1
|
Dabas J, Shunmukha Priya S, Alawani A, Budhrani P. What could be the reasons for not losing weight even after following a weight loss program? JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:37. [PMID: 38429842 PMCID: PMC10908186 DOI: 10.1186/s41043-024-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/28/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Approximately four million people worldwide die annually because of obesity. Weight loss is commonly recommended as a first-line therapy in overweight and obese patients. Although many individuals attempt to lose weight, not everyone achieves optimal success. Few studies point out that weight loss eventually slows down, stagnates or reverses in 85% of the cases. RESEARCH QUESTION What could be the reasons for not losing weight even after following a weight loss program? METHODS A scoping review of the literature was performed using weight loss-related search terms such as 'Obesity,' 'Overweight,' 'Lifestyle,' 'weight loss,' 'Basal Metabolism,' 'physical activity,' 'adherence,' 'energy balance,' 'Sleep' and 'adaptations. The search involved reference tracking and database and web searches (PUBMED, Science Direct, Elsevier, Web of Science and Google Scholar). Original articles and review papers on weight loss involving human participants and adults aged > 18 years were selected. Approximately 231 articles were reviewed, and 185 were included based on the inclusion criteria. DESIGN Scoping review. RESULTS In this review, the factors associated with not losing weight have broadly been divided into five categories. Studies highlighting each subfactor were critically reviewed and discussed. A wide degree of interindividual variability in weight loss is common in studies even after controlling for variables such as adherence, sex, physical activity and baseline weight. In addition to these variables, variations in factors such as previous weight loss attempts, sleep habits, meal timings and medications can play a crucial role in upregulating or downregulating the association between energy deficit and weight loss results. CONCLUSION This review identifies and clarifies the role of several factors that may hinder weight loss after the exploration of existing evidence. Judging the effectiveness of respective lifestyle interventions by simply observing the 'general behavior of the groups' is not always applicable in clinical practice. Each individual must be monitored and advised as per their requirements and challenges.
Collapse
Affiliation(s)
- Jyoti Dabas
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India
| | - S Shunmukha Priya
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India.
| | - Akshay Alawani
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India
| | - Praveen Budhrani
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India
| |
Collapse
|
2
|
Bandesh K, Traurig M, Chen P, Hsueh WC, Hanson RL, Piaggi P, Baier LJ. Identification and characterization of the long non-coding RNA NFIA-AS2 as a novel locus for body mass index in American Indians. Int J Obes (Lond) 2023; 47:434-442. [PMID: 36806387 DOI: 10.1038/s41366-023-01278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Genome-wide association studies have shown that body mass index (BMI), an estimate of obesity, is highly polygenic. Individual variants typically have small effect sizes, making it challenging to identify unique loci in under-represented ethnic groups which lack statistical power due to their small sample size. Yet obesity is a major health disparity and is particularly prevalent in southwestern American Indians. Here, we identify and characterize a new locus for BMI that was detected by analyzing moderate associations with BMI obtained in a population-based sample of southwestern American Indians together with the well-powered GIANT dataset. METHODS Genotypes for 10.5 million variants were tested for association with BMI in 5870 American Indians and 2600 variants that showed an association P < 10-3 in the American Indian sample were combined in a meta-analysis with the BMI data reported in GIANT (N = 240,608). The newly identified gene, NFIA-AS2 was functionally characterized, and the impact of its lead associated variant rs1777538 was studied both in-silico and in-vitro. RESULTS Rs1777538 (T/C; C allele frequency = 0.16 in American Indians and 0.04 in GIANT, meta-analysis P = 5.0 × 10-7) exhibited a large effect in American Indians (1 kg/m2 decrease in BMI per copy of C allele). NFIA-AS2 was found to be a nuclear localized long non-coding RNA expressed in tissues pertinent to human obesity. Analysis of this variant in human brown preadipocytes showed that NFIA-AS2 transcripts carrying the C allele had increased RNA degradation compared to the T allele transcripts (half-lives = 9 h, 13 h respectively). During brown adipogenesis, NFIA-AS2 featured a stage-specific regulation of nearby gene expression where rs1777538 demonstrated an allelic difference in regulation in the mature adipocytes (the strongest difference was observed for L1TD1, P = 0.007). CONCLUSION Our findings support a role for NFIA-AS2 in regulating pathways that impact BMI.
Collapse
Affiliation(s)
- Khushdeep Bandesh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA
| | - Peng Chen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85004, USA.
| |
Collapse
|
3
|
Abawi O, Koster EC, Welling MS, Boeters SC, van Rossum EFC, van Haelst MM, van der Voorn B, de Groot CJ, van den Akker ELT. Resting Energy Expenditure and Body Composition in Children and Adolescents With Genetic, Hypothalamic, Medication-Induced or Multifactorial Severe Obesity. Front Endocrinol (Lausanne) 2022; 13:862817. [PMID: 35898454 PMCID: PMC9309560 DOI: 10.3389/fendo.2022.862817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pediatric obesity is a multifactorial disease which can be caused by underlying medical disorders arising from disruptions in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure. Aim To investigate and compare resting energy expenditure (REE) and body composition characteristics of children and adolescents with severe obesity with or without underlying medical causes. Methods This prospective observational study included pediatric patients who underwent an extensive diagnostic workup in our academic centre that evaluated endocrine, non-syndromic and syndromic genetic, hypothalamic, and medication-induced causes of obesity. REE was assessed by indirect calorimetry; body composition by air displacement plethysmography. The ratio between measured REE (mREE) and predicted REE (Schofield equations), REE%, was calculated, with decreased mREE defined as REE% ≤90% and elevated mREE ≥110%. Additionally, the influence of fat-free-mass (FFM) on mREE was evaluated using multiple linear regression. Results We included 292 patients (146 [50%] with body composition measurements), of which 218 (75%) patients had multifactorial obesity and 74 (25%) an underlying medical cause: non-syndromic and syndromic genetic (n= 29 and 28, respectively), hypothalamic (n= 10), and medication-induced (n= 7) obesity. Mean age was 10.8 ± 4.3 years, 59% were female, mean BMI SDS was 3.8 ± 1.1, indicating severe obesity. Mean REE% was higher in children with non-syndromic genetic obesity (107.4% ± 12.7) and lower in children with hypothalamic obesity (87.6% ± 14.2) compared to multifactorial obesity (100.5% ± 12.6, both p<0.01). In 9 children with pseudohypoparathyroidism type 1a, mean REE% was similar (100.4 ± 5.1). Across all patients, mREE was decreased in 60 (21%) patients and elevated in 69 (24%) patients. After adjustment for FFM, mREE did not differ between patients within each of the subgroups of underlying medical causes compared to multifactorial obesity (all p>0.05). Conclusions In this cohort of children with severe obesity due to various etiologies, large inter-individual differences in mREE were found. Consistent with previous studies, almost half of patients had decreased or elevated mREE. This knowledge is important for patient-tailored treatment, e.g. personalized dietary and physical activity interventions and consideration of pharmacotherapy affecting central energy expenditure regulation in children with decreased mREE.
Collapse
Affiliation(s)
- Ozair Abawi
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Emma C. Koster
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Dietetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mila S. Welling
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Internal Medicine, div. of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sanne C.M. Boeters
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Dietetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisabeth F. C. van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Internal Medicine, div. of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mieke M. van Haelst
- Dept. of Human Genetics, Amsterdam University Medical Center, Location AMC, University of Amsterdam & Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bibian van der Voorn
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Internal Medicine, div. of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cornelis J. de Groot
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Erica L. T. van den Akker
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
4
|
Alizadeh S, Pooyan S, Mirzababaei A, Arghavani H, Hasani H, Mirzaei K. Interaction of MC4R rs17782313 variants and dietary carbohydrate quantity and quality on basal metabolic rate and general and central obesity in overweight/obese women: a cross-sectional study. BMC Endocr Disord 2022; 22:121. [PMID: 35538513 PMCID: PMC9092846 DOI: 10.1186/s12902-022-01023-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent studies have shown that dietary carbohydrate quantity and quality as well as genetic variants may contribute to determining the metabolic rate and general and central obesity. This study aimed to examine interactions between melanocortin 4 receptor gene (MC4R) rs17782313 and dietary carbohydrate intake, glycemic index (GI), and glycemic load (GL) on body mass index (BMI), waist circumferences (WC), basal metabolic rate (BMR), and BMR/kg in overweight/obese women. METHODS A total of 282 Iranian women (BMI ≥ 25) aged 18-56 years were enrolled in this cross-sectional study. All participants were assessed for blood parameters, body composition, BMR, and dietary intake. Dietary carbohydrate intake, GI, and GL were determined using a valid, reliable 147-item food frequency questionnaire. MC4R rs17782313 was genotyped by the restriction fragment length polymorphism (PCR-RFLP) method. RESULTS After adjustment for age and energy intake, significant interactions were observed between carbohydrate intake and MC4R rs17782313 in terms of BMI (P Interaction = 0.007), WC (P Interaction = 0.02), and BMR/kg (P Interaction = 0.003) in this way that higher carbohydrate intake, compared with lower intake, was associated with an increase in BMI and WC for individuals with C allele carriers (TC + CC genotypes), while related to an increase in BMR/kg for those carrying the TT genotype. No significant interaction was found between MC4R rs17782313 and GI and GL on BMI, WC, BMR/kg, and BMR. CONCLUSIONS Interactions between the MC4R rs17782313 and carbohydrate intake probably can have an effect on BMI, WC, and BMR/kg in overweight/obese women.
Collapse
Affiliation(s)
- Shahab Alizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Pooyan
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Hana Arghavani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Hossein Hasani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran.
| |
Collapse
|
5
|
Moazzam-Jazi M, Sadat Zahedi A, Akbarzadeh M, Azizi F, Daneshpour MS. Diverse effect of MC4R risk alleles on obesity-related traits over a lifetime: Evidence from a well-designed cohort study. Gene 2022; 807:145950. [PMID: 34481003 DOI: 10.1016/j.gene.2021.145950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
This population-based longitudinal study is the first investigation that assesses the association of common MC4R SNPs with the obesity-related parameters over time and determines the effect of risk alleles during the three adulthood life periods (early, middle, and late) in a large Iranian cohort, a population with a unique genetic make-up that has been understudied and relatively unexplored. We obtained the genotype of 5370 unrelated adults who participated in the ongoing Tehran Cardiometabolic Genetic Study (TCGS) cohort project for the common MC4R SNPs. Linear regression and linear mixed model analyses were performed to examine the effect of MC4R polymorphisms on maximum BMI and other obesity-related factors over time. We recognized that several SNPs associated with the maximum BMI and the increased BMI, waist circumference, and waist-hip ratio across Iranian adults over a lifetime. Interestingly, we found that rs9954571-A has a yet unreported protective role against obesity-related factors, including BMI, waist circumference, waist-hip ratio, and triglyceride level. Additionally, a survey of the impact of the MC4R risk score throughout the adulthood life periods indicated that the MC4R risk score is influenced both the elevated BMI and waist circumference only during the early adulthood period. Our findings can expand our knowledge about the MC4R genetic variant's contributions to adulthood obesity and highlight the importance of evaluating the genetic components affecting obesity over a lifetime, which could be considered for obesity clinical screening and treatment.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
7
|
Lam BYH, Williamson A, Finer S, Day FR, Tadross JA, Gonçalves Soares A, Wade K, Sweeney P, Bedenbaugh MN, Porter DT, Melvin A, Ellacott KLJ, Lippert RN, Buller S, Rosmaninho-Salgado J, Dowsett GKC, Ridley KE, Xu Z, Cimino I, Rimmington D, Rainbow K, Duckett K, Holmqvist S, Khan A, Dai X, Bochukova EG, Trembath RC, Martin HC, Coll AP, Rowitch DH, Wareham NJ, van Heel DA, Timpson N, Simerly RB, Ong KK, Cone RD, Langenberg C, Perry JRB, Yeo GS, O'Rahilly S. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 2021; 599:436-441. [PMID: 34732894 PMCID: PMC8819628 DOI: 10.1038/s41586-021-04088-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The state of somatic energy stores in metazoans is communicated to the brain, which regulates key aspects of behaviour, growth, nutrient partitioning and development1. The central melanocortin system acts through melanocortin 4 receptor (MC4R) to control appetite, food intake and energy expenditure2. Here we present evidence that MC3R regulates the timing of sexual maturation, the rate of linear growth and the accrual of lean mass, which are all energy-sensitive processes. We found that humans who carry loss-of-function mutations in MC3R, including a rare homozygote individual, have a later onset of puberty. Consistent with previous findings in mice, they also had reduced linear growth, lean mass and circulating levels of IGF1. Mice lacking Mc3r had delayed sexual maturation and an insensitivity of reproductive cycle length to nutritional perturbation. The expression of Mc3r is enriched in hypothalamic neurons that control reproduction and growth, and expression increases during postnatal development in a manner that is consistent with a role in the regulation of sexual maturation. These findings suggest a bifurcating model of nutrient sensing by the central melanocortin pathway with signalling through MC4R controlling the acquisition and retention of calories, whereas signalling through MC3R primarily regulates the disposition of calories into growth, lean mass and the timing of sexual maturation.
Collapse
Affiliation(s)
- B Y H Lam
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - A Williamson
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - S Finer
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - F R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - J A Tadross
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - A Gonçalves Soares
- MRC Integrative Epidemiology Unit and Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - K Wade
- MRC Integrative Epidemiology Unit and Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - P Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - M N Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - D T Porter
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - A Melvin
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K L J Ellacott
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - R N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Potsdam, Germany
| | - S Buller
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - J Rosmaninho-Salgado
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - G K C Dowsett
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K E Ridley
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Z Xu
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - I Cimino
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - D Rimmington
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K Rainbow
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K Duckett
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - S Holmqvist
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - A Khan
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - X Dai
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - E G Bochukova
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - R C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - H C Martin
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - A P Coll
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - D H Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - N J Wareham
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - D A van Heel
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - N Timpson
- MRC Integrative Epidemiology Unit and Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - R B Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - K K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - R D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - C Langenberg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - G S Yeo
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - S O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
8
|
Wade KH, Lam BYH, Melvin A, Pan W, Corbin LJ, Hughes DA, Rainbow K, Chen JH, Duckett K, Liu X, Mokrosiński J, Mörseburg A, Neaves S, Williamson A, Zhang C, Farooqi IS, Yeo GSH, Timpson NJ, O'Rahilly S. Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nat Med 2021; 27:1088-1096. [PMID: 34045736 PMCID: PMC7611835 DOI: 10.1038/s41591-021-01349-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the melanocortin 4 receptor gene (MC4R) are associated with obesity but little is known about the prevalence and impact of such mutations throughout human growth and development. We examined the MC4R coding sequence in 5,724 participants from the Avon Longitudinal Study of Parents and Children, functionally characterized all nonsynonymous MC4R variants and examined their association with anthropometric phenotypes from childhood to early adulthood. The frequency of heterozygous loss-of-function (LoF) mutations in MC4R was ~1 in 337 (0.30%), considerably higher than previous estimates. At age 18 years, mean differences in body weight, body mass index and fat mass between carriers and noncarriers of LoF mutations were 17.76 kg (95% CI 9.41, 26.10), 4.84 kg m-2 (95% CI 2.19, 7.49) and 14.78 kg (95% CI 8.56, 20.99), respectively. MC4R LoF mutations may be more common than previously reported and carriers of such variants may enter adult life with a substantial burden of excess adiposity.
Collapse
Affiliation(s)
- Kaitlin H Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Brian Y H Lam
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Audrey Melvin
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Warren Pan
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Laura J Corbin
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A Hughes
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kara Rainbow
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Jian-Hua Chen
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Katie Duckett
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Xiaoming Liu
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Jacek Mokrosiński
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Alexander Mörseburg
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Sam Neaves
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alice Williamson
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Chen Zhang
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - I Sadaf Farooqi
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Nicholas J Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Piaggi P, Köroğlu Ç, Nair AK, Sutherland J, Muller YL, Kumar P, Hsueh WC, Kobes S, Shuldiner AR, Kim HI, Gosalia N, Van Hout CV, Jones M, Knowler WC, Krakoff J, Hanson RL, Bogardus C, Baier LJ. Exome Sequencing Identifies A Nonsense Variant in DAO Associated With Reduced Energy Expenditure in American Indians. J Clin Endocrinol Metab 2020; 105:5895009. [PMID: 32818236 PMCID: PMC7501742 DOI: 10.1210/clinem/dgaa548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity and energy expenditure (EE) are heritable and genetic variants influencing EE may contribute to the development of obesity. We sought to identify genetic variants that affect EE in American Indians, an ethnic group with high prevalence of obesity. METHODS Whole-exome sequencing was performed in 373 healthy Pima Indians informative for 24-hour EE during energy balance. Genetic association analyses of all high-quality exonic variants (≥5 carriers) was performed, and those predicted to be damaging were prioritized. RESULTS Rs752074397 introduces a premature stop codon (Cys264Ter) in DAO and demonstrated the strongest association for 24-hour EE, where the Ter allele associated with substantially lower 24-hour EE (mean lower by 268 kcal/d) and sleeping EE (by 135 kcal/d). The Ter allele has a frequency = 0.5% in Pima Indians, whereas is extremely rare in most other ethnic groups (frequency < 0.01%). In vitro functional analysis showed reduced protein levels for the truncated form of DAO consistent with increased protein degradation. DAO encodes D-amino acid oxidase, which is involved in dopamine synthesis which might explain its role in modulating EE. CONCLUSION Our results indicate that a nonsense mutation in DAO may influence EE in American Indians. Identification of variants that influence energy metabolism may lead to new pathways to treat human obesity. CLINICAL TRIAL REGISTRATION NUMBER NCT00340132.
Collapse
Affiliation(s)
- Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Correspondence and Reprint Requests: Paolo Piaggi, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 N 16th St., Phoenix, AZ 85016. E-mail: ,
| | - Çiğdem Köroğlu
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Anup K Nair
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Jeff Sutherland
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Pankaj Kumar
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Alan R Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Hye In Kim
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Nehal Gosalia
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Marcus Jones
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| |
Collapse
|
10
|
Neuronal cAMP/PKA Signaling and Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1090:31-48. [PMID: 30390284 DOI: 10.1007/978-981-13-1286-1_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain plays a key role in the regulation of body weight and glucose metabolism. Peripheral signals including hormones, metabolites, and neural afferent signals are received and processed by the brain which in turn elicits proper behavioral and metabolic responses for maintaining energy and glucose homeostasis. The cAMP/protein kinase A (PKA) pathway acts downstream G-protein-coupled receptors (GPCR) to mediate the physiological effects of many hormones and neurotransmitters. Activated PKA phosphorylates various proteins including ion channels, enzymes, and transcription factors and regulates their activity. Recent studies have shown that neuronal cAMP/PKA activity in multiple brain regions are involved in the regulation of feeding, energy expenditure, and glucose homeostasis. In this chapter I summarize recent genetic and pharmacological studies concerning the regulation of body weight and glucose homeostasis by cAMP/PKA signaling in the brain.
Collapse
|
11
|
Kühnen P, Krude H, Biebermann H. Melanocortin-4 Receptor Signalling: Importance for Weight Regulation and Obesity Treatment. Trends Mol Med 2019; 25:136-148. [PMID: 30642682 DOI: 10.1016/j.molmed.2018.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) - embedded in the leptin-melanocortin pathway - is activated by proopiomelanocortin (POMC)-derived neuropeptides such as α- and β-melanocyte-stimulating hormone (MSH) and plays an important role in hypothalamic body-weight regulation. Accordingly, MC4R is a potential drug target to combat obesity. Previous attempts to develop MC4R agonists failed due to ineffectiveness or severe adverse events. Recently, a new generation of MC4R ligands was developed. Specifically, setmelanotide was found to be effective by inducing biased signalling of the MC4R and thereby reducing feelings of hunger and leading to substantial weight loss in patients with POMC or leptin receptor deficiency. This new potential pharmacological treatment option could be beneficial for further groups of obese patients with defects in the leptin-melanocortin signalling pathway.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Heiko Krude
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
12
|
Gao L, Wang L, Yang H, Pan H, Gong F, Zhu H. MC4R Single Nucleotide Polymorphisms Were Associated with Metabolically Healthy and Unhealthy Obesity in Chinese Northern Han Populations. Int J Endocrinol 2019; 2019:4328909. [PMID: 31781208 PMCID: PMC6875380 DOI: 10.1155/2019/4328909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) has been reported to be associated with the risk of obesity, and metabolically unhealthy obese (MUHO) patients tend to have a greater risk of cardiovascular complications than metabolically healthy obese (MHO) patients. Therefore, we aimed to study single nucleotide polymorphisms (SNPs) in the MC4R gene associated with metabolically healthy and unhealthy obesity in Chinese Northern Han populations. A total of 1100 Chinese Northern Han subjects were recruited and divided into four groups according to the criteria of the Adult Treatment Panel-III (ATP-III) and World Health Organization (WHO): MUHO (n = 300), MHO (n = 196), metabolic unhealthy normal weight (MUH-NW) (n = 303), and metabolic healthy normal weight (MH-NW) (n = 301). DNA samples were extracted, and six SNPs of the MC4R gene, including rs2331841, rs656710, rs17782313, rs571312, rs12970134, and rs11872992, were genotyped with the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) method. Among the six SNPs of the MC4R gene, rs2331841 (A/G) was the most significant and could account for 0.9% of obesity etiology. Compared with the normal weight group, rs2331841 of the MC4R gene was associated with obesity (P=0.032). The obesity risk of subjects with the AG genotype in the rs2331841 site was 82% higher than the risk of those with the GG genotype (β = 0.60, OR = 1.82, P=0.030). After adjusting for sex and age, the frequency of the A allele in the rs2331841 site was higher in the MUHO group than in the MH-NW group (27.9% vs. 21.1%, respectively, OR = 1.49, 95% CI 1.14-1.96, P=0.005) and in the MUHO group than in the MHO group (27.9% vs. 22.3%, respectively, OR = 1.39, 95% CI 1.02-1.92, P=0.039). Among the three genotypes of rs2331841, the subjects with the AA/AG genotype had higher diastolic blood pressure (DBP) than those with the GG genotype. Our data first suggest that SNPs in the rs2331841 site of the MC4R gene are closely related to obesity and its related metabolic disorders in Chinese Northern Han populations. The participants with an A allele of rs2331841 had a higher risk of obesity and MUHO than other participants.
Collapse
Affiliation(s)
- Luying Gao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Obesity is a global health crisis with detrimental effects on all organ systems leading to worsening disease state and rising costs of care. Persons with obesity failing lifestyle therapies need to be escalated to appropriate pharmacological treatment modalities, medical devices, and/or bariatric surgery if criteria are met and more aggressive intervention is needed. The progression of severe obesity in the patient population coupled with related co-morbidities necessitates the development of novel therapies for the treatment of obesity. This development is preceded by increased understanding of the underpinnings of energy regulation and neurohormonal pathways involved in energy homeostasis. RECENT FINDINGS Though there are approved anti-obesity drugs available in the USA, newer drugs are now in the pipeline for development given the urgent need. This review focuses on anti-obesity drugs in the pipeline including centrally acting agents (setmelanotide, neuropeptide Y antagonist [velneperit], zonisamide-bupropion [Empatic], cannabinoid type-1 receptor blockers), gut hormones and incretin targets (new glucagon-like-peptide-1 [GLP-1] analogues [semaglutide and oral equivalents], amylin mimetics [davalintide, dual amylin and calcitonin receptor agonists], dual action GLP-1/glucagon receptor agonists [oxyntomodulin], triple agonists [tri-agonist 1706], peptide YY, leptin analogues [combination pramlintide-metreleptin]), and other novel targets (methionine aminopeptidase 2 inhibitor [beloranib], lipase inhibitor [cetilistat], triple monoamine reuptake inhibitor [tesofensine], fibroblast growth factor 21), including anti-obesity vaccines (ghrelin, somatostatin, adenovirus36). With these new drugs in development, anti-obesity therapeutics have potential to vastly expand allowing better treatment options and personalized approach to obesity care.
Collapse
Affiliation(s)
- Gitanjali Srivastava
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine, 720 Harrison Avenue, 8th Floor, Suite 801, Boston, MA, 02118, USA
| | - Caroline Apovian
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine, 720 Harrison Avenue, 8th Floor, Suite 801, Boston, MA, 02118, USA.
| |
Collapse
|
14
|
Specific skeletal muscle sphingolipid compounds in energy expenditure regulation and weight gain in Native Americans of Southwestern heritage. Int J Obes (Lond) 2017; 41:1585-1593. [PMID: 28607453 PMCID: PMC5626585 DOI: 10.1038/ijo.2017.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVES In animal models, a role in the regulation of energy expenditure (EE) has been ascribed to sphingolipids, active components of cell membranes participating in cellular signaling. In humans, it is unknown whether sphingolipids have a role in the modulation of EE and, consequently, influence weight gain. The present study investigated the putative association of EE and weight gain with sphingolipid levels in the human skeletal muscle, a component of fat-free mass (the strongest determinant of EE), in adipose tissue and plasma. SUBJECTS/METHODS Twenty-four-hour EE, sleeping metabolic rate (SMR) and resting metabolic rate (RMR) were assessed in 35 healthy Native Americans of Southwestern heritage (24 male; 30.2±7.73 years). Sphingolipid (ceramide, C; sphingomyelin, SM) concentrations were measured in skeletal muscle tissue, subcutaneous adipose tissue and plasma samples. After 6.68 years (0.26-12.4 years), follow-up weights were determined in 16 participants (4 females). RESULTS Concentrations of C24:0, SM18:1/26:1 and SM18:0/24:1 in muscle were associated with 24-h EE (r=-0.47, P=0.01), SMR (r=-0.59, P=0.0008) and RMR (r=-0.44, P=0.01), respectively. Certain muscle sphingomyelins also predicted weight gain (for example, SM18:1/23:1, r=0.74, P=0.004). For specific muscle sphingomyelins that correlated with weight gain and EE (SM18:1/23:0, SM18:1/23:1 and SMR, r=-0.51, r=-0.41, respectively, all P<0.03; SM18:1/24:2 and RMR, r=-0.36, P=0.03), associations could be reproduced with SMR in adipose tissue (all r<-0.46, all P<0.04), though not in plasma. CONCLUSIONS This study provides preliminary, novel evidence, that specific muscle and adipose tissue sphingolipid compounds are associated with EE and weight gain in Native Americans of Southwestern heritage. Further studies are warranted to investigate whether sphingolipids of different body compartments act in concert to modulate energy balance in humans.
Collapse
|
15
|
Affiliation(s)
- Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Reinhardt M, Thearle MS, Ibrahim M, Hohenadel MG, Bogardus C, Krakoff J, Votruba SB. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction. Diabetes 2015; 64:2859-67. [PMID: 25964395 PMCID: PMC4512223 DOI: 10.2337/db14-1881] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/02/2015] [Indexed: 01/09/2023]
Abstract
Successful weight loss is variable for reasons not fully elucidated. Whether effective weight loss results from smaller reductions in energy expenditure during caloric restriction is not known. We analyzed whether obese individuals with a "thrifty" phenotype, that is, greater reductions in 24-h energy expenditure during fasting and smaller increases with overfeeding, lose less weight during caloric restriction than those with a "spendthrift" phenotype. During a weight-maintaining period, 24-h energy expenditure responses to fasting and 200% overfeeding were measured in a whole-room indirect calorimeter. Volunteers then underwent 6 weeks of 50% caloric restriction. We calculated the daily energy deficit (kilocalories per day) during caloric restriction, incorporating energy intake and waste, energy expenditure, and daily activity. We found that a smaller reduction in 24-h energy expenditure during fasting and a larger response to overfeeding predicted more weight loss over 6 weeks, even after accounting for age, sex, race, and baseline weight, as well as a greater rate of energy deficit accumulation. The success of dietary weight loss efforts is influenced by the energy expenditure response to caloric restriction. Greater decreases in energy expenditure during caloric restriction predict less weight loss, indicating the presence of thrifty and spendthrift phenotypes in obese humans.
Collapse
Affiliation(s)
- Martin Reinhardt
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Marie S Thearle
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Mostafa Ibrahim
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Maximilian G Hohenadel
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Clifton Bogardus
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Susanne B Votruba
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| |
Collapse
|
17
|
Chen KY, Muniyappa R, Abel BS, Mullins KP, Staker P, Brychta RJ, Zhao X, Ring M, Psota TL, Cone RD, Panaro BL, Gottesdiener KM, Van der Ploeg LHT, Reitman ML, Skarulis MC. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J Clin Endocrinol Metab 2015; 100:1639-45. [PMID: 25675384 PMCID: PMC4399297 DOI: 10.1210/jc.2014-4024] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Activation of the melanocortin-4 receptor (MC4R) with the synthetic agonist RM-493 decreases body weight and increases energy expenditure (EE) in nonhuman primates. The effects of MC4R agonists on EE in humans have not been examined to date. OBJECTIVE, DESIGN, AND SETTING In a randomized, double-blind, placebo-controlled, crossover study, we examined the effects of the MC4R agonist RM-493 on resting energy expenditure (REE) in obese subjects in an inpatient setting. STUDY PARTICIPANTS AND METHODS Twelve healthy adults (6 men and 6 women) with body mass index of 35.7 ± 2.9 kg/m(2) (mean ± SD) received RM-493 (1 mg/24 h) or placebo by continuous subcutaneous infusion over 72 hours, followed immediately by crossover to the alternate treatment. All subjects received a weight-maintenance diet (50% carbohydrate, 30% fat, and 20% protein) and performed 30 minutes of standardized exercise daily. Continuous EE was measured on the third treatment day in a room calorimeter, and REE in the fasting state was defined as the mean of 2 30-minute resting periods. RESULTS RM-493 increased REE vs placebo by 6.4% (95% confidence interval, 0.68-13.02%), on average by 111 kcal/24 h (95% confidence interval, 15-207 kcal, P = .03). Total daily EE trended higher, whereas the thermic effect of a test meal and exercise EE did not differ significantly. The 23-hour nonexercise respiratory quotient was lower during RM-493 treatment (0.833 ± 0.021 vs 0.848 ± 0.022, P = .02). No adverse effect on heart rate or blood pressure was observed. CONCLUSIONS Short-term administration of the MC4R agonist RM-493 increases REE and shifts substrate oxidation to fat in obese individuals.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch (K.Y.C., R.M., B.S.A., K.P.M., P.S., R.J.B., X.Z., M.R., T.L.P., M.L.R., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Molecular Physiology and Biophysics (R.D.C., B.L.P.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Rhythm Pharmaceuticals (K.M.G., L.H.T.V.d.P.), Boston, Massachusetts 02116
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 2015; 95:47-82. [PMID: 25540138 PMCID: PMC4281588 DOI: 10.1152/physrev.00007.2014] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) often occur together and affect a growing number of individuals in both the developed and developing worlds. Both are associated with a number of other serious illnesses that lead to increased rates of mortality. There is likely a polygenic mode of inheritance underlying both disorders, but it has become increasingly clear that the pre- and postnatal environments play critical roles in pushing predisposed individuals over the edge into a disease state. This review focuses on the many genetic and environmental variables that interact to cause predisposed individuals to become obese and diabetic. The brain and its interactions with the external and internal environment are a major focus given the prominent role these interactions play in the regulation of energy and glucose homeostasis in health and disease.
Collapse
Affiliation(s)
- Sebastien Bouret
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| | - Barry E Levin
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| | - Susan E Ozanne
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| |
Collapse
|
19
|
Valera B, Sohani Z, Rana A, Poirier P, Anand SS. The ethnoepidemiology of obesity. Can J Cardiol 2014; 31:131-41. [PMID: 25661548 DOI: 10.1016/j.cjca.2014.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of overweight and obesity varies significantly across ethnic groups and among aboriginal people in Canada and appears to be increasing overall in children and youth, which will have significant health consequences in the future. Individual health behaviours, genetic predisposition, and community-level factors all contribute to the high burden of overweight and obesity across communities in Canada. Preliminary studies indicate that individuals who live in neighbourhoods in Canada with increased walkability, fewer fast food outlets, and higher socioeconomic status have lower rates of overweight/obesity when compared with other neighbourhoods. However, more research is required to understand the impact of community level factors on overweight/obesity trends in Canadian ethnic groups, including children and youth, and aboriginal people.
Collapse
Affiliation(s)
- Beatriz Valera
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Zahra Sohani
- Population Genomics Program, Department of Clinical Epidemiology & Biostatistics, Hamilton, Ontario, Canada; Chanchlani Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Rana
- Population Genomics Program, Department of Clinical Epidemiology & Biostatistics, Hamilton, Ontario, Canada; Chanchlani Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada; Faculté de pharmacie de l'Université Laval, Québec, Québec, Canada
| | - Sonia S Anand
- Population Genomics Program, Department of Clinical Epidemiology & Biostatistics, Hamilton, Ontario, Canada; Chanchlani Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
20
|
Common genetic variation in and near the melanocortin 4 receptor gene (MC4R) is associated with body mass index in American Indian adults and children. Hum Genet 2014; 133:1431-41. [PMID: 25103139 PMCID: PMC4185108 DOI: 10.1007/s00439-014-1477-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/01/2014] [Indexed: 01/30/2023]
Abstract
Six rare functional coding mutations were previously identified in melanocortin 4 receptor (MC4R) in 6,760 American Indians. Individuals heterozygous for one of these mutations become obese while young. We now investigate whether common non-coding variation near MC4R also contributes to obesity. Fifty-six tag single-nucleotide polymorphisms (SNPs) were genotyped in 3,229 full-heritage Pima Indians, and nine of these SNPs which showed evidence for association were genotyped in additional 3,852 mixed-heritage American Indians. Associations of SNPs with maximum body mass index (BMI) in adulthood (n = 5,918), BMI z score in childhood (n = 5,350), percent body fat (n = 864), energy expenditure (n = 358) and ad libitum food intake (n = 178) were assessed. Conditional analyses demonstrated that SNPs, rs74861148 and rs483125, were independently associated with BMI in adulthood (β = 0.68 kg/m2 per risk allele, p = 5 × 10−5; β = 0.58 kg/m2, p = 0.002, respectively) and BMI z score in childhood (β = 0.05, p = 0.02; β = 0.07, p = 0.01, respectively). One haplotype (frequency = 0.35) of the G allele at rs74861148 and the A allele at rs483125 provided the strongest evidence for association with adult BMI (β = 0.89 kg/m2, p = 5.5 × 10−7), and was also associated with childhood BMI z score (β = 0.08, p = 0.001). In addition, a promoter SNP rs11872992 was nominally associated with adult BMI (β = 0.61 kg/m2, p = 0.05) and childhood BMI z score (β = 0.11, p = 0.01), where the risk allele also modestly decreased transcription in vitro by 12 % (p = 0.005). This risk allele was further associated with increased percent body fat (β = 2.2 %, p = 0.002), increased food intake (β = 676 kcal/day, p = 0.007) and decreased energy expenditure (β = −53.4 kcal/day, p = 0.054). Common and rare variation in MC4R contributes to obesity in American Indians.
Collapse
|
21
|
Kooijman S, Boon MR, Parlevliet ET, Geerling JJ, van de Pol V, Romijn JA, Havekes LM, Meurs I, Rensen PCN. Inhibition of the central melanocortin system decreases brown adipose tissue activity. J Lipid Res 2014; 55:2022-32. [PMID: 25016380 DOI: 10.1194/jlr.m045989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (-42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (-60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.
Collapse
Affiliation(s)
- Sander Kooijman
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin T Parlevliet
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Janine J Geerling
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Vera van de Pol
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes A Romijn
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Louis M Havekes
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands Netherlands Organization for Applied Scientific Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Illiana Meurs
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Preliminary findings on the influence of FTO rs9939609 and MC4R rs17782313 polymorphisms on resting energy expenditure, leptin and thyrotropin levels in obese non-morbid premenopausal women. J Physiol Biochem 2013; 70:255-62. [PMID: 24307561 DOI: 10.1007/s13105-013-0300-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Given that leptin, ghrelin and thyrotropin play a major role in the regulation of resting energy expenditure (REE) and that the FTO rs9939609 and the MC4R rs17782313 polymorphisms have been proposed to affect energy homeostasis, we hypothesized that both polymorphisms are associated with REE and that these relationships can be mediated by leptin, ghrelin and thyrotropin in obesity. Therefore, the present study aimed to examine the relationships between FTO rs9939609 and the MC4R rs17782313 with REE, leptin, ghrelin and thyrotropin levels in obese women. The study comprised 77 obese (body mass index 34.0 ± 2.8 kg/m(2)) women (age 36.7 ± 7 years). We measured body composition by dual-energy X-ray absorptiometry and REE by indirect calorimetry. We analysed fasting leptin, ghrelin and thyrotropin levels and the ratio of leptin to fat mass was calculated. Genotype distributions of the polymorphisms did not deviate from Hardy-Weinberg expectations (P values >0.2). Women carrying the A allele of the FTO rs9939609 had lower REE (1,580 ± 22 vs. 1,739 ± 35 kcal/day, P < 0.001) and higher leptin to fat mass ratio (1.33 ± 0.05 vs. 1.13 ± 0.08 ng/ml kg, P < 0.05) and thyrotropin levels (1.93 ± 0.10 vs. 1.53 ± 0.16 μU/ml, P < 0.05) regardless of age and body mass index. We found no significant influence of the MC4R rs17782313 on energy metabolism or biochemical variables. Our findings confirm that the A allele of the FTO rs9939609 is associated with lower REE and increased plasma leptin levels. We also found an association between the FTO rs9939609 and thyrotropin, suggesting the possible influence of FTO in the hypothalamic-pituitary-thyroid axis as a potential mechanism of the increased adiposity.
Collapse
|
23
|
Gautron L, Lee CE, Lee S, Elmquist JK. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. J Comp Neurol 2013; 520:3933-48. [PMID: 22592759 DOI: 10.1002/cne.23137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA.
| | | | | | | |
Collapse
|
24
|
Gautron L, Cravo RM, Elmquist JK, Elias CF. Discrete melanocortin-sensitive neuroanatomical pathway linking the ventral premmamillary nucleus to the paraventricular hypothalamus. Neuroscience 2013; 240:70-82. [PMID: 23485805 DOI: 10.1016/j.neuroscience.2013.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/16/2022]
Abstract
The physiological effects of melanocortin-4 receptor (MC4-R) on metabolism have been hypothesized to be mediated individually or collectively by neuronal groups innervating the paraventricular nucleus of the hypothalamus (PVH). The present study was designed to identify MC4-R-expressing neurons that innervate the PVH using retrograde tract tracing techniques in the MC4-R-GFP reporter mice. Our initial mapping identified very limited projections from MC4-R-expressing neurons to the PVH. This included a defined population of MC4-R-positive neurons located in the ventral premmamillary nucleus (PMv). Anterograde tracing experiments confirmed projections from PMv neurons to the medial parvicellular subdivision of the PVH, in close proximity to oxytocin neurons and β-endorphin-containing fibers. Given the known stimulatory effects of leptin and sexual odorants exposure on many PMv neurons, it was expected that MC4-R-expressing neurons in the PMv might be responsive to leptin and activated by odors exposure. Contrary to expectation, MC4-R-GFP neurons in the PMv do not respond to leptin as demonstrated by double labeling for GFP and leptin-induced phosphorylated STAT3. However, we found that Fos expression is induced in a large subset of MC4-R-GFP neurons in the PMv in response to opposite sex odors. Collectively, these results provide evidence for a previous unrecognized role of MC4-R expressed by neurons innervating the PVH that are also sensitive to reproductive cues.
Collapse
Affiliation(s)
- L Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, USA.
| | | | | | | |
Collapse
|
25
|
Steinman J, DeBoer MD. Treatment of cachexia: melanocortin and ghrelin interventions. VITAMINS AND HORMONES 2013; 92:197-242. [PMID: 23601426 DOI: 10.1016/b978-0-12-410473-0.00008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cachexia is a condition typified by wasting of fat and LBM caused by anorexia and further endocrinological modulation of energy stores. Diseases known to cause cachectic symptoms include cancer, chronic kidney disease, and chronic heart failure; these conditions are associated with increased levels of proinflammatory cytokines and increased resting energy expenditure. Early studies have suggested the central melanocortin system as one of the main mediators of the symptoms of cachexia. Pharmacological and genetic antagonism of these pathways attenuates cachectic symptoms in laboratory models; effects have yet to be studied in humans. In addition, ghrelin, an endogenous orexigenic hormone with receptors on melanocortinergic neurons, has been shown to ameliorate symptoms of cachexia, at least in part, by an increase in appetite via melanocortin modulation, in addition to its anticatabolic and anti-inflammatory effects. These effects of ghrelin have been confirmed in multiple types of cachexia in both laboratory and human studies, suggesting a positive future for cachexia treatments.
Collapse
Affiliation(s)
- Jeremy Steinman
- Division of Pediatric Endocrinology, Department of Pediatrics, P.O. Box 800386, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
26
|
Energy expenditure in obese children with pseudohypoparathyroidism type 1a. Int J Obes (Lond) 2012; 37:1147-53. [PMID: 23229731 PMCID: PMC3610772 DOI: 10.1038/ijo.2012.200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/05/2012] [Accepted: 11/08/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT Patients with pseudohypoparathyroidism type 1a (PHP-1a) develop early-onset obesity. The abnormality in energy expenditure and/or energy intake responsible for this weight gain is unknown. OBJECTIVE The aim of this study was to evaluate energy expenditure in children with PHP-1a compared with obese controls. PATIENTS We studied 6 obese females with PHP-1a and 17 obese female controls. Patients were recruited from a single academic center. MEASUREMENTS Resting energy expenditure (REE) and thermogenic effect of a high fat meal were measured using whole room indirect calorimetry. Body composition was assessed using whole body dual energy x-ray absorptiometry. Fasting glucose, insulin, and hemoglobin A1C were measured. RESULTS Children with PHP-1a had decreased REE compared with obese controls (P<0.01). After adjustment for fat-free mass, the PHP-1a group's REE was 346.4 kcals day(-1) less than obese controls (95% CI (-585.5--106.9), P<0.01). The thermogenic effect of food (TEF), expressed as percent increase in postprandial energy expenditure over REE, was lower in PHP-1a patients than obese controls, but did not reach statistical significance (absolute reduction of 5.9%, 95% CI (-12.2-0.3%), P=0.06). CONCLUSIONS Our data indicate that children with PHP-1a have decreased REE compared with the obese controls, and that may contribute to the development of obesity in these children. These patients may also have abnormal diet-induced thermogenesis in response to a high-fat meal. Understanding the causes of obesity in PHP-1a may allow for targeted nutritional or pharmacologic treatments in the future.
Collapse
|
27
|
The effects of short-term overfeeding on energy expenditure and nutrient oxidation in obesity-prone and obesity-resistant individuals. Int J Obes (Lond) 2012; 37:1192-7. [PMID: 23229737 PMCID: PMC3770765 DOI: 10.1038/ijo.2012.202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 11/09/2012] [Indexed: 02/08/2023]
Abstract
Objective The roles that energy expenditure (EE) and nutrient oxidation play in a predisposition for weight gain in humans remains unclear. Subjects We measured EE and respiratory exchange ratio (RER) in non-obese obesity prone (OP; n=22) and obesity resistant (OR; n=30) men and women following a eucaloric diet and after 3 days of overfeeding (1.4x basal energy). Results Twenty four hour EE, adjusted for fat free mass and sex, measured while consuming a eucaloric diet was not different between OP and OR subjects (2367 ± 80 vs. 2285 ± 98 kcals; p=0.53). Following overfeeding, EE increased in both OP and OR (OP: 2506 ± 63.7, p<0.01; OR: 2386 ± 99 kcals, p<0.05). Overfeeding resulted in an increase in 24h RER (OP: 0.857 ± 0.01 to 0.893 ± 0.01, p=0.01; OR: 0.852 ± 0.01 to 0.886 ± 0.01, p=0.005), with no difference between groups in either the eucaloric or overfeeding conditions (p>0.05). Nighttime RER (~10pm-6:30am) did not change with overfeeding in OR (0.823 ± 0.02 vs. 0.837 ± 0.01, p=0.29), but increased significantly in OP subjects (0.798 ± 0.15 to 0.839 ± 0.15, p<0.05), suggesting that fat oxidation during the night was down-regulated to a greater extent in OP subjects following a brief period of overfeeding, as compared to OR subjects who appeared to maintain their usual rate of fat oxidation. Protein oxidation increased significantly in both OP (p<0.001) and OR (p<0.01) with overfeeding, with no differences between OP and OR. Conclusion These results support the idea that overfeeding a mixed diet results in increases in EE and RER, but these increases in EE and RER are likely not responsible for obesity resistance. Adaptive responses to overfeeding that occur during the night may play a role in opposing weight gain.
Collapse
|
28
|
Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism. PLoS One 2012; 7:e41503. [PMID: 22911803 PMCID: PMC3404019 DOI: 10.1371/journal.pone.0041503] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023] Open
Abstract
Rodent experiments have emphasized a role of central fatty acid (FA) species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF) and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT) followed by measurements of 24 hour (24EE) and sleep energy expenditure (SLEEP) as well as respiratory quotient (RQ) in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid) concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16∶1, C18∶1) and very-long-chain saturated (C24∶0, C26∶0) FAs. Conclusions: Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.
Collapse
|
29
|
Thearle MS, Muller YL, Hanson RL, Mullins M, Abdussamad M, Tran J, Knowler WC, Bogardus C, Krakoff J, Baier LJ. Greater impact of melanocortin-4 receptor deficiency on rates of growth and risk of type 2 diabetes during childhood compared with adulthood in Pima Indians. Diabetes 2012; 61:250-7. [PMID: 22106157 PMCID: PMC3237672 DOI: 10.2337/db11-0708] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Features of melanocortin-4 receptor (MC4R) deficiency have been observed to be more pronounced in childhood. Longitudinal data from a population-based study were used to separate the phenotypic effects of MC4R deficiency during childhood and adulthood. The MC4R exon was sequenced in 6,760 individuals of predominantly Pima Indian heritage, and discovered mutations were functionally assessed in vitro. Effects on BMI, height, and slope of BMI change were assessed during childhood (ages 5-20 years) and adulthood (ages 20-45 years). Six mutations affecting MC4R function, including three that may be private to Pima Indians, were found in 159 individuals (2.4%). The slope of BMI increase was greater in individuals carrying an MC4R mutation compared with noncarriers during childhood but not during adulthood. The final adult height obtained was higher in individuals with MC4R deficiency. There was an increased risk for developing type 2 diabetes in individuals with a defective MC4R during childhood and adulthood, but this was only independent of BMI in childhood. The greater rates of body mass accumulation and risk of type 2 diabetes before the age of 20 years in individuals with MC4R deficiency indicate that the effects of these mutations are more apparent during the active growth of childhood.
Collapse
MESH Headings
- Adolescent
- Adult
- Body Mass Index
- Child
- Child Development
- Child, Preschool
- Diabetes Mellitus, Type 2/ethnology
- Diabetes Mellitus, Type 2/genetics
- Female
- Genetic Predisposition to Disease
- Growth and Development/genetics
- Humans
- Indians, North American/genetics
- Male
- Middle Aged
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Risk Factors
- Young Adult
Collapse
Affiliation(s)
- Marie S Thearle
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma L, Hanson RL, Traurig MT, Muller YL, Kaur BP, Perez JM, Meyre D, Fu M, Körner A, Franks PW, Kiess W, Kobes S, Knowler WC, Kovacs P, Froguel P, Shuldiner AR, Bogardus C, Baier LJ. Evaluation of A2BP1 as an obesity gene. Diabetes 2010; 59:2837-45. [PMID: 20724578 PMCID: PMC2963542 DOI: 10.2337/db09-1604] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A genome-wide association study (GWAS) in Pima Indians (n = 413) identified variation in the ataxin-2 binding protein 1 gene (A2BP1) that was associated with percent body fat. On the basis of this association and the obese phenotype of ataxin-2 knockout mice, A2BP1 was genetically and functionally analyzed to assess its potential role in human obesity. RESEARCH DESIGN AND METHODS Variants spanning A2BP1 were genotyped in a population-based sample of 3,234 full-heritage Pima Indians, 2,843 of whom were not part of the initial GWAS study and therefore could serve as a sample to assess replication. Published GWAS data across A2BP1 were additionally analyzed in French adult (n = 1,426) and children case/control subjects (n = 1,392) (Meyre et al. Nat Genet 2009;41:157-159). Selected variants were genotyped in two additional samples of Caucasians (Amish, n = 1,149, and German children case/control subjects, n = 998) and one additional Native American (n = 2,531) sample. Small interfering RNA was used to knockdown A2bp1 message levels in mouse embryonic hypothalamus cells. RESULTS No single variant in A2BP1 was reproducibly associated with obesity across the different populations. However, different variants within intron 1 of A2BP1 were associated with BMI in full-heritage Pima Indians (rs10500331, P = 1.9 × 10(-7)) and obesity in French Caucasian adult (rs4786847, P = 1.9 × 10(-10)) and children (rs8054147, P = 9.2 × 10(-6)) case/control subjects. Reduction of A2bp1 in mouse embryonic hypothalamus cells decreased expression of Atxn2, Insr, and Mc4r. CONCLUSIONS Association analysis suggests that variation in A2BP1 influences obesity, and functional studies suggest that A2BP1 could potentially affect adiposity via the hypothalamic MC4R pathway.
Collapse
Affiliation(s)
- Lijun Ma
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Michael T. Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Yunhua L. Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Bakhshish P. Kaur
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Jessica M. Perez
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - David Meyre
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - Mao Fu
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
| | - Antje Körner
- University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Paul W. Franks
- Clinical Research Center, Malmö General Hospital, Lund University, Malmö, Sweden
| | - Wieland Kiess
- University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - William C. Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Peter Kovacs
- Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
| | - Philippe Froguel
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona
- Corresponding author: Leslie J. Baier,
| |
Collapse
|
31
|
Kung T, Springer J, Doehner W, Anker SD, von Haehling S. Novel treatment approaches to cachexia and sarcopenia: highlights from the 5th Cachexia Conference. Expert Opin Investig Drugs 2010; 19:579-85. [PMID: 20367196 DOI: 10.1517/13543781003724690] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cachexia is an illness that may occur in terminal stages of many chronic illnesses including cancer, chronic heart failure, chronic renal failure or chronic obstructive pulmonary disease. Effective treatments are urgently needed in order to improve the patients' quality of life and their survival. We report highlights from the 5th Cachexia Conference held in December 2009 in Barcelona, Spain. Novel therapeutic approaches shown here include melanocortin-4 receptor antagonists, myostatin inhibition, beta-blockers, IL-6 antagonism synthetic ghrelin and vitamin D.
Collapse
Affiliation(s)
- Thomas Kung
- Applied Cachexia Research, Charité Medical School, Department of Cardiology, Campus Virchow-Klinikum, Augustenburger Platz 1, D - 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
33
|
Abstract
Melanocortin peptides, derived from POMC (pro-opiomelanocortin) are produced in the ARH (arcuate nucleus of the hypothalamus) neurons and the neurons in the commissural NTS (nucleus of the solitary tract) of the brainstem, in anterior and intermediate lobes of the pituitary, skin and a wide range of peripheral tissues, including reproductive organs. A hypothetical model for functional roles of melanocortin receptors in maintaining energy balance was proposed in 1997. Since this time, there has been an extraordinary amount of knowledge gained about POMC-derived peptides in relation to energy homoeostasis. Development of a Pomc-null mouse provided definitive proof that POMC-derived peptides are critical for the regulation of energy homoeostasis. The melanocortin system consists of endogenous agonists and antagonists, five melanocortin receptor subtypes and receptor accessory proteins. The melanocortin system, as is now known, is far more complex than most of us could have imagined in 1997, and, similarly, the importance of this system for regulating energy homoeostasis in the general human population is much greater than we would have predicted. Of the known factors that can cause human obesity, or protect against it, the melanocortin system is by far the most significant. The present review is a discussion of the current understanding of the roles and mechanism of action of POMC, melanocortin receptors and AgRP (agouti-related peptide) in obesity and Type 2 diabetes and how the central and/or peripheral melanocortin systems mediate nutrient, leptin, insulin, gut hormone and cytokine regulation of energy homoeostasis.
Collapse
|
34
|
Das UN. Obesity: genes, brain, gut, and environment. Nutrition 2009; 26:459-73. [PMID: 20022465 DOI: 10.1016/j.nut.2009.09.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 01/04/2023]
Abstract
Obesity, which is assuming alarming proportions, has been attributed to genetic factors, hypothalamic dysfunction, and intestinal gut bacteria and an increase in the consumption of energy-dense food. Obesity predisposes to the development of type 2 diabetes mellitus, hypertension, coronary heart disease, and certain forms of cancer. Recent studies have shown that the intestinal bacteria in obese humans and mice differ from those in lean that could trigger a low-grade systemic inflammation. Consumption of a calorie-dense diet that initiates and perpetuates obesity could be due to failure of homeostatic mechanisms that regulate appetite, food consumption, and energy balance. Hypothalamic factors that regulate energy needs of the body, control appetite and satiety, and gut bacteria that participate in food digestion play a critical role in the onset of obesity. Incretins, cholecystokinin, brain-derived neurotrophic factor, leptin, long-chain fatty acid coenzyme A, endocannabinoids and vagal neurotransmitter acetylcholine play a role in the regulation of energy intake, glucose homeostasis, insulin secretion, and pathobiology of obesity and type 2 diabetes mellitus. Thus, there is a cross-talk among the gut, liver, pancreas, adipose tissue, and hypothalamus. Based on these evidences, it is clear that management of obesity needs a multifactorial approach.
Collapse
|
35
|
DeBoer MD. Update on melanocortin interventions for cachexia: progress toward clinical application. Nutrition 2009; 26:146-51. [PMID: 20004082 DOI: 10.1016/j.nut.2009.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 11/24/2022]
Abstract
Cachexia is a devastating syndrome of body wasting that is associated with multiple common chronic diseases including cancer, chronic kidney disease, and chronic heart failure. These underlying diseases are associated with increased levels of inflammatory cytokines and result in anorexia, increased resting energy expenditure, and loss of fat and lean body mass. Prior experiments have implicated the central melanocortin system in the hypothalamus with the propagation of these symptoms of cachexia. Pharmacologic blockade of this system using melanocortin antagonists causes attenuation of the signs of cachexia in laboratory models. Recent advances in our knowledge of this disease process have involved further elucidation of the pathophysiology of melanocortin activation and demonstration of the efficacy of melanocortin antagonists in new models of cachexia, including cardiac cachexia. In addition, small molecule antagonists of the melanocortin-4 receptor continue to be introduced, including ones with oral bioavailability. These developments generate optimism that melanocortin antagonism will be used to treat humans with disease-associated cachexia. However, to date, human application has remained elusive and it is unclear when we will know whether humans with cachexia would benefit from treatment with these compounds.
Collapse
Affiliation(s)
- Mark Daniel DeBoer
- Division of Pediatric Endocrinology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
36
|
Abstract
Metabolic diseases represent a growing threat to world-wide public health. In general, these disorders result from the interaction of heritable factors with environmental influences. Here, I will focus on two important metabolic disorders, namely type 2 diabetes and obesity, and explore the extent to which human molecular genetic research has illuminated our understanding of their underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
37
|
van Vliet-Ostaptchouk JV, Hofker MH, van der Schouw YT, Wijmenga C, Onland-Moret NC. Genetic variation in the hypothalamic pathways and its role on obesity. Obes Rev 2009; 10:593-609. [PMID: 19712437 DOI: 10.1111/j.1467-789x.2009.00597.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over recent decades, the prevalence of obesity has increased dramatically worldwide. Although this epidemic is mainly attributable to modern (western) lifestyle, multiple twin and adoption studies indicate the significant role of genes in the individual's predisposition to becoming obese. As the hypothalamus plays a central role in controlling body weight, its regulatory circuits may represent a crucial system in the pathogenesis of the disorder. Genetic variations in genes in the hypothalamic pathways may therefore contribute to the susceptibility for obesity in humans and animals. We summarize current knowledge on the physiological role of the hypothalamus in body-weight regulation and review genetic studies on the hypothalamic candidate genes in relation to obesity. Together, data from functional and genetic studies as well as the new, common, obesity loci identified in genome-wide association scans support an important role for the hypothalamic genes in predisposing to obesity. However, findings are still inconclusive for many candidate genes. To improve our understanding of the genetic architecture of common obesity, we suggest that specific obesity phenotypes should be considered and different analytical approaches used. Such studies should consider multiple genes from the same physiological pathways, together with environmental risk factors.
Collapse
Affiliation(s)
- J V van Vliet-Ostaptchouk
- Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center and University of Groningen, Groningen, the Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Müller MJ, Bosy-Westphal A, Heller M. 'Functional' body composition: differentiating between benign and non-benign obesity. F1000 BIOLOGY REPORTS 2009; 1:75. [PMID: 20948613 PMCID: PMC2948251 DOI: 10.3410/b1-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent body composition analyses, together with assessments of insulin resistance, aerobic fitness, and intima-media thickness of the common carotid artery, have shown that metabolically-benign obese subjects have a similar BMI, waist circumference, and subcutaneous abdominal fat compared with non-metabolically-benign obese subjects. Research has suggested that 25-30% of the obese population do not need either treatment or prevention of secondary disorders. Therefore, assessment of functional body composition should replace nutritional status-based risk assessments (such as the body mass index) in both metabolic research and clinical decision making. The concept of ‘functional’ body composition gives us a more sophisticated view on nutritional status, metabolism, endocrinology, and diseases. Knowledge of detailed body composition enables characterization of biomedical traits which will give functional evidence relating genetic variants.
Collapse
Affiliation(s)
- Manfred J Müller
- Institut für Humanernährung und Lebensmittelkunde, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität, Düsternbrooker Weg 17-19, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
39
|
Müller MJ, Bosy-Westphal A, Later W, Haas V, Heller M. Functional body composition: insights into the regulation of energy metabolism and some clinical applications. Eur J Clin Nutr 2009; 63:1045-56. [DOI: 10.1038/ejcn.2009.55] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-xii. [PMID: 19405078 DOI: 10.1002/dmrr.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
|
42
|
|
43
|
Tao Y. Chapter 6 Mutations in Melanocortin‐4 Receptor and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:173-204. [DOI: 10.1016/s1877-1173(09)88006-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|