression of four different archwire groups: 0.017″ x 0.025″ torque segmented archwires (TSA) with 30° torque bending, 0.018″ x 0.025″ TSA with 45° torque bending, 0.017″ x 0.025″ stainless steel (SS) archwires with 30° torque bending and 0.018″ x 0.025″ SS with 30° torque bending (n = 10/group) used with 0.022″ self-ligating brackets. The Kruskal-Wallis test was used for statistical analysis (p < 0.050). The 0.018″ x 0.025″ SS archwires produced the highest initial rotational torque moment (My) of -9.835 Nmm. The reduction in rotational moment per degree (My/Ry) was significantly lower for TSA compared to SS archwires (p < 0.001). TSA 0.018″ x 0.025″ was the only group in which all archwires induced a min. 10° rotation in the simulation. Collateral forces and moments, especially Fx, Fz and Mx, occurred during torque application. The measured forces and moments were within a suitable range for the application of palatal root torque to incisors for the 0.018″ x 0.025″ archwires. The 0.018″ x 0.025″ TSA reliably achieved at least 10° incisal rotation without reactivation.
Collapse
Affiliation(s)
| | | | | | | | - Hisham Sabbagh
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Goethestraße 70, 80336 Munich, Germany; (E.H.); (A.S.); (T.S.); (A.W.)
| |
Collapse
|
6
|
Ritchie C, McGregor S, Bearn DR. Temporary anchorage devices and the forces and effects on the dentition and surrounding structures during orthodontic treatment: a scoping review. Eur J Orthod 2023; 45:324-337. [PMID: 36763546 PMCID: PMC10230247 DOI: 10.1093/ejo/cjac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Temporary anchorage devices (TADs) offer the clinician an immediate temporary source of skeletal anchorage for a range of orthodontic interventions. It is important to understand forces involved in using TADs and the effects on the dentition and surrounding structures, to improve clinical outcomes. OBJECTIVE To examine and qualitatively synthesize literature on the forces involved with the use of TADs and the effects on the dentition and surrounding structures in orthodontic tooth movement, to provide better understanding of the complex interactions and the clinical implications. SEARCH METHODS Electronic databases searched included: Cochrane Library [including Central Register of Controlled Trials (CENTRAL)], Embase via OVID, Pubmed, and Scopus. Study screening and selection were conducted in duplicate. SELECTION CRITERIA Studies selected were clinical studies, simulation studies (computer or laboratory-based), or animal studies with no restriction over gender, age, study type (excluding case reports), or setting. Studies focusing on the forces involved with the use of TADs in orthodontic treatment and their effects on the dentition and surrounding structures were included. DATA COLLECTION AND ANALYSIS A data charting form was piloted and refined. Data charting was performed independently and in duplicate. This consisted of key fields with predetermined options and free text. The extracted data were collated, and a narrative synthesis conducted. RESULTS The results from 203 included studies were grouped into seven TAD based interventions combining the clinical, simulation, and animal studies. They were: En masse retraction of anterior teeth, intrusion, movement of a single tooth, orthopaedic interventions, distalisation, maxillary expansion and other types. The forces involved with the use of TADs, and their effects on the dentition and surrounding structures, were presented in descriptive and tabular formats. LIMITATIONS This review restricted study language to English. Formal appraisal of the quality of evidence is not a required feature of scoping reviews, as per the PRISMA-ScR guidelines, however it was evident that a proportion of clinical studies were of high risk of bias and low quality and therefore any proposed changes the reader may consider to their clinical practice should be contextualized in light of this. CONCLUSIONS Across the seven types of TAD based interventions the effects on the dentition and surrounding structures are described providing a better understanding of the complex interactions. A guide to the level and direction of forces in each type of intervention is provided to aid clinicians in achieving high quality outcomes. IMPLICATIONS There is a need to validate future FEA simulation studies by comparing to clinical data. It is also recommended that future scoping reviews incorporate a formal critical appraisal of studies to facilitate the translation of the results into clinical practice. Development of a standard set of terms for TADs is recommended to facilitate future research. REGISTRATION Registration of a scoping review is not possible with PROSPERO. FUNDING None to declare.
Collapse
Affiliation(s)
- Colin Ritchie
- Orthodontic Department, Dundee Dental Hospital and Research School, University of Dundee, Scotland
| | - Scott McGregor
- Library & Learning Centre, University of Dundee, Scotland
| | - David R Bearn
- Orthodontic Department, University of Dundee, Scotland
| |
Collapse
|
7
|
Chen J, Ning R. Evaluation of root resorption in the lower incisors after orthodontic treatment of skeletal Class III malocclusion by three-dimensional volumetric measurement with cone-beam computed tomography. Angle Orthod 2023; 93:490737. [PMID: 36780279 PMCID: PMC10117204 DOI: 10.2319/090322-609.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVES To investigate the volumetric changes of the lower incisor roots in skeletal Class III orthodontic patients with anterior crossbite after premolar extraction therapy. MATERIALS AND METHODS Thirty-six adults, aged 18-28 years, had four-premolar extraction treatment. Pre- and posttreatment cone-beam computed tomography (CBCT) images were used to assess the thickness and height of alveolar bone, root volume, and length. A paired t-test was used to detect changes in root volume and length before and after treatment. Pearson's correlation analysis was applied to estimate the correlation between root volume and dentoskeletal morphology. RESULTS Both the central and lateral incisors had intrusion and tipping movement after treatment. Compared with pretreatment data, root length decreased significantly. The lingual root volume of root cervical, apical third, and the labial root volume of the root apical third decreased significantly (P < .05), among which the percentage of tooth loss at the tip volume was the highest. The pretreatment height of the alveolar ridge crest, thickness of the alveolar bone, and type of incisor movement were related to the volume and length loss. CONCLUSIONS Volume and length loss in the apical third of the lower incisor roots in skeletal Class III patients treated with a Class III bicuspid extraction pattern is common. The pretreatment height of the alveolar ridge crest, thickness of the alveolar bone, and type of tooth movement are related to the loss.
Collapse
|
8
|
Beindorff N, Papadopoulos N, Hoffmann S, Mohan AM, Lukas M, Brenner W, Jost-Brinkmann PG, Präger T. Monitoring orthodontic tooth movement in rats after piezocision by bone scintigraphy. Nuklearmedizin 2022; 61:402-409. [PMID: 35896432 DOI: 10.1055/a-1816-6825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AIM Piezocision, corticocision of mineralized tissue by ultrasound showed promising results in accelerating tooth movement induced by orthodontic appliances although the biologic effects of this procedure are not well-understood so far. The aim of this study was to investigate the impact of piezocision on bone remodeling in rats by bone SPECT imaging. MATERIAL AND METHODS Ten male Wistar rats underwent surgical placement of orthodontic appliances on each side of the maxilla followed by piezocision on one side only. Each rat underwent 99mTc-MDP bone SPECT/CT imaging before surgery (T0), and 2 (T1) and 4 weeks (T2) after surgery. Bone uptake is expressed as median [IQR] min-max in percentage of the injected activity per ml computed from the 10 voxels with the highest uptake (%IAmax10/ml). RESULTS Pooled data regardless of the piezocision showed a significant increase in bone uptake from T0 (3.2 [2.8-3.9] 2.6-4.9) to T1 (4.4 [3.8-4.6] 3.4-4.8; p = 0.001). Thereafter, the uptake decreased to T2 (3.8 [3.1-4.4] 2.8-4.8; p = 0.116). No significant differences in bone uptake were found between the maxilla sides without and with piezocision: T1: without (4.3 [3.8-4.5] 3.4-4.8) vs. with (4.5 [3.7-4.6] 3.5-4.7; p=0.285), T2: without (4.0 [3.1-4.5] 2.8-4.8) vs. with (3.7 [3.0-4.4] 2.8-4.8; p=0.062). CONCLUSION 99mTc-MDP bone SPECT imaging in rats was able to reproduce changes in bone uptake in the maxilla after placement of orthodontic appliances inducing measurable tooth movement. An additional effect of piezocision on bone remodeling in terms of bone uptake was not detectable which is probably due to the pronounced and significant effects induced by the orthodontic appliances per se, which may mask the potential effects of additional piezocision.
Collapse
Affiliation(s)
- Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolaos Papadopoulos
- Charité Center for Oral Health Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hoffmann
- Charité Center for Oral Health Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ajay-Mohan Mohan
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Radiology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Winfried Brenner
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thomas Präger
- Charité Center for Oral Health Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Smorthit K, Little R. A novel removable appliance for canine retraction: a case report. J Orthod 2022; 49:352-358. [PMID: 35302408 DOI: 10.1177/14653125221076860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report outlines the use of a modified Leighton's retractor as a method for canine retraction in a patient with severe hypodontia, a history of aggressive periodontitis with tooth loss and idiopathic root resorption affecting multiple teeth. Treatment involved an upper removable appliance in combination with a lower sectional fixed appliance with the aim of improving aesthetics and function for the patient, whilst balancing the need to minimise treatment duration and modify treatment mechanics to reduce the orthodontic risks.
Collapse
Affiliation(s)
- Kelly Smorthit
- Leeds Dental Institute and Chesterfield Royal Hospital, Leeds, UK
| | | |
Collapse
|
10
|
Cheng Y, Li F, Xiao X, Zou S, Chen J. “Effects of intermittent parathyroid hormone on cementoblast‐mediated periodontal repair”. Oral Dis 2022; 29:1747-1756. [PMID: 35254692 DOI: 10.1111/odi.14180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the effects of intermittent parathyroid hormone on cementoblast-mediated periodontal repair in the context of orthodontic-induced root resorption. MATERIALS AND METHODS The rat model of orthodontic-induced root resorption was established. Sixty rats were randomly allocated into the experiment group (n = 30) and the control group (n = 30), either receiving a daily subcutaneous injection of recombinant human PTH or placebo vehicle. Enzyme-linked immunosorbent assay, Micro-computed tomography, hematoxylin and eosin staining, and immunohistochemistry staining were performed to detect the periodontal repair. In vitro, OCCM-30 cells were exposed to intermittent PTH (incubated with PTH for the first 6 h in each 24-h cycle). After three cycles, flow cytometry assay, alkaline phosphatase staining, and Alizarin red staining were performed. Quantitative real-time polymerase chain reaction and Western blotting were employed to further determine the effects of intermittent PTH. RESULTS Intermittent PTH-responsive repair enhancement was detected with the expression of bone sialoprotein, osteocalcin, collagen-1, and alkaline phosphatase significantly upregulated. Increased expressions of cementoblastic proteins were positively correlated to cycles of PTH administration. The proportion of cementoblasts in S and G2/M phases was increased; namely, intermittent PTH promoted cementoblast cell proliferation. CONCLUSIONS Intermittent parathyroid hormone administration promotes cementoblast-mediated cementogenesis during periodontal repair in a time-dependent manner.
Collapse
Affiliation(s)
- Ye Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Nanjing Stomatological Hospital Medical school of Nanjing University Nanjing China
| | - Fan Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Institute of Dental Research and Department of Orthodontics Beijing Stomatological Hospital School of Stomatology Capital Medical University Beijing China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
11
|
Xiao S, Kong X, Yao J, Liu J, Li L, Jiang T, Wang L, Fan Y. Differences in root stress and strain distribution in buccal and lingual orthodontics: a finite element analysis study. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Elseidy M, Mostafa YA, Mehanni SS, El-Sharaby FA. Evaluation of the Effects of One versus 4 Weeks Activation Intervals on the Rate of Orthodontic Tooth Movement: An Experimental Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives: To evaluate the effects of one versus four weeks reactivation of the elastomeric chain on the rate of orthodontic tooth movement (OTM) and supporting structures.
Methods: The 3rd maxillary premolars of 8 male mongrel dogs were extracted. Custom made appliance was constructed so that the 2nd premolars were allowed to slide bodily. An elastomeric chain with calibrated force of 150g was attached to the hooks of soldered tubes on the 2nd premolar’s crowns. The sample was divided into two groups based on the interval of reactivation of the elastomeric chains used for tooth movement where in group I activation was scheduled every one week versus four weeks in group II. Measurements of the amount and rate of OTM were performed every week for 12 weeks using digital caliper. The animals were then sacrificed and specimens were prepared for decalcified histological examination using Hematoxylin and Eosin stains under light microscope.
Results: No remarkable difference in the rate of OTM between the two groups was reported. The total amount of tooth movement in group I was 1.44mm ± 0.5 compared to 1.46mm ± 0.6 in group II. Histological examination revealed a more favorable tissue reaction associated with 4 weeks reactivation as regards the new formed bone, root resorption and periodontal ligament structure.
Conclusion: Altering the reactivation interval of the elastomeric chains from four to one week doesn’t have a significant impact on the rate of OTM. However, four weeks reactivation interval showed a more favorable tissue reaction associated with orthodontic tooth movement.
Collapse
|
13
|
Jacox LA, Tang N, Li Y, Bocklage C, Graves C, Coats S, Miao M, Glesener T, Kwon J, Giduz N, Lin FC, Martinez J, Ko CC. Orthodontic loading activates cell-specific autophagy in a force-dependent manner. Am J Orthod Dentofacial Orthop 2022; 161:423-436.e1. [PMID: 35039202 DOI: 10.1016/j.ajodo.2020.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Orthodontic tooth movement (OTM) relies on bone remodeling and controlled aseptic inflammation. Autophagy, a conserved homeostatic pathway, has been shown to play a role in bone turnover. We hypothesize that autophagy participates in regulating bone remodeling during OTM in a force-dependent and cell type-specific manner. METHODS A split-mouth design was used to load molars with 1 of 3 force levels (15, 30, or 45 g of force) in mice carrying a green fluorescent protein-LC3 transgene to detect cellular autophagy. Fluorescent microscopy and quantitative polymerase chain reaction analyses were used to evaluate autophagy activation and its correlation with force level. Cell type-specific antibodies were used to identify cells with green fluorescent protein-positive puncta (autophagosomes) in periodontal tissues. RESULTS Autophagic activity increased shortly after loading with moderate force and was associated with the expression of bone turnover, inflammatory, and autophagy markers. Different load levels resulted in altered degrees of autophagic activation, gene expression, and osteoclast recruitment. Autophagy was specifically induced by loading in macrophages and osteoclasts found in the periodontal ligament and alveolar bone. Data suggest autophagy participates in regulating bone turnover during OTM. CONCLUSIONS Autophagy is induced in macrophage lineage cells by orthodontic loading in a force-dependent manner and plays a role during OTM, possibly through modulation of osteoclast bone resorption. Exploring the roles of autophagy in OTM is medically relevant, given that autophagy is associated with oral and systemic inflammatory conditions.
Collapse
Affiliation(s)
- Laura Anne Jacox
- Division of Craniofacial and Surgical Care, and Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Na Tang
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC Department of Oral Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yina Li
- Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Clare Bocklage
- Division of Craniofacial and Surgical Care, and Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Christina Graves
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | | | - Michael Miao
- Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Tim Glesener
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Jane Kwon
- Division of Craniofacial and Surgical Care, and Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Natalie Giduz
- Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Jennifer Martinez
- National Institutes of Health, Bethesda, Md National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
14
|
Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation. Clin Oral Investig 2022; 26:3747-3764. [PMID: 35029749 DOI: 10.1007/s00784-021-04346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/11/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Improper orthodontic force often causes root resorption or destructive bone resorption. There is evidence that T helper 17 (Th17) cells and regulatory T (Treg) cells may be actively involved in bone remodeling during tooth movement. In a combination of in vitro and in vivo studies, we investigated the effect of human periodontal ligament cells (hPDLCs) on Th17/Treg cells under different orthodontic forces and corticotomy. MATERIAL AND METHODS hPDLCs were cultured in vitro and subjected to different mechanical forces. The expression of interleukin (IL)-6 and transforming growth factor (TGF)-β in the supernatant and the mRNA levels of hypoxia inducible factor (HIF)-1α, Notch1, and TGF-β in hPDLCs were investigated. Supernatants were collected and co-cultured with activated CD4+T cells, and the differentiation of Th17/Treg cells was analyzed by flow cytometry. We also established an animal model of tooth movement with or without corticotomy. The tooth movement distance, alveolar bone height, and root resorption were analyzed using micro-computed tomography. Expression of interleukin (IL)-17A, forkhead Box P3 (Foxp3), and IL-6 were analyzed using immunohistochemistry, while osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of IL-17A, IL-6, Foxp3, IL-10, HIF-1α, notch1, and C-X-C motif chemokine ligand 12 (CXCL12) in alveolar bone and gingiva were investigated. RESULTS Heavy force repressed cell viability and increased the mortality rate of hPDLCs; it also improved the expression of IL-6, declined the expression of TGF-β, and promoted the mRNA expression level of HIF-1α. The expression of TGF-β and Notch1 mRNA decreased and then increased. The supernatant of hPDLCs under heavy force promotes the polarization of Th17 cells. The heavy force caused root resorption and decreased alveolar bone height and increased the positive area of IL-17A immunohistochemical staining and the expression of IL-17A, IL-6, HIF-1α, and Notch1 mRNA. Corticotomy accelerated tooth movement, increased the proportion of Foxp3-positive cells, and up-regulated the expression of Foxp3, IL-10, and CXCL12 mRNA. CONCLUSIONS During orthodontic tooth movement, the heavy force causes root resorption and inflammatory bone destruction, which could be associated with increased expression of Th17 cells and IL-6. Corticotomy can accelerate tooth movement without causing root resorption and periodontal bone loss, which may be related to the increased expression of Treg cells. CLINICAL RELEVANCE Altogether, this report provides a new perspective on the prevention of inflammatory injury via the regulation of Th17/Treg cells in orthodontics.
Collapse
|
15
|
TRIBUMRUNGSUK P, KHANTACHAWANA A, JANYAPRASERT K. Effect of fine particle shot peening on surface friction of stainless steel and ceramic bracket slots. Dent Mater J 2022; 41:682-687. [DOI: 10.4012/dmj.2021-295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Pichamon TRIBUMRUNGSUK
- Residency Training Program in Orthodontics, Department of Pedodontics and Preventive Dentistry, Faculty of Dentistry, Srinakharinwirot University
| | - Anak KHANTACHAWANA
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi
| | - Kamolapatr JANYAPRASERT
- Department of Pedodontics and Preventive Dentistry, Faculty of Dentistry, Srinakharinwirot University
| |
Collapse
|
16
|
Mechanisms of sphingosine-1-phosphate (S1P) signaling on excessive stress-induced root resorption during orthodontic molar intrusion. Clin Oral Investig 2021; 26:1003-1016. [PMID: 34363103 DOI: 10.1007/s00784-021-04084-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate cementocyte mechanotransduction during excessive orthodontic intrusive force-induced root resorption and the role of S1P signaling in this process. MATERIALS AND METHODS Fifty-four 12-week-old male Wistar rats were randomly divided into 3 groups: control group (Control), intrusive stress application group (Stress), and intrusive stress together with S1PR2-specific antagonist injection group (Stress + JTE). A rat molar intrusion model was established on animals in the Stress and the Stress + JTE groups. The animals in the Stress + JTE group received daily intraperitoneal (i.p.) injection of S1PR2 antagonist JTE-013, while the Control and Stress groups received only the vehicle. Histomorphometric, immunohistochemical, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were performed after euthanizing of the rats. RESULTS Root resorption was promoted in the Stress group with increased volumes of resorption pits and amounts of molar intrusion compared with the Control group. The expression levels of cementogenic- and cementoclastic-related factors were affected under excessive intrusive force. Immunohistochemical staining and qRT-PCR analysis showed promoted S1P signaling activities during molar intrusion. Western blot analysis indicated decreased nuclear translocation of β-catenin under excessive intrusive force. Through the administration of JTE-013, S1P signaling activity was suppressed and excessive intrusive force-induced root resorption was reversed. The regulation of S1P signaling could also influence the nuclear translocation of β-catenin and the expressions of cementogenic- and cementoclastic-related factors. CONCLUSIONS Root resorption was promoted under excessive orthodontic intrusive force due to the disruption of cementum homeostasis. S1P signaling pathway might play an important role in cementocyte mechanotransduction in this process. CLINICAL RELEVANCE The S1P signaling might be a promising therapeutic target for novel therapeutic approaches to prevent external root resorption caused by excessive orthodontic intrusive force.
Collapse
|
17
|
Zhu S, Zhou H, Zheng Y, Wei L, Wang Y, Mo S. Factors associated with alveolar bone depth mesial to the mandibular third molars after orthodontic protraction. Am J Orthod Dentofacial Orthop 2021; 160:423-429. [PMID: 34052103 DOI: 10.1016/j.ajodo.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The objective of this research was to study the factors associated with the alveolar bone depth mesial to the mandibular third molars (M8) after the mandibular second (M7) and third molars were protracted into the space of the mandibular first molars (M6), which were newly extracted for orthodontic treatment or extracted more than 1 year before treatment. METHODS This retrospective study included 57 adult patients (mean age 23.40 ± 4.40 years) in whom M6 were newly extracted for orthodontic treatment or extracted more than 1 year before treatment. The alveolar bone depth mesial to M8 was measured on posttreatment panoramic radiographs. The vertical, horizontal, and angular changes of M8 were measured on both pre- and posttreatment panoramic radiographs. Linear correlation and regression analyses were conducted to explore the factors associated with the alveolar bone depth mesial to M8. RESULTS The alveolar bone conditions of M6 (R= -0.391, P <0.001) and the vertical movement directions of M8 (R= -0.433, P <0.001) were significant factors associated with the alveolar bone depth mesial to M8 after orthodontic protraction. CONCLUSIONS Without considering the pretreatment periodontal status of M8, patients with M6 extracted exceeding 1 year before treatment and with M8 extruded after orthodontic protraction may exhibit deeper alveolar bone depth mesial to M8.
Collapse
Affiliation(s)
- Siting Zhu
- Department of Orthodontics, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Hailun Zhou
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Zheng
- Department of Orthodontics, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Wei
- Department of Orthodontics, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yao Wang
- Department of Orthodontics, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuixue Mo
- Department of Orthodontics, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
18
|
Jaeger R, Schmidt F, Naziris K, Lapatki BG. Evaluation of orthodontic loads and wire-bracket contact configurations in a three-bracket setup: Comparison of in-vitro experiments with numerical simulations. J Biomech 2021; 121:110401. [PMID: 33894471 DOI: 10.1016/j.jbiomech.2021.110401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 11/30/2022]
Abstract
So far, no practicable procedure exists to quantify the orthodontic loads applied to teeth in vivo. Dentists therefore rely on experience and simplified mechanical in-vitro experiments comprising deflection of orthodontic wires. Predicting the mechanical behaviour of orthodontic wires during clinical therapy requires understanding of the different contact states at multi-bracket-wire interfaces. This study experimentally investigates the effect of different bracket-wire contact configurations in a three-bracket setup and uses two numerical approaches to analyse and complement the experimental data. Commonly used round stainless-steel wires (diameter: 0.012″ and 0.016″) and titanium-molybdenum alloy wires (diameter: 0.016″ and 0.018″) were tested. All six force-moment components were measured separately for each of the three brackets. The results indicate that a specific sequence of distinct bracket-wire contact configurations occurs. Several transitions between configurations caused substantial changes of effective wire stiffness (EWS), which were consistent among experimental and numerical methods. The lowest EWS was observed for the configuration in which the wire touched only one wing of the lateral brackets. Taking this stiffness as 100%, the transition to a configuration in which the wire touched two opposing wings of the lateral brackets resulted in an increase of EWS of 300% ± 10%. This increase was independent of the wire type. Additional contacts resulted in further increases of stiffness beyond 400%. The results of this combined experimental and numerical study are important for providing a fundamental understanding of multi-bracket-wire contact configurations and have important implications for clinical therapy.
Collapse
Affiliation(s)
- Rudolf Jaeger
- Department of Orthodontics, University of Ulm, Germany.
| | - Falko Schmidt
- Department of Orthodontics, University of Ulm, Germany
| | | | | |
Collapse
|
19
|
Li X, Xu J, Yin Y, Liu T, Chang L, He S, Chen S. Notch signaling inhibition protects against root resorption in experimental immature tooth movement in rats. Am J Orthod Dentofacial Orthop 2021; 159:426-434.e5. [PMID: 33568273 DOI: 10.1016/j.ajodo.2020.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This study aimed to build an experimental immature tooth movement model and verify less resorption of incompletely developed roots than those fully developed during the same orthodontic treatment, followed by investigating the cellular and molecular mechanism. METHODS The development of Wistar rat tooth was investigated using in vivo microcomputed tomography and hematoxylin and eosin staining to decide the optimal ages of rats for immature tooth and mature tooth groups. The rats in the immature tooth and mature tooth groups were divided into experimental, sham control, and blank control groups. After orthodontic treatment for 3 weeks, the mesial root volume, crown movement distance, neck movement distance, root inclination, and apical distance were measured by microcomputed tomography. The expressions of TRAP, Jagged1, Notch2, IL-6, and RANKL were analyzed by immunohistochemical staining and real-time polymerase chain reaction. The repair of root resorption was also investigated after removing orthodontic force for 3 and 6 weeks. RESULTS The root achieved the development stage around 10 weeks, so 4-week-old rats and 10-week-old rats were used in the immature tooth group and mature tooth group, respectively. The volume of root resorption in the experimental immature tooth group was 0.0869 ± 0.0244 mm3, which was less than that in the mature tooth group (0.1218 ± 0.0123 mm3) (P <0.001). Immature tooth movement decreased TRAP-positive odontoclasts on the compression side while having no statistically significant effect on osteoclasts. The protein expression of Jagged1, Notch2, IL-6, and RANKL in the mature tooth group increased significantly compared with the immature tooth group, not only on the compression side but also on the tension sides. The mRNA expression of Jagged1, Notch2, and RANKL was significantly lower in the immature tooth group, whereas the expression of IL-6 had no significance but a strong tendency. The root volume after repairing for 3 weeks was still less than that of blank control, whereas after repairing for 6 weeks, the difference was not statistically significant. CONCLUSIONS The experimental immature tooth movement model for the Wistar rat was achieved for the first time. The immature tooth will suffer less root resorption than the mature tooth, which may be due to odontoclastogenesis inhibition by decreased expression of Jagged1/Notch2/IL-6/RANKL signaling.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Le Chang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Linkous ER, Trojan TM, Harris EF. External apical root resorption and vectors of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2020; 158:700-709. [PMID: 32950335 DOI: 10.1016/j.ajodo.2019.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION External apical root resorption is nearly ubiquitous in people treated orthodontically. This study predicted the extent of external apical root resorption by the vector of the incisor movement. METHODS Cone-beam computed tomography scans of 93 white American adolescents (45 boys, 48 girls) with a Class I malocclusion who received comprehensive orthodontics were analyzed. Half were treated with 4 first-premolar extractions, and the others were treated without extractions. An x, y, z coordinate system was registered on the maxillae, superimposing on foramina, to quantify vectors of maxillary incisor movements. Multiple linear regression identified significant predictors of resorption for each incisor. RESULTS Strongly predictive models (R2 = 77%-86%) were obtained. All directions of incisor movement tested (anteroposterior, mediolateral, craniocaudal, torquing) increased the risk of resorption in a dose-response fashion. Intrusion was most damaging. The patient's sex, age, and duration of treatment were not predictive. CONCLUSIONS Root resorption is a very frequent consequence of tooth movement, especially intrusion and torquing, though no direction is harmless, and most corrections occur in combination. Incisor apical resorption was significantly greater in the extraction sample (ca 0.5 mm).
Collapse
Affiliation(s)
| | - Terry M Trojan
- Department of Orthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tenn
| | - Edward F Harris
- Department of Orthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tenn.
| |
Collapse
|
21
|
Wichelhaus A, Dulla M, Sabbagh H, Baumert U, Stocker T. Stainless steel and NiTi torque archwires and apical root resorption. J Orofac Orthop 2020; 82:1-12. [PMID: 32875350 PMCID: PMC7803709 DOI: 10.1007/s00056-020-00244-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2020] [Indexed: 11/26/2022]
Abstract
Objective The amount of apical root resorption when using the torque-segmented archwire (TSA) was investigated as well as the extent and direction of the therapeutically indicated apical movement and the treatment duration. Materials and methods The degree of apical root resorption in 18 randomly chosen Class II and Class I patients treated with the TSA, as well as in 18 conventionally treated patients were evaluated using pre- and posttreatment panoramic radiographs. The sagittal and vertical apical movements and inclination changes were determined based on pre- and posttreatment lateral cephalograms. Nonparametric tests were applied to test between treatment groups and steps. The Mann–Whitney U test, Kruskal–Wallis, Pearson correlation and Wilcoxon signed-rank test were applied for statistical analysis (p < 0.05). Results The incidence of root resorptions was 89–94.4% in low or moderate level. The relative root–crown ratio (rRCR) was not statistically different between the TSA and control groups except tooth 12. The axis of the incisors in the TSA group was significantly improved. The main direction of movement of the apices of the central incisors was retrusion and extrusion. No interdependence between the amount of resorption and the parameters of treatment duration, extent and direction of apical movement were found. Conclusion The results of the study showed that the amount of apical root resorption with the TSA is slight to moderate and can be compared to conventional orthodontic treatment. The TSA is hence a suitable method for applying targeted torques to the incisors.
Collapse
Affiliation(s)
- Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany.
| | - Marc Dulla
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Hisham Sabbagh
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Thomas Stocker
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| |
Collapse
|
22
|
Lopes LLDA, de Barros Silva PG, Damasceno JX, Martins JODL, da Silva KR, de Sousa FB, Dantas HV, Ribeiro TR, Alencar PNB. Microtomographic analysis of the effect of sodium alendronate on orthodontic movement in rats. Orthod Craniofac Res 2020; 24:96-101. [PMID: 32639673 DOI: 10.1111/ocr.12410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To evaluate the effect of sodium alendronate on orthodontic tooth movement in rats using microtomographic analysis. SETTINGS AND SAMPLE POPULATION Thirty male Wistar rats (Rattus norvegicus) were divided into three groups of 10 rats and administered saline (control), 1 mg/kg sodium alendronate or 6 mg/kg sodium alendronate, respectively. MATERIALS AND METHODS The drug was administered once per week for 5 weeks by gavage. Orthodontic movement was induced during the last 2 weeks of medication administration by inserting a closed nickel-titanium spring between the left upper first molar and central incisors. The opposite side served as the control. Tooth movement and bone trabeculation in the furcation region were evaluated by microtomographic analysis in the first (moved) and third (static) molars. The data were subjected to one-way or two-way ANOVA and Bonferroni test (P < .05). RESULTS The microtomographic images of the group that received 6 mg/kg sodium alendronate demonstrated significantly less tooth movement (P = .048), less space between the trabeculae (P = .031) and greater number of bone trabeculae (P = .033) compared to the other groups. There were no statistically significant differences in bone volume and mean trabecular thickness between the three groups. The static teeth did not show the same alterations (P > .05). CONCLUSION Sodium alendronate treatment reduced tooth movement in rats.
Collapse
Affiliation(s)
| | | | | | | | - Karla Rovaris da Silva
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Frederico Barbosa de Sousa
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Hugo Victor Dantas
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | |
Collapse
|
23
|
Abstract
A potential new bactericide treatment for NiTi orthodontic archwires based in the electrodeposition of silver nanoparticles on the surface was studied. Twenty-five archwires were treated by electrodeposition, obtaining nanoparticles of silver embedded on the archwire surface. These were evaluated in order to investigate the possible changes on the superelastic characteristics (critical temperatures and stresses), the nickel ion release, and the bacteria culture behavior. The chemical composition was analyzed by Energy Dispersive X-Ray Spectroscopy-microanalysis; the singular temperatures of the martensitic transformation were obtained by a flow calorimeter. Induced martensitic transformation stresses were obtained by mechanical testing apparatus. Nickel ion release was analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) equipment using artificial saliva solution at 37 °C. Bacterial tests were studied with the most used oral bacterial strains: Streptococcus sanguinis and Lactobacillus salivarius. NiTi samples were immersed in bacterial suspensions for 2 h at 37 °C. Adhered bacteria were separated and seeded on agar plates: Tood-Hewitt (TH) and Man-Rogosa-Sharpe (MRS) for S. sanguinis and for L.salivarius, respectively. These were then incubated at 37 °C for 1 day and the colonies were analyzed. The results showed that the transformation temperatures and the critical stresses have not statistically significant differences. Likewise, nickel ion release at different immersion times in saliva at 37 °C does not present changes between the original and treated with silver nanoparticles archwires. Bacteria culture results showed that the reduction of the bacteria due to the presence to the nanoparticles of silver is higher than 90%. Consequently, the new treatment with nanoparticles of silver could be a good candidate as bactericidic orthodontic archwire.
Collapse
|
24
|
Morii A, Miyamura Y, Sago MI, Mizuhara M, Shikayama T, Naniwa M, Hitomi S, Ujihara I, Kuroishi KN, Gunjigake KK, Shiga M, Morimoto Y, Kawamoto T, Ono K. Orthodontic force-induced oxidative stress in the periodontal tissue and dental pulp elicits nociception via activation/sensitization of TRPA1 on nociceptive fibers. Free Radic Biol Med 2020; 147:175-186. [PMID: 31866360 DOI: 10.1016/j.freeradbiomed.2019.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
Orthodontic patients complain of pain for the first few days after insertion of appliances. Mechanical force has been reported to produce oxidants in periodontal ligament (PDL) cells. It has not been studied whether orthodontic force-induced oxidative stress elicits nociception. Herein, we focused on the role of the oxidant-sensitive channel TRPA1 on nociception in orthodontic pain. In a rat model of loaded orthodontic force between the maxillary first molar and incisor, the behavioral signs of orofacial nociception, facial rubbing and wiping, increased to a peak on day 1 and gradually diminished to the control level on day 5. Administration of free radical scavengers (Tempol and PBN) and TRPA1 antagonist (HC-030031) inhibited nociceptive behaviors on day 1. In the PDL, the oxidative stress marker 8-OHdG was highly detected on day 1 and recovered on day 5 to the sham-operated level. The dental pulp showed similar results as the PDL. TRPA1 mRNA was abundantly expressed in the trigeminal ganglion relative to PDL tissue, and there were TRPA1-immunopositive neuronal fibers in the PDL and pulp. In dissociated trigeminal ganglion neurons, H2O2 at 5 mM induced a Ca2+ response that was inhibited by HC-030031. Although H2O2 at 100 μM did not yield any response, it enhanced the mechanically activated TRPA1-dependent Ca2+ response. These results suggest that oxidative stress in the PDL and dental pulp following orthodontic force activates and/or mechanically sensitizes TRPA1 on nociceptive fibers, resulting in orthodontic nociception. Later, the disappearance of nociception seems to be related to a decrease in oxidative stress, probably due to tissue remodeling.
Collapse
Affiliation(s)
- Aoi Morii
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan; Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Yuichi Miyamura
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan; Division of Oral and Maxillofacial Radiology, Kyushu Dental University, Fukuoka, Japan
| | - Misa I Sago
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Takemi Shikayama
- Division of Periodontology, Kyushu Dental University, Fukuoka, Japan
| | - Mako Naniwa
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Izumi Ujihara
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Kayoko N Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Kaori K Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Yasuhiro Morimoto
- Division of Oral and Maxillofacial Radiology, Kyushu Dental University, Fukuoka, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan.
| |
Collapse
|
25
|
Schubert A, Jäger F, Maltha JC, Bartzela TN. Age effect on orthodontic tooth movement rate and the composition of gingival crevicular fluid : A literature review. J Orofac Orthop 2020; 81:113-125. [PMID: 31919542 DOI: 10.1007/s00056-019-00206-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 10/20/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate and form a comprehensive understanding of the effect of patient age on bone remodeling and consequently on the rate of orthodontic tooth movement (OTM). METHODS A systematic search in PubMed and Embase from 1990 to December 2017 was performed and completed by a hand search. Prospective clinical trials which investigated the rate of OTM and/or studies assessing age-related changes in the composition of gingival crevicular fluid (GCF) in older compared to younger study groups were included. Study selection, data extraction and risk of bias were assessed by two authors. RESULTS Eight studies fulfilled the inclusion criteria. Among them, four evaluated the rate of OTM and six investigated mediators in the GCF (prostaglandin E2, interleukin [IL]-1β, IL‑6, IL‑1 receptor antagonist, receptor activator of nuclear factor kappa‑Β ligand, osteoprotegerin, granulocyte-macrophage colony-stimulating factor, pentraxin 3). Patient age ranged between 16 and 43 years for older and <16 years for younger groups. In most of the studies, the younger patients showed faster OTM in the first phase of treatment and more pronounced cytokine levels. Older patients had a delayed reaction to orthodontic forces. CONCLUSION The small number of included studies and large heterogeneity in study design give limited clinical evidence that the older patients are less responsive to orthodontic force in comparison to younger patients. The initial cellular response to orthodontic force is expected to be delayed in older patients. Control intervals during orthodontic treatment should be adjusted to the individual's treatment response.
Collapse
Affiliation(s)
| | | | - Jaap C Maltha
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center Nijmegen, 6500, HB Nijmegen, The Netherlands
| | - Theodosia N Bartzela
- Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Charité Centrum 3, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
| |
Collapse
|
26
|
Li Y, Deng S, Mei L, Li Z, Zhang X, Yang C, Li Y. Prevalence and severity of apical root resorption during orthodontic treatment with clear aligners and fixed appliances: a cone beam computed tomography study. Prog Orthod 2020; 21:1. [PMID: 31903505 PMCID: PMC6943096 DOI: 10.1186/s40510-019-0301-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fixed appliances have been the mainstream for orthodontic treatment, while clear aligners, such as Invisalign system, have become increasingly popular. The prevalence of apical root resorption (ARR) in patients with clear aligners is still controversial. The aim of this study was to investigate and compare the prevalence and severity of ARR in patients treated with clear aligners and fixed appliances using cone beam computed tomography (CBCT). Materials and methods A total of 373 roots from 70 subjects, with similar baseline characteristics and the ABO discrepancy index scores (i.e., treatment difficulty), were included into two groups: the clear aligners group (Invisalign, Align Technology, California, USA) and fixed appliances group (Victory Series; 3 M Unitek, California, USA). Root length of each anterior tooth was measured on the CBCT images by two blinded investigators. The ARR on each tooth was calculated as the difference of root length before and after orthodontic treatment. Chi-square test and paired t test was used to compare the ARR between the two groups as well as before and after orthodontic treatments. Results Prevalence of ARR in the clear aligners group (56.30%) was significantly lower than that in the fixed appliances group (82.11%) (P < 0.001). The severity of ARR in the clear aligners group (0.13 ± 0.47 mm) was significantly less than that in the fixed appliances group (1.12 ± 1.34 mm) (P < 0.001). The most severe ARR was found on the maxillary canine (1.53 ± 1.92 mm) and lateral incisor (1.31 ± 1.33 mm) in the fixed appliances group; the least ARR was found on the mandibular canine (− 0.06 ± 0.47 mm) and lateral incisor (0.04 ± 0.48 mm) in the clear aligners group (P < 0.001). Conclusions The prevalence and severity of ARR measured on CBCT in patients with clear aligners were less than those in patients with fixed appliances.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyong Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Zhengzheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyun Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao Yang
- Department of Epidemiology and Health statistics, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Mizuhara M, Kometani-Gunjigake K, Nakao-Kuroishi K, Toyono T, Hitomi S, Morii A, Shiga M, Seta Y, Ono K, Kawamoto T. Vesicular nucleotide transporter mediates adenosine triphosphate release in compressed human periodontal ligament fibroblast cells and participates in tooth movement-induced nociception in rats. Arch Oral Biol 2019; 110:104607. [PMID: 31810015 DOI: 10.1016/j.archoralbio.2019.104607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Pain control is imperative in orthodontic treatment. Adenosine triphosphate (ATP) is a key mediator released from periodontal ligament cells that excites nociceptive nerve endings. Vesicular nucleotide transporter (VNUT), encoded by the Solute carrier family 17 member 9 (SLC17A9) gene, participates in ATP uptake into secretory vesicles; thus, it may mediate tooth movement-induced pain. In the present study, we examined whether VNUT in periodontal ligament cells participates in tooth movement-induced nociception. DESIGN Expression levels of SLC17A9, connexin 43, and pannexin 1 in human periodontal ligament fibroblasts (HPDLFs) were examined by quantitative reverse transcription-polymerase chain reaction. Mechanical force via centrifugation-induced ATP release was measured using an ATP bioluminescence assay. Inhibitors were used to evaluate the role of ATP transporters. Face-grooming behaviors were assessed as indicators of nociceptive responses after experimental tooth movement in rats, as well as the effects of drugs for the pain-like behavior. RESULTS After HPDLFs underwent mechanical stimulation by centrifugation, SLC17A9 mRNA expression in the cells was significantly upregulated. Increased ATP release from HPDLFs after mechanical stimulation was suppressed by treatment with clodronic acid, a VNUT inhibitor, at concentrations of 0.1 and 1.0 μM. In rats, face-grooming behaviors (indicators of nociception) were significantly increased on day 1 after experimental tooth movement. Increased face-grooming behaviors were suppressed by systemic administration of clodronic acid (0.1 mg/kg). CONCLUSIONS These results indicate that release of ATP from periodontal ligament cells via VNUT is important for nociceptive transduction during orthodontic treatment. Thus, VNUT may provide a novel drug target for tooth movement-induced pain.
Collapse
Affiliation(s)
- Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Takashi Toyono
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Aoi Morii
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Yuji Seta
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| |
Collapse
|
28
|
Chaware SH, Sachdev VR. One-year follow-up study to evaluate the marginal bone resorption and attachment loss with customized post with stud attachment and prefabricated access post for mandibular overdenture. J Indian Prosthodont Soc 2019; 19:210-220. [PMID: 31462859 PMCID: PMC6685341 DOI: 10.4103/jips.jips_91_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
AIM This study aims to analyze the marginal bone resorption and attachment loss of the overdenture attachment for the mandibular overdenture. SETTINGS AND DESIGN Observational study done at MGV's KBH Dental College and Hospital, Nashik, Maharashtra, India. MATERIALS AND METHODS A total of 30 subjects were selected of either sex between the age group of 50-70 years by designate of randomized parallel controlled sampling technique. The Cone beam computed tomography (CBCT) radiographic quantification determines the caliber of bone resorption and University of North Carolina (UNC) probe checked the depth of attachment loss of the abutment teeth that receive the cast coping (nonattachment control group), customized post and stud attachment, and prefabricated access post. STATISTICAL ANALYSIS USED Oneway ANOVA test and post hoc Bonferroni multiple test. RESULTS statistical analysis reveals the comparison of distinction between groups is significant at P < 0.05. The control group records least bone resorption and attachment loss than Group II and Group I. However, Group II records marginally higher bone resorption and attachment loss than Group III. CONCLUSION The result of the study within the physiologic limit analyze that, cast coping records least bone resorption and attachment loss followed by Customized post with stud attachment and prefabricated access posts. The prefabricated access post records higher bone resorption and attachment loss.
Collapse
Affiliation(s)
- Sachin Haribhau Chaware
- Department of Prosthodontics and Crown and Bridge, MGV's KBH Dental College and Hospital, Nashik, Maharashtra, India
| | - Vibhuti Rohit Sachdev
- Department of Prosthodontics and Crown and Bridge, MGV's KBH Dental College and Hospital, Nashik, Maharashtra, India
| |
Collapse
|
29
|
Cramer CL, Campbell PM, Opperman LA, Tadlock LP, Buschang PH. Effects of micro-osteoperforations on tooth movement and bone in the beagle maxilla. Am J Orthod Dentofacial Orthop 2019; 155:681-692. [PMID: 31053284 DOI: 10.1016/j.ajodo.2018.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study was to determine how micro-osteoperforations (MOPs) affect tooth movements, bone turnover, bone density, and bone volume. METHODS A split-mouth experimental design with 7 beagle dogs was used to evaluate bone surrounding maxillary second premolars that had been retracted for 7 weeks. One month after the maxillary third premolars were extracted, 8 MOPs (1.5 mm wide and 7 mm deep) were created without flaps with the use of the Propel device (6 were placed 3 mm distal to the second premolar and 2 were placed in the premolar furcation) on one randomly chosen side. The maxillary second premolars were retracted bilaterally with the use of 200 g nickel-titanium closed coil springs. Tooth movements were measured intraorally and radiographically. Microscopic computed tomography was used to evaluate the material density and volume fraction of bone distal to the premolars. Hematoxylin and eosin-stained and fluorescent sections were used to examine the bone remodeling. RESULTS Neither the intraoral (P = 0.866) nor radiographic (P = 0.528) measures showed statistically significant side differences in tooth movements. There also were no statistically significant differences in the density (P = 0.237) or volume fraction (P = 0.398) of bone through which the premolars were being moved. Fluorescent and histologic evaluations showed no apparent differences in osteoblasts, osteoclasts, or mineralization of bone near the teeth being moved. Bone healing was evident in and near the MOP sites, which had nearly but not completely healed after 7 weeks. Regions of acellular bone were evident extending ∼0.8 mm from the MOP sites. CONCLUSIONS MOPs placed 3 mm away from teeth do not increase tooth movements and have limited and transitory effect on bone.
Collapse
Affiliation(s)
| | - Phillip M Campbell
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, Tex
| | - Lynne A Opperman
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Dallas, Texas
| | - Larry P Tadlock
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, Tex
| | - Peter H Buschang
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, Tex.
| |
Collapse
|
30
|
Conti C, Suzuki H, Garcez AS, Suzuki SS. Effects of Photobiomodulation on Root Resorption Induced by Orthodontic Tooth Movement and RANKL/OPG Expression in Rats. Photochem Photobiol 2019; 95:1249-1257. [DOI: 10.1111/php.13107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Carolina Conti
- Department of Post‐graduate in Orthodontics São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| | - Hideo Suzuki
- Department of Post‐graduate in Orthodontics São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| | - Aguinaldo Silva Garcez
- Department of Microbiology São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| | - Selly Sayuri Suzuki
- Department of Post‐graduate in Orthodontics São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| |
Collapse
|
31
|
Kraiwattanapong K, Samruajbenjakun B. Tissue response resulting from different force magnitudes combined with corticotomy in rats. Angle Orthod 2019; 89:797-803. [PMID: 30896251 DOI: 10.2319/090418-645.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To evaluate the amount of hyalinization and root resorption after application of light and heavy forces during corticotomy-assisted tooth movement. MATERIALS AND METHODS Forty-eight male Wistar rats were used. Eight animals were the control group (day 0). The other 40 animals were randomly divided into two groups using the split-mouth technique: (1) corticotomy combined light force (CLF) and (2) corticotomy combined heavy force (CHF). Nickel-titanium closed coil springs that generated 10 g (light force) and 50 g (heavy force) were used for maxillary first molar movement. three-dimensional root volume was evaluated at 0, 14, and 28 days. Percent hyalinization was analyzed at 0, 3, 7, 14, 21, and 28 days by histomorphometric analysis. RESULTS The CHF group showed significantly lower cervical root volume than the CLF group at 28 days. Compared with day 0, the CHF group showed significantly less root volume in both distobuccal and distopalatal roots at 28 days. The hyalinization percentages in the CHF group were significantly higher than the CLF group at days 3 and 21. CONCLUSIONS Heavy force combined with corticotomy produced more periodontal ligament hyalinization and root resorption than the light force combined with corticotomy.
Collapse
|
32
|
Zhou J, Yang F, Xu X, Feng G, Chen J, Song J, Dai H. Dynamic Evaluation of Orthodontically-Induced Tooth Movement, Root Resorption, and Alveolar Bone Remodeling in Rats by in Vivo Micro-Computed Tomography. Med Sci Monit 2018; 24:8306-8314. [PMID: 30448850 PMCID: PMC6253985 DOI: 10.12659/msm.912470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background The aim of this study was to dynamically evaluate tooth movement, root resorption, and remodeling of alveolar bone using different forces to cause tooth movement in rats. Material/Methods 12-week-old male Sprague-Dawley rats were selected. Nickel-titanium (Ni-Ti) coil springs (20 g, 50 g, and 100 g forces) were placed for mesial movement of the left first maxillary molar teeth. Tooth movement, root resorption, and microarchitectural parameters of the trabecular bone were evaluated by in vivo micro-CT. Histological examination was used to observe the root resorption, alveolar bone remodeling, and changes in osteoclasts from day 0 to day 14. Results The tooth movement distance increased significantly over the initial 3 days in the 3 groups. The 20 g force group showed more tooth movement than in the 50 and 100 g force groups after 14 days (P<0.05). From days 7 to 10, root resorption lacunae appeared in the 3 groups and then stabilized, and the 100 g force group produced more lacunar resorption than in the anther 2 groups (P<0.05). Compared to day 0, the trabecular thickness and bone volume fraction on the pressure side gradually decreased from day 7 to day 14. The structure model index increased significantly from day 3 to day 14. Histological examination showed remarkable root resorption craters and osteoclasts positive for tartrate-resistant acid phosphatase in the root resorption lacunae in the 50 g and 100 g groups from day 7 to day 14. Conclusions A 100 g heavy force can be used to establish a root resorption model in rats.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Fengxue Yang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Xiaolin Xu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Gang Feng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Jun Chen
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Jinglin Song
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Hongwei Dai
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| |
Collapse
|
33
|
Cuoghi OA, Faria LPD, Ervolino E, Barioni SRP, Topolski F, Arana-Chavez VE, Mendonça MRD. Pulp analysis of teeth submitted to different types of forces: a histological study in rats. J Appl Oral Sci 2018; 26:e20170626. [PMID: 30304125 PMCID: PMC6172023 DOI: 10.1590/1678-7757-2017-0626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Objective: The purpose of this study was to histologically evaluate pulp and dentin under induced tooth movement (ITM) with different types of forces. Material and Methods: The maxillary right first molars of rats were submitted to movement with continuous (CF), continuous interrupted (CIF) and intermittent (IF) forces during 5, 7 and 9 days with nickel-titanium (NiTi) closed-coil springs exerting 50cN force magnitude. The groups were histologically evaluated as for cellularity pattern, presence of dystrophic, hemodynamic alterations in the pulp as well dentin alterations. The main observed alterations were related to hemodynamic pulp characteristics, such as presence of thrombosis, vascular congestion and hemorrhages. The hemodynamic alterations were statistically evaluated by Shapiro-Wilk normality test and analysis of variance by the Kruskall-Wallis test. Results: There was no significant differences observed between groups in the different types of applied forces and duration of ITM (vascular congestion, p=1.000; hemorrhage, p=0.305; thrombosis, p=1.000). Conclusions: Pulp tissue alterations resulting from ITM were limited to hemodynamic events, without progressing to irreversible degeneration, regardless of the type of force applied.
Collapse
Affiliation(s)
- Osmar Aparecido Cuoghi
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, São Paulo, Brasil
| | - Lorraine Perciliano de Faria
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo, São Paulo, Brasil
| | - Edilson Ervolino
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Sônia Regina Panzarini Barioni
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Francielle Topolski
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, São Paulo, Brasil
| | - Victor Elias Arana-Chavez
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo, São Paulo, Brasil
| | - Marcos Rogério de Mendonça
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, São Paulo, Brasil
| |
Collapse
|
34
|
Kraiwattanapong K, Samruajbenjakun B. Effects of different force magnitudes on corticotomy-assisted orthodontic tooth movement in rats. Angle Orthod 2018; 88:632-637. [PMID: 29714068 DOI: 10.2319/103117-736.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To investigate the effects of light and heavy forces with corticotomy on tooth movement rate, alveolar bone response, and root resorption in a rat model. MATERIALS AND METHODS The right and left sides of 40 male Wistar rats were randomly assigned using the split-mouth design to two groups: light force with corticotomy (LF) and heavy force with corticotomy (HF). Tooth movement was performed on the maxillary first molars using a nickel-titanium closed-coil spring delivering either 10 g (light force) or 50 g (heavy force). Tooth movement and alveolar bone response were assessed by micro-computed tomography (micro-CT) at day 0 as the baseline and on days 7, 14, 21, and 28. Root resorption was examined by histomorphometric analysis at day 28. RESULTS Micro-CT analysis showed a significantly greater tooth movement in the HF group at days 7 and 14 but no difference in bone volume fraction at any of the observed periods. Histomorphometric analysis found no significant difference in root resorption between the LF and HF groups at day 28. CONCLUSIONS Heavy force with corticotomy increased tooth movement at days 7 and 14 but did not show any difference in alveolar bone change or root resorption.
Collapse
|
35
|
Yi J, Xiao J, Li Y, Li X, Zhao Z. External apical root resorption in non-extraction cases after clear aligner therapy or fixed orthodontic treatment. J Dent Sci 2018; 13:48-53. [PMID: 30895094 PMCID: PMC6388840 DOI: 10.1016/j.jds.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/17/2017] [Indexed: 02/05/2023] Open
Abstract
Background/purpose The application of removable aligner in orthodontic treatment has increased rapidly in recent years, while its effects on root resorption remains unclear. The aim of this study was to comparatively evaluate the amount of external apical root resorption (EARR) in non-extraction patients receiving clear aligner therapy (CAT) or fixed orthodontic treatment (FOT). Materials and methods Eighty non-extraction patients treated with CAT or FOT exclusively were evaluated retrospectively. Panoramic radiographs were used to measure the length of crowns and roots of the incisors before and after treatment. The amount of EARR was determined by the relative change of root-crown ratio and compared between the two groups. The potential predictive factors of EARR were investigated using spearman correlation analysis. Results The overall EARR in the CAT patients was significantly less than the FOT. Similar results were observed in maxillary central incisors, maxillary lateral incisors, mandibular central incisors and mandibular lateral incisors. The duration of treatment positively correlated with the amount of EARR in both modalities. Gender, age, skeletal pattern or degree of malocclusion did not affect the occurrence of EARR. Conclusion Clear aligner therapy may have a superiority of reducing external apical root resorption compared to fixed orthodontic treatment in non-extraction patients.
Collapse
Affiliation(s)
- Jianru Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiani Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Barros SE, Janson G, Chiqueto K. Authors' response. Am J Orthod Dentofacial Orthop 2017; 152:14-15. [PMID: 28651762 DOI: 10.1016/j.ajodo.2017.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
|
37
|
Kondo T, Hotokezaka H, Hamanaka R, Hashimoto M, Nakano-Tajima T, Arita K, Kurohama T, Ino A, Tominaga JY, Yoshida N. Types of tooth movement, bodily or tipping, do not affect the displacement of the tooth's center of resistance but do affect the alveolar bone resorption. Angle Orthod 2017; 87:563-569. [PMID: 28206811 DOI: 10.2319/110416-794.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate how types of tooth movement, bodily or tipping, influence the displacement of the center of resistance in teeth and alveolar bone resorption. MATERIALS AND METHODS Ten-week-old female Wistar rats were divided into eight groups of different factors, as follows: type of movement (bodily and tipping) and force magnitude (10, 25, 50, and 100 cN). The maxillary left first molars were moved mesially with nickel-titanium coil springs for 28 days. Micro-computed tomography (micro-CT) images were taken before and after tooth movement. The position of the center of resistance was determined by using finite element models constructed from the micro-CT image. The displacement of the center of resistance and the volume of alveolar bone resorption were measured. RESULTS The displacement of the center of resistance showed no significant difference between the bodily and tipping groups. The displacements of the center of resistance were increased with force magnitude at 10 and 25 cN, whereas they were not further increased at 50 and 100 cN. On the other hand, cervical alveolar bone resorption was significantly greater in the tipping group than in the bodily group. CONCLUSIONS Displacement of the center of resistance was not influenced by the types of tooth movement. However, volume of cervical alveolar bone resorption was greater in the tipping movement group than in the bodily movement group.
Collapse
|
38
|
Alikhani M, Alyami B, Lee IS, Almoammar S, Vongthongleur T, Alikhani M, Alansari S, Sangsuwon C, Chou MY, Khoo E, Boskey A, Teixeira CC. Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod Craniofac Res 2016; 18 Suppl 1:8-17. [PMID: 25865529 DOI: 10.1111/ocr.12090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2014] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Investigate the expression and activity of inflammatory markers in response to different magnitudes of orthodontic forces and correlate this response with other molecular and cellular events during orthodontic tooth movement. SETTING AND SAMPLE POPULATION CTOR Laboratory; 245 Sprague Dawley male rats. METHODS AND MATERIALS Control, sham, and 5 different experimental groups received different magnitudes of force on the right maxillary first molar using a coil spring. In the sham group, the spring was not activated. Control group did not receive any appliance. At days 1, 3, 7, 14, and 28, the maxillae were collected for RNA and protein analysis, immunohistochemistry, and micro-CT. RESULTS There was a linear relation between the force and the level of cytokine expression at lower magnitudes of force. Higher magnitudes of force did not increase the expression of cytokines. Activity of CCL2, CCL5, IL-1, TNF-α, RANKL, and number of osteoclasts reached a saturation point in response to higher magnitudes of force, with unchanged rate of tooth movement. CONCLUSION After a certain magnitude of force, there is a saturation in the biological response, and higher forces do not increase inflammatory markers, osteoclasts, nor the amount of tooth movement. Therefore, higher forces to accelerate the rate of tooth movement are not justified.
Collapse
Affiliation(s)
- M Alikhani
- Consortium for Translational Orthodontic Research, New York University College of Dentistry, New York, NY, USA; Department of Orthodontics, New York University College of Dentistry, New York, NY, USA; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4864195. [PMID: 27119080 PMCID: PMC4828521 DOI: 10.1155/2016/4864195] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
Collapse
|
40
|
Murphy C, Kalajzic Z, Chandhoke T, Utreja A, Nanda R, Uribe F. The effect of corticision on root resorption with heavy and light forces. Angle Orthod 2016; 86:17-23. [PMID: 25830710 PMCID: PMC8603954 DOI: 10.2319/112514-843.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/01/2015] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE To investigate the association between corticision and different force magnitudes with the amount of root resorption. METHODS Forty-four male Wistar rats (7 week old) were evaluated after an orthodontic spring delivering either 10 or 100 g was placed on the left maxillary first molars to move molars mesially. Experimental rats were divided into four groups, with 11 animals in each group: (1) LF, no corticision and 10 g of orthodontic force; (2) LFC, corticision and 10 g of force; (3) HF, no corticision and 100 g of force; and (4) HFC, corticision and 100 g of force. Contralateral sides were used as unloaded controls. The total duration of the experimental period was 14 days. Two-dimensional (histomorphometric) and three-dimensional (volumetric, micro-focus X-ray computed tomography [microCT]) analysis of root craters were performed on maxillary first molars. RESULTS Histomorphometric and microCT analysis revealed a significant amount of resorptive areas in the experimental groups when compared to unloaded controls. However, no significant difference was detected in the amount of resorption among the four experimental groups. CONCLUSIONS At day 14, neither the amount of force nor the cortical incision caused significant effect on root resorption that was registered by histomorphometric or microCT analysis.
Collapse
Affiliation(s)
| | - Zana Kalajzic
- Research Fellow, Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, Conn
| | - Taranpreet Chandhoke
- Assistant Professor, Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, Conn
| | - Achint Utreja
- Assistant Professor, Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Ind
| | - Ravindra Nanda
- Professor and Department Chair, Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, Conn
| | - Flavio Uribe
- Associate Professor, Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, Conn
| |
Collapse
|
41
|
LAI W, MIDORIKAWA Y, KANNO Z, TAKEMURA H, SUGA K, SOGA K, ONO T, UO M. Development and modification of a device for three-dimensional measurement of orthodontic force system: The V-bend system re-visited. Dent Mater J 2016; 35:908-917. [DOI: 10.4012/dmj.2016-118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- WeiJen LAI
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yoshiyuki MIDORIKAWA
- Department of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science
| | - Zuisei KANNO
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hiroshi TAKEMURA
- Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science
| | - Kazuhiro SUGA
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, SUWA
| | - Kohei SOGA
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Takashi ONO
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Motohiro UO
- Department of Advanced Biomaterials, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|