1
|
Luna Ceron E, Reddy SD, Kattamuri L, Muvva DM, Chozet L, Bright T. Current Insights, Advantages and Challenges of Small Molecule Glucagon-like Peptide 1 Receptor Agonists: A Scoping Review. JOURNAL OF BROWN HOSPITAL MEDICINE 2025; 4:19-32. [PMID: 40191699 PMCID: PMC11966775 DOI: 10.56305/001c.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic condition with significant morbidity and mortality, largely due to its vascular complications. The emergence of novel pharmacological agents, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), has revolutionized T2DM management by addressing glycemic control and comorbidities such as cardiovascular and renal diseases. Traditionally, GLP-1RAs require subcutaneous injection, presenting challenges in patient adherence and limiting combination therapy options. Recent advancements have introduced orally available small-molecule GLP-1RAs, which retain the physiological benefits of peptide-based GLP-1RAs, such as promoting insulin secretion, reducing appetite, and improving weight loss. These small molecules offer enhanced tissue permeability, extended half-lives, and the potential for fixed-dose combinations, addressing limitations of injectable formulations. This review explores the preclinical and clinical progress of small-molecule GLP-1RAs, highlighting their potential to redefine diabetes care by improving convenience, adherence, and accessibility for patients.
Collapse
Affiliation(s)
- Eder Luna Ceron
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | | | - Lakshmi Kattamuri
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | - Durga Mounika Muvva
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | - Luis Chozet
- Division of Endocrinology Texas Tech University Health Sciences Center
| | - Tamis Bright
- Division of Endocrinology Texas Tech University Health Sciences Center
| |
Collapse
|
2
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Wang X, Kang J, Liu Q, Tong T, Quan H. Fighting Diabetes Mellitus: Pharmacological and Non-pharmacological Approaches. Curr Pharm Des 2021; 26:4992-5001. [PMID: 32723251 DOI: 10.2174/1381612826666200728144200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The increasing worldwide prevalence of diabetes mellitus confers heavy public health issues and points to a large medical need for effective and novel anti-diabetic approaches with negligible adverse effects. Developing effective and novel anti-diabetic approaches to curb diabetes is one of the most foremost scientific challenges. OBJECTIVES This article aims to provide an overview of current pharmacological and non-pharmacological approaches available for the management of diabetes mellitus. METHODS Research articles that focused on pharmacological and non-pharmacological interventions for diabetes were collected from various search engines such as Science Direct and Scopus, using keywords like diabetes, glucagon-like peptide-1, glucose homeostasis, etc. Results: We review in detail several key pathways and pharmacological targets (e.g., the G protein-coupled receptors- cyclic adenosine monophosphate, 5'-adenosine monophosphate-activated protein kinase, sodium-glucose cotransporters 2, and peroxisome proliferator activated-receptor gamma signaling pathways) that are vital in the regulation of glucose homeostasis. The currently approved diabetes medications, the pharmacological potentials of naturally occurring compounds as promising interventions for diabetes, and the non-pharmacological methods designed to mitigate diabetes are summarized and discussed. CONCLUSION Pharmacological-based approaches such as insulin, metformin, sodium-glucose cotransporters 2 inhibitor, sulfonylureas, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase IV inhibitors represent the most important strategies in diabetes management. These approved diabetes medications work via targeting the central signaling pathways related to the etiology of diabetes. Non-pharmacological approaches, including dietary modification, increased physical activity, and microbiota-based therapy are the other cornerstones for diabetes treatment. Pharmacological-based approaches may be incorporated when lifestyle modification alone is insufficient to achieve positive outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinhong Kang
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun, 130022, China
| | - Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Helong Quan
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| |
Collapse
|
4
|
Ertosun MG, DİlmaÇ S, Hapİl FZ, TanriÖver G, KÖksoy S, ÖzeŞ ON. Regulation of E2F1 activity via PKA-mediated phosphorylations. ACTA ACUST UNITED AC 2020; 44:215-229. [PMID: 33110360 PMCID: PMC7585165 DOI: 10.3906/biy-2003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
E2F1 becomes activated during the G1 phase of the cell cycle, and posttranslational modifications modulate its activity. Activation of G-protein coupled receptors (GPCR) by many ligands induces the activation of adenylate cyclases and the production of cAMP, which activates the PKA enzyme. Activated PKA elicits its biological effect by phosphorylating the target proteins containing serine or threonine amino acids in the RxxS/T motif. Since PKA activation negatively regulates cell proliferation, we thought that activated PKA would negatively affect the activity of E2F1. In line with this, when we analyzed the amino acid sequence of E2F1, we found 3 hypothetical consensus PKA phosphorylation sites located at 127-130, 232-235, and 361-364 positions and RYET, RLLS, and RMGS sequences. After showing the binding and phosphorylation of E2F1 by PKA, we converted the codons of Threonine-130, Serine-235, and Serine-364 to Alanine and Glutamic acid codons on the eukaryotic E2F1 expression vector we had previously created. We confirmed the phosphorylation of T130, S235, and S364 by developing monoclonal antibodies against phospho-specific forms of these sites and showed that their phosphorylation is cell cycle-dependent. According to our results, PKA-mediated phosphorylation of E2F1 by PKA inhibits proliferation and glucose uptake and induces caspase-3 activation and senescence.
Collapse
Affiliation(s)
- Mustafa Gökhan Ertosun
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Sayra DİlmaÇ
- Department of Histology and Embriology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Fatma Zehra Hapİl
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Gamze TanriÖver
- Department of Histology and Embriology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Sadi KÖksoy
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | | |
Collapse
|
5
|
Yang H, Gan S, Jiang Z, Song X, Chen T, Xu Y, Fu L, Zhang Y, Tao L, Shen X. Protective effects of essential oil from Fructus Alpiniae zerumbet on retinal Müller gliosis via the PPAR-γ-p-CREB signaling pathway. Chin Med 2020; 15:4. [PMID: 31938037 PMCID: PMC6954544 DOI: 10.1186/s13020-019-0283-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) involves extensive retinal damage and is one of the most common and serious complications of diabetes mellitus. Hyperglycemia is the major pathological trigger for diabetic complications. Müller cell gliosis, a key pathophysiological process in DR, could finally lead to vision loss. Our previous finding revealed that the essential oil of Fructus Alpiniae zerumbet (EOFAZ) protects human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced injury via the PPAR-γ signal. However, Whether EOFAZ could prevent HG-induced Müller cell gliosis through the PPAR signaling remains unclear. METHODS The neuroprotective effects of EOFAZ were evaluated in HG-treated rat retinal Müller cells (RMCs) and DR rat model. RESULT GFAP and VEGF upregulation is the biomarker of Müller glial reactivity gliosis. Results suggested that EOFAZ could remarkably ameliorate retinal reactive gliosis by suppressing p-CREB and GFAP and VEGF downstream effectors. Its effects on PPAR-γ, a major target for currently available anti-diabetes drugs, were also investigated. EOFAZ treatment remarkably attenuated the reduction of PPAR-γ and high level of p-CaMK II and p-CREB in HG-treated RMCs and diabetic rats. Furthermore, the activation and ectopic expression of PPAR-γ downregulated p-CREB and p-CaMK II in HG-treated RMCs. By contrast, CaMK II inhibitor KN93 and CREB gene silencing did not significantly affect the PPAR-γ expression. CONCLUSIONS A novel PPAR-γ-p-CREB signaling pathway accounts for the inhibitory effect of EOFAZ on RMCs gliosis. These findings provide scientific evidence for the potential use of EOFAZ as a complementary and alternative medicine for DR prevention and treatment in the future.
Collapse
Affiliation(s)
- Hong Yang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Shiquan Gan
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Zhaohui Jiang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xiaomei Song
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Tingting Chen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yini Xu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Lingyun Fu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yanyan Zhang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xiangchun Shen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| |
Collapse
|
6
|
Shibao CA, Celedonio JE, Tamboli R, Sidani R, Love-Gregory L, Pietka T, Xiong Y, Wei Y, Abumrad NN, Abumrad NA, Flynn CR. CD36 Modulates Fasting and Preabsorptive Hormone and Bile Acid Levels. J Clin Endocrinol Metab 2018; 103:1856-1866. [PMID: 29546316 PMCID: PMC6446573 DOI: 10.1210/jc.2017-01982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
CONTEXT Abnormal fatty acid (FA) metabolism contributes to diabetes and cardiovascular disease. The FA receptor CD36 has been linked to risk of metabolic syndrome. In rodents CD36 regulates various aspects of fat metabolism, but whether it has similar actions in humans is unknown. We examined the impact of a coding single-nucleotide polymorphism in CD36 on postprandial hormone and bile acid (BA) responses. OBJECTIVE To examine whether the minor allele (G) of coding CD36 variant rs3211938 (G/T), which reduces CD36 level by ∼50%, influences hormonal responses to a high-fat meal (HFM). DESIGN Obese African American (AA) women carriers of the G allele of rs3211938 (G/T) and weight-matched noncarriers (T/T) were studied before and after a HFM. SETTING Two-center study. PARTICIPANTS Obese AA women. INTERVENTION HFM. MAIN OUTCOME MEASURES Early preabsorptive responses (10 minutes) and extended excursions in plasma hormones [C-peptide, insulin, incretins, ghrelin fibroblast growth factor (FGF)19, FGF21], BAs, and serum lipoproteins (chylomicrons, very-low-density lipoprotein) were determined. RESULTS At fasting, G-allele carriers had significantly reduced cholesterol and glycodeoxycholic acid and consistent but nonsignificant reductions of serum lipoproteins. Levels of GLP-1 and pancreatic polypeptide (PP) were reduced 60% to 70% and those of total BAs were 1.8-fold higher. After the meal, G-allele carriers displayed attenuated early (-10 to 10 minute) responses in insulin, C-peptide, GLP-1, gastric inhibitory peptide, and PP. BAs exhibited divergent trends in G allele carriers vs noncarriers concomitant with differential FGF19 responses. CONCLUSIONS CD36 plays an important role in the preabsorptive hormone and BA responses that coordinate brain and gut regulation of energy metabolism.
Collapse
Affiliation(s)
- Cyndya A Shibao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Correspondence and Reprint Requests: Charles Robb Flynn, PhD, Department of Surgery, MRBIV Room 8465A, 2213 Garland Avenue, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail: ; or Cyndya Shibao, MD, Department of Medicine, Division of Medicine, 562 Preston Research Building, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail:
| | - Jorge E Celedonio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robyn Tamboli
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Reem Sidani
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Latisha Love-Gregory
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Terri Pietka
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Yanhua Xiong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yan Wei
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Correspondence and Reprint Requests: Charles Robb Flynn, PhD, Department of Surgery, MRBIV Room 8465A, 2213 Garland Avenue, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail: ; or Cyndya Shibao, MD, Department of Medicine, Division of Medicine, 562 Preston Research Building, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
7
|
Levine JA, Kaihara KA, Layden BT, Wicksteed B. Long-term activation of PKA in β-cells provides sustained improvement to glucose control, insulin sensitivity and body weight. Islets 2016; 8:125-34. [PMID: 27340937 PMCID: PMC5029204 DOI: 10.1080/19382014.2016.1198457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Type 2 diabetes is associated with obesity, insulin resistance and β-cell failure. Therapeutic aims are to reduce adiposity, improve insulin sensitivity and enhance β-cell function. However, it has been proposed that chronically increasing insulin release leads to β-cell exhaustion and failure. We previously developed mice to have increased activity of the cAMP-dependent protein kinase (PKA), specifically in β-cells (β-caPKA mice). β-caPKA mice have enhanced acute phase insulin release, which is the primary determinant of the efficacy of glucose clearance. Here these mice were used to determine the sustainability of enhanced insulin secretion, and to characterize peripheral effects of enhanced β-cell function. Increased PKA activity was induced by tamoxifen administration at 10 weeks of age. Male mice were aged to 12 months of age and female mice to 16 months. Glucose control in both male and female β-caPKA mice was significantly improved relative to littermate controls with ad libitum feeding, upon refeeding after fasting, and in glucose tolerance tests. In female mice insulin release was both greater and more rapid than in controls. Female mice were more insulin sensitive than controls. Male and female β-caPKA mice had lower body weights than controls. DEXA analysis of male mice revealed that this was due to reduced adiposity and not due to changes in lean body mass. This study indicates that targeting β-cells to enhance insulin release is sustainable, maintains insulin sensitivity and reduces body weight. These data identify β-cell PKA activity as a novel target for obesity therapies.
Collapse
Affiliation(s)
- Joshua A. Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly A. Kaihara
- Committee for Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Bio-Rad Laboratories, Hercules, CA, USA
| | - Brian T. Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Barton Wicksteed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Committee for Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- CONTACT Barton Wicksteed Division of Endocrinology, Metabolism and Molecular Medicine, Tarry Building 15-735 300 East Superior St., Chicago, IL 60611-3008, USA
| |
Collapse
|
8
|
Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 2016; 57:R93-R108. [PMID: 27194812 DOI: 10.1530/jme-15-0316] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
In mammals, cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is usually elicited by binding of hormones and neurotransmitters to G protein-coupled receptors (GPCRs). cAMP exerts many of its physiological effects by activating cAMP-dependent protein kinase (PKA), which in turn phosphorylates and regulates the functions of downstream protein targets including ion channels, enzymes, and transcription factors. cAMP/PKA signaling pathway regulates glucose homeostasis at multiple levels including insulin and glucagon secretion, glucose uptake, glycogen synthesis and breakdown, gluconeogenesis, and neural control of glucose homeostasis. This review summarizes recent genetic and pharmacological studies concerning the regulation of glucose homeostasis by cAMP/PKA in pancreas, liver, skeletal muscle, adipose tissues, and brain. We also discuss the strategies for targeting cAMP/PKA pathway for research and potential therapeutic treatment of type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Haihua Yang
- Division of EndocrinologyZhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Linghai Yang
- Department of PharmacologyUniversity of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Dickson LM, Gandhi S, Layden BT, Cohen RN, Wicksteed B. Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health. Am J Physiol Regul Integr Comp Physiol 2016; 311:R79-88. [PMID: 27097660 DOI: 10.1152/ajpregu.00114.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 01/09/2023]
Abstract
Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health.
Collapse
Affiliation(s)
- Lorna M Dickson
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Shriya Gandhi
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Barton Wicksteed
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois; Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|