1
|
Rudokas MW, McKay M, Toksoy Z, Eisen JN, Bögner M, Young LH, Akar FG. Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction. Cardiovasc Diabetol 2024; 23:261. [PMID: 39026280 PMCID: PMC11264840 DOI: 10.1186/s12933-024-02357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.
Collapse
Affiliation(s)
- Michael W Rudokas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Margaret McKay
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University Schools of Engineering and Applied Sciences, New Haven, CT, USA
| | - Zeren Toksoy
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Julia N Eisen
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Markus Bögner
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lawrence H Young
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fadi G Akar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University Schools of Engineering and Applied Sciences, New Haven, CT, USA.
- Department of Biomedical Engineering, Electro-biology and Arrhythmia Therapeutics Laboratory, Yale University Schools of Medicine, Engineering and Applied Sciences, 300 George Street, 793 - 748C, New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Zeng X, Sun J, Li F, Peng L, Zhang C, Jiang X, Zha L, Rathinasabapathy A, Ren J, Yu Z, Wang L, Liu X. Beclin 1 Haploinsufficiency Ameliorates High-Fat Diet-Induced Myocardial Injury via Inhibiting Alternative Mitophagy. Antioxid Redox Signal 2024; 40:906-925. [PMID: 38251672 DOI: 10.1089/ars.2023.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- Xiaofang Zeng
- Department of Cardiology, Central South University, Changsha, China
- Department of Rheumatology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Sun
- Department of Cardiology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Famei Li
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liming Peng
- Department of Cardiology, Central South University, Changsha, China
| | - Chenglong Zhang
- Department of Cardiology, Central South University, Changsha, China
| | - Xiaowei Jiang
- Department of Cardiology, Central South University, Changsha, China
| | - Lihuang Zha
- Department of Cardiology, Central South University, Changsha, China
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zaixin Yu
- Department of Cardiology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiangwei Liu
- Department of Cardiology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Liu YT, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Ke D, Zhou H, Che Y, Tang QZ. Macrod1 suppresses diabetic cardiomyopathy via regulating PARP1-NAD +-SIRT3 pathway. Acta Pharmacol Sin 2024; 45:1175-1188. [PMID: 38459256 PMCID: PMC11130259 DOI: 10.1038/s41401-024-01247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 μM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 μM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
4
|
Zhi F, Zhang Q, Liu L, Chang X, Xu H. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments. Cell Stress Chaperones 2023; 28:641-655. [PMID: 37405612 PMCID: PMC10746653 DOI: 10.1007/s12192-023-01361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Diabetic cardiomyopathy describes decreased myocardial function in diabetic patients in the absence of other heart diseases such as myocardial ischemia and hypertension. Recent studies have defined numerous molecular interactions and signaling events that may account for deleterious changes in mitochondrial dynamics and functions influenced by hyperglycemic stress. A metabolic switch from glucose to fatty acid oxidation to fuel ATP synthesis, mitochondrial oxidative injury resulting from increased mitochondrial ROS production and decreased antioxidant capacity, enhanced mitochondrial fission and defective mitochondrial fusion, impaired mitophagy, and blunted mitochondrial biogenesis are major signatures of mitochondrial pathologies during diabetic cardiomyopathy. This review describes the molecular alterations underlying mitochondrial abnormalities associated with hyperglycemia and discusses their influence on cardiomyocyte viability and function. Based on basic research findings and clinical evidence, diabetic treatment standards and their impact on mitochondrial function, as well as mitochondria-targeted therapies of potential benefit for diabetic cardiomyopathy patients, are also summarized.
Collapse
Affiliation(s)
- Fumin Zhi
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Qian Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Li Liu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China.
| | - Hongtao Xu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
5
|
Yang X, Zhang M, Xie B, Peng Z, Manning JR, Zimmerman R, Wang Q, Wei AC, Khalifa M, Reynolds M, Jin J, Om M, Zhu G, Bedja D, Jiang H, Jurczak M, Shiva S, Scott I, O’Rourke B, Kass DA, Paolocci N, Feng N. Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovasc Res 2023; 119:571-586. [PMID: 35704040 PMCID: PMC10226756 DOI: 10.1093/cvr/cvac096] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023] Open
Abstract
AIMS Brain-derived neurotrophic factor (BDNF) is markedly decreased in heart failure patients. Both BDNF and its receptor, tropomyosin-related kinase receptor (TrkB), are expressed in cardiomyocytes; however, the role of myocardial BDNF signalling in cardiac pathophysiology is poorly understood. Here, we investigated the role of BDNF/TrkB signalling in cardiac stress response to exercise and pathological stress. METHODS AND RESULTS We found that myocardial BDNF expression was increased in mice with swimming exercise but decreased in a mouse heart failure model and human failing hearts. Cardiac-specific TrkB knockout (cTrkB KO) mice displayed a blunted adaptive cardiac response to exercise, with attenuated upregulation of transcription factor networks controlling mitochondrial biogenesis/metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). In response to pathological stress (transaortic constriction, TAC), cTrkB KO mice showed an exacerbated heart failure progression. The downregulation of PGC-1α in cTrkB KO mice exposed to exercise or TAC resulted in decreased cardiac energetics. We further unravelled that BDNF induces PGC-1α upregulation and bioenergetics through a novel signalling pathway, the pleiotropic transcription factor Yin Yang 1. CONCLUSION Taken together, our findings suggest that myocardial BDNF plays a critical role in regulating cellular energetics in the cardiac stress response.
Collapse
Affiliation(s)
- Xue Yang
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Manling Zhang
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zishan Peng
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet R Manning
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raymond Zimmerman
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qin Wang
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Echocardiography lab at Heart Center, Ningxia General Hospital, Ningxia Medical University, Ningxia, China
| | - An-chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Graduate Institute of Biomedical and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Moustafa Khalifa
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Reynolds
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenny Jin
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Om
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Michael Jurczak
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iain Scott
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian O’Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ning Feng
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Chang X, Li Y, Cai C, Wu F, He J, Zhang Y, Zhong J, Tan Y, Liu R, Zhu H, Zhou H. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism 2022; 137:155313. [PMID: 36126721 DOI: 10.1016/j.metabol.2022.155313] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been regarded as a hallmark of diabetic cardiomyopathy. In addition to their canonical metabolic actions, mitochondria influence various other aspects of cardiomyocyte function, including oxidative stress, iron regulation, metabolic reprogramming, intracellular signaling transduction and cell death. These effects depend on the mitochondrial quality control (MQC) system, which includes mitochondrial dynamics, mitophagy and mitochondrial biogenesis. Mitochondria are not static entities, but dynamic units that undergo fission and fusion cycles to maintain their structural integrity. Increased mitochondrial fission elevates the number of mitochondria within cardiomyocytes, a necessary step for cardiomyocyte metabolism. Enhanced mitochondrial fusion promotes communication and cooperation between pairs of mitochondria, thus facilitating mitochondrial genomic repair and maintenance. On the contrary, erroneous fission or reduced fusion promotes the formation of mitochondrial fragments that contain damaged mitochondrial DNA and exhibit impaired oxidative phosphorylation. Under normal/physiological conditions, injured mitochondria can undergo mitophagy, a degradative process that delivers poorly structured mitochondria to lysosomes. However, defective mitophagy promotes the accumulation of nonfunctional mitochondria, which may induce cardiomyocyte death. A decline in the mitochondrial population due to mitophagy can stimulate mitochondrial biogenesis), which generates new mitochondrial offspring to maintain an adequate mitochondrial number. Energy crises or ATP deficiency also increase mitochondrial biogenesis, because mitochondrial DNA encodes 13 subunits of the electron transport chain (ETC) complexes. Disrupted mitochondrial biogenesis diminishes the mitochondrial mass, accelerates mitochondrial senescence and promotes mitochondrial dysfunction. In this review, we describe the involvement of MQC in the pathogenesis of diabetic cardiomyopathy. Besides, the potential targeted therapies that could be applied to improve MQC during diabetic cardiomyopathy are also discussed and accelerate the development of cardioprotective drugs for diabetic patients.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruxiu Liu
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China.
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China.
| |
Collapse
|
7
|
Celik H, Dursun AD, Tatar Y, Omercioglu G, Bastug M. Irisin pathways in hearts of Type 1 diabetic adult male rats following 6 weeks of moderate and high-volume aerobic exercise on a treadmill. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Keceli G, Gupta A, Sourdon J, Gabr R, Schär M, Dey S, Tocchetti CG, Stuber A, Agrimi J, Zhang Y, Leppo M, Steenbergen C, Lai S, Yanek LR, O’Rourke B, Gerstenblith G, Bottomley PA, Wang Y, Paolocci N, Weiss RG. Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure. Circ Res 2022; 130:741-759. [PMID: 35109669 PMCID: PMC8897235 DOI: 10.1161/circresaha.121.319648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormalities in cardiac energy metabolism occur in heart failure (HF) and contribute to contractile dysfunction, but their role, if any, in HF-related pathologic remodeling is much less established. CK (creatine kinase), the primary muscle energy reserve reaction which rapidly provides ATP at the myofibrils and regenerates mitochondrial ADP, is down-regulated in experimental and human HF. We tested the hypotheses that pathologic remodeling in human HF is related to impaired cardiac CK energy metabolism and that rescuing CK attenuates maladaptive hypertrophy in experimental HF. METHODS First, in 27 HF patients and 14 healthy subjects, we measured cardiac energetics and left ventricular remodeling using noninvasive magnetic resonance 31P spectroscopy and magnetic resonance imaging, respectively. Second, we tested the impact of metabolic rescue with cardiac-specific overexpression of either Ckmyofib (myofibrillar CK) or Ckmito (mitochondrial CK) on HF-related maladaptive hypertrophy in mice. RESULTS In people, pathologic left ventricular hypertrophy and dilatation correlate closely with reduced myocardial ATP levels and rates of ATP synthesis through CK. In mice, transverse aortic constriction-induced left ventricular hypertrophy and dilatation are attenuated by overexpression of CKmito, but not by overexpression of CKmyofib. CKmito overexpression also attenuates hypertrophy after chronic isoproterenol stimulation. CKmito lowers mitochondrial reactive oxygen species, tissue reactive oxygen species levels, and upregulates antioxidants and their promoters. When the CK capacity of CKmito-overexpressing mice is limited by creatine substrate depletion, the protection against pathologic remodeling is lost, suggesting the ADP regenerating capacity of the CKmito reaction rather than CK protein per se is critical in limiting adverse HF remodeling. CONCLUSIONS In the failing human heart, pathologic hypertrophy and adverse remodeling are closely related to deficits in ATP levels and in the CK energy reserve reaction. CKmito, sitting at the intersection of cardiac energetics and redox balance, plays a crucial role in attenuating pathologic remodeling in HF. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00181259.
Collapse
Affiliation(s)
- Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Ashish Gupta
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Joevin Sourdon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Refaat Gabr
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, US
| | - Michael Schär
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Swati Dey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, US
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Annina Stuber
- École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Michelle Leppo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD US
| | - Shenghan Lai
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, US
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Brian O’Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Paul A. Bottomley
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Yibin Wang
- Departments of Anesthesiology and Medicine, University of California at Los Angeles, Los Angeles, CA, US
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
9
|
Cortassa S, Villon P, Sollott SJ, Aon MA. Integrated Multiomics, Bioinformatics, and Computational Modeling Approaches to Central Metabolism in Organs. Methods Mol Biol 2022; 2399:151-170. [PMID: 35604556 PMCID: PMC10074476 DOI: 10.1007/978-1-0716-1831-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Data-driven research led by computational systems biology methods, encompassing bioinformatics of multiomics datasets and mathematical modeling, are critical for discovery. Herein, we describe a multiomics (metabolomics-fluxomics) approach as applied to heart function in diabetes. The methodology presented has general applicability and enables the quantification of the fluxome or set of metabolic fluxes from cytoplasmic and mitochondrial compartments in central catabolic pathways of glucose and fatty acids. Additionally, we present, for the first time, a general method to reduce the dimension of detailed kinetic, and in general stoichiometric models of metabolic networks at the steady state, to facilitate their optimization and avoid numerical problems. Representative results illustrate the powerful mechanistic insights that can be gained from this integrative and quantitative methodology.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Pierre Villon
- Département de Génie Mécanique, Université de Technologie de Compiègne, Compiègne, France
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
10
|
Ghio S, Mercurio V, Attanasio A, Asile G, Tocchetti CG, Paolillo S. Prognostic impact of diabetes in chronic and acute heart failure. Heart Fail Rev 2021; 28:577-583. [PMID: 34811630 DOI: 10.1007/s10741-021-10193-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
A strong, bidirectional relationship exists between diabetes mellitus (DM) and heart failure (HF) and DM is responsible of the activation of several molecular and pathophysiological mechanisms that may, on the long term, damage the heart. However, the prognostic role of DM in the context of chronic and acute HF is still not yet defined and there are several gaps of evidence in the literature on this topic. These gaps are related to the wide phenotypic heterogeneity of patients with chronic and acute HF and to the concept that not all diabetic patients are the same, but there is the necessity to better characterize the disease and each single patient, also considering the role of other possible comorbidities. The aim of the present review is to summarize the pathophysiological mechanisms subtending the negative effect of DM in HF and analyze the available data exploring the prognostic impact of such comorbidity in both chronic and acute HF.
Collapse
Affiliation(s)
- Stefano Ghio
- Divisione Di Cardiologia, Fondazione IRCCS Policlinico S.Matteo, 27100, Pavia, Italy.
| | - Valentina Mercurio
- Dipartimento Di Scienze Mediche Traslazionali, Università Degli Studi Di Napoli Federico II, Napoli, Italy
| | - Andrea Attanasio
- Divisione Di Cardiologia, Fondazione IRCCS Policlinico S.Matteo, 27100, Pavia, Italy.,Dipartimento Di Medicina Molecolare, Università Di Pavia, Pavia, Italy
| | - Gaetano Asile
- Dipartimento Di Scienze Biomediche Avanzate, Università Degli Studi Di Napoli Federico II, Napoli, Italy
| | - Carlo Gabriele Tocchetti
- Dipartimento Di Scienze Mediche Traslazionali, Università Degli Studi Di Napoli Federico II, Napoli, Italy
| | - Stefania Paolillo
- Dipartimento Di Scienze Biomediche Avanzate, Università Degli Studi Di Napoli Federico II, Napoli, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| |
Collapse
|
11
|
Vakrou S, Liu Y, Zhu L, Greenland GV, Simsek B, Hebl VB, Guan Y, Woldemichael K, Talbot CC, Aon MA, Fukunaga R, Abraham MR. Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy. Sci Rep 2021; 11:13163. [PMID: 34162896 PMCID: PMC8222321 DOI: 10.1038/s41598-021-89451-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity. We investigated the molecular basis of the cardiac phenotype in two mouse models at established disease stage (mouse-HCM), and human myectomy tissue (human-HCM). We analyzed the transcriptome in 2 mouse models with non-obstructive HCM (R403Q-MyHC, R92W-TnT)/littermate-control hearts at 24 weeks of age, and in myectomy tissue of patients with obstructive HCM/control hearts (GSE36961, GSE36946). Additionally, we examined myocyte redox, cardiac mitochondrial DNA copy number (mtDNA-CN), mt-respiration, mt-ROS generation/scavenging and mt-Ca2+ handling in mice. We identified distinct allele-specific gene expression in mouse-HCM, and marked differences between mouse-HCM and human-HCM. Only two genes (CASQ1, GPT1) were similarly dysregulated in both mutant mice and human-HCM. No signaling pathway or transcription factor was predicted to be similarly dysregulated (by Ingenuity Pathway Analysis) in both mutant mice and human-HCM. Losartan was a predicted therapy only in TnT-mutant mice. KEGG pathway analysis revealed enrichment for several metabolic pathways, but only pyruvate metabolism was enriched in both mutant mice and human-HCM. Both mutant mouse myocytes demonstrated evidence of an oxidized redox environment. Mitochondrial complex I RCR was lower in both mutant mice compared to controls. MyHC-mutant mice had similar mtDNA-CN and mt-Ca2+ handling, but TnT-mutant mice exhibited lower mtDNA-CN and impaired mt-Ca2+ handling, compared to littermate-controls. Molecular profiling reveals differences in gene expression, transcriptional regulation, intracellular signaling and mt-number/function in 2 mouse models at established disease stage. Further studies are needed to confirm differences in gene expression between mouse and human-HCM, and to examine whether cardiac phenotype, genotype and/or species differences underlie the divergence in molecular profiles.
Collapse
Affiliation(s)
- Styliani Vakrou
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bahadir Simsek
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, USA
| | - Yufan Guan
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirubel Woldemichael
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover C Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA.
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
12
|
Jayakumari NR, Rajendran RS, Sivasailam A, Parambil ST, Reghuvaran AC, Sreelatha HV, Gopala S. Honokiol regulates mitochondrial substrate utilization and cellular fatty acid metabolism in diabetic mice heart. Eur J Pharmacol 2021; 896:173918. [PMID: 33529726 DOI: 10.1016/j.ejphar.2021.173918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes mellitus is strongly associated with cardiac mitochondrial dysfunction, which is one of the main reasons for cardiovascular diseases. Among the mitochondrial metabolic changes, fatty acid metabolism is of great importance as cardiac tissues depend primarily on fatty acids. Honokiol, a constituent of Magnolia tree bark extract, is reported to strongly influence cardiac mitochondrial functions, via various mechanisms. The current study showed that honokiol decreased fatty acid-mediated complex I respiration and increased carbohydrate-mediated complex I and II respiration in diabetic C57BL/6 mice cardiac mitochondria. It was also found that honokiol treatment decreased expression of Cluster of Differentiation 36, AMP-activated kinases and nuclear transcription factors like, Peroxisome proliferator-activated receptor γ co-activator 1α/β and Peroxisome proliferator-activated receptor α, surrogating the evidence of decreased fatty acid-mediated complex I respiration. Honokiol treatment also reduced the levels of mitochondrial acetylated proteins, suggesting the possible action of honokiol via acetylation/deacetylation mechanism of regulation of protein functions in diabetic mitochondria. The antioxidant effect of honokiol is evidenced by the augmented expression of Manganese super oxide dismutase. In conclusion, honokiol imparts beneficial effect on diabetic cardiac mitochondria by decreasing the oxidant burden via regulating mitochondrial fatty acid respiration and expression of oxidant response factors.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Acetylation
- Animals
- Antioxidants/pharmacology
- Biphenyl Compounds/pharmacology
- CD36 Antigens/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Energy Metabolism/drug effects
- Fatty Acids/metabolism
- Lignans/pharmacology
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress/drug effects
- PPAR alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Streptozocin
- Superoxide Dismutase/metabolism
- Mice
Collapse
Affiliation(s)
- Nandini Ravikumar Jayakumari
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Raji Sasikala Rajendran
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Ashok Sivasailam
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Sulfath Thottungal Parambil
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Anand Chellappan Reghuvaran
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Harikrishnan Vijayakumar Sreelatha
- Division of Laboratory Animal Sciences, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
13
|
Mitochondrial health is enhanced in rats with higher vs. lower intrinsic exercise capacity and extended lifespan. NPJ Aging Mech Dis 2021; 7:1. [PMID: 33398019 PMCID: PMC7782588 DOI: 10.1038/s41514-020-00054-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/24/2020] [Indexed: 12/03/2022] Open
Abstract
The intrinsic aerobic capacity of an organism is thought to play a role in aging and longevity. Maximal respiratory rate capacity, a metabolic performance measure, is one of the best predictors of cardiovascular- and all-cause mortality. Rats selectively bred for high-(HCR) vs. low-(LCR) intrinsic running-endurance capacity have up to 31% longer lifespan. We found that positive changes in indices of mitochondrial health in cardiomyocytes (respiratory reserve, maximal respiratory capacity, resistance to mitochondrial permeability transition, autophagy/mitophagy, and higher lipids-over-glucose utilization) are uniformly associated with the extended longevity in HCR vs. LCR female rats. Cross-sectional heart metabolomics revealed pathways from lipid metabolism in the heart, which were significantly enriched by a select group of strain-dependent metabolites, consistent with enhanced lipids utilization by HCR cardiomyocytes. Heart–liver–serum metabolomics further revealed shunting of lipidic substrates between the liver and heart via serum during aging. Thus, mitochondrial health in cardiomyocytes is associated with extended longevity in rats with higher intrinsic exercise capacity and, probably, these findings can be translated to other populations as predictors of outcomes of health and survival.
Collapse
|
14
|
Boardman NT, Pedersen TM, Rossvoll L, Hafstad AD, Aasum E. Diet-induced obese mouse hearts tolerate an acute high-fatty acid exposure that also increases ischemic tolerance. Am J Physiol Heart Circ Physiol 2020; 319:H682-H693. [PMID: 32795177 DOI: 10.1152/ajpheart.00284.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An ischemic insult is accompanied by an acute increase in circulating fatty acid (FA) levels, which can induce adverse changes related to cardiac metabolism/energetics. Although chronic hyperlipidemia contributes to the pathogenesis of obesity-/diabetes-related cardiomyopathy, it is unclear how these hearts are affected by an acute high FA-load. We hypothesize that adaptation to chronic FA exposure enhances the obese hearts' ability to handle an acute high FA-load. Diet-induced obese (DIO) and age-matched control (CON) mouse hearts were perfused in the presence of low- or high FA-load (0.4 and 1.8 mM, respectively). Left ventricular (LV) function, FA oxidation rate, myocardial oxygen consumption, and mechanical efficiency were assessed, followed by analysis of myocardial oxidative stress, mitochondrial respiration, protein acetylation, and gene expression. Finally, ischemic tolerance was determined by examining LV functional recovery and infarct size. Under low-FA conditions, DIO hearts showed mild LV dysfunction, oxygen wasting, mechanical inefficiency, and reduced mitochondrial OxPhos. High FA-load increased FA oxidation rates in both groups, but this did not alter any of the above parameters in DIO hearts. In contrast, CON hearts showed FA-induced mechanical inefficiency, oxidative stress, and reduced OxPhos, as well as enhanced acetylation and activation of PPARα-dependent gene expression. While high FA-load did not alter functional recovery and infarct size in CON hearts, it increased ischemic tolerance in DIO hearts. Thus, this study demonstrates that acute FA-load affects normal and obese hearts differently and that chronically elevated circulating FA levels render the DIO heart less vulnerable to the disadvantageous effects of an acute FA-load.NEW & NOTEWORTHY An acute myocardial fat-load leads to oxidative stress, oxygen wasting, mechanical inefficiency, hyperacetylation, and impaired mitochondrial function, which can contribute to reduced ischemic tolerance. Following obesity/insulin resistance, hearts were less affected by a high fat-load, which subsequently also improved ischemic tolerance. This study highlights that an acute fat-load affects normal and obese hearts differently and that obesity renders hearts less vulnerable to the disadvantageous effects of an acute fat-load.
Collapse
Affiliation(s)
- Neoma T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Tina M Pedersen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| |
Collapse
|
15
|
Cortassa S, Caceres V, Tocchetti CG, Bernier M, de Cabo R, Paolocci N, Sollott SJ, Aon MA. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice. J Physiol 2020; 598:1393-1415. [PMID: 30462352 PMCID: PMC7739175 DOI: 10.1113/jp276824] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Hearts from type 2 diabetic animals display perturbations in excitation-contraction coupling, impairing myocyte contractility and delaying relaxation, along with altered substrate consumption patterns. Under high glucose and β-adrenergic stimulation conditions, palmitate can, at least in part, offset left ventricle (LV) dysfunction in hearts from diabetic mice, improving contractility and relaxation while restoring coronary perfusion pressure. Fluxome calculations of central catabolism in diabetic hearts show that, in the presence of palmitate, there is a metabolic remodelling involving tricarboxylic acid cycle, polyol and pentose phosphate pathways, leading to improved redox balance in cytoplasmic and mitochondrial compartments. Under high glucose and increased energy demand, the metabolic/fluxomic redirection leading to restored redox balance imparted by palmitate helps explain maintained LV function and may contribute to designing novel therapeutic approaches to prevent cardiac dysfunction in diabetic patients. ABSTRACT Type-2 diabetes (T2DM) leads to reduced myocardial performance, and eventually heart failure. Excessive accumulation of lipids and glucose is central to T2DM cardiomyopathy. Previous data showed that palmitate (Palm) or glutathione preserved heart mitochondrial energy/redox balance under excess glucose, rescuing β-adrenergic-stimulated cardiac excitation-contraction coupling. However, the mechanisms underlying the accompanying improved contractile performance have been largely ignored. Herein we explore in intact heart under substrate excess the metabolic remodelling associated with cardiac function in diabetic db/db mice subjected to stress given by β-adrenergic stimulation with isoproterenol and high glucose compared to their non-diabetic controls (+/+, WT) under euglycaemic conditions. When perfused with Palm, T2DM hearts exhibited improved contractility/relaxation compared to WT, accompanied by extensive metabolic remodelling as demonstrated by metabolomics-fluxomics combined with bioinformatics and computational modelling. The T2DM heart metabolome showed significant differences in the abundance of metabolites in pathways related to glucose, lipids and redox metabolism. Using a validated computational model of heart's central catabolism, comprising glucose and fatty acid (FA) oxidation in cytoplasmic and mitochondrial compartments, we estimated that fluxes through glucose degradation pathways are ∼2-fold lower in heart from T2DM vs. WT under all conditions studied. Palm addition elicits improvement of the redox status via enhanced β-oxidation and decreased glucose uptake, leading to flux-redirection away from redox-consuming pathways (e.g. polyol) while maintaining the flux through redox-generating pathways together with glucose-FA 'shared fuelling' of oxidative phosphorylation. Thus, available FAs such as Palm may help improve function via enhanced redox balance in T2DM hearts during peaks of hyperglycaemia and increased workload.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Viviane Caceres
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Posgraduate Program in Rehabilitation Sciences, Dept. Health Sciences, Federal University of Santa Catarina, Ararangua, SC, Brazil
| | - Carlo G Tocchetti
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Dipartimento di Scienze Mediche Traslazionali, Universita' degli Studi di Napoli Federico II Via Pansini 5, Edificio 2, 80131, Napoli, Italy
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, University of Padova, via Marzolo 3, 35131, Padova, Italy
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
- Translational Gerontology Branch, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
16
|
Vetter L, Cortassa S, O'Rourke B, Armoundas AA, Bedja D, Jende JME, Bendszus M, Paolocci N, Sollot SJ, Aon MA, Kurz FT. Diabetes Increases the Vulnerability of the Cardiac Mitochondrial Network to Criticality. Front Physiol 2020; 11:175. [PMID: 32210835 PMCID: PMC7077512 DOI: 10.3389/fphys.2020.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial criticality describes a state in which the mitochondrial cardiac network under intense oxidative stress becomes very sensitive to small perturbations, leading from local to cell-wide depolarization and synchronized oscillations that may escalate to the myocardial syncytium generating arrhythmias. Herein, we describe the occurrence of mitochondrial criticality in the chronic setting of a metabolic disorder, type 1 diabetes (T1DM), using a streptozotocin (STZ)-treated guinea pig (GP) animal model. Using wavelet analysis of mitochondrial networks from two-photon microscopy imaging of cardiac myocytes loaded with a fluorescent probe of the mitochondrial membrane potential, we show that cardiomyocytes from T1DM GPs are closer to criticality, making them more vulnerable to cell-wide mitochondrial oscillations as can be judged by the latency period to trigger oscillations after a laser flash perturbation, and their propensity to oscillate. Insulin treatment of T1DM GPs rescued cardiac myocytes to sham control levels of susceptibility, a protective condition that could also be attained with interventions leading to improvement of the cellular redox environment such as preincubation of diabetic cardiac myocytes with the lipid palmitate or a cell-permeable form of glutathione, in the presence of glucose.
Collapse
Affiliation(s)
- Larissa Vetter
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA, United States
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Steven J Sollot
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
17
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
18
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Gollmer J, Zirlik A, Bugger H. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes Metab J 2020; 44:33-53. [PMID: 32097997 PMCID: PMC7043970 DOI: 10.4093/dmj.2019.0185] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial medicine is increasingly discussed as a promising therapeutic approach, given that mitochondrial defects are thought to contribute to many prevalent diseases and their complications. In individuals with diabetes mellitus (DM), defects in mitochondrial structure and function occur in many organs throughout the body, contributing both to the pathogenesis of DM and complications of DM. Diabetic cardiomyopathy (DbCM) is increasingly recognized as an underlying cause of increased heart failure in DM, and several mitochondrial mechanisms have been proposed to contribute to the development of DbCM. Well established mechanisms include myocardial energy depletion due to impaired adenosine triphosphate (ATP) synthesis and mitochondrial uncoupling, and increased mitochondrial oxidative stress. A variety of upstream mechanisms of impaired ATP regeneration and increased mitochondrial reactive oxygen species have been proposed, and recent studies now also suggest alterations in mitochondrial dynamics and autophagy, impaired mitochondrial Ca²⁺ uptake, decreased cardiac adiponectin action, increased O-GlcNAcylation, and impaired activity of sirtuins to contribute to mitochondrial defects in DbCM, among others. In the current review, we present and discuss the evidence that underlies both established and recently proposed mechanisms that are thought to contribute to mitochondrial dysfunction in DbCM.
Collapse
Affiliation(s)
- Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Andreas Zirlik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
20
|
Cao X, Lu XM, Tuo X, Liu JY, Zhang YC, Song LN, Cheng ZQ, Yang JK, Xin Z. Angiotensin-converting enzyme 2 regulates endoplasmic reticulum stress and mitochondrial function to preserve skeletal muscle lipid metabolism. Lipids Health Dis 2019; 18:207. [PMID: 31775868 PMCID: PMC6882339 DOI: 10.1186/s12944-019-1145-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Objective Endoplasmic reticulum (ER) stress and mitochondrial function affected intramuscular fat accumulation. However, there is no clear evident on the effect of the regulation of ER stress and mitochondrial function by Angiotensin-converting enzyme 2 (ACE2) on the prevention of intramuscular fat metabolism. We investigated the effects of ACE2 on ER stress and mitochondrial function in skeletal muscle lipid metabolism. Methods The triglyceride (TG) content in skeletal muscle of ACE2 knockout mice and Ad-ACE2-treated db/db mice were detected by assay kits. Meanwhile, the expression of lipogenic genes (ACCα, SREBP-1c, LXRα, CPT-1α, PGC-1α and PPARα), ER stress and mitochondrial function related genes (GRP78, eIF2α, ATF4, BCL-2, and SDH6) were analyzed by RT-PCR. Lipid metabolism, ER stress and mitochondrial function related genes were analyzed by RT-PCR in ACE2-overexpression C2C12 cell. Moreover, the IKKβ/NFκB/IRS-1 pathway was determined using lysate sample from skeletal muscle of ACE2 knockout mice. Results ACE2 deficiency in vivo is associated with increased lipid accumulation in skeletal muscle. The ACE2 knockout mice displayed an elevated level of ER stress and mitochondrial dysfunctions in skeletal muscle. In contrast, activation of ACE2 can ameliorate ER stress and mitochondrial function, which slightly accompanied by reduced TG content and down-regulated the expression of skeletal muscle lipogenic proteins in the db/db mice. Additionally, ACE2 improved skeletal muscle lipid metabolism and ER stress genes in the C2C12 cells. Mechanistically, endogenous ACE2 improved lipid metabolism through the IKKβ/NFκB/IRS-1 pathway in skeletal muscle. Conclusions ACE2 was first reported to play a notable role on intramuscular fat regulation by improving endoplasmic reticulum and mitochondrial function. This study may provide a strategy for treating insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Xi Cao
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin-Meng Lu
- Department of Endocrinology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xiu Tuo
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jing-Yi Liu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi-Chen Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Ni Song
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhi-Qiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Zhong Xin
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes institute, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
21
|
Yang Y, Zhao M, Yu XJ, Liu LZ, He X, Deng J, Zang WJ. Pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. Am J Physiol Endocrinol Metab 2019; 317:E312-E326. [PMID: 31211620 DOI: 10.1152/ajpendo.00569.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic patients are more susceptible to myocardial ischemia damage than nondiabetic patients, with worse clinical outcomes and greater mortality. The mechanism may be related to glucose metabolism, mitochondrial homeostasis, and oxidative stress. Pyridostigmine may improve vagal activity to protect cardiac function in cardiovascular diseases. Researchers have not determined whether pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. In the present study, autonomic imbalance, myocardial damage, mitochondrial dysfunction, and oxidative stress were exacerbated in isoproterenol-stimulated diabetic mice, revealing the myocardial vulnerability of diabetic mice to injury compared with mice with diabetes or exposed to isoproterenol alone. Compared with normal mice, the expression of glucose transporters (GLUT)1/4 phosphofructokinase (PFK) FB3, and pyruvate kinase isoform (PKM) was decreased in diabetic mice, but increased in isoproterenol-stimulated normal mice. Following exposure to isoproterenol, the expression of (GLUT)1/4 phosphofructokinase (PFK) FB3, and PKM decreased in diabetic mice compared with normal mice. The downregulation of SIRT3/AMPK and IRS-1/Akt in isoproterenol-stimulated diabetic mice was exacerbated compared with that in diabetic mice or isoproterenol-stimulated normal mice. Pyridostigmine improved vagus activity, increased GLUT1/4, PFKFB3, and PKM expression, and ameliorated mitochondrial dysfunction and oxidative stress to reduce myocardial damage in isoproterenol-stimulated diabetic mice. Based on these results, it was found that pyridostigmine may reduce myocardial vulnerability to injury via the SIRT3/AMPK and IRS-1/Akt pathways in diabetic mice with isoproterenol-induced myocardial damage. This study may provide a potential therapeutic target for myocardial damage in diabetic patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Long-Zhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Juan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
22
|
Shaw RM, Nikolova AP. A Surprising Noncanonical Role for Calcineurin in Pressure-Induced Cardiac Hypertrophy. J Am Coll Cardiol 2019; 71:668-669. [PMID: 29420963 DOI: 10.1016/j.jacc.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, UCLA, Los Angeles, California.
| | - Andriana P Nikolova
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
23
|
Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol 2019; 598:2977-2993. [PMID: 30869158 DOI: 10.1113/jp276747] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity, insulin resistance and diabetes is increasing rapidly. Most patients with these disorders have hypertriglyceridaemia and increased plasma levels of fatty acids, which are taken up and stored in lipid droplets in the heart. Intramyocardial lipids that exceed the capacity for storage and oxidation can be lipotoxic and induce non-ischaemic and non-hypertensive cardiomyopathy, termed diabetic or lipotoxic cardiomyopathy. The clinical features of diabetic cardiomyopathy are cardiac hypertrophy and diastolic dysfunction, which lead to heart failure, especially heart failure with preserved ejection fraction. Although the pathogenesis of the cardiomyopathy is multifactorial, diabetic dyslipidaemia and intramyocardial lipid accumulation are the key pathological features, triggering cellular signalling and modifications of proteins and lipids via generation of toxic metabolic intermediates. Most clinical studies have shown no beneficial effect of anti-diabetic agents and statins on outcomes in heart failure patients without atherosclerotic diseases, indicating the importance of identifying underlying mechanisms and early interventions for diabetic cardiomyopathy. Here, we summarize the molecular mechanisms of diabetic cardiomyopathy, with a special emphasis on cardiac lipotoxicity, and discuss the role of peroxisome proliferator-activated receptor α and dysregulated fatty acid metabolism as potential therapeutic targets.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| |
Collapse
|
24
|
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316:E268-E285. [PMID: 30601700 PMCID: PMC6397358 DOI: 10.1152/ajpendo.00314.2018] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic disease characterized by hyperglycemia, hyperlipidemia, and organismic insulin resistance. This pathological shift in both circulating fuel levels and energy substrate utilization by central and peripheral tissues contributes to mitochondrial dysfunction across organ systems. The mitochondrion lies at the intersection of critical cellular pathways such as energy substrate metabolism, reactive oxygen species (ROS) generation, and apoptosis. It is the disequilibrium of these processes in T2DM that results in downstream deficits in vital functions, including hepatocyte metabolism, cardiac output, skeletal muscle contraction, β-cell insulin production, and neuronal health. Although mitochondria are known to be susceptible to a variety of genetic and environmental insults, the accumulation of mitochondrial DNA (mtDNA) mutations and mtDNA copy number depletion is helping to explain the prevalence of mitochondrial-related diseases such as T2DM. Recent work has uncovered novel mitochondrial biology implicated in disease progressions such as mtDNA heteroplasmy, noncoding RNA (ncRNA), epigenetic modification of the mitochondrial genome, and epitranscriptomic regulation of the mtDNA-encoded mitochondrial transcriptome. The goal of this review is to highlight mitochondrial dysfunction observed throughout major organ systems in the context of T2DM and to present new ideas for future research directions based on novel experimental and technological innovations in mitochondrial biology. Finally, the field of mitochondria-targeted therapeutics is discussed, with an emphasis on novel therapeutic strategies to restore mitochondrial homeostasis in the setting of T2DM.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- West Virginia University School of Pharmacy , Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
25
|
Abstract
Significance: Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled asymptomatic diabetic patients, and it may advance to heart failure (HF). Recent Advances: The diabetic heart is characterized by a state of "metabolic rigidity" involving enhanced rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a decreased NAD+/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD+ is a co-substrate for deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes. Critical Issues: DCM lacks specific therapies with treatment only in later disease stages using standard, palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes, how the mitochondrial NAD+/NADH redox couple connects the remodeled energy metabolism with mitochondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mitochondrial therapies targeting the mitochondrial NAD+/NADH redox ratio may alleviate cardiac dysfunction. Future Directions: Specific therapies must be supported by an optimal understanding of changes in mitochondrial redox state and how it influences other cellular compartments; this field has begun to surface as a therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- 1 Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jacob G Kurdys
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| | - Danina M Muntean
- 3 Department of Functional Sciences-Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara, Romania
| | - Mariana G Rosca
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| |
Collapse
|
26
|
Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Physiol Rep 2018; 5:5/16/e13388. [PMID: 28830979 PMCID: PMC5582268 DOI: 10.14814/phy2.13388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the fact that skeletal muscle insulin resistance is the hallmark of type‐2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose‐induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type‐2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased β‐hydroxyacyl‐CoA dehydrogenase and medium‐chain acyl‐CoA dehydrogenase activities, despite reduced mitochondrial mass. Long‐chain acyl‐CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long‐chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type‐2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina Y Scott
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yiming Huang
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zurich, Switzerland
| | | | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada .,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Debashree B, Kumar M, Keshava Prasad TS, Natarajan A, Christopher R, Nalini A, Bindu PS, Gayathri N, Srinivas Bharath MM. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder. J Neurochem 2018; 145:323-341. [PMID: 29424033 DOI: 10.1111/jnc.14318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. Cover Image for this Issue: doi: 10.1111/jnc.14177.
Collapse
Affiliation(s)
- Bandopadhyay Debashree
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manish Kumar
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Manipal University, Manipal, Karnataka, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, Karnataka, India
| | - Archana Natarajan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | |
Collapse
|
28
|
Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y, Guan Y, Woldemichael K, Pineda-Reyes R, Liu T, Tardiff JC, Leinwand LA, Tocchetti CG, Abraham TP, O'Rourke B, Aon MA, Abraham MR. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight 2018; 3:94493. [PMID: 29563334 DOI: 10.1172/jci.insight.94493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) stems from mutations in sarcomeric proteins that elicit distinct biophysical sequelae, which in turn may yield radically different intracellular signaling and molecular pathologic profiles. These signaling events remain largely unaddressed by clinical trials that have selected patients based on clinical HCM diagnosis, irrespective of genotype. In this study, we determined how two mouse models of HCM differ, with respect to cellular/mitochondrial function and molecular biosignatures, at an early stage of disease. We show that hearts from young R92W-TnT and R403Q-αMyHC mutation-bearing mice differ in their transcriptome, miRNome, intracellular redox environment, mitochondrial antioxidant defense mechanisms, and susceptibility to mitochondrial permeability transition pore opening. Pathway analysis of mRNA-sequencing data and microRNA profiles indicate that R92W-TnT mutants exhibit a biosignature consistent with activation of profibrotic TGF-β signaling. Our results suggest that the oxidative environment and mitochondrial impairment in young R92W-TnT mice promote activation of TGF-β signaling that foreshadows a pernicious phenotype in young individuals. Of the two mutations, R92W-TnT is more likely to benefit from anti-TGF-β signaling effects conferred by angiotensin receptor blockers and may be responsive to mitochondrial antioxidant strategies in the early stage of disease. Molecular and functional profiling may therefore serve as aids to guide precision therapy for HCM.
Collapse
Affiliation(s)
- Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lars Sorensen
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kirubel Woldemichael
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roberto Pineda-Reyes
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jill C Tardiff
- Department of Internal Medicine and Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - M Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| |
Collapse
|
29
|
Riccio G, Antonucci S, Coppola C, D'Avino C, Piscopo G, Fiore D, Maurea C, Russo M, Rea D, Arra C, Condorelli G, Di Lisa F, Tocchetti CG, De Lorenzo C, Maurea N. Ranolazine Attenuates Trastuzumab-Induced Heart Dysfunction by Modulating ROS Production. Front Physiol 2018; 9:38. [PMID: 29467663 PMCID: PMC5808165 DOI: 10.3389/fphys.2018.00038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Pharmacy, Federico II University, Naples, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Carmela Coppola
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Chiara D'Avino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Giovanna Piscopo
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Carlo Maurea
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Domenica Rea
- Department of Animal Experimental Research, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Claudio Arra
- Department of Animal Experimental Research, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| |
Collapse
|
30
|
Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 2017; 313:H1054-H1062. [DOI: 10.1152/ajpheart.00382.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress. NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anne D. Hafstad
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
31
|
Mahmoud AM. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:207-230. [DOI: 10.1007/978-981-10-4307-9_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Li Y, Zhu G, Paolocci N, Zhang P, Takahashi C, Okumus N, Heravi A, Keceli G, Ramirez-Correa G, Kass DA, Murphy AM. Heart Failure-Related Hyperphosphorylation in the Cardiac Troponin I C Terminus Has Divergent Effects on Cardiac Function In Vivo. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003850. [PMID: 28899987 PMCID: PMC5612410 DOI: 10.1161/circheartfailure.117.003850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND In human heart failure, Ser199 (equivalent to Ser200 in mouse) of cTnI (cardiac troponin I) is significantly hyperphosphorylated, and in vitro studies suggest that it enhances myofilament calcium sensitivity and alters calpain-mediated cTnI proteolysis. However, how its hyperphosphorylation affects cardiac function in vivo remains unknown. METHODS AND RESULTS To address the question, 2 transgenic mouse models were generated: a phospho-mimetic cTnIS200D and a phospho-silenced cTnIS200A, each driven by the cardiomyocyte-specific α-myosin heavy chain promoter. Cardiac structure assessed by echocardiography and histology was normal in both transgenic models compared with littermate controls (n=5). Baseline in vivo hemodynamics and isolated muscle studies showed that cTnIS200D significantly prolonged relaxation and lowered left ventricular peak filling rate, whereas ejection fraction and force development were normal (n=5). However, with increased heart rate or β-adrenergic stimulation, cTnIS200D mice had less enhanced ejection fraction or force development versus controls, whereas relaxation improved similarly to controls (n=5). By contrast, cTnIS200A was functionally normal both at baseline and under the physiological stresses. To test whether either mutation impacted cardiac response to ischemic stress, isolated hearts were subjected to ischemia/reperfusion. cTnIS200D were protected, recovering 88±8% of contractile function versus 35±15% in littermate controls and 28±8% in cTnIS200A (n=5). This was associated with less cTnI proteolysis in cTnIS200D hearts. CONCLUSIONS Hyperphosphorylation of this serine in cTnI C terminus impacts heart function by depressing diastolic function at baseline and limiting systolic reserve under physiological stresses. However, paradoxically, it preserves heart function after ischemia/reperfusion injury, potentially by decreasing proteolysis of cTnI.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Guangshuo Zhu
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Nazareno Paolocci
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Pingbo Zhang
- Deparment of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Cyrus Takahashi
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Nazli Okumus
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD,Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Amir Heravi
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Gizem Keceli
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Genaro Ramirez-Correa
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - David A Kass
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD,Department of Pharmacology and Molecular Sciences, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Anne M Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
33
|
Mitochondrial health, the epigenome and healthspan. Clin Sci (Lond) 2017; 130:1285-305. [PMID: 27358026 DOI: 10.1042/cs20160002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Food nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene-environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation. The mitochondrial network is a central player of the metabolic-epigenome-genome axis, regulating the level of key metabolites [NAD(+), AcCoA (acetyl CoA), ATP] acting as substrates/cofactors for acetyl transferases, kinases (e.g. protein kinase A) and deacetylases (e.g. sirtuins, SIRTs). The chromatin, an assembly of DNA and nucleoproteins, regulates the transcriptional process, acting at the epigenomic interface between metabolism and the genome. Within this framework, we review existing evidence showing that preservation of mitochondrial network function is directly involved in decreasing the rate of damage accumulation thus slowing aging and improving healthspan.
Collapse
|
34
|
Cortassa S, Sollott SJ, Aon MA. Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study. PLoS Comput Biol 2017; 13:e1005588. [PMID: 28598967 PMCID: PMC5482492 DOI: 10.1371/journal.pcbi.1005588] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/23/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
Lipids are main fuels for cellular energy and mitochondria their major oxidation site. Yet unknown is to what extent the fuel role of lipids is influenced by their uncoupling effects, and how this affects mitochondrial energetics, redox balance and the emission of reactive oxygen species (ROS). Employing a combined experimental-computational approach, we comparatively analyze β-oxidation of palmitoyl CoA (PCoA) in isolated heart mitochondria from Sham and streptozotocin (STZ)-induced type 1 diabetic (T1DM) guinea pigs (GPs). Parallel high throughput measurements of the rates of oxygen consumption (VO2) and hydrogen peroxide (H2O2) emission as a function of PCoA concentration, in the presence of L-carnitine and malate, were performed. We found that PCoA concentration < 200 nmol/mg mito protein resulted in low H2O2 emission flux, increasing thereafter in Sham and T1DM GPs under both states 4 and 3 respiration with diabetic mitochondria releasing higher amounts of ROS. Respiratory uncoupling and ROS excess occurred at PCoA > 600 nmol/mg mito prot, in both control and diabetic animals. Also, for the first time, we show that an integrated two compartment mitochondrial model of β-oxidation of long-chain fatty acids and main energy-redox processes is able to simulate the relationship between VO2 and H2O2 emission as a function of lipid concentration. Model and experimental results indicate that PCoA oxidation and its concentration-dependent uncoupling effect, together with a partial lipid-dependent decrease in the rate of superoxide generation, modulate H2O2 emission as a function of VO2. Results indicate that keeping low levels of intracellular lipid is crucial for mitochondria and cells to maintain ROS within physiological levels compatible with signaling and reliable energy supply.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Steven J. Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Miguel A. Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
35
|
Shanmugam G, Narasimhan M, Conley RL, Sairam T, Kumar A, Mason RP, Sankaran R, Hoidal JR, Rajasekaran NS. Chronic Endurance Exercise Impairs Cardiac Structure and Function in Middle-Aged Mice with Impaired Nrf2 Signaling. Front Physiol 2017; 8:268. [PMID: 28515695 PMCID: PMC5413495 DOI: 10.3389/fphys.2017.00268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days) evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT) characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility-Nrf2 absence) in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2-/-) (>22 months) were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade). The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α) with decreased GSH-NEM immuno-fluorescence signals. While Nrf2-/- mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2-/- on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc) (p < 0.05) in the Nrf2-/- hearts in relation to WT mice. Moreover, the aged Nrf2-/- mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in fractional shortening, pronounced ST segment, and J wave elevation upon CEE compared to age-matched WT littermates. In conclusion, our findings indicate that while the aged WT and Nrf2 knockout animals both exhibit hypertrophy after CEE, the older Nrf2 knockouts showed ventricular remodeling coupled with profound cardiac functional abnormalities and diastolic dysfunction.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbock, TX, USA
| | - Robbie L. Conley
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Thiagarajan Sairam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, PSG HospitalsCoimbatore, India
| | - Ashutosh Kumar
- Immunity, Inflammation, and Disease Laboratory, NIEHS/NIHRaleigh, NC, USA
| | - Ronald P. Mason
- Immunity, Inflammation, and Disease Laboratory, NIEHS/NIHRaleigh, NC, USA
| | - Ramalingam Sankaran
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, PSG HospitalsCoimbatore, India
| | - John R. Hoidal
- Division of Pulmonary, Department of Medicine, University of Utah School of MedicineSalt Lake City, UT, USA
| | - Namakkal S. Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, PSG HospitalsCoimbatore, India
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of MedicineSalt Lake City, UT, USA
- Center for Free Radical Biology, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
36
|
Brahma MK, Pepin ME, Wende AR. My Sweetheart Is Broken: Role of Glucose in Diabetic Cardiomyopathy. Diabetes Metab J 2017; 41:1-9. [PMID: 28236380 PMCID: PMC5328690 DOI: 10.4093/dmj.2017.41.1.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023] Open
Abstract
Despite overall reductions in heart disease prevalence, the risk of developing heart failure has remained 2-fold greater among people with diabetes. Growing evidence has supported that fluctuations in glucose level and uptake contribute to cardiovascular disease (CVD) by modifying proteins, DNA, and gene expression. In the case of glucose, clinical studies have shown that increased dietary sugars for healthy individuals or poor glycemic control in diabetic patients further increased CVD risk. Furthermore, even after decades of maintaining tight glycemic control, susceptibility to disease progression can persist following a period of poor glycemic control through a process termed "glycemic memory." In response to chronically elevated glucose levels, a number of studies have identified molecular targets of the glucose-mediated protein posttranslational modification by the addition of an O-linked N-acetylglucosamine to impair contractility, calcium sensitivity, and mitochondrial protein function. Additionally, elevated glucose contributes to dysfunction in coupling glycolysis to glucose oxidation, pentose phosphate pathway, and polyol pathway. Therefore, in the "sweetened" environment associated with hyperglycemia, there are a number of pathways contributing to increased susceptibly to "breaking" the heart of diabetics. In this review we will discuss the unique contribution of glucose to heart disease and recent advances in defining mechanisms of action.
Collapse
Affiliation(s)
- Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
37
|
Kurz FT, Aon MA, O'Rourke B, Armoundas AA. Functional Implications of Cardiac Mitochondria Clustering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:1-24. [PMID: 28551779 PMCID: PMC7003720 DOI: 10.1007/978-3-319-55330-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The spatio-temporal organization of mitochondria in cardiac myocytes facilitates myocyte-wide, cluster-bound, mitochondrial inner membrane potential oscillatory depolarizations, commonly triggered by metabolic or oxidative stressors. Local intermitochondrial coupling can be mediated by reactive oxygen species (ROS) that activate inner membrane pores to initiate a ROS-induced-ROS-release process that produces synchronized limit cycle oscillations of mitochondrial clusters within the whole mitochondrial network. The network's dynamic organization, structure and function can be assessed by quantifying dynamic local coupling constants and dynamic functional clustering coefficients, both providing information about the network's response to external stimuli. In addition to its special organization, the mitochondrial network of cardiac myocytes exhibits substrate-sensitive coupling constants and clustering coefficients. The myocyte's ability to form functional clusters of synchronously oscillating mitochondria is sensitive to conditions such as substrate availability (e.g., glucose, pyruvate, β-hydroxybutyrate), antioxidant status, respiratory chain activity, or history of oxidative challenge (e.g., ischemia-reperfusion). This underscores the relevance of quantitative methods to characterize the network's functional status as a way to assess the myocyte's resilience to pathological stressors.
Collapse
Affiliation(s)
- Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Antonis A Armoundas
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
38
|
2-Aminobutyric acid modulates glutathione homeostasis in the myocardium. Sci Rep 2016; 6:36749. [PMID: 27827456 PMCID: PMC5101505 DOI: 10.1038/srep36749] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
A previous report showed that the consumption of glutathione through oxidative stress activates the glutathione synthetic pathway, which is accompanied by production of ophthalmic acid from 2-aminobutyric acid (2-AB). We conducted a comprehensive quantification of serum metabolites using gas chromatography-mass spectrometry in patients with atrial septal defect to find clues for understanding myocardial metabolic regulation, and demonstrated that circulating 2-AB levels reflect hemodynamic changes. However, the metabolism and pathophysiological role of 2-AB remains unclear. We revealed that 2-AB is generated by an amino group transfer reaction to 2-oxobutyric acid, a byproduct of cysteine biosynthesis from cystathionine. Because cysteine is a rate-limiting substrate for glutathione synthesis, we hypothesized that 2-AB reflects glutathione compensation against oxidative stress. A murine cardiomyopathy model induced by doxorubicin supported our hypothesis, i.e., increased reactive oxygen species are accompanied by 2-AB accumulation and compensatory maintenance of myocardial glutathione levels. Intriguingly, we also found that 2-AB increases intracellular glutathione levels by activating AMPK and exerts protective effects against oxidative stress. Finally, we demonstrated that oral administration of 2-AB efficiently raises both circulating and myocardial glutathione levels and protects against doxorubicin-induced cardiomyopathy in mice. This is the first study to demonstrate that 2-AB modulates glutathione homeostasis in the myocardium.
Collapse
|
39
|
Wang W, Gong G, Wang X, Wei-LaPierre L, Cheng H, Dirksen R, Sheu SS. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxid Redox Signal 2016; 25:534-49. [PMID: 27245241 PMCID: PMC5035371 DOI: 10.1089/ars.2016.6739] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. RECENT ADVANCES The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. CRITICAL ISSUES We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. FUTURE DIRECTIONS Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534-549.
Collapse
Affiliation(s)
- Wang Wang
- 1 Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington , Seattle, Washington
| | - Guohua Gong
- 1 Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington , Seattle, Washington
| | - Xianhua Wang
- 2 State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing, China
| | - Lan Wei-LaPierre
- 3 Department of Pharmacology and Physiology, University of Rochester Medical Center , Rochester, New York
| | - Heping Cheng
- 2 State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing, China
| | - Robert Dirksen
- 3 Department of Pharmacology and Physiology, University of Rochester Medical Center , Rochester, New York
| | - Shey-Shing Sheu
- 4 Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, Lloyd D. Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27599643 DOI: 10.1002/wsbm.1352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O2 and CO2 levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Felix T Kurz
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA.,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jackelyn M Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), and Instituto de Ciencia y Tecnología de los Alimentos, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana G Flesia
- Centro de Investigaciones y Estudios de Matemática (CIEM-CONICET), and Facultad de Matemática, Astronomía y Física FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonis A Armoundas
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Lloyd
- Cardiff University School of Biosciences, Cardiff, UK
| |
Collapse
|
41
|
Kurz FT, Derungs T, Aon MA, O'Rourke B, Armoundas AA. Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior. Biophys J 2016; 108:1922-33. [PMID: 25902432 DOI: 10.1016/j.bpj.2015.01.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 01/20/2023] Open
Abstract
Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca(2+) handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10(-2) ± 0.98 × 10(-2) s(-1)) and pyruvate (7.49 × 10(-2) ± 1.65 × 10(-2) s(-1)) than lactate (4.83 × 10(-2) ± 1.25 × 10(-2) s(-1)) or β-hydroxybutyrate (4.11 × 10(-2) ± 0.62 × 10(-2) s(-1)). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability. Pathological changes in specific catabolic pathways, which are known to occur during the progression of cardiovascular disease, could therefore contribute to altered sensitivity of the mitochondrial network to oxidative stress and emergent ΔΨm instability, ultimately scaling to produce organ level dysfunction.
Collapse
Affiliation(s)
- Felix T Kurz
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Derungs
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts; Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Antonis A Armoundas
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
42
|
Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6353469. [PMID: 26881035 PMCID: PMC4736421 DOI: 10.1155/2016/6353469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.
Collapse
|
43
|
Schrauwen-Hinderling VB, Kooi ME, Schrauwen P. Mitochondrial Function and Diabetes: Consequences for Skeletal and Cardiac Muscle Metabolism. Antioxid Redox Signal 2016; 24:39-51. [PMID: 25808308 DOI: 10.1089/ars.2015.6291] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An early hallmark in the development of type 2 diabetes is the resistance to the effect of insulin in skeletal muscle and in the heart. Since mitochondrial function was found to be diminished in patients with type 2 diabetes, it was suggested that this defect might be involved in the etiology of insulin resistance. Although several hypotheses were suggested, yet unclear is the mechanistic link between these two phenomena. RECENT ADVANCES Herein, we review the evidence for disturbances in mitochondrial function in skeletal muscle and the heart in the diabetic state. Also the mechanisms involved in improving mitochondrial function are considered and, whenever possible, human data is cited. CRITICAL ISSUES Reported evidence shows that interventions that improve skeletal muscle mitochondrial function also improve insulin sensitivity in humans. In the heart, available data from animal studies suggests that enhancement of mitochondrial function can reverse aging-induced changes in heart function, and can be protective against cardiomyopathy and heart failure. FUTURE DIRECTIONS Mitochondria and their functions can be targeted with the aim of improving skeletal muscle insulin sensitivity and cardiac function. However, human clinical intervention studies are needed to fully substantiate the potential of mitochondria as a target to prevent cardiometabolic disease.
Collapse
Affiliation(s)
- Vera B Schrauwen-Hinderling
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Marianne Eline Kooi
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands .,4 Department of CARIM School for Cardiovascular Diseases in Maastricht, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Patrick Schrauwen
- 2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| |
Collapse
|
44
|
Cortassa S, Caceres V, Bell LN, O'Rourke B, Paolocci N, Aon MA. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 2015; 108:163-72. [PMID: 25564863 DOI: 10.1016/j.bpj.2014.11.1857] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.
Collapse
Affiliation(s)
- Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viviane Caceres
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Gong G, Liu X, Zhang H, Sheu SS, Wang W. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart. Am J Physiol Heart Circ Physiol 2015; 309:H1166-77. [PMID: 26276820 DOI: 10.1152/ajpheart.00462.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Philadelphia
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
46
|
Differential sensing for the regio- and stereoselective identification and quantitation of glycerides. Proc Natl Acad Sci U S A 2015; 112:E3977-86. [PMID: 26175025 DOI: 10.1073/pnas.1508848112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycerides are of interest to the areas of food science and medicine because they are the main component of fat. From a chemical sensing perspective, glycerides are challenging analytes because they are structurally similar to one another and lack diversity in terms of functional groups. Furthermore, because animal and plant fat consists of a number of stereo- and regioisomeric acylglycerols, their components remain challenging analytes for chromatographic and mass spectrometric determination, particularly the quantitation of species in mixtures. In this study, we demonstrated the use of an array of cross-reactive serum albumins and fluorescent indicators with chemometric analysis to differentiate a panel of mono-, di-, and triglycerides. Due to the difficulties in identifying the regio- and stereochemistry of the unsaturated glycerides, a sample pretreatment consisting of olefin cross-metathesis with an allyl fluorescein species was used before array analysis. Using this simple assay, we successfully discriminated 20 glycerides via principal component analysis and linear discriminant analysis (PCA and LDA, respectively), including stereo- and regioisomeric pairs. The resulting chemometric patterns were used as a training space for which the structural characteristics of unknown glycerides were identified. In addition, by using our array to perform a standard addition analysis on a mixture of triglycerides and using a method introduced herein, we demonstrated the ability to quantitate glyceride components in a mixture.
Collapse
|
47
|
Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep 2015; 5:11427. [PMID: 26169582 PMCID: PMC4501003 DOI: 10.1038/srep11427] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been suggested to play a role in the pathogenesis of atrial fibrillation (AF). Indeed, the prevalence of AF increases with age as does oxidative stress. However, the mechanisms linking redox state to AF are not well understood. In this study we identify a link between oxidative stress and aberrant intracellular Ca2+ release via the type 2 ryanodine receptor (RyR2) that promotes AF. We show that RyR2 are oxidized in the atria of patients with chronic AF compared with individuals in sinus rhythm. To dissect the molecular mechanism linking RyR2 oxidation to AF we used two murine models harboring RyR2 mutations that cause intracellular Ca2+ leak. Mice with intracellular Ca2+ leak exhibited increased atrial RyR2 oxidation, mitochondrial dysfunction, reactive oxygen species (ROS) production and AF susceptibility. Both genetic inhibition of mitochondrial ROS production and pharmacological treatment of RyR2 leakage prevented AF. Collectively, our results indicate that alterations of RyR2 and mitochondrial ROS generation form a vicious cycle in the development of AF. Targeting this previously unrecognized mechanism could be useful in developing effective interventions to prevent and treat AF.
Collapse
|
48
|
Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Clin Sci (Lond) 2015; 129:561-74. [PMID: 26186741 DOI: 10.1042/cs20150204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 12/23/2022]
Abstract
In Type I diabetic (T1DM) patients, both peaks of hyperglycaemia and increased sympathetic tone probably contribute to impair systolic and diastolic function. However, how these stressors eventually alter cardiac function during T1DM is not fully understood. In the present study, we hypothesized that impaired mitochondrial energy supply and excess reactive oxygen species (ROS) emission is centrally involved in T1DM cardiac dysfunction due to metabolic/redox stress and aimed to determine the mitochondrial sites implicated in these alterations. To this end, we used isolated myocytes and mitochondria from Sham and streptozotocin (STZ)-induced T1DM guinea pigs (GPs), untreated or treated with insulin. Relative to controls, T1DM myocytes exhibited higher oxidative stress when challenged with high glucose (HG) combined with β-adrenergic stimulation [via isoprenaline (isoproterenol) (ISO)], leading to contraction/relaxation deficits. T1DM mitochondria had decreased respiration with complex II and IV substrates and markedly lower ADP phosphorylation rates and higher H2O2 emission when challenged with oxidants to mimic the more oxidized redox milieu present in HG + ISO-treated cardiomyocytes. Since in T1DM hearts insulin-sensitivity is preserved and a glucose-to-fatty acid (FA) shift occurs, we next tested whether insulin therapy or acute palmitate (Palm) infusion prevents HG + ISO-induced cardiac dysfunction. We found that insulin rescued proper cardiac redox balance, but not mitochondrial respiration or contractile performance. Conversely, Palm restored redox balance and preserved myocyte function. Thus, stressors such as peaks of HG and adrenergic hyperactivity impair mitochondrial respiration, hampering energy supply while exacerbating ROS emission. Our study suggests that an ideal therapeutic measure to treat metabolically/redox-challenged T1DM hearts should concomitantly correct energetic and redox abnormalities to fully maintain cardiac function.
Collapse
|
49
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
50
|
Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats. J Bioenerg Biomembr 2015; 47:337-53. [PMID: 26060181 DOI: 10.1007/s10863-015-9614-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/29/2015] [Indexed: 02/07/2023]
Abstract
Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.
Collapse
|