1
|
Matsumura S, Signoretti C, Fatehi S, Tumenbayar BI, D'Addario C, Nimmer E, Thomas C, Viswanathan T, Wolf A, Garcia V, Rocic P, Bae Y, Alam SS, Gupte SA. Loss-of-function G6PD variant moderated high-fat diet-induced obesity, adipocyte hypertrophy, and fatty liver in male rats. J Biol Chem 2024; 300:107460. [PMID: 38876306 PMCID: PMC11328872 DOI: 10.1016/j.jbc.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.
Collapse
Affiliation(s)
- Shun Matsumura
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | - Samuel Fatehi
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Bat Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Catherine D'Addario
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Erik Nimmer
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Colin Thomas
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Trisha Viswanathan
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Alexandra Wolf
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Petra Rocic
- Department of Physiology & Pharmacology, SHSU College of Osteopathic Medicine, Conroe, Texas, USA
| | - Yongho Bae
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sm Shafiqul Alam
- Department of Pathology, Microbiology, and Immunology (PMI), New York Medical College, Valhalla, New York, USA
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
2
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Leizaola D, Dargam V, Leiva K, Alirezaei H, Hutcheson J, Godavarty A. Effect of chronic kidney disease induced calcification on peripheral vascular perfusion using near-infrared spectroscopic imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:277-293. [PMID: 38223173 PMCID: PMC10783904 DOI: 10.1364/boe.503667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Low-cost techniques that can detect the presence of vascular calcification (VC) in chronic kidney disease (CKD) patients could improve clinical outcomes. In this study, we established a near-infrared spectroscopy-based imaging technique to determine changes in peripheral hemodynamics due to CKD-induced VC. Mice were fed a high-adenine diet with either normal or high levels of phosphate to induce CKD with and without VC, respectively. The mice tail was imaged to evaluate hemodynamic changes in response to occlusion. The rate of change in oxyhemoglobin in response to occlusion showed a statistically significant difference in the presence of VC in the mice.
Collapse
Affiliation(s)
- Daniela Leizaola
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Valentina Dargam
- Cardiovascular Matrix Remodeling
Laboratory, Biomedical Engineering
Department, 10555 W Flagler St, Miami, FL 33174,
USA
| | - Kevin Leiva
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Haniyeh Alirezaei
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Joshua Hutcheson
- Cardiovascular Matrix Remodeling
Laboratory, Biomedical Engineering
Department, 10555 W Flagler St, Miami, FL 33174,
USA
| | - Anuradha Godavarty
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| |
Collapse
|
4
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt Pathways as a Potential Target Pathway in Atherosclerosis. J Lipid Atheroscler 2023; 12:223-236. [PMID: 37800111 PMCID: PMC10548192 DOI: 10.12997/jla.2023.12.3.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Yegor S Chegodaev
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| |
Collapse
|
7
|
Woo SH, Kim DY, Choi JH. Roles of Vascular Smooth Muscle Cells in Atherosclerotic Calcification. J Lipid Atheroscler 2023; 12:106-118. [PMID: 37265849 PMCID: PMC10232217 DOI: 10.12997/jla.2023.12.2.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/03/2023] Open
Abstract
The accumulation of calcium in atherosclerotic plaques is a prominent feature of advanced atherosclerosis, and it has a strong positive correlation with the total burden of atherosclerosis. Atherosclerotic calcification usually appears first at the necrotic core, indicating that cell death and inflammatory processes are involved in calcification. During atherosclerotic inflammation, various cell types, such as vascular smooth muscle cells, nascent resident pericytes, circulating stem cells, or adventitial cells, have been assumed to differentiate into osteoblastic cells, which lead to vascular calcification. Among these cell types, vascular smooth muscle cells are considered a major contributor to osteochondrogenic cells in the atherosclerotic milieu. In this review, we summarize the molecular mechanisms underlying the osteochondrogenic switch of vascular smooth muscle cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
8
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
9
|
The Role of Hydrogen Sulfide in Plaque Stability. Antioxidants (Basel) 2022; 11:antiox11122356. [PMID: 36552564 PMCID: PMC9774534 DOI: 10.3390/antiox11122356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is the greatest contributor to cardiovascular events and is involved in the majority of deaths worldwide. Plaque rapture or erosion precipitates life-threatening thrombi, resulting in the obstruction blood flow to the heart (acute coronary syndrome), brain (ischemic stroke) or low extremities (peripheral vascular diseases). Among these events, major causation dues to the plaque rupture. Although the initiation, procession, and precise time of controlling plaque rupture are unclear, foam cell formation and apoptosis, cell death, extracellular matrix components, protease expression and activity, local inflammation, intraplaque hemorrhage, and calcification contribute to the plaque instability. These alterations tightly associate with the function regulation of intraplaque various cell populations. Hydrogen sulfide (H2S) is gasotransmitter derived from methionine metabolism and exerts a protective role in the genesis of atherosclerosis. Recent progress also showed H2S mediated the plaque stability. In this review, we discuss the progress of endogenous H2S modulation on functions of vascular smooth muscle cells, monocytes/macrophages, and T cells, and the molecular mechanism in plaque stability.
Collapse
|
10
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
11
|
Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 2022; 18:473-489. [PMID: 35578027 DOI: 10.1038/s41574-022-00682-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.
Collapse
Affiliation(s)
- Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| | - Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of the University of Munich, Ludwig-Maximilians University, Munich, Germany
| | - Giovanni Beltrami
- Department Paediatric Orthopedic Oncology, Careggi and Meyer Children Hospital, Florence, Italy
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Agnès Linglart
- APHP, Endocrinologie et diabète de l'enfant, Paris, France
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dwight A Towler
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ria Weston
- Cardiovascular Research Group, Manchester Metropolitan University, Manchester, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Wu YY, Shan SK, Lin X, Xu F, Zhong JY, Wu F, Duan JY, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Tang KX, Li CC, Ullah MHE, Yuan LQ. Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification. Front Cardiovasc Med 2022; 9:912358. [PMID: 35677687 PMCID: PMC9168031 DOI: 10.3389/fcvm.2022.912358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 07/20/2023] Open
Abstract
Vascular calcification is prevalent in aging, diabetes, chronic kidney disease, cardiovascular disease, and certain genetic disorders. However, the pathogenesis of vascular calcification is not well-understood. It has been progressively recognized that vascular calcification depends on the bidirectional interactions between vascular cells and their microenvironment. Exosomes are an essential bridge to mediate crosstalk between cells and organisms, and thus they have attracted increased research attention in recent years. Accumulating evidence has indicated that exosomes play an important role in cardiovascular disease, especially in vascular calcification. In this review, we introduce vascular biology and focus on the crosstalk between the different vessel layers and how their interplay controls the process of vascular calcification.
Collapse
Affiliation(s)
- Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Gonçalves I, Oduor L, Matthes F, Rakem N, Meryn J, Skenteris NT, Aspberg A, Orho-Melander M, Nilsson J, Matic L, Edsfeldt A, Sun J, Bengtsson E. Osteomodulin Gene Expression Is Associated With Plaque Calcification, Stability, and Fewer Cardiovascular Events in the CPIP Cohort. Stroke 2022; 53:e79-e84. [PMID: 35135320 DOI: 10.1161/strokeaha.121.037223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stable atherosclerotic plaques are characterized by thick fibrous caps of smooth muscle cells, collagen, and macrocalcifications. Identifying factors of plaque stability is necessary to design drugs to prevent plaque rupture and symptoms. Osteomodulin, originally identified in bones, is expressed by bone synthesizing osteoblasts and involved in mineralization. In the present study, we analyzed osteomodulin expression in human carotid plaques, its link with plaque phenotype, calcification, and future cardiovascular events. METHODS Osteomodulin gene expression (OMD; n=82) was determined by RNA sequencing and osteomodulin protein levels by immunohistochemistry (n=45) in carotid plaques obtained by endarterectomy from patients with or without cerebrovascular symptoms from the CPIP (Carotid Plaque Imaging Project) cohort, Skåne University Hospital, Sweden. Plaque components were assessed by immunohistochemistry, RNA sequencing, and multiplex analysis. Patients were followed for cardiovascular events or cardiovascular death during a median of 57 or 70 months, respectively, using national registers. RESULTS OMD levels were increased in plaques from asymptomatic patients compared to symptomatics. High OMD levels were associated with fewer cardiovascular events during follow-up. OMD correlated positively with smooth muscle α-actin (ACTA2; r=0.73, P=10-13) and collagen (COL1A2; r=0.4, P=0.0002), but inversely with CD68 gene expression (r=-0.67, P=10-11), lipids (r=-0.37, P=0.001), intraplaque hemorrhage (r=-0.32, P=0.010), inflammatory cytokine, and matrix metalloproteinase plaque contents. OMD was positively associated with MSX2 (Msh Homeobox 2) (r=0.32, P=0.003), a marker of preosteoblast differentiation, BMP4 (bone morphogenetic protein) (r=0.50, P=0.000002) and BMP6 (r=0.47, P=0.000007), plaque calcification (r=0.35, P=0.016), and was strongly upregulated in osteogenically stimulated smooth muscle cells, which was further increased upon BMP stimulation. Osteomodulin protein was present in calcified regions. Osteomodulin protein levels were associated with plaque calcification (r=0.41, P=0.006) and increased in macrocalcified plaques. CONCLUSIONS These data show that osteomodulin mRNA and protein levels are associated with plaque calcification in human atherosclerosis. Furthermore, osteomodulin mRNA, but not protein levels, is associated with plaque stability.
Collapse
Affiliation(s)
- Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.).,Cardiology, Skåne University Hospital, Lund University, Sweden. (I.G., A.E.)
| | - Loureen Oduor
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| | - Frank Matthes
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| | - Narjess Rakem
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| | - Jakob Meryn
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| | - Nikolaos-Taxiarchis Skenteris
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.).,Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden (N.-T.S., L.M.)
| | - Anders Aspberg
- Department of Clinical Sciences, Lund University, Sweden. (A.A.)
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden (N.-T.S., L.M.)
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.).,Cardiology, Skåne University Hospital, Lund University, Sweden. (I.G., A.E.).,Wallenberg Centre for Molecular Medicine, Lund University, Sweden. (A.E.)
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Sweden. (I.G., L.O., F.M., N.R., J.M., M.O.-M., J.N., A.E., J.S., E.B.)
| |
Collapse
|
14
|
Regulation of MDM2 E3 ligase-dependent vascular calcification by MSX1/2. Exp Mol Med 2021; 53:1781-1791. [PMID: 34845330 PMCID: PMC8639964 DOI: 10.1038/s12276-021-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022] Open
Abstract
Vascular calcification increases morbidity and mortality in patients with cardiovascular and renal diseases. Previously, we reported that histone deacetylase 1 prevents vascular calcification, whereas its E3 ligase, mouse double minute 2 homolog (MDM2), induces vascular calcification. In the present study, we identified the upstream regulator of MDM2. By utilizing cellular models and transgenic mice, we confirmed that E3 ligase activity is required for vascular calcification. By promoter analysis, we found that both msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) bound to the MDM2 promoter region, which resulted in transcriptional activation of MDM2. The expression levels of both Msx1 and Msx2 were increased in mouse models of vascular calcification and in calcified human coronary arteries. Msx1 and Msx2 potentiated vascular calcification in cellular and mouse models in an MDM2-dependent manner. Our results establish a novel role for MSX1/MSX2 in the transcriptional activation of MDM2 and the resultant increase in MDM2 E3 ligase activity during vascular calcification. The identification of a signaling pathway involved in triggering vascular calcification, the deposition of calcium phosphate crystals in blood vessels, could inform new therapeutic interventions for related cardiovascular complications. Vascular calcification causes significant complications in patients with metabolic syndrome, renal failure, or cardiovascular disease. In their previous work, Hyun Kook and Duk-Hwa Kwon at Chonnam National University Medical School, Jeollanamdo, Republic of Korea, and coworkers demonstrated that the E3 ligase activity of a protein called MDM2 induces calcification. Now, following further mouse trials, the team have identified an upstream signaling pathway involving several development proteins such as MSX1 and MSX2 which activate MDM2. The activation of this signaling axis leads to the degradation of a key protein that would otherwise prevent calcification. The results may provide a platform for novel therapies targeting the condition.
Collapse
|
15
|
Nagy A, Pethő D, Gesztelyi R, Juhász B, Balla G, Szilvássy Z, Balla J, Gáll T. BGP-15 Inhibits Hyperglycemia-Aggravated VSMC Calcification Induced by High Phosphate. Int J Mol Sci 2021; 22:ijms22179263. [PMID: 34502172 PMCID: PMC8431374 DOI: 10.3390/ijms22179263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Vascular calcification associated with high plasma phosphate (Pi) level is a frequent complication of hyperglycemia, diabetes mellitus, and chronic kidney disease. BGP-15 is an emerging anti-diabetic drug candidate. This study was aimed to explore whether BGP-15 inhibits high Pi-induced calcification of human vascular smooth muscle cells (VSMCs) under normal glucose (NG) and high glucose (HG) conditions. Exposure of VSMCs to Pi resulted in accumulation of extracellular calcium, elevated cellular Pi uptake and intracellular pyruvate dehydrogenase kinase-4 (PDK-4) level, loss of smooth muscle cell markers (ACTA, TAGLN), and enhanced osteochondrogenic gene expression (KLF-5, Msx-2, Sp7, BMP-2). Increased Annexin A2 and decreased matrix Gla protein (MGP) content were found in extracellular vesicles (EVs). The HG condition markedly aggravated Pi-induced VSMC calcification. BGP-15 inhibited Pi uptake and PDK-4 expression that was accompanied by the decreased nuclear translocation of KLF-5, Msx-2, Sp7, retained VSMC markers (ACTA, TAGLN), and decreased BMP-2 in both NG and HG conditions. EVs exhibited increased MGP content and decreased Annexin A2. Importantly, BGP-15 prevented the deposition of calcium in the extracellular matrix. In conclusion, BGP-15 inhibits Pi-induced osteochondrogenic phenotypic switch and mineralization of VSMCs in vitro that make BGP-15 an ideal candidate to attenuate both diabetic and non-diabetic vascular calcification.
Collapse
Affiliation(s)
- Annamária Nagy
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Pethő
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary; (R.G.); (B.J.); (Z.S.)
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary; (R.G.); (B.J.); (Z.S.)
| | - György Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary; (R.G.); (B.J.); (Z.S.)
| | - József Balla
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- Correspondence: ; Tel.: +36-52-255-500 (ext. 55004)
| | - Tamás Gáll
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
16
|
Herrmann J, Gummi MR, Xia M, van der Giet M, Tölle M, Schuchardt M. Vascular Calcification in Rodent Models-Keeping Track with an Extented Method Assortment. BIOLOGY 2021; 10:biology10060459. [PMID: 34067504 PMCID: PMC8224561 DOI: 10.3390/biology10060459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Arterial vessel diseases are the leading cause of death in the elderly and their accelerated pathogenesis is responsible for premature death in patients with chronic renal failure. Since no functioning therapy concepts exist so far, the identification of the main signaling pathways is of current research interest. To develop therapeutic concepts, different experimental rodent models are needed, which should be subject to the 3R principle of Russel and Burch: “Replace, Reduce and Refine”. This review aims to summarize the current available experimental rodent models for studying vascular calcification and their quantification methods. Abstract Vascular calcification is a multifaceted disease and a significant contributor to cardiovascular morbidity and mortality. The calcification deposits in the vessel wall can vary in size and localization. Various pathophysiological pathways may be involved in disease progression. With respect to the calcification diversity, a great number of research models and detection methods have been established in basic research, relying mostly on rodent models. The aim of this review is to provide an overview of the currently available rodent models and quantification methods for vascular calcification, emphasizing animal burden and assessing prospects to use available methods in a way to address the 3R principles of Russel and Burch: “Replace, Reduce and Refine”.
Collapse
Affiliation(s)
- Jaqueline Herrmann
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
- Department of Chemistry, Biochemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Manasa Reddy Gummi
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Mengdi Xia
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Markus van der Giet
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Markus Tölle
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
- Correspondence: ; Tel.: +49-30-450-514-690
| |
Collapse
|
17
|
Wang L, Chennupati R, Jin YJ, Li R, Wang S, Günther S, Offermanns S. YAP/TAZ Are Required to Suppress Osteogenic Differentiation of Vascular Smooth Muscle Cells. iScience 2020; 23:101860. [PMID: 33319178 PMCID: PMC7726335 DOI: 10.1016/j.isci.2020.101860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) represent the prevailing cell type of arterial vessels and are essential for blood vessel structure and homeostasis. They have substantial potential for phenotypic plasticity when exposed to various stimuli in their local microenvironment. How VSMCs maintain their differentiated contractile phenotype is still poorly understood. Here we demonstrate that the Hippo pathway effectors YAP and TAZ play a critical role in maintaining the differentiated contractile phenotype of VSMCs. In the absence of YAP/TAZ, VSMCs lose their differentiated phenotype and undergo osteogenic differentiation, which results in vascular calcification. Osteogenic transdifferentiation was accompanied by the upregulation of Wnt target genes. The absence of YAP/TAZ in VSMCs led to Disheveled 3 (DVL3) nuclear translocation and upregulation of osteogenesis-associated genes independent of canonical Wnt/β-catenin signaling activation. Our data indicate that cytoplasmic YAP/TAZ interact with DVL3 to avoid its nuclear translocation and osteogenic differentiation, thereby maintaining the differentiated phenotype of VSMCs. YAP/TAZ play an important role in maintaining vascular SMCs contractile phenotype Loss of YAP/TAZ in vSMCs leads to reduced expression of smooth muscle marker genes Loss of YAP/TAZ in vSMCs results in reduced artery contractility Deficiency of YAP/TAZ in vSMCs leads to osteogenic transdifferentiation
Collapse
Affiliation(s)
- Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - Ramesh Chennupati
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - Young-June Jin
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - Rui Li
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an 710061, China
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany.,Center for Molecular Medicine, Medical Faculty, Goethe University, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt Rhine-Main, 13347 Berlin, Germany
| |
Collapse
|
18
|
OGT knockdown counteracts high phosphate-induced vascular calcification in chronic kidney disease through autophagy activation by downregulating YAP. Life Sci 2020; 261:118121. [PMID: 32693242 DOI: 10.1016/j.lfs.2020.118121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
AIMS Pathological vascular calcification (VC), a major risk factor for cardiovascular mortality, is a highly prevalent finding in patients with chronic kidney disease (CKD). We previously analyzed several pathways protecting against high phosphate-induced VC through induction of autophagy. Here, we explored how O-GlcNAc transferase (OGT) affected high phosphate-induced VC of CKD though mediation of autophagy. MAIN METHODS In the rats with CKD induced by 5/6 nephrectomy, the VC process was accelerated by a high phosphate diet. The calcification of vascular smooth muscle cells (VSMCs) was induced by high phosphate treatment. We then experimentally tested the effect of OGT on high phosphate-induced VC by conducting loss-of-function experiments. Co-immunoprecipitation and GST pull-down assays were performed to evaluate interaction between OGT and Yes-associated protein (YAP). In mechanistic studies of this pathway, we measured autophagy protein expression and autophagosome formation, as well as calcium deposition and calcium content in VSMCs and in vivo in response to altered expression of OGT and/or YAP. KEY FINDINGS OGT was up-regulated in high phosphate-induced VC models in vitro and in vivo. High phosphate-induced calcification in the rat aorta and VSMCs were suppressed by OGT silencing. OGT promoted the glycosylation of YAP to enhance its stability. Importantly, over-expressing YAP reduced autophagy and OGT expedited high phosphate-induced VC by inhibiting autophagy through upregulation of YAP. SIGNIFICANCE OGT silencing downregulated YAP to induce autophagy activation, thus suppressing high phosphate-induced VC, which highlighted a promising preventive target against high phosphate-induced VC in CKD.
Collapse
|
19
|
McClenaghan C, Huang Y, Matkovich SJ, Kovacs A, Weinheimer CJ, Perez R, Broekelmann TJ, Harter TM, Lee JM, Remedi MS, Nichols CG. The Mechanism of High-Output Cardiac Hypertrophy Arising From Potassium Channel Gain-of-Function in Cantú Syndrome. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa004. [PMID: 32865539 PMCID: PMC7446247 DOI: 10.1093/function/zqaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023]
Abstract
Dramatic cardiomegaly arising from gain-of-function (GoF) mutations in the ATP-sensitive potassium (KATP) channels genes, ABCC9 and KCNJ8, is a characteristic feature of Cantú syndrome (CS). How potassium channel over-activity results in cardiac hypertrophy, as well as the long-term consequences of cardiovascular remodeling in CS, is unknown. Using genome-edited mouse models of CS, we therefore sought to dissect the pathophysiological mechanisms linking KATP channel GoF to cardiac remodeling. We demonstrate that chronic reduction of systemic vascular resistance in CS is accompanied by elevated renin-angiotensin signaling, which drives cardiac enlargement and blood volume expansion. Cardiac enlargement in CS results in elevation of basal cardiac output, which is preserved in aging. However, the cardiac remodeling includes altered gene expression patterns that are associated with pathological hypertrophy and are accompanied by decreased exercise tolerance, suggestive of reduced cardiac reserve. Our results identify a high-output cardiac hypertrophy phenotype in CS which is etiologically and mechanistically distinct from other myocardial hypertrophies, and which exhibits key features of high-output heart failure (HOHF). We propose that CS is a genetically-defined HOHF disorder and that decreased vascular smooth muscle excitability is a novel mechanism for HOHF pathogenesis.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan Huang
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scot J Matkovich
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Attila Kovacs
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla J Weinheimer
- Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ron Perez
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J Broekelmann
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theresa M Harter
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA,Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Corresponding author. E-mail:
| |
Collapse
|
20
|
Ngai D, Lino M, Rothenberg KE, Simmons CA, Fernandez-Gonzalez R, Bendeck MP. DDR1 (Discoidin Domain Receptor-1)-RhoA (Ras Homolog Family Member A) Axis Senses Matrix Stiffness to Promote Vascular Calcification. Arterioscler Thromb Vasc Biol 2020; 40:1763-1776. [PMID: 32493168 PMCID: PMC7310304 DOI: 10.1161/atvbaha.120.314697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Vascular calcification is a pathology characterized by arterial mineralization, which is a common late-term complication of atherosclerosis that independently increases the risk of adverse cardiovascular events by fourfold. A major source of calcifying cells is transdifferentiating vascular smooth muscle cells (VSMCs). Previous studies showed that deletion of the collagen-binding receptor, DDR1 (discoidin domain receptor-1), attenuated VSMC calcification. Increased matrix stiffness drives osteogenesis, and DDR1 has been implicated in stiffness sensing in other cell types; however, the role of DDR1 as a mechanosensor in VSMCs has not been investigated. Here, we test the hypothesis that DDR1 senses increased matrix stiffness and promotes VSMC transdifferentiation and calcification. Approach and Results: Primary VSMCs isolated from Ddr1+/+ (wild-type) and Ddr1−/− (knockout) mice were studied on collagen-I–coated silicon substrates of varying stiffness, culturing in normal or calcifying medium. DDR1 expression and phosphorylation increased with increasing stiffness, as did in vitro calcification, nuclear localization of Runx2 (Runt-related transcription factor 2), and expression of other osteochondrocytic markers. By contrast, DDR1 deficient VSMCs were not responsive to stiffness and did not undergo transdifferentiation. DDR1 regulated stress fiber formation and RhoA (ras homolog family member A) activation through the RhoGEF (rho guanine nucleotide exchange factor), Vav2. Inhibition of actomyosin contractility reduced Runx2 activation and attenuated in vitro calcification in wild-type VSMCs. Finally, a novel positive feedforward loop was uncovered between DDR1 and actomyosin contractility, important in regulating DDR1 expression, clustering, and activation. Conclusions: This study provides mechanistic insights into DDR1 mechanosignaling and shows that DDR1 activity and actomyosin contractility are interdependent in mediating stiffness-dependent increases in VSMC calcification.
Collapse
Affiliation(s)
- David Ngai
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| | - Marsel Lino
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| | - Katheryn E Rothenberg
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada.,Department of Mechanical and Industrial Engineering (C.A.S.), University of Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada.,Department of Cell and Systems Biology (R.F.-G.), University of Toronto, Canada
| | - Michelle P Bendeck
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| |
Collapse
|
21
|
Cai C, Wang J, Huo N, Wen L, Xue P, Huang Y. Msx2 plays an important role in BMP6-induced osteogenic differentiation of two mesenchymal cell lines: C3H10T1/2 and C2C12. Regen Ther 2020; 14:245-251. [PMID: 32455154 PMCID: PMC7232041 DOI: 10.1016/j.reth.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), have been shown to enhance the osteogenic differentiation of mesenchymal cells (MCs) and to promote bone formation. BMP6 is known to play an important role in the process of MCs towards osteogenic differentiation by virtue of their osteoinductive and cell type specific proliferative activity. However, the molecular mechanism relate to BMP6 osteoinductive activity is still unclear and continues to warrant further investigation. Msx2 is a member of the homeobox gene family of transcription factors and promotes calcification. Hence, we wondered if it might also play a role in BMP6-induced osteogenesis. In this study, two mouse mesenchymal cell lines were treated with BMP6, adenovirus-Msx2 (Ad-Msx2) or adenovirus-siMsx2 (Ad-siMsx2). Based on the results of mRNA and protein expression, it was indicated that BMP6 could enhance the expression of Msx2 and activate the phosphorylation of Smad 1/5/8, p38 and ERK1/2. Being transfected by Ad-Msx2, the BMP6-induced activation of phosphorylation was significantly promoted. On the contrary, two cell lines transfected by Ad-siMsx2 presented an inhibited expression of three phosphorylated proteins even after being induced by BMP6. The evaluation of ALP, OPN, OC and calcium deposits revealed the osteogenic results those were corresponding to the results of mRNA and protein. Taken together, these findings can be a novel viewpoint for the understanding of the mechanisms of BMP6-induced osteogenesis and provide therapeutic targets of bone defect.
Collapse
Affiliation(s)
- Chuan Cai
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Wen
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Xue
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ye Huang
- Department of Dermatology, Air Force General Hospital of Chinese PLA, Beijing, 100412, China
| |
Collapse
|
22
|
Ghosh S, Luo D, He W, Chen J, Su X, Huang H. Diabetes and calcification: The potential role of anti-diabetic drugs on vascular calcification regression. Pharmacol Res 2020; 158:104861. [PMID: 32407954 DOI: 10.1016/j.phrs.2020.104861] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Vascular calcification (VC) has been well-established as an independent and strong predictor of cardiovascular diseases (CVD) as well as major cardiac adverse events (MACE). VC is associated with increased mortality in patients with CVD. Pathologically, VC is now believed to be a multi-directional active process ultimately resulting in ectopic calcium deposition in vascular beds. On the other hand, prevalence of diabetes mellitus (DM) is gradually increasing thus making the current population more prone to future CVD. Although the mechanisms involved in development and progression of VC in DM patients are not fully understood, a series of evidences demonstrated positive association between DM and VC. It has been highlighted that different cellular pathways are involved in this process. These intermediates such as tumor necrosis factor alpha (TNF-α), various interleukins (ILs) and different cell-signaling pathways are over-expressed in DM patients leading to development of VC. Thus, considering the burden and significance of VC it is of great importance to find a therapeutic approach to prevent or minimize the development of VC in DM patients. Over the past few years various anti diabetic drugs (ADDs) have been introduced and many of them showed desired glucose control. But no study demonstrated the effects of these medications on regression of VC. In this review, we will briefly discuss the current understanding on DM and VC and how commonly used ADDs modulate the development or progression of VC.
Collapse
Affiliation(s)
- Sounak Ghosh
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongling Luo
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanbing He
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Behrmann A, Zhong D, Li L, Cheng SL, Mead M, Ramachandran B, Sabaeifard P, Goodarzi M, Lemoff A, Kronenberg HM, Towler DA. PTH/PTHrP Receptor Signaling Restricts Arterial Fibrosis in Diabetic LDLR -/- Mice by Inhibiting Myocardin-Related Transcription Factor Relays. Circ Res 2020; 126:1363-1378. [PMID: 32160132 PMCID: PMC7524585 DOI: 10.1161/circresaha.119.316141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR-/- mice. OBJECTIVE To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR-/- mice (PTH1R-VKO) and Cre-negative controls. METHODS AND RESULTS Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout. PTH1R-VKO cohorts exhibited increased aortic collagen accumulation in vivo, and VSM cultures from PTH1R-VKO mice elaborated more collagen (2.5-fold; P=0.01) with elevated Col3a1 and Col1a1 expression. To better understand these profibrotic responses, we performed mass spectrometry on nuclear proteins extracted from Cre-negative controls and PTH1R-VKO VSM. PTH1R deficiency reduced Gata6 but upregulated the MADS (MCM1, Agamous, Deficiens, and Srf DNA-binding domain)-box transcriptional co-regulator, Mkl-1 (megakaryoblastic leukemia [translocation] 1). Co-transfection assays (Col3a1 promoter-luciferase reporter) confirmed PTH1R-mediated inhibition and Mkl-1-mediated activation of Col3a1 transcription. Regulation mapped to a conserved hybrid CT(A/T)6GG MADS-box cognate in the Col3a1 promoter. Mutations of C/G in this motif markedly reduced Col3a1 transcriptional regulation by PTH1R and Mkl-1. Upregulation of Col3a1 and Col1a1 in PTH1R-VKO VSM was inhibited by small interfering RNA targeting Mkl1 and by treatment with the Mkl-1 antagonist CCG1423 or the Rock (Rho-associated coiled-coil containing protein kinase)-2 inhibitor KD025. Chromatin precipitation demonstrated that VSM PTH1R deficiency increased Mkl-1 binding to Col3a1 and Col1a1, but not TNF, promoters. Proteomic studies of plasma extracellular vesicles and VSM from PTH1R-VKO mice identified C1r (complement component 1, r) and C1s (complement component 1, s), complement proteins involved in vascular collagen metabolism, as potential biomarkers. VSM C1r protein and C1r message were increased with PTH1R deficiency, mediated by Mkl-1-dependent transcription and inhibited by CCG1423 or KD025. CONCLUSIONS PTH1R signaling restricts collagen production in the VSM lineage, in part, via Mkl-1 regulatory circuits that control collagen gene transcription. Strategies that maintain homeostatic VSM PTH1R signaling, as reflected in extracellular vesicle biomarkers of VSM PTH1R/Mkl-1 action, may help mitigate arteriosclerosis and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Diet, High-Fat
- Disease Models, Animal
- Fibrosis
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Parathyroid Hormone/metabolism
- Rats
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Remodeling
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Dalian Zhong
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Li Li
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Su-Li Cheng
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Megan Mead
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Bindu Ramachandran
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Parastoo Sabaeifard
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114
| | - Dwight A. Towler
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
24
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
25
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
26
|
Zhang T, Cao G, Meng X, Ouyang C, Gao J, Sun Y, Wu J, Min Q, Zhang C, Zhang W. Lethal giant larvae 1 inhibits smooth muscle calcification via high mobility group box 1. J Mol Cell Cardiol 2020; 142:39-52. [PMID: 32268148 DOI: 10.1016/j.yjmcc.2020.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/05/2023]
Abstract
Vascular calcification is a pathological process closely related to atherosclerosis, diabetic vascular diseases, vascular injury, hypertension, chronic kidney disease and aging. Lethal giant larvae 1 (LGL1) is known as a key regulator of cell polarity and plays an important role in tumorigenesis. However, whether LGL1 regulates vascular calcification remains unclear. In this study, we generated smooth muscle-specific LGL1 knockout (LGL1SMKO) mice by cross-breeding LGL1flox/flox mice with α-SMA-Cre mice. LGL1 level was significantly decreased during calcifying conditions. Overexpression of LGL1 restrained high phosphate-induced calcification in vascular smooth muscle cells (VSMCs). Mechanically, LGL1 could bind with high mobility group box 1 (HMGB1) and promote its degradation via the lysosomal pathway, thereby inhibiting calcification. Smooth muscle-specific deletion of LGL1 increased HMGB1 level and aggravated vitamin D3-induced vascular calcification, which was attenuated by an HMGB1 inhibitor. LGL1 may inhibit vascular calcification by preventing osteogenic differentiation via promoting HMGB1 degradation.
Collapse
Affiliation(s)
- Tianran Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guangqing Cao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Changhan Ouyang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiliang Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China.
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China.
| |
Collapse
|
27
|
Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol 2020; 40:1078-1093. [PMID: 32237904 DOI: 10.1161/atvbaha.120.313131] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the association between vascular calcification and arterial stiffness, highlighting the important genetic factors, systemic and local microenvironmental signals, and underlying signaling pathways and molecular regulators of vascular calcification. Elevated oxidative stress appears to be a common procalcification factor that induces osteogenic differentiation and calcification of vascular cells in a variety of disease conditions such as atherosclerosis, diabetes mellitus, and chronic kidney disease. Thus, the role of oxidative stress and oxidative stress-regulated signals in vascular smooth muscle cells and their contributions to vascular calcification are highlighted. In relation to diabetes mellitus, the regulation of both hyperglycemia and increased protein glycosylation, by AGEs (advanced glycation end products) and O-linked β-N-acetylglucosamine modification, and its role in enhancing intracellular pathophysiological signaling that promotes osteogenic differentiation and calcification of vascular smooth muscle cells are discussed. In the context of chronic kidney disease, this review details the role of calcium and phosphate homeostasis, parathyroid hormone, and specific calcification inhibitors in regulating vascular calcification. In addition, the impact of the systemic and microenvironmental factors on respective intrinsic signaling pathways that promote osteogenic differentiation and calcification of vascular smooth muscle cells and osteoblasts are compared and contrasted, aiming to dissect the commonalities and distinctions that underlie the paradoxical vascular-bone mineralization disorders in aging and diseases.
Collapse
Affiliation(s)
- Yabing Chen
- From the Departments of Pathology (Y.C.), The University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Department, AL (Y.C.)
| | - Xinyang Zhao
- Biochemistry (X.Z.), The University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), The University of Alabama at Birmingham
| |
Collapse
|
28
|
Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, Zhong X, Li Z, Liu H, Ou C, Yan J, Chen M. Trimethylamine-N-Oxide Promotes Vascular Calcification Through Activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome and NF-κB (Nuclear Factor κB) Signals. Arterioscler Thromb Vasc Biol 2020; 40:751-765. [DOI: 10.1161/atvbaha.119.313414] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives:
Vascular calcification is highly prevalent in patients with chronic kidney disease. Increased plasma trimethylamine N-oxide (TMAO), a gut microbiota-dependent product, concentrations are found in patients undergoing hemodialysis. However, a clear mechanistic link between TMAO and vascular calcification is not yet established. In this study, we investigate whether TMAO participates in the progression of vascular calcification using in vitro, ex vivo, and in vivo models.
Approach and Results:
Alizarin red staining revealed that TMAO promoted calcium/phosphate-induced calcification of rat and human vascular smooth muscle cells in a dose-dependent manner, and this was confirmed by calcium content assay. Similarly, TMAO upregulated the expression of bone-related molecules including Runx2 (Runt-related transcription factor 2) and BMP2 (bone morphogenetic protein-2), suggesting that TMAO promoted osteogenic differentiation of vascular smooth muscle cells. In addition, ex vivo study also showed the positive regulatory effect of TMAO on vascular calcification. Furthermore, we found that TMAO accelerated vascular calcification in rats with chronic kidney disease, as indicated by Mico-computed tomography analysis, alizarin red staining and calcium content assay. By contrast, reducing TMAO levels by antibiotics attenuated vascular calcification in chronic kidney disease rats. Interestingly, TMAO activated NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals during vascular calcification. Inhibition of NLRP3 inflammasome and NF-κB signals attenuated TMAO-induced vascular smooth muscle cell calcification.
Conclusions:
This study for the first time demonstrates that TMAO promotes vascular calcification through activation of NLRP3 inflammasome and NF-κB signals, suggesting the potential link between gut microbial metabolism and vascular calcification. Reducing the levels of TMAO could become a potential treatment strategy for vascular calcification in chronic kidney disease.
Collapse
Affiliation(s)
- Xiuli Zhang
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Yining Li
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Pingzhen Yang
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Xiaoyu Liu
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China (L.L., Y.C.)
| | - Yanting Chen
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China (L.L., Y.C.)
| | - Xinglong Zhong
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Zehua Li
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Hailin Liu
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Caiwen Ou
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Jianyun Yan
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Minsheng Chen
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| |
Collapse
|
29
|
Kim JM, Lee WS, Kim J. Therapeutic strategy for atherosclerosis based on bone-vascular axis hypothesis. Pharmacol Ther 2020; 206:107436. [DOI: 10.1016/j.pharmthera.2019.107436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
|
30
|
Kuipers AL, Miljkovic I, Barinas-Mitchell E, Nestlerode CS, Cvejkus RK, Wheeler VW, Zhang Y, Zmuda JM. Wnt Pathway Gene Expression Is Associated With Arterial Stiffness. J Am Heart Assoc 2020; 9:e014170. [PMID: 32013702 PMCID: PMC7033870 DOI: 10.1161/jaha.119.014170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Animal and in vitro experiments implicate the Wnt pathway in cardiac development, fibrosis, vascular calcification, and atherosclerosis, but research in humans is lacking. We examined peripheral blood Wnt pathway gene expression and arterial stiffness in 369 healthy African ancestry men (mean age, 64 years). Methods and Results Gene expression was assessed using a custom Nanostring nCounter gene expression panel (N=43 genes) and normalized to housekeeping genes and background signal. Arterial stiffness was assessed via brachial‐ankle pulse‐wave velocity. Fourteen Wnt genes showed detectable expression and were tested individually as predictors of pulse‐wave velocity using linear regression, adjusting for age, height, weight, blood pressure, medication use, resting heart rate, current smoking, alcohol intake, and sedentary lifestyle. Adenomatous polyposis coli regulator of Wnt signaling pathway (APC), glycogen synthase kinase 3β (GSK3B), and transcription factor 4 (TCF4) were significantly associated with arterial stiffness (P<0.05 for all). When entered into a single model, APC and TCF4 expression remained independently associated with arterial stiffness (P=0.04 and 0.003, respectively), and each explained ≈3% of the variance in pulse‐wave velocity. Conclusions The current study establishes a novel association between in vivo expression of the Wnt pathway genes, APC and TCF4, with arterial stiffness in African ancestry men, a population at high risk of hypertensive vascular disease.
Collapse
Affiliation(s)
| | - Iva Miljkovic
- Department of Epidemiology University of Pittsburgh Pittsburgh PA
| | | | | | - Ryan K Cvejkus
- Department of Epidemiology University of Pittsburgh Pittsburgh PA
| | | | - Yingze Zhang
- Department of Medicine University of Pittsburgh Pittsburgh PA
| | - Joseph M Zmuda
- Department of Epidemiology University of Pittsburgh Pittsburgh PA
| |
Collapse
|
31
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16:727-744. [PMID: 31243391 DOI: 10.1038/s41569-019-0227-9] [Citation(s) in RCA: 609] [Impact Index Per Article: 121.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis. VSMCs are more plastic than previously recognized and can adopt alternative phenotypes, including phenotypes resembling foam cells, macrophages, mesenchymal stem cells and osteochondrogenic cells, which could contribute both positively and negatively to disease progression. In this Review, we present the evidence for VSMC plasticity and summarize the roles of VSMCs and VSMC-derived cells in atherosclerotic plaque development and progression. Correct attribution and spatiotemporal resolution of clinically beneficial and detrimental processes will underpin the success of any therapeutic intervention aimed at VSMCs and their derivatives.
Collapse
Affiliation(s)
- Gemma L Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
- INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
32
|
Javaheri A, Bajpai G, Picataggi A, Mani S, Foroughi L, Evie H, Kovacs A, Weinheimer CJ, Hyrc K, Xiao Q, Ballabio A, Lee JM, Matkovich SJ, Razani B, Schilling JD, Lavine KJ, Diwan A. TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight 2019; 4:127312. [PMID: 31672943 DOI: 10.1172/jci.insight.127312] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages. Inflammasome activation and IL-1β secretion are implicated in myocardial infarction (MI) and resultant heart failure; however, little is known about how macrophage lysosomes regulate these processes. In mice subjected to cardiac ischemia/reperfusion (IR) injury and humans with ischemic cardiomyopathy, we observed evidence of lysosomal impairment in macrophages. Inducible macrophage-specific overexpression of transcription factor EB (TFEB), a master regulator of lysosome biogenesis (Mϕ-TFEB), attenuated postinfarction remodeling, decreased abundance of proinflammatory macrophages, and reduced levels of myocardial IL-1β compared with controls. Surprisingly, neither inflammasome suppression nor Mϕ-TFEB-mediated attenuation of postinfarction myocardial dysfunction required intact ATG5-dependent macroautophagy (hereafter termed "autophagy"). RNA-seq of flow-sorted macrophages postinfarction revealed that Mϕ-TFEB upregulated key targets involved in lysosomal lipid metabolism. Specifically, inhibition of the TFEB target, lysosomal acid lipase, in vivo abrogated the beneficial effect of Mϕ-TFEB on postinfarction ventricular function. Thus, TFEB reprograms macrophage lysosomal lipid metabolism to attenuate remodeling after IR, suggesting an alternative paradigm whereby lysosome function affects inflammation.
Collapse
Affiliation(s)
- Ali Javaheri
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Geetika Bajpai
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Antonino Picataggi
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Smrithi Mani
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Layla Foroughi
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Hosannah Evie
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Attila Kovacs
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Carla J Weinheimer
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | | | - Qingli Xiao
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Medical and Translational Sciences, Federico II University, Naples, Italy.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jin-Moo Lee
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scot J Matkovich
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Babak Razani
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine.,John Cochran Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| | - Joel D Schilling
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Kory J Lavine
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Abhinav Diwan
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine.,John Cochran Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| |
Collapse
|
33
|
Harman JL, Jørgensen HF. The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. Br J Pharmacol 2019; 176:3741-3753. [PMID: 31254285 PMCID: PMC6780045 DOI: 10.1111/bph.14779] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 02/02/2023] Open
Abstract
Events responsible for cardiovascular mortality and morbidity are predominantly caused by rupture of "vulnerable" atherosclerotic lesions. Vascular smooth muscle cells (VSMCs) play a key role in atherogenesis and have historically been considered beneficial for plaque stability. VSMCs constitute the main cellular component of the protective fibrous cap within lesions and are responsible for synthesising strength-giving extracellular matrix components. However, lineage-tracing experiments in mouse models of atherosclerosis have shown that, in addition to the fibrous cap, VSMCs also give rise to many of the cell types found within the plaque core. In particular, VSMCs generate a substantial fraction of lipid-laden foam cells, and VSMC-derived cells expressing markers of macrophages, osteochondrocyte, and mesenchymal stem cells have been observed within lesions. Here, we review recent studies that have changed our perspective on VSMC function in atherosclerosis and discuss how VSMCs could be targeted to increase plaque stability.
Collapse
|
34
|
Guľašová Z, Guerreiro SG, Link R, Soares R, Tomečková V. Tackling endothelium remodeling in cardiovascular disease. J Cell Biochem 2019; 121:938-945. [DOI: 10.1002/jcb.29379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Zuzana Guľašová
- Department of Experimental Medicine, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| | - Susana G. Guerreiro
- Departamento de Biomedicina, Unidade de Bioquímica, Faculty of Medicine University of Porto Porto Portugal
- I3S, Instituto de Investigação e Inovação em Saúde University of Porto Porto Portugal
- Faculdade de Ciências da Nutrição e Alimentação University of Porto Porto Portugal
| | - Rene Link
- Department of Experimental Medicine, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| | - Raquel Soares
- Departamento de Biomedicina, Unidade de Bioquímica, Faculty of Medicine University of Porto Porto Portugal
- I3S, Instituto de Investigação e Inovação em Saúde University of Porto Porto Portugal
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| |
Collapse
|
35
|
Chen B, Zhao Y, Han D, Zhao B, Mao Y, Cui ZK, Chu YC, Feng L, Yin S, Wang CY, Wang X, Xu MJ, Zhao G. Wnt1 inhibits vascular smooth muscle cell calcification by promoting ANKH expression. J Mol Cell Cardiol 2019; 135:10-21. [PMID: 31356809 DOI: 10.1016/j.yjmcc.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
AIMS Wnt signaling plays a critical role in vascular calcification (VC). Wnt factors induce different physiological and pathological effects on cardiovascular functions. Wnt1, a ligand of Wnt/β-catenin signaling, promotes pro-angiogenesis and reduces myocardial infarction. The role of Wnt1 on VC in chronic kidney disease (CKD) is not fully understood. METHODS AND RESULTS We used human vascular smooth muscle cells (VSMCs) and a rat model of chronic renal failure (CRF), and observed a native protective mechanism by which VC is reduced via the activation of Wnt1 and its transcriptional target ANKH inorganic pyrophosphate transport regulator (ANKH) gene. ANKH is an essential calcification inhibitor that effluxes inorganic pyrophosphate (PPi) from VSMCs to play an inhibitory role in VC. Vascular ANKH and plasma PPi were significantly downregulated in the rat model of CRF. The knockdown or inhibition of ANKH reversed the effect of Wnt1 on VC in VSMCs. Clinical analysis revealed low plasma levels of Wnt1 and PPi were associated with CKD in patients. Applying a Wnt/β-catenin signaling agonist can alleviate the progression of VC. CONCLUSION This work reveals the ANKH regulation of Wnt1 in VSMCs is essential for blocking VC. Our findings may contribute to the development of medications that target Wnt signaling and/or ANKH to inhibit VC.
Collapse
Affiliation(s)
- Beidong Chen
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Duanyang Han
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China; Lemon Core Laborabtory,Hebei,China
| | - Ban Zhao
- Department of Nephrology, Beijing Hospital, Beijing, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, Beijing, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun-Chin Chu
- Department of Statistics, North Carolina State University, USA
| | - Lu Feng
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Sen Yin
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Cun-Yu Wang
- School of Dentistry, University of California, Los Angeles, USA
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China.
| | - Gexin Zhao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
36
|
Song T, Yang J, Zhou J, Chen Z, Yuan X. A Review of the Mechanisms of Wnt7b in the Process of Malignant Tumor Invasion and Metastasis. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.523.532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wang C, Xu W, An J, Liang M, Li Y, Zhang F, Tong Q, Huang K. Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2. Nat Commun 2019; 10:1203. [PMID: 30867423 PMCID: PMC6416341 DOI: 10.1038/s41467-019-09174-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification is highly prevalent in end-stage renal diseases and is predictive of cardiovascular events and mortality. Poly(ADP-ribose) polymerase 1 (PARP1) inhibition or deletion is vasoprotective in several disease models. Here we show that PARP activity is increased in radial artery samples from patients with chronic renal failure, in arteries from uraemic rats, and in calcified vascular smooth muscle cells (VSMCs) in vitro. PARP1 deficiency blocks, whereas PARP1 overexpression exacerbates, the transdifferentiation of VSMCs from a contractile to an osteogenic phenotype, the expression of mineralization-regulating proteins, and calcium deposition. PARP1 promotes Runx2 expression, and Runx2 deficiency offsets the pro-calcifying effects of PARP1. Activated PARP1 suppresses miRNA-204 expression via the IL-6/STAT3 pathway and thus relieves the repression of its target, Runx2, resulting in increased Runx2 protein. Together, these results suggest that PARP1 counteracts vascular calcification and that therapeutic agents that influence PARP1 activity may be of benefit to treat vascular calcification. Vascular calcification is a hallmark of end stage renal disease. Here, Cheng et al. show that poly(ADP-ribose) polymerase (PARP) activity is increased in calcified arteries in patients and uremic rats, and that PARP1 promotes vascular calcification by suppressing miR-204 expression via IL-6/STAT3 signaling, thus relieving repression of the osteogenic regulator Runx2.
Collapse
Affiliation(s)
- Cheng Wang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjing Xu
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie An
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minglu Liang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fengxiao Zhang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiangsong Tong
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
38
|
SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18. Pflugers Arch 2019; 471:889-899. [PMID: 30706178 PMCID: PMC6533237 DOI: 10.1007/s00424-019-02256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/13/2019] [Indexed: 01/18/2023]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key regulator of osteo-/chondrogenic transdifferentiation and subsequent calcification of vascular smooth muscle cells (VSMCs). The phenotypical transdifferentiation of VSMCs is associated with increased interleukin-18 (IL-18) levels and generalized inflammation. Therefore, the present study investigated the possible involvement of SGK1 in IL-18-induced vascular calcification. Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with recombinant human IL-18 protein in control or high phosphate conditions and following SGK1 knockdown by siRNA or pharmacological inhibition of SGK1, PI3K, and PDK1. As a result, IL-18 treatment increased SGK1 mRNA and protein expression in HAoSMCs. IL-18 upregulated SGK1 mRNA expression in a dose-dependent manner. This effect was paralleled by upregulation of the mRNA expression of MSX2 and CBFA1, osteogenic transcription factors, and of tissue-nonspecific alkaline phosphatase (ALPL), an osteogenic enzyme, as markers of increased osteo-/chondrogenic transdifferentiation. Phosphate treatment increased SGK1 and osteogenic markers mRNA expression as well as ALPL activity and induced calcification of HAoSMCs, all effects significantly augmented by additional treatment with IL-18. Conversely, silencing of SGK1 or cotreatment with the SGK1 inhibitor EMD638683 blunted the effects of IL-18 on osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. The procalcific effects of IL-18 were similarly suppressed in the presence of PI3K or PDK1 inhibitors. In conclusion, SGK1 expression is upregulated by IL-18 in VSMCs and SGK1 participates in the intracellular signaling of IL-18-induced osteo-/chondrogenic transdifferentiation of VSMCs. Thus, SGK1 may serve as therapeutic target to limit the progression of medial vascular calcification during vascular inflammation.
Collapse
|
39
|
Systemic Activation of Activin A Signaling Causes Chronic Kidney Disease-Mineral Bone Disorder. Int J Mol Sci 2018; 19:ijms19092490. [PMID: 30142896 PMCID: PMC6163495 DOI: 10.3390/ijms19092490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
The high cardiovascular mortality associated with chronic kidney disease (CKD) is caused in part by the CKD-mineral bone disorder (CKD-MBD) syndrome. The CKD-MBD consists of skeletal, vascular and cardiac pathology caused by metabolic derangements produced by kidney disease. The prevalence of osteopenia/osteoporosis resulting from the skeletal component of the CKD-MBD, renal osteodystrophy (ROD), in patients with CKD exceeds that of the general population and is a major public health concern. That CKD is associated with compromised bone health is widely accepted, yet the mechanisms underlying impaired bone metabolism in CKD are not fully understood. Therefore, clarification of the molecular mechanisms by which CKD produces ROD is of crucial significance. We have shown that activin A, a member of the transforming growth factor (TGF)-β super family, is an important positive regulator of receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis with Smad-mediated signaling being crucial for inducing osteoclast development and function. Recently, we have demonstrated systemic activation of activin receptors and activin A levels in CKD mouse models, such as diabetic CKD and Alport (AL) syndrome. In these CKD mouse models, bone remodeling caused by increased osteoclast numbers and activated osteoclastic bone resorption was observed and treatment with an activin receptor ligand trap repaired CKD-induced-osteoclastic bone resorption and stimulated individual osteoblastic bone formation, irrespective of parathyroid hormone (PTH) elevation. These findings have opened a new field for exploring mechanisms of activin A-enhanced osteoclast formation and function in CKD. Activin A appears to be a strong candidate for CKD-induced high-turnover ROD. Therefore, the treatment with the decoy receptor for activin A might be a good candidate for treatment for CKD-induced osteopenia or osteoporosis, indicating that the new findings from in these studies will lead to the identification of novel therapeutic targets for CKD-related and osteopenia and osteoporosis in general. In this review, we describe the impact of CKD-induced Smad signaling in osteoclasts, osteoblasts and vascular cells in CKD.
Collapse
|
40
|
Huang Y, McClenaghan C, Harter TM, Hinman K, Halabi CM, Matkovich SJ, Zhang H, Brown GS, Mecham RP, England SK, Kovacs A, Remedi MS, Nichols CG. Cardiovascular consequences of KATP overactivity in Cantu syndrome. JCI Insight 2018; 3:121153. [PMID: 30089727 DOI: 10.1172/jci.insight.121153] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022] Open
Abstract
Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.
Collapse
Affiliation(s)
- Yan Huang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - Theresa M Harter
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | | | | | | | - Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | | | - Sarah K England
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Obstetrics and Gynecology, and
| | - Attila Kovacs
- Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| |
Collapse
|
41
|
Yu B, Chen Q, Le Bras A, Zhang L, Xu Q. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxid Redox Signal 2018; 29:219-235. [PMID: 28537424 DOI: 10.1089/ars.2017.7171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a major cause for the death of human beings, and it takes place in large- and middle-sized arteries. The pathogenesis of the disease has been widely investigated, and new findings on vascular stem/progenitor cells could have an impact on vascular regeneration. Recent Advances: Recent studies have shown that abundant stem/progenitor cells present in the vessel wall are mainly responsible for cell accumulation in the intima during vascular remodeling. It has been demonstrated that the mobilization and recruitment of tissue-resident stem/progenitor cells give rise to endothelial and smooth muscle cells (SMCs) that participate in vascular repair and remodeling such as neointimal hyperplasia and arteriosclerosis. Interestingly, cell lineage tracing studies indicate that a large proportion of SMCs in neointimal lesions is derived from adventitial stem/progenitor cells. CRITICAL ISSUES The influence of stem/progenitor cell behavior on the development of atherosclerosis is crucial. An understanding of the regulatory mechanisms that control stem/progenitor cell migration and differentiation is essential for stem/progenitor cell therapy for vascular diseases and regenerative medicine. FUTURE DIRECTIONS Identification of the detailed process driving the migration and differentiation of vascular stem/progenitor cells during the development of atherosclerosis, discovery of the environmental cues, and signaling pathways that control cell fate within the vasculature will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Baoqi Yu
- 1 Department of Emergency, Guangdong General Hospital , Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qishan Chen
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Alexandra Le Bras
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| | - Li Zhang
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Qingbo Xu
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| |
Collapse
|
42
|
Voelkl J, Luong TT, Tuffaha R, Musculus K, Auer T, Lian X, Daniel C, Zickler D, Boehme B, Sacherer M, Metzler B, Kuhl D, Gollasch M, Amann K, Müller DN, Pieske B, Lang F, Alesutan I. SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling. J Clin Invest 2018; 128:3024-3040. [PMID: 29889103 DOI: 10.1172/jci96477] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/17/2018] [Indexed: 01/03/2023] Open
Abstract
Medial vascular calcification, associated with enhanced mortality in chronic kidney disease (CKD), is fostered by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Here, we describe that serum- and glucocorticoid-inducible kinase 1 (SGK1) was upregulated in VSMCs under calcifying conditions. In primary human aortic VSMCs, overexpression of constitutively active SGK1S422D, but not inactive SGK1K127N, upregulated osteo-/chondrogenic marker expression and activity, effects pointing to increased osteo-/chondrogenic transdifferentiation. SGK1S422D induced nuclear translocation and increased transcriptional activity of NF-κB. Silencing or pharmacological inhibition of IKK abrogated the osteoinductive effects of SGK1S422D. Genetic deficiency, silencing, and pharmacological inhibition of SGK1 dissipated phosphate-induced calcification and osteo-/chondrogenic transdifferentiation of VSMCs. Aortic calcification, stiffness, and osteo-/chondrogenic transdifferentiation in mice following cholecalciferol overload were strongly reduced by genetic knockout or pharmacological inhibition of Sgk1 by EMD638683. Similarly, Sgk1 deficiency blunted vascular calcification in apolipoprotein E-deficient mice after subtotal nephrectomy. Treatment of human aortic smooth muscle cells with serum from uremic patients induced osteo-/chondrogenic transdifferentiation, effects ameliorated by EMD638683. These observations identified SGK1 as a key regulator of vascular calcification. SGK1 promoted vascular calcification, at least partly, via NF-κB activation. Inhibition of SGK1 may, thus, reduce the burden of vascular calcification in CKD.
Collapse
Affiliation(s)
- Jakob Voelkl
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Trang Td Luong
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, Germany
| | - Rashad Tuffaha
- Department of Physiology I, Eberhard Karls University, Tübingen, Germany
| | - Katharina Musculus
- Department of Physiology I, Eberhard Karls University, Tübingen, Germany
| | - Tilman Auer
- Department of Physiology I, Eberhard Karls University, Tübingen, Germany
| | - Xiaoming Lian
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Christoph Daniel
- Department of Pathology, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Zickler
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Beate Boehme
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, Germany
| | - Michael Sacherer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Kerstin Amann
- Department of Pathology, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik N Müller
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Burkert Pieske
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard Karls University, Tübingen, Germany
| | - Ioana Alesutan
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
The Bioactive Substance Secreted by MSC Retards Mouse Aortic Vascular Smooth Muscle Cells Calcification. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6053567. [PMID: 29967775 PMCID: PMC6008760 DOI: 10.1155/2018/6053567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification, which is associated with low-level chronic inflammation, is a complication that occurs during aging, atherosclerosis, chronic kidney disease, diabetes mellitus, and hyperlipaemia. In this study, we used conditioned media from mesenchymal stem cells (MSC-CM), a source of autologous cytokines, to test the hypothesis that MSC-CM inhibits vascular smooth muscle cell (VSMC) calcification by suppressing inflammation and apoptosis. Methods VSMCs were treated with β-glycerophosphate (β-GP) to induce calcification and MSC-CM was used as a treatment. Calcium deposition was evaluated using alizarin red and von Kossa staining after a 7-day induction period. Intracellular calcium contents were measured via the o-cresolphthalein complexone method, and alkaline phosphatase (ALP) activity was determined using the para-nitrophenyl phosphate method. The expressions of specific-osteogenic markers, inflammatory cytokines, and apoptosis-associated genes/proteins were examined by real-time polymerase chain reaction or western blotting. Results MSC-CM inhibited β-GP-induced calcium deposition in VSMCs and decreased intracellular calcium content and ALP activity. Additionally, MSC-CM suppressed the β-GP-induced increases in BMP2, Msx2, Runx2, and osteocalcin expression. Additionally, MSC-CM decreased the expression of TNF-α, IL-1β, and IL-6 in VSMC. MSC-CM also partly blocked β-GP-induced VSMC apoptosis, which was associated with an increase in the Bcl-2/Bax expression ratio and a decrease in caspase-3 expression. Conclusion Our study results suggest that MSC-CM can inhibit VSMC calcification. This suggests a potential novel clinical application for MSCs in the treatment of vascular calcification and associated diseases.
Collapse
|
44
|
Ramachandran B, Stabley JN, Cheng SL, Behrmann AS, Gay A, Li L, Mead M, Kozlitina J, Lemoff A, Mirzaei H, Chen Z, Towler DA. A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. J Biol Chem 2018; 293:7942-7968. [PMID: 29626090 DOI: 10.1074/jbc.ra118.002046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
In aortic vascular smooth muscle (VSM), the canonical Wnt receptor LRP6 inhibits protein arginine (Arg) methylation, a new component of noncanonical Wnt signaling that stimulates nuclear factor of activated T cells (viz NFATc4). To better understand how methylation mediates these actions, MS was performed on VSM cell extracts from control and LRP6-deficient mice. LRP6-dependent Arg methylation was regulated on >500 proteins; only 21 exhibited increased monomethylation (MMA) with concomitant reductions in dimethylation. G3BP1, a known regulator of arteriosclerosis, exhibited a >30-fold increase in MMA in its C-terminal domain. Co-transfection studies confirm that G3BP1 (G3BP is Ras-GAP SH3 domain-binding protein) methylation is inhibited by LRP6 and that G3BP1 stimulates NFATc4 transcription. NFATc4 association with VSM osteopontin (OPN) and alkaline phosphatase (TNAP) chromatin was increased with LRP6 deficiency and reduced with G3BP1 deficiency. G3BP1 activation of NFATc4 mapped to G3BP1 domains supporting interactions with RIG-I (retinoic acid inducible gene I), a stimulus for mitochondrial antiviral signaling (MAVS) that drives cardiovascular calcification in humans when mutated in Singleton-Merten syndrome (SGMRT2). Gain-of-function SGMRT2/RIG-I mutants increased G3BP1 methylation and synergized with osteogenic transcription factors (Runx2 and NFATc4). A chemical antagonist of G3BP, C108 (C108 is 2-hydroxybenzoic acid, 2-[1-(2-hydroxyphenyl)ethylidene]hydrazide CAS 15533-09-2), down-regulated RIG-I-stimulated G3BP1 methylation, Wnt/NFAT signaling, VSM TNAP activity, and calcification. G3BP1 deficiency reduced RIG-I protein levels and VSM osteogenic programs. Like G3BP1 and RIG-I deficiency, MAVS deficiency reduced VSM osteogenic signals, including TNAP activity and Wnt5-dependent nuclear NFATc4 levels. Aortic calcium accumulation is decreased in MAVS-deficient LDLR-/- mice fed arteriosclerotic diets. The G3BP1/RIG-I/MAVS relay is a component of Wnt signaling. Targeting this relay may help mitigate arteriosclerosis.
Collapse
Affiliation(s)
- Bindu Ramachandran
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John N Stabley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Su-Li Cheng
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Abraham S Behrmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Austin Gay
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Li Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Megan Mead
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dwight A Towler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
45
|
Hortells L, Sur S, St Hilaire C. Cell Phenotype Transitions in Cardiovascular Calcification. Front Cardiovasc Med 2018; 5:27. [PMID: 29632866 PMCID: PMC5879740 DOI: 10.3389/fcvm.2018.00027] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular calcification was originally considered a passive, degenerative process, however with the advance of cellular and molecular biology techniques it is now appreciated that ectopic calcification is an active biological process. Vascular calcification is the most common form of ectopic calcification, and aging as well as specific disease states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells contribute to the formation of extracellular calcified nodules. Research suggests that these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like characteristics, however the mechanisms driving the early aspects of these cell transitions are not fully understood. Osteoblasts are true bone-forming cells and differentiate from their pluripotent precursor, the mesenchymal stem cell (MSC); vascular cells that acquire the ability to calcify share aspects of the transcriptional programs exhibited by MSCs differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, whether these vascular cells first de-differentiate into an MSC-like state before obtaining a “second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing these questions will enable progress in preventative and regenerative medicine strategies to combat vascular calcification pathologies. In this review, we will summarize what is known about the phenotypic switching of vascular endothelial, smooth muscle, and valvular cells.
Collapse
Affiliation(s)
- Luis Hortells
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Swastika Sur
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne) 2018; 9:6. [PMID: 29416527 PMCID: PMC5787540 DOI: 10.3389/fendo.2018.00006] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Kwon DH, Kim YK, Kook H. New Aspects of Vascular Calcification: Histone Deacetylases and Beyond. J Korean Med Sci 2017; 32:1738-1748. [PMID: 28960024 PMCID: PMC5639052 DOI: 10.3346/jkms.2017.32.11.1738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 11/20/2022] Open
Abstract
Vascular calcification is a pathologic phenomenon in which calcium phosphate is ectopically deposited in the arteries. Previously, calcification was considered to be a passive process in response to metabolic diseases, vascular or valvular diseases, or even aging. However, now calcification is recognized as a highly-regulated consequence, like bone formation, and many clinical trials have been carried out to elucidate the correlation between vascular calcification and cardiovascular events and mortality. As a result, vascular calcification has been implicated as an independent risk factor in cardiovascular diseases. Many molecules are now known to be actively associated with this process. Recently, our laboratory found that posttranslational modification of histone deacetylase (HDAC) 1 is actively involved in the development of vascular calcification. In addition, we found that modulation of the activity of HDAC as well as its protein stability by MDM2, an HDAC1-E3 ligase, may be a therapeutic target in vascular calcification. In the present review, we overview the pathomechanism of vascular calcification and the involvement of posttranslational modification of epigenetic regulators.
Collapse
Affiliation(s)
- Duk Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Young Kook Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
- Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
48
|
Msx2 is required for vascular smooth muscle cells osteoblastic differentiation but not calcification in insulin-resistant ob/ob mice. Atherosclerosis 2017; 265:14-21. [DOI: 10.1016/j.atherosclerosis.2017.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 11/20/2022]
|
49
|
McRobb LS, McGrath KCY, Tsatralis T, Liong EC, Tan JTM, Hughes G, Handelsman DJ, Heather AK. Estrogen Receptor Control of Atherosclerotic Calcification and Smooth Muscle Cell Osteogenic Differentiation. Arterioscler Thromb Vasc Biol 2017; 37:1127-1137. [PMID: 28473445 DOI: 10.1161/atvbaha.117.309054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 04/19/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Vascular calcification is associated with increased risk of myocardial infarction and stroke. The objective of this work was to examine the ability of 17β-estradiol (E2) to stimulate calcification of vascular smooth muscle cells (VSMC) in vivo, using aged apolipoprotein E-null mice with advanced atherosclerotic lesions, and subsequently to explore underlying mechanisms in vitro. APPROACH AND RESULTS Silastic E2 capsules were implanted into male and female apolipoprotein E-null mice aged 34 weeks. Plaque and calcified area were measured in the aortic sinus and innominate artery after 8 weeks. Immunohistochemical analysis examined expression of the estrogen receptors (estrogen receptor alpha and estrogen receptor beta [ERβ]). VSMC expression of osteogenic markers was examined using digital polymerase chain reaction. Advanced atherosclerotic lesions were present in all mice at the end of 8 weeks. In both male and female mice, E2 increased calcified area in a site-specific manner in the aortic sinus independently of plaque growth or lipid levels and occurred in association with a site-specific decrease in the proportion of ERβ-positive intimal cells. Calcified lesions expressed collagen I and bone sialoprotein, with decreased matrix Gla protein. In vitro, E2 suppressed ERβ expression and increased VSMC mineralization, demonstrating increased collagen I and II, osteocalcin and bone sialoprotein, and reduced matrix Gla protein and osteopontin. Antagonism or RNA silencing of estrogen receptor alpha, ERβ, or both further increased VSMC mineralization. CONCLUSIONS We have demonstrated that E2 can drive calcification in advanced atherosclerotic lesions by promoting the differentiation of VSMC to osteoblast-like cells, a process which is augmented by inhibition of estrogen receptor alpha or ERβ activity.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/chemically induced
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Calcium-Binding Proteins/metabolism
- Cattle
- Cell Differentiation/drug effects
- Cells, Cultured
- Collagen/metabolism
- Disease Models, Animal
- Drug Implants
- Estradiol/administration & dosage
- Estradiol/toxicity
- Estrogen Receptor Antagonists/pharmacology
- Estrogen Receptor alpha/agonists
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/agonists
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Genetic Predisposition to Disease
- Humans
- Integrin-Binding Sialoprotein/metabolism
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Osteocalcin/metabolism
- Osteogenesis/drug effects
- Osteopontin/metabolism
- Phenotype
- Plaque, Atherosclerotic
- RNA Interference
- Signal Transduction/drug effects
- Transfection
- Vascular Calcification/chemically induced
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Matrix Gla Protein
Collapse
Affiliation(s)
- Lucinda S McRobb
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Kristine C Y McGrath
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Tania Tsatralis
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Eleanore C Liong
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Joanne T M Tan
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - David J Handelsman
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Alison K Heather
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand.
| |
Collapse
|
50
|
Bardeesi ASA, Gao J, Zhang K, Yu S, Wei M, Liu P, Huang H. A novel role of cellular interactions in vascular calcification. J Transl Med 2017; 15:95. [PMID: 28464904 PMCID: PMC5414234 DOI: 10.1186/s12967-017-1190-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
A series of clinical trials have confirmed the correlation between vascular calcification (VC) and cardiovascular events and mortality. However, current treatments have little effects on the regression of VC. Potent and illustrative mechanisms have been proven to exist in both bone metabolism and VC, indicating that these two processes share similarities in onset and progression. Multiple osteoblast-like cells and signaling pathways are involved in the process of VC. In this review, we summarized the roles of different osteoblast-like cells and we emphasized on how they communicated and interacted with each other using different signaling pathways. Further studies are needed to uncover the underlying mechanisms and to provide novel therapies for VC.
Collapse
Affiliation(s)
| | - Jingwei Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suntian Yu
- Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
| | - Mengchao Wei
- Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
| | - Pinming Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China. .,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|