1
|
Nagao M, Asai A, Eliasson L, Oikawa S. Selectively bred rodent models for studying the etiology of type 2 diabetes: Goto-Kakizaki rats and Oikawa-Nagao mice. Endocr J 2023; 70:19-30. [PMID: 36477370 DOI: 10.1507/endocrj.ej22-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a polygenic disease and studies to understand the etiology of the disease have required selectively bred animal models with polygenic background. In this review, we present two models; the Goto-Kakizaki (GK) rat and the Oikawa-Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mouse. The GK rat was developed by continuous selective breeding for glucose tolerance from the outbred Wistar rat around 50 years ago. The main cause of spontaneous hyperglycemia in this model is insulin secretion deficiency from pancreatic β-cells and mild insulin resistance in insulin target organs. A disadvantage of the GK rat is that environmental factors have not been considered in the selective breeding. Hence, the GK rat may not be suitable for elucidating predisposition to diabetes under certain environmental conditions, such as a high-fat diet. Therefore, we recently established two mouse lines with different susceptibilities to diet-induced diabetes, which are prone and resistant to the development of diabetes, designated as the ON-DP and ON-DR mouse, respectively. The two ON mouse lines were established by continuous selective breeding for inferior and superior glucose tolerance after high-fat diet feeding in hybrid mice of three inbred strains. Studies of phenotypic differences between ON-DP and ON-DR mice and their underlying molecular mechanisms will shed light on predisposing factors for the development of T2D in the modern obesogenic environment. This review summarizes the background and the phenotypic differences and similarities of GK rats and ON mice and highlights the advantages of using selectively bred rodent models in diabetes research.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö 214 28, Sweden
- Clincal Research Centre (CRC), Skåne University Hospital(SUS), Malmö 214 28, Sweden
| | - Akira Asai
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö 214 28, Sweden
- Clincal Research Centre (CRC), Skåne University Hospital(SUS), Malmö 214 28, Sweden
| | - Shinichi Oikawa
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
2
|
Nagao M, Esguerra JLS, Wendt A, Asai A, Sugihara H, Oikawa S, Eliasson L. Selectively Bred Diabetes Models: GK Rats, NSY Mice, and ON Mice. Methods Mol Biol 2020; 2128:25-54. [PMID: 32180184 DOI: 10.1007/978-1-0716-0385-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The polygenic background of selectively bred diabetes models mimics the etiology of type 2 diabetes. So far, three different rodent models (Goto-Kakizaki rats, Nagoya-Shibata-Yasuda mice, and Oikawa-Nagao mice) have been established in the diabetes research field by continuous selective breeding for glucose tolerance from outbred rodent stocks. The origin of hyperglycemia in these rodents is mainly insulin secretion deficiency from the pancreatic β-cells and mild insulin resistance in insulin target organs. In this chapter, we summarize backgrounds and phenotypes of these rodent models to highlight their importance in diabetes research. Then, we introduce experimental methodologies to evaluate β-cell exocytosis as a putative common defect observed in these rodent models.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Exocytosis
- Gene Expression Profiling/methods
- Glucose Intolerance
- Insulin Resistance/physiology
- Insulin Secretion/physiology
- Insulin-Secreting Cells/chemistry
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Mice
- Mice, Inbred C3H
- Patch-Clamp Techniques/methods
- Phenotype
- Rats
- Rats, Wistar
- Selective Breeding/genetics
Collapse
Affiliation(s)
- Mototsugu Nagao
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden.
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Akira Asai
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinichi Oikawa
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Diabetes and Lifestyle-related Disease Center, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden.
| |
Collapse
|
3
|
Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, Hirabara SM, Curi R, Alba-Loureiro TC. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 Diabetes mellitus? PLoS One 2017; 12:e0189622. [PMID: 29220408 PMCID: PMC5722336 DOI: 10.1371/journal.pone.0189622] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn't present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of this study, we may conclude that only GK rats shown to be a reliable model to study T2DM.
Collapse
Affiliation(s)
| | - Ana Carolina Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Joice Naiara Bertaglia Pereira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, São Paulo, Brazil
| | - Jorge Mancini Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, São Paulo, Brazil
| | | |
Collapse
|
4
|
GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci Rep 2017; 7:2661. [PMID: 28572610 PMCID: PMC5454020 DOI: 10.1038/s41598-017-02838-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic β-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in β-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 β-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of β-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1α) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in β-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated β-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression.
Collapse
|
5
|
Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, Wollheim CB, Eliasson L, Esguerra JLS. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep 2017; 7:44986. [PMID: 28332581 PMCID: PMC5362944 DOI: 10.1038/srep44986] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs have emerged as important players of gene regulation with significant impact in diverse disease processes. In type-2 diabetes, in which impaired insulin secretion is a major factor in disease progression, dysregulated microRNA expression in the insulin-secreting pancreatic beta cell has been widely-implicated. Here, we show that miR-130a-3p, miR-130b-3p, and miR-152-3p levels are elevated in the pancreatic islets of hyperglycaemic donors, corroborating previous findings about their upregulation in the islets of type-2 diabetes model Goto-Kakizaki rats. We demonstrated negative regulatory effects of the three microRNAs on pyruvate dehydrogenase E1 alpha (PDHA1) and on glucokinase (GCK) proteins, which are both involved in ATP production. Consequently, we found both proteins to be downregulated in the Goto-Kakizaki rat islets, while GCK mRNA expression showed reduced trend in the islets of type-2 diabetes donors. Overexpression of any of the three microRNAs in the insulin-secreting INS-1 832/13 cell line resulted in altered dynamics of intracellular ATP/ADP ratio ultimately perturbing fundamental ATP-requiring beta cell processes such as glucose-stimulated insulin secretion, insulin biosynthesis and processing. The data further strengthen the wide-ranging influence of microRNAs in pancreatic beta cell function, and hence their potential as therapeutic targets in type-2 diabetes.
Collapse
Affiliation(s)
- Jones K Ofori
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Vishal A Salunkhe
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Annika Bagge
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Neelanjan Vishnu
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Mototsugu Nagao
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Hindrik Mulder
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Claes B Wollheim
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| |
Collapse
|
6
|
Petri V, Hayman GT, Tutaj M, Smith JR, Laulederkind S, Wang SJ, Nigam R, De Pons J, Shimoyama M, Dwinell MR. Disease, Models, Variants and Altered Pathways-Journeying RGD Through the Magnifying Glass. Comput Struct Biotechnol J 2015; 14:35-48. [PMID: 27602200 PMCID: PMC4700298 DOI: 10.1016/j.csbj.2015.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the pathogenesis of disease is instrumental in delineating its progression mechanisms and for envisioning ways to counteract it. In the process, animal models represent invaluable tools for identifying disease-related loci and their genetic components. Amongst them, the laboratory rat is used extensively in the study of many conditions and disorders. The Rat Genome Database (RGD—http://rgd.mcw.edu) has been established to house rat genetic, genomic and phenotypic data. Since its inception, it has continually expanded the depth and breadth of its content. Currently, in addition to rat genes, QTLs and strains, RGD houses mouse and human genes and QTLs and offers pertinent associated data, acquired through manual literature curation and imported via pipelines. A collection of controlled vocabularies and ontologies is employed for the standardized extraction and provision of biological data. The vocabularies/ontologies allow the capture of disease and phenotype associations of rat strains and QTLs, as well as disease and pathway associations of rat, human and mouse genes. A suite of tools enables the retrieval, manipulation, viewing and analysis of data. Genes associated with particular conditions or with altered networks underlying disease pathways can be retrieved. Genetic variants in humans or in sequenced rat strains can be searched and compared. Lists of rat strains and species-specific genes and QTLs can be generated for selected ontology terms and then analyzed, downloaded or sent to other tools. From many entry points, data can be accessed and results retrieved. To illustrate, diabetes is used as a case study to initiate and embark upon an exploratory journey.
Collapse
Affiliation(s)
- Victoria Petri
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - G Thomas Hayman
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Marek Tutaj
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Jennifer R Smith
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Stan Laulederkind
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Shur-Jen Wang
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Rajni Nigam
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Jeff De Pons
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Mary Shimoyama
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| | - Melinda R Dwinell
- Human and Molecular Genetics Center, Medical College of Wisconsin, USA
| |
Collapse
|
7
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
8
|
Bach AG, Mühlbauer E, Peschke E. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats. Endocrinology 2010; 151:2483-93. [PMID: 20371702 DOI: 10.1210/en.2009-1299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A decrease in the nighttime release of the pineal hormone melatonin is associated with aging and chronic diseases in animals an humans. Melatonin has a protective role in type 2 diabetes; however, its synthesis itself is affected in the disease. The aim of this study was to detect crucially impaired steps in the pineal melatonin synthesis of type 2 diabetic Goto-Kakizaki (GK) rats. Therefore, plasma melatonin concentrations and the pineal content of melatonin and its precursors (tryptophan, 5-hydroxytryptophan, serotonin, and N-acetylserotonin) were quantified in GK rats compared with Wistar rats (each group 8 and 50 wk old) in a diurnal manner (four animals per group and per time point). Additionally, the expression of pineal adrenoceptor subtype mRNA was investigated. We found that in diabetic GK rats, 1) inhibitory alpha-2-adrenoceptors are significantly more strongly expressed than in Wistar rats, 2) the formation of 5-hydroxytryptophan is crucially impaired, and 3) the pineal gland protein content is significantly reduced compared with that in Wistar rats. This is the first time that melatonin synthesis is examined in a type 2 diabetic rat model in a diurnal manner. The present data unveil several reasons for a reduced melatonin secretion in diabetic animals and present an important link in the interaction between melatonin and insulin.
Collapse
Affiliation(s)
- Andreas Gunter Bach
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06097 Halle/Saale, Germany.
| | | | | |
Collapse
|
9
|
Portha B, Lacraz G, Chavey A, Figeac F, Fradet M, Tourrel-Cuzin C, Homo-Delarche F, Giroix MH, Bailbé D, Gangnerau MN, Movassat J. Islet structure and function in the GK rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:479-500. [PMID: 20217511 DOI: 10.1007/978-90-481-3271-3_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of beta-cell secretory dysfunction and/or decreased beta-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK islet abnormalities so far identified is proposed in this perspective. The pathogenesis of defective beta-cell number and function in the GK model is also discussed. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (i) several susceptibility loci containing genes responsible for some diabetic traits (distinct loci encoding impairment of beta-cell metabolism and insulin exocytosis, but no quantitative trait locus for decreased beta-cell mass); (ii) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas (decreased beta-cell neogenesis and proliferation) transmitted over generations; and (iii) loss of beta-cell differentiation related to chronic exposure to hyperglycaemia/hyperlipidaemia, islet inflammation, islet oxidative stress, islet fibrosis and perturbed islet vasculature.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE, Unité BFA, Université Paris-Diderot et CNRS EAC4413, F - 75205 Paris Cedex13, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, Li DQ, Nagaraj V, Reinbothe TM, Tuncel J, Eliasson L, Groop L, Rorsman P, Salehi A, Lyssenko V, Luthman H, Renström E. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 2009; 327:217-20. [PMID: 19965390 DOI: 10.1126/science.1176827] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced beta cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.
Collapse
|
11
|
Wallis RH, Collins SC, Kaisaki PJ, Argoud K, Wilder SP, Wallace KJ, Ria M, Ktorza A, Rorsman P, Bihoreau MT, Gauguier D. Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome. PLoS One 2008; 3:e2962. [PMID: 18698428 PMCID: PMC2500170 DOI: 10.1371/journal.pone.0002962] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 07/24/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Complex etiology and pathogenesis of pathophysiological components of the cardio-metabolic syndrome have been demonstrated in humans and animal models. METHODOLOGY/PRINCIPAL FINDINGS We have generated extensive physiological, genetic and genome-wide gene expression profiles in a congenic strain of the spontaneously diabetic Goto-Kakizaki (GK) rat containing a large region (110 cM, 170 Mb) of rat chromosome 1 (RNO1), which covers diabetes and obesity quantitative trait loci (QTL), introgressed onto the genetic background of the normoglycaemic Brown Norway (BN) strain. This novel disease model, which by the length of the congenic region closely mirrors the situation of a chromosome substitution strain, exhibits a wide range of abnormalities directly relevant to components of the cardio-metabolic syndrome and diabetes complications, including hyperglycaemia, hyperinsulinaemia, enhanced insulin secretion both in vivo and in vitro, insulin resistance, hypertriglyceridemia and altered pancreatic and renal histological structures. Gene transcription data in kidney, liver, skeletal muscle and white adipose tissue indicate that a disproportionately high number (43-83%) of genes differentially expressed between congenic and BN rats map to the GK genomic interval targeted in the congenic strain, which represents less than 5% of the total length of the rat genome. Genotype analysis of single nucleotide polymorphisms (SNPs) in strains genetically related to the GK highlights clusters of conserved and strain-specific variants in RNO1 that can assist the identification of naturally occurring variants isolated in diabetic and hypertensive strains when different phenotype selection procedures were applied. CONCLUSIONS Our results emphasize the importance of rat congenic models for defining the impact of genetic variants in well-characterised QTL regions on in vivo pathophysiological features and cis-/trans- regulation of gene expression. The congenic strain reported here provides a novel and sustainable model for investigating the pathogenesis and genetic basis of risks factors for the cardio-metabolic syndrome.
Collapse
Affiliation(s)
- Robert H. Wallis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephan C. Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Pamela J. Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karène Argoud
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Steven P. Wilder
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karin J. Wallace
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Massimiliano Ria
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alain Ktorza
- Laboratory of Pathophysiology of Nutrition, CNRS UMR 7059, University of Paris 7, Paris, France
- Servier International Research Institute, Courbevoie, France
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Lyssenko V. The transcription factor 7-like 2 gene and increased risk of type 2 diabetes: an update. Curr Opin Clin Nutr Metab Care 2008; 11:385-92. [PMID: 18541996 DOI: 10.1097/mco.0b013e328304d970] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a comprehensive evaluation of the most important type 2 diabetes gene to date, transcription factor 7 like-2. RECENT FINDINGS An important step to find genetic causes of type 2 diabetes in 2006 was the identification of the fact that variants in the gene encoding transcription factor 7 like-2 reproducibly increase susceptibility to type 2 diabetes in almost all populations studied. This gene has since then emerged as the most important type 2 diabetes gene. Genetic variants in transcription factor 7 like-2 confer a strong risk of type 2 diabetes possibly mediated by altering expression of transcription factor 7 like-2 in pancreatic islets. Risk variants in the transcription factor 7 like-2 influence insulin secretions both in vitro and in vivo. The risk T allele of this single nucleotide polymorphism also seems to have effects on the enteroinsular axis and the relationship between the incretin hormone glucose-dependent insulinotropic peptide and its target hormones, glucagon and insulin. Given transcription factor 7 like-2s' central role in the Wnt signaling pathway, it would be important to define whether the variant is associated with increased or decreased Wnt signaling. SUMMARY The fact that transcription factor 7 like-2 is by far the strongest type 2 diabetes susceptibility gene to date emphasizes the importance of exploring the potential of manipulating this pathway in future treatment of the disease.
Collapse
Affiliation(s)
- Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmoe, Sweden.
| |
Collapse
|
13
|
Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjögren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del Prato S, Groop L. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007; 117:2155-63. [PMID: 17671651 PMCID: PMC1934596 DOI: 10.1172/jci30706] [Citation(s) in RCA: 559] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 05/22/2007] [Indexed: 12/11/2022] Open
Abstract
Genetic variants in the gene encoding for transcription factor-7-like 2 (TCF7L2) have been associated with type 2 diabetes (T2D) and impaired beta cell function, but the mechanisms have remained unknown. We therefore studied prospectively the ability of common variants in TCF7L2 to predict future T2D and explored the mechanisms by which they would do this. Scandinavian subjects followed for up to 22 years were genotyped for 3 SNPs (rs7903146, rs12255372, and rs10885406) in TCF7L2, and a subset of them underwent extensive metabolic studies. Expression of TCF7L2 was related to genotype and metabolic parameters in human islets. The CT/TT genotypes of SNP rs7903146 strongly predicted future T2D in 2 independent cohorts (Swedish and Finnish). The risk T allele was associated with impaired insulin secretion, incretin effects, and enhanced rate of hepatic glucose production. TCF7L2 expression in human islets was increased 5-fold in T2D, particularly in carriers of the TT genotype. Overexpression of TCF7L2 in human islets reduced glucose-stimulated insulin secretion. In conclusion, the increased risk of T2D conferred by variants in TCF7L2 involves the enteroinsular axis, enhanced expression of the gene in islets, and impaired insulin secretion.
Collapse
Affiliation(s)
- Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, and Lund University Diabetes Center, Lund University, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|