1
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Sakaguchi M. The role of insulin signaling with FOXO and FOXK transcription factors. Endocr J 2024; 71:939-944. [PMID: 38987195 PMCID: PMC11778369 DOI: 10.1507/endocrj.ej24-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Insulin is an essential hormone for animal activity and survival, and it controls the metabolic functions of the entire body. Throughout the evolution of metazoan animals and the development of their brains, a sustainable energy supply has been essential to overcoming the competition for survival under various environmental stresses. Managing energy for metabolism, preservation, and consumption inevitably involves high oxidative stress, causing tissue damage in various organs. In both mice and humans, excessive dietary intake can lead to insulin resistance in various organs, ultimately displaying metabolic syndrome and type 2 diabetes. Insulin signals require thorough regulation to maintain metabolism across diverse environments. Recent studies demonstrated that two types of forkhead-box family transcription factors, FOXOs and FOXKs, are related to the switching of insulin signals during fasting and feeding states. Insulin signaling plays a role in supporting higher activity during periods of sufficient food supply and in promoting survival during times of insufficient food supply. The insulin receptor depends on the tyrosine phosphatase feedback of insulin signaling to maintain adipocyte insulin responsiveness. α4, a regulatory subunit of protein phosphatase 2A (PP2A), has been shown to play a crucial role in modulating insulin signaling pathways by regulating the phosphorylation status of key proteins involved in these pathways. This short review summarizes the current understanding of the molecular mechanism related to the regulation of insulin signals.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
3
|
Cai Z, Wang S, Zhou H, Cao D. Low expression of ZHX3 is associated with progression and poor prognosis in colorectal cancer. Transl Oncol 2024; 39:101829. [PMID: 37979559 PMCID: PMC10656720 DOI: 10.1016/j.tranon.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
Accumulating studies suggest that ZHX3, the member of ZHX family, is involved in a variety of biological functions such as development and differentiation. Recently, ZHX3 may also be involved in the progression of several cancer types including renal cancer, gastric cancer, liver cancer and breast cancer. However, the potential role of ZHX3 in colorectal cancer (CRC) is still unknown. In this study, we analyzed the protein levels of ZHX3 by immunohistochemistry and evaluated its relationship with the clinicopathological features and prognosis in 286 CRC patients. In vitro cell proliferation assay, plate colony formation assay and xenograft model in nude mice were applied to evaluate CRC cell proliferative ability. Our results showed that the expression of ZHX3 was significantly downregulated in CRC tissues compared with paired adjacent nontumor tissues. Furthermore, the ZHX3 expression was found to have a strong correlation with tumor size, tumor invasion depth and TNM stage. Kaplan-Meier analysis demonstrated that low ZHX3 expression was related to a poorer overall survival and disease-free survival in CRC patients. In addition, cox's proportional hazards analysis indicated that low ZHX3 expression was an independent prognostic indicator of poor prognosis. Functionally, reduced expression of ZHX3 promotes the proliferation of CRC cells both in vitro and in vivo. Conversely, overexpression of ZHX3 inhibited the growth of CRC cells, indicated that ZHX3 was significantly correlated with CRC progression. Our results indicate for the first time that ZHX3 may be a potential marker of cancer prognosis and CRC recurrence.
Collapse
Affiliation(s)
- Zhai Cai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Songsheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huabin Zhou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Cao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Allu PKR, Cardamone MD, Gomes AS, Dall'agnese A, Cederquist C, Pan H, Dreyfuss JM, Enerbäck S, Kahn CR. FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation. Mol Metab 2023; 78:101825. [PMID: 37852413 PMCID: PMC10641274 DOI: 10.1016/j.molmet.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level. METHODS Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis. RESULTS Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle. CONCLUSION These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Antonio S Gomes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
6
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
7
|
Yang H, Su M, Liu M, Sheng Y, Zhu L, Yang L, Mu R, Zou J, Liu X, Liu L. Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis. Acta Pharm Sin B 2023; 13:3728-3743. [PMID: 37719384 PMCID: PMC10501888 DOI: 10.1016/j.apsb.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
Type 2 diabetes (T2D) is often accompanied with an induction of retinaldehyde dehydrogenase 1 (RALDH1 or ALDH1A1) expression and a consequent decrease in hepatic retinaldehyde (Rald) levels. However, the role of hepatic Rald deficiency in T2D progression remains unclear. In this study, we demonstrated that reversing T2D-mediated hepatic Rald deficiency by Rald or citral treatments, or liver-specific Raldh1 silencing substantially lowered fasting glycemia levels, inhibited hepatic glucogenesis, and downregulated phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) expression in diabetic db/db mice. Fasting glycemia and Pck1/G6pc mRNA expression levels were strongly negatively correlated with hepatic Rald levels, indicating the involvement of hepatic Rald depletion in T2D deterioration. A similar result that liver-specific Raldh1 silencing improved glucose metabolism was also observed in high-fat diet-fed mice. In primary human hepatocytes and oleic acid-treated HepG2 cells, Rald or Rald + RALDH1 silencing resulted in decreased glucose production and downregulated PCK1/G6PC mRNA and protein expression. Mechanistically, Rald downregulated direct repeat 1-mediated PCK1 and G6PC expression by antagonizing retinoid X receptor α, as confirmed by luciferase reporter assays and molecular docking. These results highlight the link between hepatic Rald deficiency, glucose dyshomeostasis, and the progression of T2D, whilst also suggesting RALDH1 as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruijing Mu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Wang C, Yu J, Ding C, Chen C. CangFu Daotan decoction improves polycystic ovarian syndrome by downregulating FOXK1. Gynecol Endocrinol 2023; 39:2244600. [PMID: 37544927 DOI: 10.1080/09513590.2023.2244600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Objective: Polycystic ovarian syndrome (PCOS) is a prevalent gynecologic disorder, often associated with abnormal follicular development. Cangfu Daotan decoction (CFD) is a traditional Chinese medicine formula that is effective in alleviating PCOS clinically, but the specific mechanism remains unclear. Forkhead box K1 (FOXK1) is associated with cellular function. This study aimed to explore the effects of CFD and FOXK1 on PCOS.Methods: High-fat diet and letrozole were combined to establish PCOS rat models. Next, primary GCs were extracted from those PCOS rats. Then, GC cells were transfected with si-FOXK1 or oe-FOXK1. CFD-contain serum was prepared, and experiments were conducted to investigate the regulation of FOXK1 by CFD.Results: FOXK1 was highly expressed in GCs of PCOS rats. Further investigation revealed that FOXK1 overexpression resulted in inhibition of proliferation and DNA synthesis, along with promotion of apoptosis and autophagy in GCs. Additionally, it was found that FOXK1 promoted the expressions of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway-related proteins. Interestingly, treatment with CFD reversed all the effects of FOXK1 overexpression in GCs. Conclusion: This study demonstrated that CFD exerted a protective role in PCOS by inhibiting FOXK1, which provided a research basis for the application of CFD in PCOS, and suggested that FOXK1 is a novel therapeutic target in PCOS treatment.
Collapse
Affiliation(s)
- Chenye Wang
- Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou City, China
| | - Jia Yu
- Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou City, China
| | - Caifei Ding
- Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou City, China
| | - Chunyue Chen
- Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou City, China
| |
Collapse
|
9
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Bu X, Ni Q. Cognitive dysfunction in diabetes: abnormal glucose metabolic regulation in the brain. Front Endocrinol (Lausanne) 2023; 14:1192602. [PMID: 37396164 PMCID: PMC10312370 DOI: 10.3389/fendo.2023.1192602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cognitive dysfunction is increasingly recognized as a complication and comorbidity of diabetes, supported by evidence of abnormal brain structure and function. Although few mechanistic metabolic studies have shown clear pathophysiological links between diabetes and cognitive dysfunction, there are several plausible ways in which this connection may occur. Since, brain functions require a constant supply of glucose as an energy source, the brain may be more susceptible to abnormalities in glucose metabolism. Glucose metabolic abnormalities under diabetic conditions may play an important role in cognitive dysfunction by affecting glucose transport and reducing glucose metabolism. These changes, along with oxidative stress, inflammation, mitochondrial dysfunction, and other factors, can affect synaptic transmission, neural plasticity, and ultimately lead to impaired neuronal and cognitive function. Insulin signal triggers intracellular signal transduction that regulates glucose transport and metabolism. Insulin resistance, one hallmark of diabetes, has also been linked with impaired cerebral glucose metabolism in the brain. In this review, we conclude that glucose metabolic abnormalities play a critical role in the pathophysiological alterations underlying diabetic cognitive dysfunction (DCD), which is associated with multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, inflammation, and others. Brain insulin resistance is highly emphasized and characterized as an important pathogenic mechanism in the DCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Ni
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Muzaffar H, Qamar I, Bashir M, Jabeen F, Irfan S, Anwar H. Gymnema Sylvestre Supplementation Restores Normoglycemia, Corrects Dyslipidemia, and Transcriptionally Modulates Pancreatic and Hepatic Gene Expression in Alloxan-Induced Hyperglycemic Rats. Metabolites 2023; 13:metabo13040516. [PMID: 37110174 PMCID: PMC10142569 DOI: 10.3390/metabo13040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Gymnema sylvestre is traditionally used as an herbal remedy for diabetes. The effect of Gymnema sylvestre supplementation on beta cell and hepatic activity was explored in an alloxan-induced hyperglycemic adult rat. Animals were made hyperglycemic via a single inj. (i.p) of Alloxan. Gymnema sylvestre was supplemented in diet @250 mg/kg and 500 mg/kg b.w. Animals were sacrificed, and blood and tissues (pancreas and liver) were collected for biochemical, expression, and histological analysis. Gymnema sylvestre significantly reduced blood glucose levels with a subsequent increase in plasma insulin levels in a dosage-dependent manner. Total oxidant status (TOS), malondialdehyde, LDL, VLDL, ALT, AST, triglyceride, total cholesterol, and total protein levels were reduced significantly. Significantly raised paraoxonase, arylesterase, albumin, and HDL levels were also observed in Gymnema sylvestre treated hyperglycemic rats. Increased mRNA expression of Ins-1, Ins-2, Gck, Pdx1, Mafa, and Pax6 was observed, while decreased expression of Cat, Sod1, Nrf2, and NF-kB was observed in the pancreas. However, increased mRNA expression of Gck, Irs1, SREBP1c, and Foxk1 and decreased expression of Irs2, ChREBP, Foxo1, and FoxA2 were observed in the liver. The current study indicates the potent effect of Gymnema sylvestre on the transcription modulation of the insulin gene in the alloxan-induced hyperglycemic rat model. Enhanced plasma insulin levels further help to improve hyperglycemia-induced dyslipidemia through transcriptional modulation of hepatocytes.
Collapse
Affiliation(s)
- Humaira Muzaffar
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqra Qamar
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Bashir
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
11
|
Yerra VG, Drosatos K. Specificity Proteins (SP) and Krüppel-like Factors (KLF) in Liver Physiology and Pathology. Int J Mol Sci 2023; 24:4682. [PMID: 36902112 PMCID: PMC10003758 DOI: 10.3390/ijms24054682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The liver acts as a central hub that controls several essential physiological processes ranging from metabolism to detoxification of xenobiotics. At the cellular level, these pleiotropic functions are facilitated through transcriptional regulation in hepatocytes. Defects in hepatocyte function and its transcriptional regulatory mechanisms have a detrimental influence on liver function leading to the development of hepatic diseases. In recent years, increased intake of alcohol and western diet also resulted in a significantly increasing number of people predisposed to the incidence of hepatic diseases. Liver diseases constitute one of the serious contributors to global deaths, constituting the cause of approximately two million deaths worldwide. Understanding hepatocyte transcriptional mechanisms and gene regulation is essential to delineate pathophysiology during disease progression. The current review summarizes the contribution of a family of zinc finger family transcription factors, named specificity protein (SP) and Krüppel-like factors (KLF), in physiological hepatocyte functions, as well as how they are involved in the onset and development of hepatic diseases.
Collapse
Affiliation(s)
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
12
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
13
|
Luo K, Huang W, Qiao L, Zhang X, Yan D, Ning Z, Ma C, Dang H, Wang D, Guo H, Xie L, Cheng J. Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation. Acta Pharm Sin B 2022; 12:2239-2251. [PMID: 35646547 PMCID: PMC9136573 DOI: 10.1016/j.apsb.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The potential medicinal value of Ma bamboo (Dendrocalamus latiflorus), one of the most popular and economically important bamboo species in China, has been underestimated. In the present study, we found that D. latiflorus leaf extract (DLE) reduced fasting blood glucose levels, body weight, and low-density lipoprotein cholesterol with low liver toxicity in db/db mice. In addition, gene expression profiling was performed and pathway enrichment analysis showed that DLE affected metabolic pathways. Importantly, DLE activated the AKT signaling pathway and reduced glucose production by downregulating glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1) expression. Moreover, network pharmacology analysis identified rutin as an active component in DLE through targeting insulin growth factor 1 receptor (IGF1R), an upstream signaling transducer of AKT. Due to its hypoglycemic effects and low toxicity, DLE may be considered an adjuvant treatment option for type 2 diabetes patients.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenting Huang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liansheng Qiao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Di Yan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiyu Ning
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Honglei Dang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Lan Xie
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Corresponding authors. Tel.: +86 10 80726868; fax: +86 10 80726898
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Corresponding authors. Tel.: +86 10 80726868; fax: +86 10 80726898
| |
Collapse
|
14
|
TOX4, an insulin receptor-independent regulator of hepatic glucose production, is activated in diabetic liver. Cell Metab 2022; 34:158-170.e5. [PMID: 34914893 PMCID: PMC8732315 DOI: 10.1016/j.cmet.2021.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Increased hepatic glucose production (HGP) contributes to hyperglycemia in type 2 diabetes. Hormonal regulation of this process is primarily, but not exclusively, mediated by the AKT-FoxO1 pathway. Here, we show that cAMP and dexamethasone regulate the high-mobility group superfamily member TOX4 to mediate HGP, independent of the insulin receptor/FoxO1 pathway. TOX4 inhibition decreases glucose production in primary hepatocytes and liver and increases glucose tolerance. Combined genetic ablation of TOX4 and FoxO1 in liver has additive effects on glucose tolerance and gluconeogenesis. Moreover, TOX4 ablation fails to reverse the metabolic derangement brought by insulin receptor knockout. TOX4 expression is increased in livers of patients with steatosis and diabetes and in diet-induced obese and db/db mice. In the latter two murine models, knockdown Tox4 decreases glycemia and improves glucose tolerance. We conclude that TOX4 is an insulin receptor-independent regulator of HGP and a candidate contributor to the pathophysiology of diabetes.
Collapse
|
15
|
Overcoming IMiD Resistance in T-cell Lymphomas Through Potent Degradation of ZFP91 and IKZF1. Blood 2021; 139:2024-2037. [PMID: 34936696 DOI: 10.1182/blood.2021014701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory (IMiD) agents like lenalidomide and pomalidomide induce the recruitment of IKZF1 and other targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and degradation. These agents are highly active in B-cell lymphomas and a subset of myeloid diseases but have compromised effects in T-cell lymphomas (TCLs). Here we show that two factors determine resistance to IMiDs among TCLs. First, limited CRBN expression reduces IMiD activity in TCLs but can be overcome by newer-generation degrader CC-92480. Using mass spectrometry, we show that CC-92480 selectively degrades IKZF1 and ZFP91 in TCL cells with greater potency than pomalidomide. As a result, CC-92480 is highly active against multiple TCL subtypes and showed greater efficacy than pomalidomide across 4 in vivo TCL models. Second, we demonstrate that ZFP91 functions as a bona fide transcription factor that co-regulates cell survival with IKZF1 in IMiD-resistant TCLs. By activating keynote genes from WNT, NF-kB, and MAP kinase signaling, ZFP91 directly promotes resistance to IKZF1 loss. Moreover, lenalidomide-sensitive TCLs can acquire stable resistance via ZFP91 rewiring, which involves casein kinase 2 (CK2) mediated c-Jun inactivation. Overall, these findings identify a critical transcription factor network within TCLs and provide clinical proof of concept for the novel therapy using next-generation degraders.
Collapse
|
16
|
Lee YK, Diaz B, Deroose M, Lee SX, Belvedere S, Accili D, Leibel RL, Lin HV. FOXO1 inhibition synergizes with FGF21 to normalize glucose control in diabetic mice. Mol Metab 2021; 49:101187. [PMID: 33577983 PMCID: PMC7966865 DOI: 10.1016/j.molmet.2021.101187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Forkhead box protein O1 (FOXO1) plays a key role in regulating hepatic glucose production, but investigations of FOXO1 inhibition as a potential therapeutic approach have been hampered by a lack of selective chemical inhibitors. By profiling structurally diverse FOXO1 inhibitors, the current study validates FOXO1 as a viable target for the treatment of diabetes. METHODS Using reporter gene assays, hepatocyte gene expression studies, and in vivo studies in mice, we profiled our leading tool compound 10 and a previously characterized FOXO1 inhibitor, AS1842856 (AS). RESULTS We show that AS has significant FOXO1-independent effects, as demonstrated by testing in FOXO1-deficient cell lines and animals, while compound 10 is highly selective for FOXO1 both in vitro and in vivo and fails to elicit any effect in genetic models of FOXO1 ablation. Chronic administration of compound 10 improved insulin sensitivity and glucose control in db/db mice without causing weight gain. Furthermore, chronic compound 10 treatment combined with FGF21 led to synergistic glucose lowering in lean, streptozotocin-induced diabetic mice. CONCLUSIONS We show that the widely used AS compound has substantial off-target activities and that compound 10 is a superior tool molecule for the investigation of FOXO1 function. In addition, we provide preclinical evidence that selective FOXO1 inhibition has potential therapeutic benefits for diabetes as a monotherapy or in combination with FGF21.
Collapse
Affiliation(s)
- Yun-Kyoung Lee
- Forkhead BioTherapeutics, Inc., New York, NY, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Bryan Diaz
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Marianne Deroose
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Samuel X Lee
- Forkhead BioTherapeutics, Inc., New York, NY, USA
| | | | - Domenico Accili
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Hua V Lin
- Forkhead BioTherapeutics, Inc., New York, NY, USA.
| |
Collapse
|
17
|
Deng M, Wei W, Duan J, Chen R, Wang N, He L, Peng Y, Ma X, Wu Z, Liu J, Li Z, Zhang Z, Jiang L, Zhou F, Xie D. ZHX3 promotes the progression of urothelial carcinoma of the bladder via repressing of RGS2 and is a novel substrate of TRIM21. Cancer Sci 2021; 112:1758-1771. [PMID: 33440047 PMCID: PMC8088937 DOI: 10.1111/cas.14810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Clinically, patients with urothelial carcinoma of the bladder (UCB) with tumor metastasis are incurable. To find new therapeutic strategies, the mechanisms underlying UCB invasion and metastasis should be further investigated. In this study, zinc finger and homeobox 3 (ZHX3) was first screened as a critical oncogenic factor associated with poor prognosis in a UCB dataset from The Cancer Genome Atlas (TCGA). These results were also confirmed in a large cohort of clinical UCB clinical samples. Next, we found that ZHX3 could promote the migration and invasion capacities of UCB cells both in vitro and in vivo. Mechanistically, coimmunoprecipitation (coIP) and mass spectrometry (MS) analysis indicated that ZHX3 was a target of tripartite motif 21 (TRIM21), which mediates its ubiquitination, and subsequent degradation. Notably, RNA‐seq analysis showed that ZHX3 repressed the expression of regulator of G protein signaling 2 (RGS2). Generally, our results suggest that ZHX3 plays an oncogenic role in UCB pathogenesis and might serve as a novel therapeutic target for UCB.
Collapse
Affiliation(s)
- Minhua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wensu Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rixin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Leye He
- Department of Urology, Xiangya Third Hospital, Changsha, China
| | - Yulu Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zeshen Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianye Liu
- Department of Urology, Xiangya Third Hospital, Changsha, China
| | - Zhiyong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhiling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lijuan Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangjian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|