1
|
Chen PC, Chang YC, Tsai KL, Shen CH, Lee SD. Vitexin Suppresses High-Glucose-upregulated Adhesion Molecule Expression in Endothelial Cells through Inhibiting NF-κB Signaling Pathway. ACS OMEGA 2024; 9:32727-32734. [PMID: 39100339 PMCID: PMC11292651 DOI: 10.1021/acsomega.4c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Vascular damage is one of the significant complications of diabetes mellitus (DM). Central to this damage is endothelial damage, especially under high-glucose conditions, which promotes inflammation via the NF-κB signaling pathway. Inflammatory processes in endothelial cells directly contribute to endothelial dysfunction, such as promoting inflammatory cytokine release and activation of adhesion molecules. Vitexin, a compound found in many medicinal plants, shows promise in countering oxidative stress in diabetic contexts and modulating blood glucose. However, its effect on high-glucose-induced endothelial cell activation has not yet been studied. This research explores vitexin's potential role in this process, focusing on its influence on the NF-κB pathway in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with 30 mM glucose (high glucose, HG) with or without vitexin treatment for 24 h. Western blotting assay was conducted for the NF-κB pathway and p-p38. Adhesion molecules (ICAM-1, VCAM-1, E-selectin, and MCP-1) were studied using flow cytometry, while pro-inflammatory cytokines were investigated using ELISA. Monocyte adhesion and vascular permeability tests were conducted to confirm the protective effect of vitexin under HG exposure. This study confirms vitexin's capacity to suppress p38 MAPK and NF-κB activation under HG conditions, reducing HG-elevated adhesion molecules and pro-inflammatory cytokine secretion. Additionally, vitexin mitigates HG-stimulated vascular permeability and monocyte adhesion. In conclusion, this study shows the therapeutic potential of vitexin against hyperglycemia-related vascular complications via p38 MAPK/NF-κB inhibition.
Collapse
Affiliation(s)
- Pie-Che Chen
- Department
of Urology, Ditmanson Medical Foundation
Chiayi Christian Hospital, Chia-Yi 60002, Taiwan
- Chung
Jen Junior College of Nursing, Health Science
and Management, Chia-Yi 60002, Taiwan
| | - Yun-Ching Chang
- School
of Medicine, College of Medicine, I-Shou
University, Kaohsiung 84001, Taiwan
| | - Kun-Ling Tsai
- Department
of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Institute
of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng Huang Shen
- Department
of Urology, Ditmanson Medical Foundation
Chiayi Christian Hospital, Chia-Yi 60002, Taiwan
- Department
of Biomedical Sciences, National Chung Cheng
University, Min Hsiung, Chia-Yi 60002Taiwan
| | - Shin-Da Lee
- Department
of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung 40202, Taiwan
| |
Collapse
|
2
|
Jung E, Baek EB, Hong EJ, Kang JH, Park S, Park S, Hong EJ, Cho YE, Ko JW, Won YS, Kwon HJ. TXNIP in liver sinusoidal endothelial cells ameliorates alcohol-associated liver disease via nitric oxide production. Int J Biol Sci 2024; 20:606-620. [PMID: 38169654 PMCID: PMC10758096 DOI: 10.7150/ijbs.90781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor β-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.
Collapse
Affiliation(s)
- Eunhye Jung
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Bok Baek
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jee Hyun Kang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Suyoung Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sehee Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Eun Cho
- Andong National University, Andong 36729, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Hyo-Jung Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Cabrera JT, Si R, Tsuji-Hosokawa A, Cai H, Yuan JXJ, Dillmann WH, Makino A. Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice. Diab Vasc Dis Res 2023; 20:14791641231173630. [PMID: 37186669 PMCID: PMC10196148 DOI: 10.1177/14791641231173630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Sustained hyperglycemia results in excess protein O-GlcNAcylation, leading to vascular complications in diabetes. This study aims to investigate the role of O-GlcNAcylation in the progression of coronary microvascular disease (CMD) in inducible type 2 diabetic (T2D) mice generated by a high-fat diet with a single injection of low-dose streptozotocin. Inducible T2D mice exhibited an increase in protein O-GlcNAcylation in cardiac endothelial cells (CECs) and decreases in coronary flow velocity reserve (CFVR, an indicator of coronary microvascular function) and capillary density accompanied by increased endothelial apoptosis in the heart. Endothelial-specific O-GlcNAcase (OGA) overexpression significantly lowered protein O-GlcNAcylation in CECs, increased CFVR and capillary density, and decreased endothelial apoptosis in T2D mice. OGA overexpression also improved cardiac contractility in T2D mice. OGA gene transduction augmented angiogenic capacity in high-glucose treated CECs. PCR array analysis revealed that seven out of 92 genes show significant differences among control, T2D, and T2D + OGA mice, and Sp1 might be a great target for future study, the level of which was significantly increased by OGA in T2D mice. Our data suggest that reducing protein O-GlcNAcylation in CECs has a beneficial effect on coronary microvascular function, and OGA is a promising therapeutic target for CMD in diabetic patients.
Collapse
Affiliation(s)
- Jody Tori Cabrera
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Rui Si
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
- Department of Cardiology, Xijing
Hospital, Fourth Military Medical
University, Shaanxi, China
| | | | - Hua Cai
- Department of Anesthesiology, University of California, Los
Angeles, Los Angeles, CA, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Ayako Makino
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
6
|
Deng J. Research progress on the molecular mechanism of coronary microvascular endothelial cell dysfunction. IJC HEART & VASCULATURE 2021; 34:100777. [PMID: 33912653 PMCID: PMC8065195 DOI: 10.1016/j.ijcha.2021.100777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Coronary microvascular disease is a high-risk factor for many cardiovascular events. However, due to its high concealment and many etiologies, the current understanding of its pathophysiological mechanism is very limited, which greatly limits its clinical diagnosis and treatment. In the process of the occurrence and development of coronary microvascular disease, the damage of coronary microvascular endothelial cell (CMEC) is the core link. CMEC's stress, metabolism, inflammation and other dysfunctions have a causal relationship with coronary microvascular disease, and are also the main features of coronary microvascular disease in the early stage. This article mainly reviews the molecular mechanisms of CMEC damage.
Collapse
Affiliation(s)
- Jianying Deng
- Department of Cardiovascular Surgery, Chongqing Kanghua Zhonglian Cardiovascular Hospital, Chong Qing, China
| |
Collapse
|
7
|
Yang C, Eleftheriadou M, Kelaini S, Morrison T, González MV, Caines R, Edwards N, Yacoub A, Edgar K, Moez A, Ivetic A, Zampetaki A, Zeng L, Wilkinson FL, Lois N, Stitt AW, Grieve DJ, Margariti A. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun 2020; 11:3812. [PMID: 32732889 PMCID: PMC7393072 DOI: 10.1038/s41467-020-17468-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Chunbo Yang
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | | | - Sophia Kelaini
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Thomas Morrison
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Marta Vilà González
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Rachel Caines
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Nicola Edwards
- Centre for Bioscience in the Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Andrew Yacoub
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Kevin Edgar
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Arya Moez
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Anna Zampetaki
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Fiona L Wilkinson
- Centre for Bioscience in the Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Noemi Lois
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Alan W Stitt
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - David J Grieve
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Andriana Margariti
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK.
| |
Collapse
|
8
|
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling. Front Pharmacol 2020; 11:836. [PMID: 32581799 PMCID: PMC7283382 DOI: 10.3389/fphar.2020.00836] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated that cardiovascular disease (CVD) patients are at higher risk of progression to severe respiratory manifestations of COVID-19 including acute respiratory distress syndrome. Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de novo cardiac and vascular damage in previously healthy individuals. Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Koo BH, Won MH, Kim YM, Ryoo S. p32-Dependent p38 MAPK Activation by Arginase II Downregulation Contributes to Endothelial Nitric Oxide Synthase Activation in HUVECs. Cells 2020; 9:cells9020392. [PMID: 32046324 PMCID: PMC7072651 DOI: 10.3390/cells9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Arginase II reciprocally regulates endothelial nitric oxide synthase (eNOS) through a p32-dependent Ca2+ control. We investigated the signaling pathway of arginase II-dependent eNOS phosphorylation. Western blot analysis was applied for examining protein activation and [Ca2+]c was analyzed by microscopic and FACS analyses. Nitric oxide (NO) and reactive oxygen species (ROS) productions were measured using specific fluorescent dyes under microscopy. NO signaling pathway was tested by measuring vascular tension. Following arginase II downregulation by chemical inhibition or gene knockout (KO, ArgII−/−), increased eNOS phosphorylation at Ser1177 and decreased phosphorylation at Thr495 was depend on p38 MAPK activation, which induced by CaMKII activation through p32-dependent increase in [Ca2+]c. The protein amount of p32 negatively regulated p38 MAPK activation. p38 MAPK contributed to Akt-induced eNOS phosphorylation at Ser1177 that resulted in accelerated NO production and reduced reactive oxygen species production in aortic endothelia. In vascular tension assay, p38 MAPK inhibitor decreased acetylcholine-induced vasorelaxation responses and increased phenylephrine-dependent vasoconstrictive responses. In ApoE−/− mice fed a high cholesterol diet, arginase II inhibition restored p32/CaMKII/p38 MAPK/Akt/eNOS signaling cascade that was attenuated by p38 MAPK inhibition. Here, we demonstrated a novel signaling pathway contributing to understanding of the relationship between arginase II, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
- Correspondence: ; Tel.: +82-33-250-8534; Fax: +82-33-251-3990
| |
Collapse
|
10
|
Wu X, Chen L, Zeb F, Huang Y, An J, Ren J, Yang F, Feng Q. Regulation of circadian rhythms by NEAT1 mediated TMAO-induced endothelial proliferation: A protective role of asparagus extract. Exp Cell Res 2019; 382:111451. [PMID: 31173767 DOI: 10.1016/j.yexcr.2019.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
Trimethylamine N-oxide (TMAO) promotes atherosclerosis in association with the functions of endothelial cells. Clock and Bmal1, as two main components of molecular circadian clock, play important regulatory roles during progression of atherogenesis. However, whether Clock and Bmal1 are involved in the regulation of endothelial proliferation disturbed by TMAO are unclear. We observed that cell proliferation of human umbilical vein endothelial cells (HUVECs) was inhibited after exposed to TMAO for 24 h. Besides, TMAO caused increased expression of lncRNA-NEAT1, Clock and Bmal1, and inhibited MAPK pathways. While MAPK pathways were blocked, the expression of Clock and Bmal1 was elevated. NEAT1 showed a circadian rhythmic expression in HUVECs, and its overexpression reduced cell proliferation. Knockdown or overexpression of NEAT1 might decrease or increase the expression of Clock and Bmal1 respectively, while raised or suppressed the expression of MAPK pathways correspondingly. Asparagus extract (AE) was found to improve the TMAO-reduced HUVECs proliferation. Moreover, it ameliorated the disorders of NEAT1, Clock, Bmal1, and MAPK signaling pathways induced by TMAO. Therefore, our findings indicated that NEAT1 regulating Clock-Bmal1 via MAPK pathways was involved in TMAO-repressed HUVECs proliferation, and AE improved endothelial proliferation by TMAO, proposing a novel mechanism for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxiang Huang
- Asparagus Engineering Technology Research Centre of Hebei, Qinhuangdao, 066004, China
| | - Jing An
- Asparagus Engineering Technology Research Centre of Hebei, Qinhuangdao, 066004, China
| | - Jianglei Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Rivaroxaban, a specific FXa inhibitor, improved endothelium-dependent relaxation of aortic segments in diabetic mice. Sci Rep 2019; 9:11206. [PMID: 31371788 PMCID: PMC6672013 DOI: 10.1038/s41598-019-47474-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Activated factor X (FXa) plays a central role in the coagulation cascade, while it also mediates vascular function through activation of protease-activated receptors (PARs). Here, we examined whether inhibition of FXa by rivaroxaban, a direct FXa inhibitor, attenuates endothelial dysfunction in streptozotocin (STZ)-induced diabetic mice. Induction of diabetes increased the expression of a major FXa receptor, PAR2, in the aorta (P < 0.05). Administration of rivaroxaban (10 mg/kg/day) to diabetic wild-type (WT) mice for 3 weeks attenuated endothelial dysfunction as determined by acetylcholine-dependent vasodilation compared with the control (P < 0.001), without alteration of blood glucose level. Rivaroxaban promoted eNOSSer1177 phosphorylation in the aorta (P < 0.001). Induction of diabetes to PAR2-deficient (PAR2−/−) mice did not affect endothelial function and eNOSSer1177 phosphorylation in the aorta compared with non-diabetic PAR2−/− mice. FXa or a PAR2 agonist significantly impaired endothelial function in aortic rings obtained from WT mice, but not in those from PAR2−/− mice. FXa promoted JNK phosphorylation (P < 0.01) and reduced eNOSSer1177 phosphorylation (P < 0.05) in human coronary artery endothelial cells (HCAEC). FXa-induced endothelial dysfunction in aortic rings (P < 0.001) and eNOSSer1177 phosphorylation (P < 0.05) in HCAEC were partially ameliorated by a JNK inhibitor. Rivaroxaban ameliorated diabetes-induced endothelial dysfunction. Our results suggest that FXa or PAR2 is a potential therapeutic target.
Collapse
|
12
|
Koch SR, Choi H, Mace EH, Stark RJ. Toll-like receptor 3-mediated inflammation by p38 is enhanced by endothelial nitric oxide synthase knockdown. Cell Commun Signal 2019; 17:33. [PMID: 30987646 PMCID: PMC6466662 DOI: 10.1186/s12964-019-0345-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vascular dysfunction is commonly seen during severe viral infections. Endothelial nitric oxide synthase (eNOS), has been postulated to play an important role in regulating vascular homeostasis as well as propagation of the inflammatory reaction. We hypothesized that the loss of eNOS would negatively impact toll-like receptor 3 (TLR3) signaling and worsen vascular function to viral challenge. METHODS Human microvascular endothelial cells (HMVECs) were exposed to either control or eNOS siRNA and then treated with Poly I:C, a TLR3 agonist and mimicker of dsRNA viruses. Cells were assessed for protein-protein associations, cytokine and chemokine analysis as well as transendothelial electrical resistance (TEER) as a surrogate of permeability. RESULTS HMVECs that had reduced eNOS expression had a significantly elevated increase in IL-6, IL-8 and IP-10 production after Poly I:C. In addition, the knockdown of eNOS enhanced the change in TEER after Poly I:C stimulation. Western blot analysis showed enhanced phosphorylation of p38 in sieNOS treated cells with Poly I:C compared to siControl cells. Proximity ligation assays further demonstrated direct eNOS-p38 protein-protein interactions. The addition of the p38 inhibitor, SB203580, in eNOS knockdown cells reduced both cytokine production after Poly I:C, and as well as mitigated the reduction in TEER, suggesting a direct link between eNOS and p38 in TLR3 signaling. CONCLUSIONS These results suggest that reduction of eNOS increases TLR3-mediated inflammation in human endothelial cells in a p38-dependent manner. This finding has important implications for understanding the pathogenesis of severe viral infections and the associated vascular dysfunction.
Collapse
Affiliation(s)
- Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Eric H Mace
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA.
| |
Collapse
|
13
|
Inhibition of ferrochelatase impairs vascular eNOS/NO and sGC/cGMP signaling. PLoS One 2018; 13:e0200307. [PMID: 29985945 PMCID: PMC6037352 DOI: 10.1371/journal.pone.0200307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Ferrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guanylyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10−5–10-7M; a selective FECH antagonist) for 24 and 72 hours respectively. Tissue FECH activity, heme, nitrite/NO and superoxide levels were sequentially measured. Protein expression of FECH, eNOS and sGC was detected by western blot analysis. Vascular responses to various vasoactive agents were evaluated via isometric tension studies. Treatment of BCAs with NMPP initiated a time- and dose-dependent attenuation of FECH activity without changes in its protein expression, followed by significant reduction in the heme level. Moreover, ACh-induced relaxation and ACh-stimulated release of NO were significant reduced, associated with suppression of eNOS protein expression in NMPP-treated groups. Decreased relaxation to NO donor spermine-NONOate reached the statistical significance in BCAs incubated with NMPP for 72 hours, concomitantly with downregulation of sGCβ1 expression that was independent of heat shock protein 90 (HSP90), nor did it significantly affect BCA relaxation caused by BAY 58–2667 that activates sGC in the heme-deficiency. Neither vascular responses to non-NO/sGC-mediators nor production of superoxide was affected by NMPP-treatment. In conclusion, deletion of vascular heme production via inhibiting FECH elicits downregulation of eNOS and sGC expression, leading to an impaired NO-mediated relaxation in an oxidative stress-independent manner.
Collapse
|
14
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Song L, Li D, Wang J, Meng C, Cui X. Effects of p38 mitogen-activated protein kinase on lung ischemia-reperfusion injury in diabetic rats. J Surg Res 2017; 216:9-17. [PMID: 28807219 DOI: 10.1016/j.jss.2017.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a pathologic process that is observed in several clinical conditions, and p38 mitogen-activated protein kinase (MAPK) is involved. Diabetes mellitus (DM) results in an increased incidence of ischemia-induced organ damage. The aims of this study were to examine the effects of DM on LIRI in a rat model of DM and to explore the possible mechanisms in relation to the p38 MAPK pathway. METHODS Forty rats were randomly divided into the following five groups (n = 8 each): a control + sham group, a control + IR group (CIR), a DM + sham group, a DM + IR group (DIR), and a DM + IR + SB203580 group. The control and streptozotocin-induced diabetic rats underwent a sham operation or left hilum occlusion for 90 min followed by reperfusion for 4 h. SB203580 was used to inhibit the p38 MAPK pathway. The pulmonary oxygenation index, inflammatory cytokines in the serum, lung edema, histopathology, oxidant stress, apoptosis, and phosphorylated/total-p38 MAPK protein levels were measured. RESULTS The DIR group displayed greater concentrations of tumor necrosis factor-α, interleukin-6, and intercellular adhesion molecule-1 and increases in the wet weight-to-dry weight ratio, lung injury scores, malondialdehyde levels, and cellular apoptosis, and these effects were accompanied by lower pulmonary oxygenation compared with the CIR group (P < 0.05). In the DIR group, the expression levels of p38 MAPK protein were significantly upregulated compared with those of the CIR group. Additionally, all of these alterations were attenuated in the DM + IR + SB203580 group compared with the DIR group. CONCLUSIONS Diabetes exacerbates LIRI by activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- Linlin Song
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Juan Wang
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chao Meng
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoguang Cui
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Sun A, Huang A, Kertowidjojo E, Song S, Hintze TH, Sun D. Divergent outcomes of fructose consumption on exercise capacity of rats: friend or foe. J Appl Physiol (1985) 2016; 122:368-375. [PMID: 27909228 DOI: 10.1152/japplphysiol.00767.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that high fructose (HF) consumption divergently affects exercise capability as a function of feeding duration, rats were fed a normal (as control) diet or a normal caloric diet with HF for 3, 6, 10, and 30 days, respectively, and then were run on a treadmill. Results show that running distance and work were significantly increased, which was associated with greater exercise oxygen consumption in rats fed HF for 3 (HF-3D) and 6 days, but were decreased in rats fed HF for 30 days (HF-30D) compared with rats in their respective control groups. Shear stress-induced vasodilation (SSID) in isolated plantaris muscle arterioles was significantly greater in the HF-3D group than the control group. The difference in SSID between the two groups was abolished by Nω-nitro-l-arginine methyl ester (L-NAME), suggesting a nitric oxide (NO)-mediated response. Expression of phosphorylated/activated endothelial NO synthase (eNOS) and release of nitrite/NO were significantly increased in vessels of animals in the HF-3D group than controls. In contrast, arterioles isolated from the hypertensive rats in the HF-30D group displayed significantly attenuated NO-mediated SSID accompanied with greater production of superoxide compared with vessels of control animals. Additionally, the NO-dependent modulation of myocardial oxygen consumption (MV̇o2) was also impaired in the HF-30D group, and was prevented by blocking superoxide production with apocynin, an inhibitor that also normalized the reduced SSID in the HF-30D group. In conclusion, short-term (3-6 days) HF feeding enhances exercise potential via an increase in endothelial sensitivity to shear stress, which stimulates eNOS to release NO, leading to better tissue perfusion and utilization of oxygen. However, long-term (30 days) HF feeding initiates endothelial dysfunction by superoxide-dependent mechanisms to compromise exercise performance.NEW & NOTEWORTHY The evidence that short-term fructose intake potentiates exercise capacity by nitric oxide-mediated mechanisms yields an optimal fructose feeding frame in which beneficial effects of fructose have been acquired while detrimental effects have not yet been manifested. This highlights the significance of exercise physiology in providing constructive regimens to improve physical performance.
Collapse
Affiliation(s)
- Angela Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | - Su Song
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
17
|
Watanabe S, Matsumoto T, Ando M, Adachi T, Kobayashi S, Iguchi M, Takeuchi M, Taguchi K, Kobayashi T. Multiple activation mechanisms of serotonin-mediated contraction in the carotid arteries obtained from spontaneously hypertensive rats. Pflugers Arch 2016; 468:1271-1282. [PMID: 27170312 DOI: 10.1007/s00424-016-1834-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important endogenous substance that regulates the vascular tone, and the abnormal signaling of 5-HT has been observed in the arteries under several pathophysiological conditions such as diabetes and hypertension. However, signaling pathways of 5-HT-mediated vasocontraction in hypertension remain unclear. Therefore, we tested the hypothesis that 5-HT-mediated contraction and contributions of various kinases such as mitogen-activated protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K), Rho kinase (ROCK), and 3-phosphoinositide-dependent kinase 1 (PDK1) to the contraction would be altered in the carotid arteries obtained from spontaneously hypertensive rats (SHR) compared to control Wistar Kyoto (WKY) rats. In the carotid arteries from SHR (vs. those from WKY), (1) the 5-HT-mediated contraction was increased, whereas the norepinephrine-mediated contraction was not; (2) 5-HT-mediated contractions were partly inhibited by each kinase (extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase (JNK), PI3K, ROCK, and PDK1) inhibitor; and (3) 5-HT-stimulated phosphorylation of ERK1/2, p38 MAPK, JNK, myosin phosphatase target subunit 1 (MYPT1), and PDK1 was increased. The expression of ROCK2 but not ROCK1 was increased in the carotid arteries from SHR compared to WKY. The expression of 5-HT2A receptor, a major receptor of 5-HT-mediated contraction in rat carotid artery, was similar in carotid arteries between the two groups. These results suggest that 5-HT-mediated contraction was utilized multiple signaling pathways such as ERK1/2, p38 MAPK, JNK, PI3K, ROCK, and PDK1. Although 5-HT-mediated contraction was increased in the carotid arteries obtained from SHR, further studies are necessary to clarify how each kinase may integrate in the vascular smooth muscles under hypertension.
Collapse
Affiliation(s)
- Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuyuki Adachi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miki Takeuchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
18
|
Zhao B, Li H, Liu J, Han P, Zhang C, Bai H, Yuan X, Wang X, Li L, Ma H, Jin X, Chu Y. MicroRNA-23b Targets Ras GTPase-Activating Protein SH3 Domain-Binding Protein 2 to Alleviate Fibrosis and Albuminuria in Diabetic Nephropathy. J Am Soc Nephrol 2016; 27:2597-608. [PMID: 26839366 DOI: 10.1681/asn.2015030300] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a frequent and severe complication of diabetes that is structurally characterized by glomerular basement membrane thickening, extracellular matrix accumulation, and destabilization of podocyte foot processes. MicroRNAs (miRNAs) are dysregulated in DN, but identification of the specific miRs involved remains incomplete. Here, we confirm that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of miR-23b compared with those of their nondiabetic counterparts. Furthermore, exposure to high glucose downregulated miR-23b in cultured kidney cells. In contrast, renal expression of Ras GTPase-activating protein SH3 domain-binding protein 2 (G3BP2), a putative miR-23b target, increased in DN. In vitro, overexpression of miR-23b decreased, and inhibition of miR-23b increased, G3BP2 expression levels. Bioinformatics analysis also revealed p53 binding sites in the miR-23b promoter; in vitro inhibition of p53 or the upstream p38 mitogen-activated protein kinase (p38MAPK) upregulated miR-23b expression in high-glucose conditions. In turn, inhibition of G3BP2 or overexpression of miR-23b downregulated p53 and p38MAPK expression in high-glucose conditions. In vivo, overexpression of miR-23b or inhibition of p53 in db/db mice reversed hyperalbuminuria and kidney fibrosis, whereas miR-23b antagomir treatment promoted renal fibrosis and increased albuminuria in wild-type mice. These data suggest that hyperglycemia regulates pathogenic processes in DN through an miR-23b/G3BP2 feedback circuit involving p38MAPK and p53. In conclusion, these results reveal a role for miR-23b in DN and indicate a novel potential therapeutic target.
Collapse
Affiliation(s)
- Binghai Zhao
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Hongzhi Li
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Pengfei Han
- Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People's Republic of China
| | - Chunlei Zhang
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - He Bai
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Xiaoli Wang
- Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People's Republic of China
| | - Li Li
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Hongchuang Ma
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Xiudong Jin
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Medical Research Center, and
| |
Collapse
|
19
|
Synergistic Effects of Combining Anti-Midkine and Hepatocyte Growth Factor Therapies Against Diabetic Nephropathy in Rats. Am J Med Sci 2015; 350:47-54. [PMID: 26086153 DOI: 10.1097/maj.0000000000000510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to assess whether synergism could be achieved when combining midkine (MK) antisense oligodeoxynucleotides (anti-MK ODN) and recombinant human hepatocyte growth factor (HGF) in diabetic nephropathy (DN) rat models. METHODS Rats were randomized into 6 groups: control, DN rats without treatment, DN rats treated with scrambled ODN, DN rats treated with anti-MK ODN, DN rats treated with HGF and DN rats treated with anti-MK ODN plus HGF. DN models were created by intraperitoneal injection of streptozotocin. Two weeks later, treatments commenced. ODN (1 mg/kg) was intravenously injected weekly for 4 weeks. HGF (500 μg/kg) was subcutaneously injected daily for 4 weeks. Eight weeks later, rats were euthanized. Serum and urine parameters, kidney histopathological injury scores, immunohistochemistry and protein expressions were measured. RESULTS Blood glucose, creatinine, blood urea nitrogen and urine albumin were significantly elevated in DN rats. Any single treatment markedly reduced their levels, yet combined treatment decreased them significantly further. Any monotherapy could decrease renal injury score and immunohistochemistry positive percentage, although the most prominent change was displayed in combinational therapy. Western blot showed the expression of MK was significantly elevated in DN rats. Anti-MK ODN suppressed MK significantly. The protein expressions and serum concentrations of transforming growth factor-β1 and connective tissue growth factor between monotherapy and the combined therapy were significant. CONCLUSIONS This study demonstrated that combining MK gene suppressing ODN and HGF protein synergistically attenuates renal injury in DN rats. This study may provide a novel avenue for designing future therapeutic regimens against DN.
Collapse
|
20
|
Bulut G, Kurdoglu Z, Dönmez YB, Kurdoglu M, Erten R. Effects of jnk inhibitor on inflammation and fibrosis in the ovary tissue of a rat model of polycystic ovary syndrome. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8774-8785. [PMID: 26464620 PMCID: PMC4583852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE In our study, we aimed to investigate the effects of Jun N-terminal kinase inhibitor (SP600125) on fibrosis and inflammation in rats with polycystic ovary syndrome (PCOS). METHOD 50 Wistar-albino rats were divided into five groups (n=10 each): control group, sham group, PCOS group, SP600125+ PCOS group and SP600125 group. In the estradiol valerate (EV)-treated group in which PCOS was injected with a single 4 mg/kg i.p. of EV in 0.2 ml sesame oil and the rats were sacrificed on day 60. The estradiol valerate (EV)-treated + SP600125-treated group was injected with a single 4 mg/kg i.p. of EV in 0.2 ml sesame oil. As of day 60, the treatment group was additionally given 15 mg/kg i.p. of SP600125 once daily for 4 consecutive days and the rats were sacrificed on day 65. Histopathological findings (ovarian morphology, edema, inflammatory cell infiltration, vascular congestion and hyperemia) and collagen type IV immunoexpression were assessed. RESULTS The SP600125+ PCOS group showed a significant level of improvement in ovarian follicle morphology, edema, inflammatory infiltrate, vascular congestion and hyperemia as compared with the PCOS group. Furthermore, collagen type IV immunoexpression showed a significant reduction in staining intensity on the theca cell layer and ovary stroma as compared to the PCOS group. CONCLUSION This study demonstrates the therapeutic effect of SP600125 in the prevention of PCOS in an experimental model.
Collapse
Affiliation(s)
- Gulay Bulut
- Department of Pathology, Yuzuncu Yil University Faculty of MedicineVan, Turkey
| | - Zehra Kurdoglu
- Department of Obstetrics and Gynecology, Ankara Education and Research HospitalAnkara, Turkey
| | - Yeliz Bozdemir Dönmez
- Department of Histology and Embryology, Faculty of Medicine, Namık Kemal UniversityTekirdag-Turkey
| | - Mertihan Kurdoglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gazi UniversityAnkara, Turkey
| | - Remzi Erten
- Department of Pathology, Yuzuncu Yil University Faculty of MedicineVan, Turkey
| |
Collapse
|
21
|
Caputa G, Zhao S, Criado AEG, Ory DS, Duncan JG, Schaffer JE. RNASET2 is required for ROS propagation during oxidative stress-mediated cell death. Cell Death Differ 2015. [PMID: 26206090 DOI: 10.1038/cdd.2015.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RNASET2 is a ubiquitously expressed acidic ribonuclease that has been implicated in diverse pathophysiological processes including tumorigeneis, vitiligo, asthenozoospermia, and neurodegeneration. Prior studies indicate that RNASET2 is induced in response to oxidative stress and that overexpression of RNASET2 sensitizes cells to reactive oxygen species (ROS)-induced cell death through a mechanism that is independent of catalytic activity. Herein, we report a loss-of-function genetic screen that identified RNASET2 as an essential gene for lipotoxic cell death. Haploinsufficiency of RNASET2 confers increased antioxidant capacity and generalized resistance to oxidative stress-mediated cell death in cultured cells. This function is critically dependent on catalytic activity. Furthermore, knockdown of RNASET2 in the Drosophila fat body confers increased survival in the setting of oxidative stress inducers. Together, these findings demonstrate that RNASET2 regulates antioxidant tone and is required for physiological ROS responses.
Collapse
Affiliation(s)
- G Caputa
- Diabetic Cardiovascular Disease Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - S Zhao
- Diabetic Cardiovascular Disease Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - A E G Criado
- Diabetic Cardiovascular Disease Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - D S Ory
- Diabetic Cardiovascular Disease Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - J G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - J E Schaffer
- Diabetic Cardiovascular Disease Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Sakata K, Kondo T, Mizuno N, Shoji M, Yasui H, Yamamori T, Inanami O, Yokoo H, Yoshimura N, Hattori Y. Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells. Vascul Pharmacol 2015; 70:55-65. [DOI: 10.1016/j.vph.2015.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/14/2015] [Accepted: 03/28/2015] [Indexed: 12/20/2022]
|
23
|
Ruiz MA, Feng B, Chakrabarti S. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy. PLoS One 2015; 10:e0123987. [PMID: 25884496 PMCID: PMC4401764 DOI: 10.1371/journal.pone.0123987] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Glucose-induced augmented vascular endothelial growth factor (VEGF) production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2), has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation.
Collapse
Affiliation(s)
- Michael Anthony Ruiz
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
24
|
Azimzadeh O, Sievert W, Sarioglu H, Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson MJ, Multhoff G, Tapio S. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res 2015; 14:1203-19. [PMID: 25590149 DOI: 10.1021/pr501141b] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood. In the present study, 10-week-old C57Bl/6 mice received local X-ray heart doses of 8 or 16 Gy and were sacrificed after 16 weeks; the controls were sham-irradiated. The cardiac microvascular endothelial cells were isolated from the heart tissue using streptavidin-CD31-coated microbeads. The cells were lysed and proteins were labeled with duplex isotope-coded protein label methodology for quantification. All samples were analyzed by LC-ESI-MS/MS and Proteome Discoverer software. The proteomics data were further studied by bioinformatics tools and validated by targeted transcriptomics, immunoblotting, immunohistochemistry, and serum profiling. Radiation-induced endothelial dysfunction was characterized by impaired energy metabolism and perturbation of the insulin/IGF-PI3K-Akt signaling pathway. The data also strongly suggested premature endothelial senescence, increased oxidative stress, decreased NO availability, and enhanced inflammation as main causes of radiation-induced long-term vascular dysfunction. Detailed data on molecular mechanisms of radiation-induced vascular injury as compiled here are essential in developing radiotherapy strategies that minimize cardiovascular complications.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München - German Research Centre for Environmental Health, Institute of Radiation Biology , Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang A, Pinto JT, Froogh G, Kandhi S, Qin J, Wolin MS, Hintze TH, Sun D. Role of homocysteinylation of ACE in endothelial dysfunction of arteries. Am J Physiol Heart Circ Physiol 2014; 308:H92-100. [PMID: 25416191 DOI: 10.1152/ajpheart.00577.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The direct impact of de novo synthesis of homocysteine (Hcy) and its reactive metabolites, Hcy-S-S-Hcy and Hcy thiolactone (HCTL), on vascular function has not been fully elucidated. We hypothesized that Hcy synthesized within endothelial cells affects activity of angiotensin-converting enzyme (ACE) by direct homocysteinylation of its amino- and/or sulfhydryl moieties. This covalent modification enhances ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-superoxide-dependent endothelial dysfunction. Mesenteric and coronary arteries isolated from normal rats were incubated for 3 days with or without exogenous methionine (Met, 0.1-0.3 mM), a precursor to Hcy. Incubation of arteries in Met-free media resulted in time-dependent decreases in vascular Hcy formation. By contrast, vessels incubated with Met produced Hcy in a dose-dependent manner. There was a notably greater de novo synthesis of Hcy from endothelial than from smooth muscle cells. Enhanced levels of Hcy production significantly impaired shear stress-induced dilation and release of nitric oxide, events that are associated with elevated production of vascular superoxide. Each of these processes was attenuated by ANG II type I receptor blocker or ACE and NADPH oxidase inhibitors. In addition, in vitro exposure of purified ACE to Hcy-S-S-Hcy/HCTL resulted in formation of homocysteinylated ACE and an enhanced ACE activity. The enhanced ACE activity was confirmed in isolated coronary and mesenteric arteries that had been exposed directly to Hcy-S-S-Hcy/HCTL or after Met incubation. In conclusion, vasculature-derived Hcy initiates endothelial dysfunction that, in part, may be mediated by ANG II-dependent activation of NADPH oxidase in association with homocysteinylation of ACE.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - John T Pinto
- Department of Biochemistry, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
26
|
Wang Y, Wang Y, Luo M, Wu H, Kong L, Xin Y, Cui W, Zhao Y, Wang J, Liang G, Miao L, Cai L. Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochim Biophys Acta Mol Basis Dis 2014; 1852:34-46. [PMID: 25446993 DOI: 10.1016/j.bbadis.2014.11.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
Glomerulosclerosis and interstitial fibrosis represent the key events in development of diabetic nephropathy (DN), with connective tissue growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1) and fibronectin 1 (FN-1) playing important roles in these pathogenic processes. To investigate whether the plant metabolite curcumin, which exerts epigenetic modulatory properties when applied as a pharmacological agent, may prevent DN via inhibition of the JNK pathway and epigenetic histone acetylation, diabetic and age-matched non-diabetic control mice were administered a 3-month course of curcumin analogue (C66), c-Jun N-terminal kinase inhibitor (JNKi, sp600125), or vehicle alone. At treatment end, half of the mice were sacrificed for analysis and the other half were maintained without treatment for an additional 3 months. Renal JNK phosphorylation was found to be significantly increased in the vehicle-treated diabetic mice, but not the C66- and JNKi-treated diabetic mice, at both the 3-month and 6-month time points. C66 and JNKi treatment also significantly prevented diabetes-induced renal fibrosis and dysfunction. Diabetes-related increases in histone acetylation, histone acetyl transferases' (HATs) activity, and the p300/CBP HAT expression were also significantly attenuated by C66 or JNKi treatment. Chromatin immunoprecipitation assays showed that C66 and JNKi treatments decreased H3-lysine9/14-acetylation (H3K9/14Ac) level and p300/CBP occupancy at the CTGF, PAI-1 and FN-1 gene promoters. Thus, C66 may significantly and persistently prevent renal injury and dysfunction in diabetic mice via down-regulation of diabetes-related JNK activation and consequent suppression of the diabetes-related increases in HAT activity, p300/CBP expression, and histone acetylation.
Collapse
Affiliation(s)
- Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA
| | - Yonggang Wang
- Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA; Cardiovascular Center, First Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA
| | - Hao Wu
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA
| | - Lili Kong
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA
| | - Ying Xin
- Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
27
|
Wang Z, Zhang J, Li B, Gao X, Liu Y, Mao W, Chen SL. Resveratrol ameliorates low shear stress‑induced oxidative stress by suppressing ERK/eNOS‑Thr495 in endothelial cells. Mol Med Rep 2014; 10:1964-72. [PMID: 25198200 DOI: 10.3892/mmr.2014.2390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
Fluid shear stress has been revealed to differentially regulate endothelial nitric oxide synthase (eNOS) distribution in vessels. eNOS, a key enzyme in controlling nitric oxide (NO) release, has a crucial role in mediating oxidative stress, and resveratrol (RSV)‑mediated eNOS also attenuates oxidative damage and suppresses endothelial dysfunction. To observe the protective effect of RSV on low shear stress (LSS)‑induced oxidative damage and the potential mechanisms involved, a parallel‑plate flow chamber, which imposed a low level of stress of 2 dynes/cm2 to cells, was employed. Reactive oxygen species (ROS), NO and apoptotic cells were examined in LSS‑treated endothelial cells (ECs) with or without RSV. Western blot analysis was used to examine LSS‑regulated eNOS‑Ser1177, Thr495 and Ser633, which were tightly associated with NO release. To further determine the underlying signaling pathways involved, extracellular signal‑regulated kinase (ERK), a possible upstream target of eNOS‑Thr495, was investigated, followed by examination of eNOS‑Thr495 in ERK‑inhibited cells. Additionally, eNOS mRNA expression levels were analyzed in cells challenged with LSS. The results revealed that RSV markedly decreased LSS‑induced oxidative damage in ECs. Furthermore, eNOS‑Ser1177 and Thr495 as well as phospho‑ERK were time‑dependently activated by LSS. The ERK inhibitor deactivated eNOS‑Thr495, which was accompanied by increased intracellular superoxide dismutase (SOD) levels. Of note, the activation effect of LSS on ERK/eNOS was markedly eliminated by RSV. In conclusion, RSV exerts antioxidant effects by suppressing LSS-activated ERK/eNOS and may provide a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Junxia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Bing Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yanrong Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wenxing Mao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
28
|
Li X, Zhao G, Ma B, Li R, Hong J, Liu S, Wang DW. 20-Hydroxyeicosatetraenoic acid impairs endothelial insulin signaling by inducing phosphorylation of the insulin receptor substrate-1 at Ser616. PLoS One 2014; 9:e95841. [PMID: 24763529 PMCID: PMC3998975 DOI: 10.1371/journal.pone.0095841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
20-hydroxyeicosatetraenoic acid (20-HETE) induces endothelial dysfunction and is correlated with diabetes. This study was designed to investigate the effects of 20-HETE on endothelial insulin signaling.Human umbilical vein endothelial cells (HUVECs) or C57BL/6J mice were treated with 20-HETE in the presence or absence of insulin, and p-ERK1/2, p-JNK, IRS-1/PI3K/AKT/eNOS pathway, were examined in endothelial cells and aortas by immunoblotting. eNOS activity and nitric oxide production were measured. 20-HETE increased ERK1/2 phosphorylation and IRS-1 phosphorylation at Ser616; these effects were reversed by ERK1/2 inhibition. We further observed that 20-HETE treatment resulted in impaired insulin-stimulated IRS-1 phosphorylation at Tyr632 and subsequent PI3-kinase/Akt activation. Furthermore, 20-HETE treatment blocked insulin-stimulated phosphorylation of eNOS at the stimulatory Ser1177 site, eNOS activation and NO production; these effects were reversed by inhibiting ERK1/2. Treatment of C57BL/6J mice with 20-HETE resulted in ERK1/2 activation and impaired insulin-dependent activation of the IRS-1/PI3K/Akt/eNOS pathway in the aorta. Our data suggest that the 20-HETE activation of IRS-1 phosphorylation at Ser616 is dependent on ERK1/2 and leads to impaired insulin-stimulated vasodilator effects that are mediated by the IRS-1/PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail:
| | - Gang Zhao
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ben Ma
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rui Li
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiang Hong
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shaowen Liu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Kassan M, Choi SK, Galán M, Lee YH, Trebak M, Matrougui K. Enhanced p22phox expression impairs vascular function through p38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2014; 306:H972-80. [PMID: 24486509 DOI: 10.1152/ajpheart.00872.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes is associated with vascular complication. We hypothesized that increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p22(phox) expression impairs vascular endothelium-dependent relaxation (EDR) in type 2 diabetes. Type 2 diabetic (db(-)/db(-)) and control (db(-)/db(+)) mice were treated with reactive oxygen species (ROS) scavenger, polyethylene glycol superoxide dismutase (1,000 U/kg daily ip), or small interfering RNA p22(phox) (p22(phox)-lentivirus-small interfering RNA, 100 μg iv, 2 times/wk) for 1 mo. EDR was impaired in microvascular bed (coronary arteriole and femoral and mesenteric resistance arteries) from diabetic mice compared with control. Interestingly, ROS scavenger and p22(phox) downregulation did not affect blood glucose level or body weight but significantly improved EDR. Mitogen-activated protein kinases (ERK1/2 and p38) phosphorylation and NADPH oxidase activity were increased in arteries from diabetic mice and were reduced after ROS scavenger or p22(phox) downregulation in db(-)/db(-) mice. The present study showed that enhanced p22(phox) expression causes vascular dysfunction through ERK1/2 and p38-mitogen-activated protein kinase-dependent mechanisms in male type 2 diabetic mice. Therefore, p22(phox) could be an important target to improve vascular function in diabetes.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
30
|
Shen K, Leung SWS, Ji L, Huang Y, Hou M, Xu A, Wang Z, Vanhoutte PM. Notoginsenoside Ft1 activates both glucocorticoid and estrogen receptors to induce endothelium-dependent, nitric oxide-mediated relaxations in rat mesenteric arteries. Biochem Pharmacol 2014; 88:66-74. [PMID: 24440742 DOI: 10.1016/j.bcp.2014.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 01/01/2023]
Abstract
Panax notoginseng (Burk.) F.H. Chen has been used traditionally for the treatment of cardiovascular diseases. Notoginsenoside Ft1 (Ft1) is a bioactive saponin from the leaves of P. notoginseng. Experiments were designed to determine whether or not Ft1 is an endothelium-dependent vasodilator. Rat mesenteric arteries were suspended in organ chambers for the measurement of isometric tension during phenylephrine-induced contractions. The cyclic guanosine monophosphate (cGMP) level was assessed using enzyme immunoassay. The phosphorylation and protein expressions of endothelial nitric oxide synthase (eNOS), glucocorticoid receptors (GR), estrogen receptors beta (ERß), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2) were determined by Western blotting. The localization of GR and ERß were determined by immunofluorescence staining. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ERß were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2. Inhibition of phosphoinositide-3-kinase (PI3K) by wortmannin and ERK1/2 by U0126 reduced Ft1-evoked relaxations and eNOS phosphorylation. Taken in conjunction, the present findings suggest that Ft1 stimulates endothelial GRs and ERßs with subsequent activation of the PI3K/Akt and ERK1/2 pathways in rat mesenteric arteries. This results in phosphorylation of eNOS and the release of NO, which activates soluble guanylyl cyclase in the vascular smooth muscle cells leading to relaxations.
Collapse
Affiliation(s)
- Kaikai Shen
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Maoqi Hou
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
C-Peptide and Its Career from Innocent Bystander to Active Player in Diabetic Atherogenesis. Curr Atheroscler Rep 2013; 15:339. [DOI: 10.1007/s11883-013-0339-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Flores-López LA, Díaz-Flores M, García-Macedo R, Ávalos-Rodríguez A, Vergara-Onofre M, Cruz M, Contreras-Ramos A, Konigsberg M, Ortega-Camarillo C. High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells. Mol Biol Rep 2013; 40:4947-58. [PMID: 23657598 DOI: 10.1007/s11033-013-2595-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/29/2013] [Indexed: 01/09/2023]
Abstract
Pancreatic β-cell death in type 2 diabetes has been related to p53 subcellular localisation and phosphorylation. However, the mechanisms by which p53 is phosphorylated and its activation in response to oxidative stress remain poorly understood. Therefore, the aim of this study was to investigate mitochondrial p53 phosphorylation, its subcellular localisation and its relationship with apoptotic induction in RINm5F cells cultured under high glucose conditions. Our results show that p53 phosphorylation in the mitochondrial fraction was greater at ser392 than at ser15. This increased phosphorylation correlated with an increase in reactive oxygen species, a decrease in the Bcl-2/Bax ratio, a release of cytochrome c and an increase in the rate of apoptosis. We also observed a decline in ERK 1/2 phosphorylation over time, which is an indicator of cell proliferation. To identify the kinase responsible for phosphorylating p53, p38 mitogen-activated protein kinase (MAPK) activation was analysed. We found that high glucose induced an increase in p38 MAPK phosphorylation in the mitochondria after 24-72 h. Moreover, the phosphorylation of p53 (ser392) by p38 MAPK in mitochondria was confirmed by colocalisation studies with confocal microscopy. The addition of a specific p38 MAPK inhibitor (SB203580) to the culture medium during high glucose treatment blocked p53 mobilisation to the mitochondria and phosphorylation; thus, the release of cytochrome c and the apoptosis rate in RINm5F cells decreased. These results suggest that mitochondrial p53 phosphorylation by p38 MAPK plays an important role in RINm5F cell death under high glucose conditions.
Collapse
Affiliation(s)
- Luis A Flores-López
- Unidad de Investigación Médica en Bioquímica, HE, Centro Médico Nacional Siglo XXI. IMSS., Av. Cuauhtémoc 330, Col Doctores, Del. Cuauhtémoc, México, DF, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol 2013; 91:213-20. [DOI: 10.1139/cjpp-2012-0251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology, Western University, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|