1
|
Ge J, Zhang Y, Han L, Zhao L, Zhao H, Qiao D, Cheng Y. Photobiomodulation inhibits retinal degeneration in diabetic mice through modulation of stem cell mobilization and gene expression. Exp Eye Res 2024; 251:110218. [PMID: 39716680 DOI: 10.1016/j.exer.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches. The present study aimed to explore the beneficial effects of photobiomodulation (PBM) on the diabetic retinopathy and underlying mechanisms. Streptozotocin was administered to male mice to establish diabetic model. The mice in the diabetic group (DM) received no treatment, and the mice in DM + PBM group received LED illumination (wavelength 670 nm) once a day for 20 consecutive weeks. Retinal vessel degenerate changes, the expression levels of E-Cadherin, N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α in retina, the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 were determined. PBM could significantly inhibit the degenerative change of diabetic retinal vessels, decrease the expression levels of E-Cadherin and N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α and increase VEGF mRNA levels in retina. PBM could also increase the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 in diabetic mice. PBM at 4 min/day for 20 consecutive weeks significantly inhibit the degenerative change of diabetic retinal vessels, and PBM is likely to produce its beneficial effects on the retina through promoting the migration of bone marrow stem cells to circulation and diabetic retinal tissue. The present study provides a new therapeutic direction and experimental foundation for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yinan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling Han
- Department of Pulmonary & Critical Care Medicine, Jilin Provincial People's Hospital, Changchun, Jilin Province, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongwei Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dan Qiao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Opazo G, Tapia F, Díaz A, Vielma AH, Schmachtenberg O. Prolonged Photobiomodulation with Deep Red Light Mitigates Incipient Retinal Deterioration in a Mouse Model of Type 2 Diabetes. Int J Mol Sci 2024; 25:12128. [PMID: 39596197 PMCID: PMC11595010 DOI: 10.3390/ijms252212128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy is a prevalent complication of type 2 diabetes mellitus, characterized by progressive damage to the retinal structure and function. Photobiomodulation therapy, using red or near-infrared light, has been proposed as a non-invasive intervention to mitigate retinal damage, but has been tested generally with short-term stimuli. This study aimed to evaluate the effects of prolonged photobiomodulation with deep red light on retinal structure and function in a type 2 diabetes mouse model. Transgenic LepRdb/J (db/db) mice were exposed to photobiomodulation therapy via LED devices emitting 654 nm light for 12 h daily over ten weeks and compared to untreated mice. Retinal function was evaluated by flash electroretinography, while structural changes were assessed through histology and immunohistochemistry to detect astro- and microgliosis. At 33 weeks of age, db/db mice were obese and severely diabetic, but exhibited only incipient indicators of retinal deterioration. Electroretinogram b-wave peak latencies were prolonged at intermediate flash intensities, while the outer plexiform layer displayed significantly elevated IBA1 expression. Photobiomodulation therapy prevented these two markers of early retinal deterioration but had no effect on other morphological and functional parameters. Photobiomodulation is well-tolerated and maintains potential as a complementary treatment option for diabetic retinopathy but requires further optimization of therapeutic settings and combinatory treatment approaches.
Collapse
Affiliation(s)
- Gabriela Opazo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Felipe Tapia
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
3
|
Valter K, Tedford SE, Eells JT, Tedford CE. Photobiomodulation use in ophthalmology - an overview of translational research from bench to bedside. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1388602. [PMID: 39211002 PMCID: PMC11358123 DOI: 10.3389/fopht.2024.1388602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation (PBM) refers to the process in which wavelengths of light are absorbed by intracellular photoacceptors, resulting in the activation of signaling pathways that culminate in biological changes within the cell. PBM is the result of low-intensity light-induced reactions in the cell in contrast to thermal photoablation produced by high-intensity lasers. PBM has been effectively used in the clinic to enhance wound healing and mitigate pain and inflammation in musculoskeletal conditions, sports injury, and dental applications for many decades. In the past 20 years, experimental evidence has shown the benefit of PBM in increasing numbers of retinal and ophthalmic conditions. More recently, preclinical findings in ocular models have been translated to the clinic with promising results. This review discusses the preclinical and clinical evidence of the effects of PBM in ophthalmology and provides recommendations of the clinical use of PBM in the management of ocular conditions.
Collapse
Affiliation(s)
- Krisztina Valter
- Clear Vision Laboratory, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
- School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | | | - Janis T. Eells
- College of Health Professions and Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | |
Collapse
|
4
|
Perrier Q, Moro C, Lablanche S. Diabetes in spotlight: current knowledge and perspectives of photobiomodulation utilization. Front Endocrinol (Lausanne) 2024; 15:1303638. [PMID: 38567306 PMCID: PMC10985212 DOI: 10.3389/fendo.2024.1303638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Diabetes is a global health concern characterized by chronic hyperglycemia resulting from insulinopenia and/or insulin resistance. The rising prevalence of diabetes and its associated complications (ulcers, periodontitis, healing of bone defect, neuropathy, retinopathy, cardiopathy and nephropathy) necessitate innovative therapeutic approaches. Photobiomodulation (PBM), involves exposing tissues and cells to low-energy light radiation, leading to biological effects, largely via mitochondrial activation. Methods This review evaluates preclinical and clinical studies exploring the potential of PBM in diabetes and its complications, as well all clinical trials, both planned and completed, available on ClinicalTrials database. Results This review highlights the variability in PBM parameters across studies, hindering consensus on optimal protocols. Standardization of treatment parameters and rigorous clinical trials are needed to unlock PBM's full therapeutic potential. 87 clinical trials were identified that investigated PBM in diabetes mellitus (with 5,837 patients planned to be treated with PBM). Clinical trials assessing PBM effects on diabetic neuropathy revealed pain reduction and potential quality of life improvement. Studies focusing on wound healing indicated encouraging results, with PBM enhancing angiogenesis, fibroblast proliferation, and collagen density. PBM's impact on diabetic retinopathy remains inconclusive however, requiring further investigation. In glycemic control, PBM exhibits positive effects on metabolic parameters, including glucose tolerance and insulin resistance. Conclusion Clinical studies have reported PBM-induced reductions in fasting and postprandial glycemia without an increased hypoglycemic risk. This impact of PBM may be related to its effects on the beta cells and islets in the pancreas. Notwithstanding challenges, PBM emerges as a promising adjunctive therapy for managing diabetic neuropathy, wound healing, and glycemic control. Further investigation into its impact on diabetic retinopathy and muscle recovery is warranted.
Collapse
Affiliation(s)
- Quentin Perrier
- Univ. Grenoble Alpes, INSERM U1055, Pharmacy Department, Grenoble Alpes University Hospital, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Cécile Moro
- Univ. Grenoble Alpes, CEA-Leti, Clinatec, Grenoble, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, INSERM U1055, Diabetology and Endocrinology Department, Grenoble Alpes University Hospital, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| |
Collapse
|
5
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
6
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Li L, Hua S, You L, Zhong T. Secretome Derived from Mesenchymal Stem/Stromal Cells: A Promising Strategy for Diabetes and its Complications. Curr Stem Cell Res Ther 2024; 19:1328-1350. [PMID: 37711134 DOI: 10.2174/1574888x19666230913154544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Diabetes is a complex metabolic disease with a high global prevalence. The health and quality of life of patients with diabetes are threatened by many complications, including diabetic foot ulcers, diabetic kidney diseases, diabetic retinopathy, and diabetic peripheral neuropathy. The application of mesenchymal stem/stromal cells (MSCs) in cell therapies has been recognized as a potential treatment for diabetes and its complications. MSCs were originally thought to exert biological effects exclusively by differentiating and replacing specific impaired cells. However, the paracrine function of factors secreted by MSCs may exert additional protective effects. MSCs secrete multiple compounds, including proteins, such as growth factors, chemokines, and other cytokines; nucleic acids, such as miRNAs; and lipids, extracellular vesicles (EVs), and exosomes (Exos). Collectively, these secreted compounds are called the MSC secretome, and usage of these chemicals in cell-free therapies may provide stronger effects with greater safety and convenience. Recent studies have demonstrated positive effects of the MSC secretome, including improved insulin sensitivity, reduced inflammation, decreased endoplasmic reticulum stress, enhanced M2 polarization of macrophages, and increased angiogenesis and autophagy; however, the mechanisms leading to these effects are not fully understood. This review summarizes the current research regarding the secretome derived from MSCs, including efforts to quantify effectiveness and uncover potential molecular mechanisms in the treatment of diabetes and related disorders. In addition, limitations and challenges are also discussed so as to facilitate applications of the MSC secretome as a cell-free therapy for diabetes and its complications.
Collapse
Affiliation(s)
- Ling Li
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Tianying Zhong
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
8
|
Liu S, Li D, Yu T, Zhu J, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation improves insulin therapy in diabetic microglial reactivity and the brain drainage system. Commun Biol 2023; 6:1239. [PMID: 38066234 PMCID: PMC10709608 DOI: 10.1038/s42003-023-05630-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The dysfunction of microglia in the development of diabetes is associated with various diabetic complications, while traditional insulin therapy is insufficient to rapidly restore the function of microglia. Therefore, the search for new alternative methods of treating diabetes-related dysfunction of microglia is urgently needed. Here, we evaluate the effects of transcranial photobiomodulation (tPBM) on microglial function in diabetic mice and investigate its mechanism. We find tPBM treatment effectively improves insulin therapy on microglial morphology and reactivity. We also show that tPBM stimulates brain drainage system through activation of meningeal lymphatics, which contributes to the removal of inflammatory factor, and increase of microglial purinergic receptor P2RY12. Besides, the energy expenditure and locomotor activity of diabetic mice are also improved by tPBM. Our results demonstrate that tPBM can be an efficient, non-invasive method for the treatment of microglial dysfunction caused by diabetes, and also has the potential to prevent diabetic physiological disorders.
Collapse
Affiliation(s)
- Shaojun Liu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Dongyu Li
- School of Optical Electronic Information-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya Str. 83, 410012, Saratov, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Fantaguzzi F, Tombolini B, Servillo A, Zucchiatti I, Sacconi R, Bandello F, Querques G. Shedding Light on Photobiomodulation Therapy for Age-Related Macular Degeneration: A Narrative Review. Ophthalmol Ther 2023; 12:2903-2915. [PMID: 37768527 PMCID: PMC10640464 DOI: 10.1007/s40123-023-00812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Photobiomodulation (PBM) relies on the pathophysiological mechanism whereby red to near-infrared light can target mitochondrial activity and promote ATP synthesis. Preclinical and clinical studies have shown promising results in treating intermediate age-related macular degeneration (AMD), since PBM can produce photochemical reactions in endogenous retinal chromophores. Currently, PBM is approved by the Food and Drug Administration and by the European Medicines Agency for the treatment of intermediate AMD. This narrative review aimed to evaluate the available evidence on the effectiveness and safety of PBM in treating intermediate AMD. METHODS A comprehensive search was conducted using the PubMed database, employing the keywords "photobiomodulation" and "age-related macular degeneration." All English-language studies published up to June 2023 were reviewed, and the search was expanded to include relevant references from selected articles. The included publications were analyzed for this review. RESULTS The available studies on PBM in AMD demonstrated promising but inconsistent results. PBM showed potential in improving best-corrected visual acuity (BCVA) and contrast sensitivity (CS) in patients with AMD. Some studies also suggested a reduction in AMD lesions, such as drusen volume. However, the long-term efficacy and optimal treatment parameters of PBM in AMD remained to be fully determined due to the limitations of the available studies. These included variations in irradiation techniques, wavelengths, exposure times, and treatment sessions, making it challenging to generalize the effectiveness of PBM. Furthermore, the lack of accurate classification of AMD phenotypes in the available studies hindered the understanding of which phenotypes could truly benefit from this treatment. Finally, the strength of evidence varied among studies, with limited sample sizes, unpublished results, and only three randomized sham-controlled trials. CONCLUSIONS Currently, the effectiveness of PBM in promoting drusen resorption or preventing progression to advanced forms of AMD, as observed in the cited studies, remains uncertain.
Collapse
Affiliation(s)
- Federico Fantaguzzi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Tombolini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Servillo
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Zucchiatti
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Sacconi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Querques
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Department of Ophthalmology, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
10
|
Pandolfo IL, Bonifacio M, Benfato ID, de Almeida Cruz M, Nagaoka MR, Carvalho CPDF, de Oliveira CAM, Renno ACM. Photobiomodulation in diabetic rats: Effects on morphological, pancreatic parameters, and glucose homeostasis. JOURNAL OF BIOPHOTONICS 2023; 16:e202300182. [PMID: 37528614 DOI: 10.1002/jbio.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and retinopathy. However, little is known about the use of PBM for the treatment of diabetes mellitus (DM). In this context, we aimed to evaluate the effects of PBM on pancreas morphology and insulin and glucose tolerance in an experimental model of DM. Thus, DM was induced by streptozotocin (STZ) (60 mg/kg). Subsequently, the rats were treated with PBM (808 nm and 30 J/cm2 ). After euthanasia, morphometric parameters and immunoreactivity for insulin and 8-OHdG were evaluated in the pancreas. The results showed that treated animals had higher values of body mass and higher values in the number of beta cells in the pancreas. In conclusion, PBM resulted in decreased weight loss in STZ-induced diabetic rats and presented a stimulatory effect on the pancreas of the treated animals, highlighting the promising effects of this therapy in the clinical condition of DM.
Collapse
Affiliation(s)
- Isabella Liba Pandolfo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Mirian Bonifacio
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Izabelle Dias Benfato
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Márcia Regina Nagaoka
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | | | | | - Ana Cláudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
11
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Shinhmar H, Hogg C, Jeffery G. Exposure to long wavelength light that improves aged mitochondrial function shifts acute cytokine expression in serum and the retina. PLoS One 2023; 18:e0284172. [PMID: 37478072 PMCID: PMC10361513 DOI: 10.1371/journal.pone.0284172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 07/23/2023] Open
Abstract
Aged mitochondrial function can be improved with long wavelength light exposure. This reduces cellular markers of inflammation and can improve system function from fly through to human. We have previously shown that with age there are increases in cytokine expression in mouse serum. Here, we ask what impact 670nm light has on this expression using a 40 cytokine array in blood serum and retina in C57Bl6 mice. 670nm exposure was delivered daily for a week in 12 month old mice. This shifted patterns of cytokine expression in both serum and retina inducing a selective increase. In serum examples of significant increases were found in IL (interleukins) 1α, IL-7, 10, 16, 17 along with TNF-α and CXCL (chemokines) 9 and 10. In retina the increases were again mainly in some IL's and CXCL's. A few cytokines were reduced by light exposure. Changes in serum cytokines implies that long wavelengths impact systemically even to unexposed tissues deep in the body. In the context of wider literature, increased cytokine expression may be protective. However, their upregulation by light merits further analysis as cytokines upregulation can also be negative and there are probably complex patterns of interaction in the dynamics of their expression.
Collapse
Affiliation(s)
- Harpreet Shinhmar
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Calbiague García V, Cadiz B, Herrera P, Díaz A, Schmachtenberg O. Evaluation of Photobiomodulation and Boldine as Alternative Treatment Options in Two Diabetic Retinopathy Models. Int J Mol Sci 2023; 24:ijms24097918. [PMID: 37175628 PMCID: PMC10178531 DOI: 10.3390/ijms24097918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Víctor Calbiague García
- Ph. D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Herrera
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
14
|
Burton B, Parodi MB, Jürgens I, Zanlonghi X, Hornan D, Roider J, Lorenz K, Munk MR, Croissant CL, Tedford SE, Walker M, Ruckert R, Tedford CE. LIGHTSITE II Randomized Multicenter Trial: Evaluation of Multiwavelength Photobiomodulation in Non-exudative Age-Related Macular Degeneration. Ophthalmol Ther 2023; 12:953-968. [PMID: 36588113 PMCID: PMC9805913 DOI: 10.1007/s40123-022-00640-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Photobiomodulation (PBM) represents a potential treatment for non-exudative age-related macular degeneration (AMD). PBM uses wavelengths of light to target components of the mitochondrial respiratory chain to improve cellular bioenergetic outputs. The aim of this study was to further investigate the effects of PBM on clinical, quality of life (QoL) and anatomical outcomes in subjects with intermediate stage non-exudative AMD. METHODS The multicenter LIGHTSITE II study was a randomized clinical trial evaluating safety and efficacy of PBM in intermediate non-exudative AMD. The LumiThera Valeda® Light Delivery System delivered multiwavelength PBM (590, 660 and 850 nm) or sham treatment 3 × per week over 3-4 weeks (9 treatments per series) with repeated treatments at baseline (BL), 4 and 8 months. Subjects were enrolled with 20/32 to 20/100 best-corrected visual acuity (BCVA) and no central geographic atrophy (GA) within the central fovea (500 μm). RESULTS LIGHTSITE II enrolled 44 non-exudative AMD subjects (53 eyes). PBM-treated eyes showed statistically significant improvement in BCVA at 9 months (n = 32 eyes, p = 0.02) with a 4-letter gain in the PBM-treated group versus a 0.5-letter gain in the sham-treated group (ns, p < 0.1) for patients that received all 27 PBM treatments (n = 29 eyes). Approximately 35.3% of PBM-treated eyes showed ≥ 5-letter improvement at 9 months. Macular drusen volume was not increased over time in the PBM-treated group but did show increases in the sham-treated group. While PBM and sham groups both showed GA lesion growth in the trial period, there was 20% less growth in the PBM group over 10 months, suggesting potential disease-modifying effects. No safety concerns or signs of phototoxicity were observed. CONCLUSION These results confirm previous clinical testing of multiwavelength PBM and support treatment with Valeda as a novel therapy with a unique mechanism of action as a potential treatment for non-exudative AMD. TRIAL REGISTRATION Clinicaltrial.Gov Registration Identifier: NCT03878420.
Collapse
Affiliation(s)
- Ben Burton
- James Paget University, Great Yarmouth, UK
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Vita-Salute San Raffaele University, Istituto Scientifico Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Dan Hornan
- Peterborough City Hospital, Peterborough, UK
| | - Johann Roider
- Klinik Fur Ophthalmologie, Universitatsklinikum Schleswig-Holstein, Kiel, Germany
| | - Katrin Lorenz
- Universitätsmedizin Mainz-Augenklinik, Mainz, Germany
| | - Marion R Munk
- Department of Ophthalmology, Inselspital University Hospital Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Zhang CX, Lou Y, Chi J, Bao XL, Fan B, Li GY. Considerations for the Use of Photobiomodulation in the Treatment of Retinal Diseases. Biomolecules 2022; 12:biom12121811. [PMID: 36551239 PMCID: PMC9775242 DOI: 10.3390/biom12121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation (PBM) refers to the beneficial effect produced from low-energy light irradiation on target cells or tissues. Increasing evidence in the literature suggests that PBM plays a positive role in the treatment of retinal diseases. However, there is great variation in the light sources and illumination parameters used in different studies, resulting in significantly different conclusions regarding PBM's therapeutic effects. In addition, the mechanism by which PBM improves retinal function has not been fully elucidated. In this study, we conducted a narrative review of the published literature on PBM for treating retinal diseases and summarized the key illumination parameters used in PBM. Furthermore, we explored the potential molecular mechanisms of PBM at the retinal cellular level with the goal of providing evidence for the improved utilization of PBM in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130042, China
| | - Yan Lou
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun 130042, China
| | - Jing Chi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130042, China
| | - Xiao-Li Bao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130042, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130042, China
- Correspondence: (B.F.); (G.-Y.L.)
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130042, China
- Correspondence: (B.F.); (G.-Y.L.)
| |
Collapse
|
16
|
Abstract
Although the cause(s) of Alzheimer's disease in the majority of cases remains elusive, it has long been associated with hypertension. In animal models of the disease, hypertension has been shown to exacerbate Alzheimer-like pathology and behavior, while in humans, hypertension during mid-life increases the risk of developing the disease later in life. Unfortunately, once individuals are diagnosed with the disease, there are few therapeutic options available. There is neither an effective symptomatic treatment, one that treats the debilitating cognitive and memory deficits, nor, more importantly, a neuroprotective treatment, one that stops the relentless progression of the pathology. Further, there is no specific preventative treatment that offsets the onset of the disease. A key factor or clue in this quest for an effective preventative and therapeutic treatment may lie in the contribution of hypertension to the disease. In this review, we explore the idea that photobiomodulation, the application of specific wavelengths of light onto body tissues, can reduce the neuropathology and behavioral deficits in Alzheimer's disease by controlling hypertension. We suggest that treatment with photobiomodulation can be an effective preventative and therapeutic option for this neurodegenerative disease.
Collapse
Affiliation(s)
- Audrey Valverde
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France,
Institute of Ophthalmology, University College London, London, United Kingdom,Correspondence to: John Mitrofanis, E-mail:
| |
Collapse
|
17
|
Ahadi M, Ebrahimi A, Ramin S. Long-Term Outcome of Photobiomodulation for Diabetic Macular Edema: A Case Report. Photobiomodul Photomed Laser Surg 2022; 40:742-746. [DOI: 10.1089/photob.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Masoumeh Ahadi
- Optometry and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Ramin
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
19
|
Bathini M, Raghushaker CR, Mahato KK. The Molecular Mechanisms of Action of Photobiomodulation Against Neurodegenerative Diseases: A Systematic Review. Cell Mol Neurobiol 2022. [PMID: 33301129 DOI: 10.1007/s10571-020-01016-9,33301129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Collapse
Affiliation(s)
- Mayukha Bathini
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
Kim JE, Glassman AR, Josic K, Melia M, Aiello LP, Baker C, Eells JT, Jampol LM, Kern TS, Marcus D, Salehi-Had H, Shah SN, Martin DF, Stockdale CR, Sun JK. A Randomized Trial of Photobiomodulation Therapy for Center-Involved Diabetic Macular Edema with Good Visual Acuity (Protocol AE). Ophthalmol Retina 2022; 6:298-307. [PMID: 34628066 PMCID: PMC9011341 DOI: 10.1016/j.oret.2021.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine if treatment with a photobiomodulation (PBM) device results in greater improvement in central subfield thickness (CST) than placebo in eyes with center-involved diabetic macular edema (CI-DME) and good vision. DESIGN Phase 2 randomized clinical trial. PARTICIPANTS Participants had CI-DME and visual acuity (VA) 20/25 or better in the study eye and were recruited from 23 clinical sites in the United States. METHODS One eye of each participant was randomly assigned 1:1 to a 670-nm light-emitting PBM eye patch or an identical device emitting broad-spectrum white light at low power. Treatment was applied for 90 seconds twice daily for 4 months. MAIN OUTCOME MEASURES Change in CST on spectral-domain OCT at 4 months. RESULTS From April 2019 to February 2020, 135 adults were randomly assigned to either PBM (n = 69) or placebo (n = 66); median age was 62 years, 37% were women, and 82% were White. The median device compliance was 92% with PBM and 95% with placebo. OCT CST increased from baseline to 4 months by a mean (SD) of 13 (53) μm in PBM eyes and 15 (57) μm in placebo eyes, with the mean difference (95% confidence interval [CI]) being -2 (-20 to 16) μm (P = 0.84). CI-DME, based on DRCR Retina Network sex- and machine-based thresholds, was present in 61 (90%) PBM eyes and 57 (86%) placebo eyes at 4 months (adjusted odds ratio [95% CI] = 1.30 (0.44-3.83); P = 0.63). VA decreased by a mean (SD) of -0.2 (5.5) letters and -0.6 (4.6) letters in the PBM and placebo groups, respectively (difference [95% CI] = 0.4 (-1.3 to 2.0) letters; P = 0.64). There were 8 adverse events possibly related to the PBM device and 2 adverse events possibly related to the placebo device. None were serious. CONCLUSIONS PBM as given in this study, although safe and well-tolerated, was not found to be effective for the treatment of CI-DME in eyes with good vision.
Collapse
Affiliation(s)
- Judy E Kim
- Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | - Lloyd P Aiello
- Joslin Diabetes Center, Beetham Eye Institute, Harvard Department of Ophthalmology, Boston, MA
| | - Carl Baker
- The Ophthalmology Group, LLC, Paducah, KY
| | | | - Lee M Jampol
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | - Hani Salehi-Had
- Retina Associates of Southern California, Huntington Beach, CA
| | | | | | | | - Jennifer K Sun
- Joslin Diabetes Center, Beetham Eye Institute, Harvard Department of Ophthalmology, Boston, MA
| |
Collapse
|
21
|
Sun JK, Glassman AR, Jampol LM. Spotlight on the DRCR Retina Network's Photobiomodulation for Diabetic Macular Edema Trial. JAMA Ophthalmol 2022; 140:304-306. [PMID: 35238910 DOI: 10.1001/jamaophthalmol.2021.6331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jennifer K Sun
- Beetham Eye Institute, Joslin Diabetes Center, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Clinical Challenges Editor, JAMA Ophthalmology
| | | | - Lee M Jampol
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
22
|
Kaidzu S, Okuno T, Tanito M, Ohira A. Structural and Functional Change in Albino Rat Retina Induced by Various Visible Light Wavelengths. Int J Mol Sci 2021; 23:309. [PMID: 35008736 PMCID: PMC8745104 DOI: 10.3390/ijms23010309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of visible light, from short to long wavelengths, on the retina were investigated functionally and histologically. The left eyes of Sprague-Dawley albino rats (6-weeks old, n = 6 for each wavelength) were exposed to seven narrow-band wavelengths (central wavelengths, 421, 441, 459, 501, 541, 581, and 615 nm) with bandwidths of 16 to 29 nm (half bandwidth, ±8-14.5 nm) using a xenon lamp source with bandpass filters at the retinal radiant exposures of 340 and 680 J/cm2. The right unexposed eyes served as controls. Seven days after exposure, flash electroretinograms (ERGs) were recorded, and the outer nuclear layer (ONL) thickness was measured. Compared to the unexposed eyes, significant reductions in the a- and b-wave ERG amplitudes were seen in eyes exposed to 460-nm or shorter wavelengths of light. The ONL thickness near the optic nerve head also tended to decrease with exposure to shorter wavelengths. The decreased ERG amplitudes and ONL thicknesses were most prominent in eyes exposed to 420-nm light at both radiant exposures. When the wavelengths were the same, the higher the amount of radiant exposure and the stronger the damage. Compared to the unexposed eyes, the a- and b-waves did not decrease significantly in eyes exposed to 500-nm or longer wavelength light. The results indicate that the retinal damage induced by visible light observed in albino rats depends on the wavelength and energy level of the exposed light.
Collapse
Affiliation(s)
- Sachiko Kaidzu
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| | - Tsutomu Okuno
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
- Occupational Ergonomics Research Group, National Institute of Occupational Safety and Health, Tama-ku, Kawasaki 214-8585, Kanagawa, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| | - Akihiro Ohira
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| |
Collapse
|
23
|
Nonarath HJ, Hall AE, SenthilKumar G, Abroe B, Eells JT, Liedhegner ES. 670nm photobiomodulation modulates bioenergetics and oxidative stress, in rat Müller cells challenged with high glucose. PLoS One 2021; 16:e0260968. [PMID: 34860856 PMCID: PMC8641888 DOI: 10.1371/journal.pone.0260968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.
Collapse
Affiliation(s)
- Hannah J. Nonarath
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Alexandria E. Hall
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Gopika SenthilKumar
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Betsy Abroe
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Janis T. Eells
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Elizabeth S. Liedhegner
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
24
|
Muste JC, Russell MW, Singh RP. Photobiomodulation Therapy for Age-Related Macular Degeneration and Diabetic Retinopathy: A Review. Clin Ophthalmol 2021; 15:3709-3720. [PMID: 34511875 PMCID: PMC8421781 DOI: 10.2147/opth.s272327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose Photobiomodulation therapy (PBT) has emerged as a possible treatment for age-related macular degeneration (AMD) and diabetic retinopathy (DR). This review seeks to summarize the application of PBT in AMD and DR. Methods The National Clinical Trial (NCT) database and PubMed were queried using a literature search strategy and reviewed by the authors. Results Fourteen studies examining the application of PBT for AMD and nine studies examining the application of PBT for diabetic macular edema (DME) were extracted from 60 candidate publications. Discussion Despite notable methodological differences between studies, PBT has been reported to treat certain DR and AMD patients. DR patients with center involving DME and VA ≥ 20/25 have demonstrated response to treatment. AMD patients at Age-Related Eye Disease Study Stages 2–4 with VA ≥20/200 have also shown response to treatment. Results of major clinical trials are pending. Conclusion PBT remains an emergent therapy with possible applications in DR and AMD. Further, high powered studies monitored by a neutral party with standard devices, treatment delivery and treatment timing are needed.
Collapse
Affiliation(s)
- Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Red Light Irradiation In Vivo Upregulates DJ-1 in the Retinal Ganglion Cell Layer and Protects against Axotomy-Related Dendritic Pruning. Int J Mol Sci 2021; 22:ijms22168380. [PMID: 34445085 PMCID: PMC8395066 DOI: 10.3390/ijms22168380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13–15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/−) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/− retinas. Immunohistochemistry revealed that aged Opa1+/− RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/− RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.
Collapse
|
26
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
27
|
He Y, Dan Y, Gao X, Huang L, Lv H, Chen J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am J Physiol Endocrinol Metab 2021; 320:E598-E608. [PMID: 33284093 DOI: 10.1152/ajpendo.00089.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications that occurs in diabetic patients that frequently causes blindness. Long noncoding RNAs (lncRNAs) have been associated with DR pathology. This study aimed to determine the underlying mechanism of lncRNA maternally expressed gene 3 (MEG3) in association with DNA methyltransferase 1 (DNMT1) in the endothelial-mesenchymal transition (endMT) that occurs in DR. A rat model of DR was induced by streptozotocin (STZ) injection, and a high-glucose (HG)-induced cell model was established by exposing microvascular endothelial cells obtained from retina of rats to HG. Subsequently, MEG3 was overexpressed in rat and cell models to characterize its impact on endMT in DR and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the methylation level of MEG3 promoter region was determined with the application of methylation-specific polymerase chain reaction, followed by chromatin immunoprecipitation assay for methyltransferase enrichment. Finally, we examined the regulation of DNMT1 on MEG3 methylation and endMT in the HG-induced cell model. The results obtained revealed downregulated MEG3 expression in DR rat and cell models. Overexpressed MEG3 was shown to suppress endMT in DR rat and cell models through the inhibition of the PI3K/Akt/mTOR signaling pathway. Notably, DNMT1 could promote MEG3 promoter methylation to inhibit MEG3 expression by recruiting methyltransferase, which activated the PI3K/Akt/mTOR signaling pathway to accelerate endMT in DR. These findings further highlighted the inhibitory effect of MEG3 on endMT in DR, thus presenting a novel therapeutic target candidate for DR treatment.
Collapse
Affiliation(s)
- Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yujiao Dan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaorong Gao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Huang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
A study of therapeutic effects of 670 nm irradiation in different types of diabetic macular edema. BIOMEDICAL PHOTONICS 2021. [DOI: 10.24931/2413-9432-2020-9-4-15-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the therapeutic effects of 670 nm irradiation in patients with diabetic macular edema. In several studies, positive effects of red/near-infrared irradiation showed in a range of ocular diseases such as macular degeneration, macular edema, and retinitis pigmentosa. This study was conducted on forty five eyes of 26 diabetic patients with macular edema between the ages of 51 and 80.Measurement of visual acuity and slit lamp examination, funduscopy, and optical coherence tomography were performed in all subjects. None of the patients had proliferative retinopathy. We used a portable LED device (Warp 10, Quantum Devices) for treatment. Patients held this device at a distance of 3 cm from their eyes for 240 seconds for three months. Full ophthalmic examinations were repeated 1, 2, and 3 months after treatment.After 3 months, the mean visual acuity improved from 0.44 ± 0.38 log MAR to 0.27 ± 0.24 log MAR and vision increased by 1.52 ± 1.16 lines post treatment (р<0.001). The mean central macula thickness decreased from 381.49 ± 144.40 μm to 359.72 ± 128.84 μm (р=0.050). In patients with mild and moderate nonproliferative diabetic retinopathy, the mean central retinal thickness decreased 52.06 ± 67.78 μm and 39.27 ± 44.69 μm, respectively, but patients with severe type showed an increase of 34.93 ± 65.65 μm in the mean central retinal thickness (р<0.001). Also, the severity of macular edema had no effect on final outcomes (р>0.05). Photobiomodulation can positively affect diabetic macular edema, especially in patients with mild to moderate diabetic retinopathy.
Collapse
|
29
|
Ng WSV, Trigano M, Freeman T, Varrichio C, Kandaswamy DK, Newland B, Brancale A, Rozanowska M, Votruba M. New avenues for therapy in mitochondrial optic neuropathies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211029037. [PMID: 37181108 PMCID: PMC10032437 DOI: 10.1177/26330040211029037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 05/16/2023]
Abstract
Mitochondrial optic neuropathies are a group of optic nerve atrophies exemplified by the two commonest conditions in this group, autosomal dominant optic atrophy (ADOA) and Leber's hereditary optic neuropathy (LHON). Their clinical features comprise reduced visual acuity, colour vision deficits, centro-caecal scotomas and optic disc pallor with thinning of the retinal nerve fibre layer. The primary aetiology is genetic, with underlying nuclear or mitochondrial gene mutations. The primary pathology is owing to retinal ganglion cell dysfunction and degeneration. There is currently only one approved treatment and no curative therapy is available. In this review we summarise the genetic and clinical features of ADOA and LHON and then examine what new avenues there may be for therapeutic intervention. The therapeutic strategies to manage LHON and ADOA can be split into four categories: prevention, compensation, replacement and repair. Prevention is technically an option by modifying risk factors such as smoking cessation, or by utilising pre-implantation genetic diagnosis, although this is unlikely to be applied in mitochondrial optic neuropathies due to the non-life threatening and variable nature of these conditions. Compensation involves pharmacological interventions that ameliorate the mitochondrial dysfunction at a cellular and tissue level. Replacement and repair are exciting new emerging areas. Clinical trials, both published and underway, in this area are likely to reveal future potential benefits, since new therapies are desperately needed. Plain language summary Optic nerve damage leading to loss of vision can be caused by a variety of insults. One group of conditions leading to optic nerve damage is caused by defects in genes that are essential for cells to make energy in small organelles called mitochondria. These conditions are known as mitochondrial optic neuropathies and two predominant examples are called autosomal dominant optic atrophy and Leber's hereditary optic neuropathy. Both conditions are caused by problems with the energy powerhouse of cells: mitochondria. The cells that are most vulnerable to this mitochondrial malfunction are called retinal ganglion cells, otherwise collectively known as the optic nerve, and they take the electrical impulse from the retina in the eye to the brain. The malfunction leads to death of some of the optic nerve cells, the degree of vision loss being linked to the number of those cells which are impacted in this way. Patients will lose visual acuity and colour vision and develop a central blind spot in their field of vision. There is currently no cure and very few treatment options. New treatments are desperately needed for patients affected by these devastating diseases. New treatments can potentially arise in four ways: prevention, compensation, replacement and repair of the defects. Here we explore how present and possible future treatments might provide hope for those suffering from these conditions.
Collapse
Affiliation(s)
| | - Matthieu Trigano
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Thomas Freeman
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Carmine Varrichio
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Dinesh Kumar Kandaswamy
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Malgorzata Rozanowska
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences,
Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK; Cardiff Eye
Unit, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
30
|
Zhu Q, Xiao S, Hua Z, Yang D, Hu M, Zhu YT, Zhong H. Near Infrared (NIR) Light Therapy of Eye Diseases: A Review. Int J Med Sci 2021; 18:109-119. [PMID: 33390779 PMCID: PMC7738953 DOI: 10.7150/ijms.52980] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Near infrared (NIR) light therapy, or photobiomodulation therapy (PBMT), has gained persistent worldwide attention in recent years as a new novel scientific approach for therapeutic applications in ophthalmology. This ongoing therapeutic adoption of NIR therapy is largely propelled by significant advances in the fields of photobiology and bioenergetics, such as the discovery of photoneuromodulation by cytochrome c oxidase and the elucidation of therapeutic biochemical processes. Upon transcranial delivery, NIR light has been shown to significantly increase cytochrome oxidase and superoxide dismutase activities which suggests its role in inducing metabolic and antioxidant beneficial effects. Furthermore, NIR light may also boost cerebral blood flow and cognitive functions in humans without adverse effects. In this review, we highlight the value of NIR therapy as a novel paradigm for treatment of visual and neurological conditions, and provide scientific evidence to support the use of NIR therapy with emphasis on molecular and cellular mechanisms in eye diseases.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Shuyuan Xiao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Zhijuan Hua
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Dongmei Yang
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming 650021, China
| | | | - Hua Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| |
Collapse
|
31
|
Bathini M, Raghushaker CR, Mahato KK. The Molecular Mechanisms of Action of Photobiomodulation Against Neurodegenerative Diseases: A Systematic Review. Cell Mol Neurobiol 2020; 42:955-971. [PMID: 33301129 PMCID: PMC8942959 DOI: 10.1007/s10571-020-01016-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Collapse
Affiliation(s)
- Mayukha Bathini
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
32
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
33
|
Guo S, Gong L, Shen Q, Xing D. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112075. [PMID: 33152638 DOI: 10.1016/j.jphotobiol.2020.112075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) could improve systemic blood glucose and insulin resistance in diet-induced diabetic mice. A few possible molecular mechanisms for the beneficial effects of PBM on diabetes have been proposed, but there is still an urgent need to explore the underlying mechanisms that support the application of PBM in the treatment of diabetes. Our study aimed to evaluate the effects of PBM on lipid metabolism in the liver of high-fat diet (HFD)-induced mice and explore the potential mechanisms of PBM on obesity and type 2 diabetes. Here, we administered PBM therapy (wavelength: 635 nm, energy density: 8 J/cm2) daily for eight weeks to HFD-induced mice. We detected that eight-week daily administration of PBM ameliorated HFD-induced gain weight, hyperlipidemia, and hyperglycemia, but also protected against diet-induced hepatic steatosis and insulin resistance. Furthermore, PBM increased AMP-activated protein kinase (AMPK) activation, lowered nuclear translocation of sterol regulatory element binding protein 1 (SREBP1), decreased aberrant lipogenesis, and enhanced insulin sensitive in HFD-induced mice livers. We also observed that Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation was responsible for AMPK activation in insulin-resistant HepG2 cells exposed to PBM. In summary, PBM at 635 nm and 8 J/cm2 improved hepatic lipid metabolism and inhibited the development of HFD-induced obesity and type 2 diabetes. Moreover, increased intracellular Ca2+ content and CaMKKβ-dependent AMPK activation were possible molecular mechanisms underlying the PBM-induced improvement on obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shuang Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
34
|
Shen W, Teo KYC, Wood JPM, Vaze A, Chidlow G, Ao J, Lee SR, Yam MX, Cornish EE, Fraser-Bell S, Casson RJ, Gillies MC. Preclinical and clinical studies of photobiomodulation therapy for macular oedema. Diabetologia 2020; 63:1900-1915. [PMID: 32661752 DOI: 10.1007/s00125-020-05189-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. METHODS The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an open-label, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centre-involving DME with central macular thickness (CMT) of >300 μm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. RESULTS LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm2. The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 μm (p = 0.03 at 200 mW/cm2) and significant reduction at all three settings at 6 months (25 mW/cm2: 53 ± 24 μm, p = 0.04; 100 mW/cm2: 129 ± 51 μm, p < 0.01; 200 mW/cm2: 114 ± 60 μm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm2 with no significant side effects. CONCLUSIONS/INTERPRETATION PBM results in anatomical improvement of DME over 6 months and may represent a safe and non-invasive treatment. Further testing is warranted in randomised clinical trials. TRIAL REGISTRATION ClinicalTrials.gov NCT02181400 Graphical abstract.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Kelvin Yi Chong Teo
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - John P M Wood
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Anagha Vaze
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Glyn Chidlow
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jack Ao
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - So-Ra Lee
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Michelle X Yam
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Elisa E Cornish
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Samantha Fraser-Bell
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Robert J Casson
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Mark C Gillies
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
| |
Collapse
|
35
|
Ao J, Chidlow G, Wood JPM, Casson RJ. Safety Profile of Slit-Lamp-Delivered Retinal Laser Photobiomodulation. Transl Vis Sci Technol 2020; 9:22. [PMID: 32818109 PMCID: PMC7396177 DOI: 10.1167/tvst.9.4.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/10/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose Photobiomodulation (PBM) refers to therapeutic irradiation of tissue with low-energy, 630- to 1000-nm wavelength light. An increasing body of evidence supports a beneficial effect of PBM in retinal disorders. To date, most studies have utilized light-emitting diode irradiation sources. Slit-lamp-mounted retinal lasers produce a coherent beam that can be delivered with precisely defined dosages and predetermined target area; however, the use of retinal lasers raises safety concerns that warrant investigation prior to clinical application. In this study, we determined safe dosages of laser-delivered PBM to the retina. Methods A custom-designed, slit-lamp-delivered, 670-nm, red/near-infrared laser was used to administer a range of irradiances to healthy pigmented and non-pigmented rat retinas. The effects of PBM on various functional and structural parameters of the retina were evaluated utilizing a combination of electroretinography, Spectral Domain Optical Coherence (SD-OCT), fluorescein angiography, histology and immunohistochemistry. Results In non-pigmented rats, no adverse events were identified at any irradiances up to 500 mW/cm2. In pigmented rats, no adverse events were identified at irradiances of 25 or 100 mW/cm2; however, approximately one-third of rats that received 500 mW/cm2 displayed very localized photoreceptor damage in the peripapillary region, typically adjacent to the optic nerve head. Conclusions A safety threshold exists for laser-delivered PBM in pigmented retinas and was identified as 500 mW/cm2 irradiance; therefore, caution should be exercised in the dosage of laser-delivered PBM administered to pigmented retinas. Translational Relevance This study provides important data necessary for clinical translation of laser-delivered PBM for retinal diseases.
Collapse
Affiliation(s)
- Jack Ao
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John P M Wood
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Gavish L, Houreld NN. Therapeutic Efficacy of Home-Use Photobiomodulation Devices: A Systematic Literature Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:4-16. [PMID: 31050938 DOI: 10.1089/photob.2018.4512] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Perform systematic literature review on photobiomodulation (PBM) devices used at home for nonesthetic applications. Background: Home-use PBM devices have been marketed for cosmetic and therapeutic purposes. This is the first systematic literature review for nonesthetic applications. Methods: A systematic literature search was conducted for PBM devices self-applied at home at least thrice a week. Two independent reviewers screened the articles and extracted the data. Treatment dosage appropriateness was compared to the World Association for Laser Therapy (WALT) recommendations. The efficacy was evaluated according to the relevant primary end-point for the specific indication. Results: Eleven studies were suitable. Devices were applied for a range of indications, including pain, cognitive dysfunction, wound healing, diabetic macular edema, and postprocedural side effects, and were mostly based on near-infrared, pulsed light-emitting diodes with dosages within WALT recommendations. Regarding efficacy, studies reported mostly positive results. Conclusions: Home-use PBM devices appear to mediate effective, safe treatments in a variety of conditions that require frequent applications. Conclusive evaluation of their efficacy requires additional, randomized controlled studies.
Collapse
Affiliation(s)
- Lilach Gavish
- 1 Department of Medical Neurobiology, Institute for Research in Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nicolette Nadene Houreld
- 2 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
37
|
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends Mol Med 2020; 26:105-118. [PMID: 31771932 PMCID: PMC6938541 DOI: 10.1016/j.molmed.2019.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is involved in the pathology of two major blinding retinal diseases, diabetic retinopathy (DR) and age-related macular degeneration (AMD). These diseases accumulate mitochondrial defects in distinct retinal subcellular structures, the vascular/neural network in DR and the retinal pigment epithelium (RPE) in AMD. These mitochondrial defects cause a metabolic crisis that drives disease. With no treatments to stop these diseases, coupled with an increasing population suffering from AMD and DR, there is an urgent need to develop new therapeutics targeting the mitochondria to prevent or reverse disease-specific pathology.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Cody R Fisher
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Renu A Kowluru
- Ophthalmology, Vision, and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Diabetic retinopathy (DR) is the leading cause of vision loss in working-age adults in the developed world. This review discusses the current approach to managing the disease, such as glycemic and blood pressure control, as well as laser photocoagulation, as well as emerging concepts and controversies on novel therapies. RECENT FINDINGS In recent years, the rise of intraocular anti-angiogenesis treatments is changing the paradigm of classic laser photocoagulation in the management of DR, but its long-term benefits remain an area of controversy. We also discuss new targets including anti-inflammation, neuroprotection, and novel laser technologies. Finally, we discuss new advances in retinal imaging that has vastly improved the diagnosis and management of DR. Diagnosis and management of diabetic retinopathy is a rapidly progressing field. Emerging concepts in ophthalmic imaging, medical treatments, and surgical approaches provide insights into how DR management will evolve in the near future.
Collapse
Affiliation(s)
- Michael Patrick Ellis
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA
| | - Daniella Lent-Schochet
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA
- California Northstate University College of Medicine, 9700 W Taron Drive, Elk Grove, CA, 95757, USA
| | - Therlinder Lo
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA
- University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557-0357, USA
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California Davis, 4860 Y Street Suite 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
39
|
Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP. Biomolecules 2019; 9:biom9100564. [PMID: 31590236 PMCID: PMC6843129 DOI: 10.3390/biom9100564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 h after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain’s vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions.
Collapse
|
40
|
Ma C, Fan L, Wang J, Hao L, He J. Hippo/Mst1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating β-catenin/Drp1 pathway. Cell Stress Chaperones 2019; 24:807-816. [PMID: 31127452 PMCID: PMC6629754 DOI: 10.1007/s12192-019-01008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian Ste20-like kinase 1 (Mst1) is associated with cell apoptosis. In the current study, we explored the regulatory effects of Mst1 on squamous cell carcinoma of the head and neck (SCCHN) in vitro. SCCHN Cal27 cells and Tu686 cells were transfected with adenovirus-loaded Mst1 to detect the role of Mst1 in cell viability. Then, siRNA against Drp1 was transfected into cells to evaluate the influence of mitochondrial fission in cancer survival. Our data illustrated that Mst1 overexpression promoted SCCHN Cal27 cell and Tu686 cell death via activating mitochondria-related apoptosis. Cells transfected with adenovirus-loaded Mst1 have increased expression of DRP1 and higher DRP1 promoted mitochondrial fission. Active mitochondrial fission mediated mitochondrial damage, as evidenced by increased mitochondrial oxidative stress, decreased mitochondrial energy production, and reduced mitochondrial respiratory complex function. Moreover, Mst1 overexpression triggered mitochondria-dependent cell apoptosis via DRP1-related mitochondrial fission. Further, we found that Mst1 overexpression controlled mitochondrial fission via the β-catenin/DRP1 pathways; inhibition of β-catenin and/or knockdown of DRP1 abolished the pro-apoptotic effects of Mst1 overexpression on SCCHN Cal27 cells and Tu686 cells, leading to the survival of cancer cells in vitro. In sum, our results illustrate that Mst1/β-catenin/DRP1 axis affects SCCHN Cal27 cell and Tu686 cell viability via controlling mitochondrial dynamics balance. This finding identifies Mst1 activation might be an effective therapeutic target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Chao Ma
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China.
| | - Longkun Fan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jingxian Wang
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Lixia Hao
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jinqiu He
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| |
Collapse
|
41
|
Shang X, Lin K, Zhang Y, Li M, Xu J, Chen K, Zhu P, Yu R. Mst1 deletion reduces septic cardiomyopathy via activating Parkin-related mitophagy. J Cell Physiol 2019; 235:317-327. [PMID: 31215035 DOI: 10.1002/jcp.28971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte function and viability are highly modulated by mammalian Ste20-like kinase 1 (Mst1)-Hippo pathway and mitochondria. Mitophagy, a kind of mitochondrial autophagy, is a protective program to attenuate mitochondrial damage. However, the relationship between Mst1 and mitophagy in septic cardiomyopathy has not been explored. In the present study, Mst1 knockout mice were used in a lipopolysaccharide (LPS)-induced septic cardiomyopathy model. Mitophagy activity was measured via immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay. Pathway blocker and small interfering RNA were used to perform the loss-of-function assay. The results demonstrated that Mst1 was rapidly increased in response to LPS stress. Knockout of Mst1 attenuated LPS-mediated inflammation damage, reduced cardiomyocyte death, and improved cardiac function. At the molecular levels, LPS treatment activated mitochondrial damage, such as mitochondrial respiratory dysfunction, mitochondrial potential reduction, mitochondrial ATP depletion, and caspase family activation. Interestingly, in response to mitochondrial damage, Mst1 deletion activated mitophagy which attenuated LPS-mediated mitochondrial damage. However, inhibition of mitophagy via inhibiting parkin mitophagy abolished the protective influences of Mst1 deletion on mitochondrial homeostasis and cardiomyocyte viability. Overall, our results demonstrated that septic cardiomyopathy is linked to Mst1 upregulation which is followed by a drop in the protective mitophagy.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Fujian Cardiovascular Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Min Li
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaihua Chen
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian, Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
42
|
Wang Q, Xu J, Li X, Liu Z, Han Y, Xu X, Li X, Tang Y, Liu Y, Yu T, Li X. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway. J Cell Physiol 2019; 234:23495-23506. [PMID: 31173361 DOI: 10.1002/jcp.28918] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial fusion is linked to heart and liver ischemia-reperfusion (IR) insult. Unfortunately, there is no report to elucidate the detailed influence of mitochondrial fusion in renal IR injury. This study principally investigated the mechanism by which mitochondrial fusion protected kidney against IR injury. Our results indicated that sirtuin 3 (Sirt3) was inhibited after renal IR injury in vivo and in vitro. Overexpression of Sirt3 improved kidney function, modulated oxidative injury, repressed inflammatory damage, and reduced tubular epithelial cell apoptosis. The molecular investigation found that Sirt3 overexpression attenuated IR-induced mitochondrial damage in renal tubular epithelial cells, as evidenced by decreased reactive oxygen species production, increased antioxidants sustained mitochondrial membrane potential, and inactivated mitochondria-initiated death signaling. In addition, our information also illuminated that Sirt3 maintained mitochondrial homeostasis against IR injury by enhancing optic atrophy 1 (OPA1)-triggered fusion of mitochondrion. Inhibition of OPA1-induced fusion repressed Sirt3 overexpression-induced kidney protection, leading to mitochondrial dysfunction. Further, our study illustrated that OPA1-induced fusion could be affected through ERK; inhibition of ERK abolished the regulatory impacts of Sirt3 on OPA1 expression and mitochondrial fusion, leading to mitochondrial damage and tubular epithelial cell apoptosis. Altogether, our results suggest that renal IR injury is closely associated with Sirt3 downregulation and mitochondrial fusion inhibition. Regaining Sirt3 and/or activating mitochondrial fission by modifying the ERK-OPA1 cascade may represent new therapeutic modalities for renal IR injury.
Collapse
Affiliation(s)
- Qiang Wang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Junnan Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Li
- Department of Geriatric Cardiology, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijia Liu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Han
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiubin Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuzhe Tang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yubao Liu
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tao Yu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Lu K, Liu X, Guo W. Melatonin attenuates inflammation‐related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J Cell Physiol 2019; 234:23675-23684. [PMID: 31169304 DOI: 10.1002/jcp.28935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Lu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular Surgery Da Qing Oil General Hospital Daquing Hei Longjiang China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| |
Collapse
|
44
|
Song H, Wang M, Xin T. Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on Nrf2 inhibition. J Cell Physiol 2019; 234:23774-23784. [PMID: 31165471 DOI: 10.1002/jcp.28945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Nasal epithelium inflammation plays an important role in transmitting and amplifying damage signals for the lower airway. However, the molecular basis of nasal epithelium inflammation damage has not been fully addressed. Mst1 is reported to modulate inflammation via multiple effects. Thus, the aim of our study is to understand the pathological mechanism underlying Mst1-related nasal epithelium inflammation in vitro. Our result indicated that Mst1 expression was rapidly increased in response to tumor necrosis factor-α (TNF-α) treatment in vitro and this effect was a dose-dependent manner. Interestingly, knockdown of Mst1 via transfecting small interfering RNA markedly reversed cell viability in the presence of TNF-α. Further, we found that Mst1 deficiency reduced cellular oxidative stress and attenuated mitochondrial dysfunction, as evidenced by reversed mitochondrial complex-I activity, decreased mitochondrial permeability transition pore opening rate, and stabilized mitochondrial membrane potential. Besides, we found that Nrf2 expression was increased after deletion of Mst1 whereas silencing of Nrf2 abolished the protective effects of Mst1 deletion on nasal epithelium survival and mitochondrial homeostasis. Moreover, Nrf2 overexpression also protected nasal epithelium against TNF-α-induced inflammation damage. Altogether, our data confirm that the Mst1 activation and Nrf2 downregulation seem to be the potential mechanisms responsible for the inflammation-mediated injury in nasal epithelium via mediating mitochondrial damage and cell oxidative stress.
Collapse
Affiliation(s)
- Henge Song
- Department of Respiratory Medicine, Tianjin Dongli Hospital, Tianjin, China
| | - Mengmeng Wang
- Department of Rheumatism and Immunology, Tianjin First Central Hospital, Tianjin, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
45
|
Zhang Y, Wang M, Xu X, Liu Y, Xiao C. Matrine promotes apoptosis in SW480 colorectal cancer cells via elevating MIEF1-related mitochondrial division in a manner dependent on LATS2-Hippo pathway. J Cell Physiol 2019; 234:22731-22741. [PMID: 31119752 DOI: 10.1002/jcp.28838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
Matrine, an alkaloid compound isolated from Sophora flavescens Ait, has been shown to exert cancer-killing actions in a variety of tumors; however, its anticancer mechanism in colorectal cancer (CRC) is not clear. The goal of our study was to characterize the anticancer effects and molecular mechanisms of matrine in SW480 CRC cells in vitro. Matrine treatment reduced mitochondrial metabolic function and ATP levels, repressed mitochondrial membrane potential, evoked mitochondrial reactive oxygen species accumulation, and promoted cyt-c-related mitochondrial apoptosis activation. In addition, we found that matrine treatment activated mitochondrial fission through upregulating mitochondrial elongation factor 1 (MIEF1); silencing of MIEF1 prevented matrine-mediated mitochondrial damage and reversed the decrease in SW480 cell viability. Moreover, matrine treatment affected MIEF1 expression via the large tumor suppressor-2 (LATS2)-Hippo axis, and LATS2 deficiency suppressed the anticancer actions exerted by matrine on SW480 cancer cells. In summary, we show for the first time that matrine inhibits SW480 cell survival by activating MIEF1-related mitochondrial division via the LATS2-Hippo pathway. These findings explain the anticancer mechanisms of matrine in CRC and also identify the LATS2-MIEF1 signaling pathway as an effective target for the treatment of CRC.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of General Surgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Meiping Wang
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| | - Xianfeng Xu
- Department of Critical Care Medicine, Changle People's Hospital, Fuzhou, Fujian, China
| | - Yonghong Liu
- Department of General Surgery, First People's Hospital of Yuhang District, Hangzhou, China
| | - Chunhong Xiao
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| |
Collapse
|
46
|
Sigurdardottir S, Zapadka TE, Lindstrom SI, Liu H, Taylor BE, Lee CA, Kern TS, Taylor PR. Diabetes-mediated IL-17A enhances retinal inflammation, oxidative stress, and vascular permeability. Cell Immunol 2019; 341:103921. [PMID: 31076079 DOI: 10.1016/j.cellimm.2019.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022]
Abstract
Diabetic retinopathy is a prevailing diabetes complication, and one of the leading causes of blindness worldwide. IL-17A is a cytokine involved in the onset of diabetic complications. In the current study, we examined the role of IL-17A in the development of retinal inflammation and long-term vascular pathology in diabetic mice. We found IL-17A expressing T cells and neutrophils in the retinal vasculature. Further, the IL-17A receptor was expressed on Muller glia, retinal endothelial cells, and photoreceptors. Finally, diabetes-mediated retinal inflammation, oxidative stress, and vascular leakage were all significantly lower in IL-17A-/- mice. These are all clinically meaningful abnormalities that characterize the onset of diabetic retinopathy.
Collapse
Affiliation(s)
- Sigrun Sigurdardottir
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Thomas E Zapadka
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Sarah I Lindstrom
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Haitao Liu
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Brooklyn E Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Chieh A Lee
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States; Louis Stokes VA Medical Center, Cleveland, OH, United States
| | - Patricia R Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, United States; Louis Stokes VA Medical Center, Cleveland, OH, United States.
| |
Collapse
|
47
|
Wan H, Wang Y, Zhang K, Chen Y, Fang S, Zhang W, Wang C, Li Q, Xia F, Wang N, Lu Y. ASSOCIATIONS BETWEEN VITAMIN D AND MICROVASCULAR COMPLICATIONS IN MIDDLE-AGED AND ELDERLY DIABETIC PATIENTS. Endocr Pract 2019; 25:809-816. [PMID: 31013151 DOI: 10.4158/ep-2019-0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: The objective of this cross-sectional study was to investigate the association of serum 25-hydroxyvitamin D (25[OH]D) levels with estimated glomerular filtration rate (eGFR), albumin/creatinine ratio (ACR), and the prevalence of diabetic retinopathy (DR) in Chinese diabetic adults. Methods: A total of 4,767 diabetic participants were enrolled from seven communities in Shanghai, China, in 2018. Participants underwent several examinations, which included the measurement of anthropometric parameters, blood pressure, glucose, lipid profiles, 25(OH)D, and ACR. DR was detected based on high-quality fundus photographs and remotely read by ophthalmologists. Results: Compared with the first 25(OH)D quartile, participants in the fourth quartile had a lower prevalence of high ACR (odds ratio [OR], 0.77; 95% confidence interval [CI], 0.61 to 0.96) (P for trend <.01). No association was found between 25(OH)D levels and eGFR. For DR, the OR (95% CI) for DR ranging from 0 to 4 in ordinal logistic regression associated with 25(OH)D was 0.62 (0.47 to 0.82) for the fourth 25(OH)D quartile (P for trend <.01) compared with the first quartile. These associations were all fully adjusted for confounding factors. Conclusion: Lower serum 25(OH)D concentration is significantly associated with increased ACR and higher prevalence of DR in middle-aged and elderly diabetic adults. However, the possibility of a causal relationship between 25(OH)D deficiency and diabetic microvascular complications remains to be demonstrated. Abbreviations: 25(OH)D = 25-hydroxyvitamin D; ACR = albumin/creatinine ratio; BMI = body mass index; CI = confidence interval; DKD = diabetic kidney disease; DR = diabetic retinopathy; eGFR = estimated glomerular filtration rate; HbA1c = glycated hemoglobin; HDL = high-density lipoprotein; LDL = low-density lipoprotein; OR = odds ratio; T2DM = type 2 diabetes mellitus.
Collapse
|
48
|
Liu H, Tang J, Du Y, Saadane A, Samuels I, Veenstra A, Kiser JZ, Palczewski K, Kern TS. Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 60:1538-1546. [PMID: 30994864 PMCID: PMC6736377 DOI: 10.1167/iovs.18-26433] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Recent evidence suggests that retinal photoreceptor cells have an important role in the pathogenesis of retinal microvascular lesions in diabetes. We investigated the role of rod cell phototransduction on the pathogenesis of early diabetic retinopathy (DR) using Gnat1-/- mice (which causes permanent inhibition of phototransduction in rod cells without degeneration). Methods Retinal thickness, oxidative stress, expression of inflammatory proteins, electroretinograms (ERG) and optokinetic responses, and capillary permeability and degeneration were evaluated at up to 8 months of diabetes. Results The diabetes-induced degeneration of retinal capillaries was significantly inhibited in the Gnat1-/- diabetics. The effect of the Gnat1 deletion on the diabetes-induced increase in permeability showed a nonuniform accumulation of albumin in the neural retina; the defect was inhibited in diabetic Gnat1-/- mice in the inner plexiform layer (IPL), but neither in the outer plexiform (OPL) nor inner nuclear (INL) layers. In Gnat1-deficient animals, the diabetes-induced increase in expression of inflammatory associated proteins (iNOS and ICAM-1, and phosphorylation of IĸB) in the retina, and the leukocyte mediated killing of retinal endothelial cells were inhibited, however the diabetes-mediated induction of oxidative stress was not inhibited. Conclusions In conclusion, deletion of transducin1 (and the resulting inhibition of phototransduction in rod cells) inhibits the development of retinal vascular pathology in early DR.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jie Tang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Yunpeng Du
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Aicha Saadane
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ivy Samuels
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
- Department of Ophthalmic Research, Cleveland Clinic, Cleveland, Ohio, United States
| | - Alex Veenstra
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jianying Z. Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States
| | - Timothy S. Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States
| |
Collapse
|
49
|
Gordon LC, Johnstone DM. Remote photobiomodulation: an emerging strategy for neuroprotection. Neural Regen Res 2019; 14:2086-2087. [PMID: 31397343 PMCID: PMC6788247 DOI: 10.4103/1673-5374.262573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Luke C Gordon
- Bosch Institute; Discipline of Physiology, University of Sydney, NSW, Australia
| | - Daniel M Johnstone
- Bosch Institute; Discipline of Physiology, University of Sydney, NSW, Australia
| |
Collapse
|
50
|
Gavish L, Houreld NN. Therapeutic Efficacy of Home-Use Photobiomodulation Devices: A Systematic Literature Review. Photomed Laser Surg 2018:pho.2018.4512. [PMID: 30418078 DOI: 10.1089/pho.2018.4512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Perform systematic literature review on photobiomodulation (PBM) devices used at home for nonesthetic applications. BACKGROUND Home-use PBM devices have been marketed for cosmetic and therapeutic purposes. This is the first systematic literature review for nonesthetic applications. METHODS A systematic literature search was conducted for PBM devices self-applied at home at least thrice a week. Two independent reviewers screened the articles and extracted the data. Treatment dosage appropriateness was compared to the World Association for Laser Therapy (WALT) recommendations. The efficacy was evaluated according to the relevant primary end-point for the specific indication. RESULTS Eleven studies were suitable. Devices were applied for a range of indications, including pain, cognitive dysfunction, wound healing, diabetic macular edema, and postprocedural side effects, and were mostly based on near-infrared, pulsed light-emitting diodes with dosages within WALT recommendations. Regarding efficacy, studies reported mostly positive results. CONCLUSIONS Home-use PBM devices appear to mediate effective, safe treatments in a variety of conditions that require frequent applications. Conclusive evaluation of their efficacy requires additional, randomized controlled studies.
Collapse
Affiliation(s)
- Lilach Gavish
- 1 Department of Medical Neurobiology, Institute for Research in Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Nicolette Nadene Houreld
- 2 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Johannesburg, South Africa
| |
Collapse
|