1
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Pérez-Arana GM, Díaz-Gómez A, Bancalero-de los Reyes J, Gracia-Romero M, Ribelles-García A, Visiedo F, González-Domínguez Á, Almorza-Gomar D, Prada-Oliveira JA. The role of glucagon after bariatric/metabolic surgery: much more than an "anti-insulin" hormone. Front Endocrinol (Lausanne) 2023; 14:1236103. [PMID: 37635984 PMCID: PMC10451081 DOI: 10.3389/fendo.2023.1236103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
The biological activity of glucagon has recently been proposed to both stimulate hepatic glucose production and also include a paradoxical insulinotropic effect, which could suggest a new role of glucagon in the pathophysiology type 2 diabetes mellitus (T2DM). An insulinotropic role of glucagon has been observed after bariatric/metabolic surgery that is mediated through the GLP-1 receptor on pancreatic beta cells. This effect appears to be modulated by other members of the proglucagon family, playing a key role in the beneficial effects and complications of bariatric/metabolic surgery. Glucagon serves a dual role after sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). In addition to maintaining blood glucose levels, glucagon exhibits an insulinotropic effect, suggesting that glucagon has a more complex function than simply an "anti-insulin hormone".
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | | | | | | | | | - Francisco Visiedo
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - Álvaro González-Domínguez
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
- Operative Statistic and Research Department, University of Cádiz, Cádiz, Spain
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| |
Collapse
|
3
|
Shimizu K, Kaneko K, Koyama D, Ohinata K. Soy-fortelin: A ghrelin sensitivity-enhancing peptide that stimulates food intake in aged mice. FASEB J 2023; 37:e22836. [PMID: 36856734 DOI: 10.1096/fj.202201482r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Ghrelin sensitivity is known to decrease with aging in mice and humans, and the decrease contributes to anorexia with aging. In this study, we discovered novel ghrelin sensitivity-enhancing peptides. Ghrelin sensitivity was evaluated by examining whether dipeptide samples enhanced the calcium response to ghrelin in the growth hormone secretagogue receptor-transfected cell line. First, dipeptides were screened using a 336-dipeptide library and we revealed that Ser-Tyr (SY) potentiated ghrelin sensitivity in particular. Based on the structure-activity relationship determined using the dipeptide library and comprehensive analysis of peptides in the chymotrypsin digest of soy β-conglycinin (β-CG), which enhanced ghrelin sensitivity, candidate peptides were narrowed down. Among the chemosynthesized peptides, we discovered that an undecapeptide, SLVNNDDRDSY, corresponding to β-CGα(267-277), stimulated ghrelin sensitivity in vitro. This peptide enhanced the orexigenic activity of ghrelin in C57BL/6 mice and stimulated food intake. Thus, we demonstrated that SLVNNDDRDSY stimulated ghrelin sensitivity in vitro and in vivo and named it "soy-fortelin". Moreover, orally administered soy-fortelin had a similar but smaller effect in the young C57BL/6 mice, whereas it strongly stimulated food intake in 2-year-old aged mice that exhibited high blood ghrelin levels and low ghrelin sensitivity. In conclusion, we discovered soy-fortelin as a novel peptide that enhances ghrelin sensitivity in vivo and in vitro and increases food intake in young and aged ghrelin-resistant mice. Soy-fortelin is the first food-derived peptide reported to enhance ghrelin sensitivity.
Collapse
Affiliation(s)
- Ken Shimizu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daiki Koyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Péraldi-Roux S, Bayle M, M'Kadmi C, Damian M, Vaillé J, Fernandez G, Paula Cornejo M, Marie J, Banères JL, Ben Haj Salah K, Fehrentz JA, Cantel S, Perello M, Denoyelle S, Oiry C, Neasta J. Design and Characterization of a Triazole-Based Growth Hormone Secretagogue Receptor Modulator Inhibiting the Glucoregulatory and Feeding Actions of Ghrelin. Biochem Pharmacol 2022; 202:115114. [DOI: 10.1016/j.bcp.2022.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
|
5
|
Mechanistic Investigation of GHS-R Mediated Glucose-Stimulated Insulin Secretion in Pancreatic Islets. Biomolecules 2022; 12:biom12030407. [PMID: 35327599 PMCID: PMC8945998 DOI: 10.3390/biom12030407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Ghrelin receptor, a growth hormone secretagogue receptor (GHS-R), is expressed in the pancreas. Emerging evidence indicates that GHS-R is involved in the regulation of glucose-stimulated insulin secretion (GSIS), but the mechanism by which GHS-R regulates GSIS in the pancreas is unclear. In this study, we investigated the role of GHS-R on GSIS in detail using global Ghsr−/− mice (in vivo) and Ghsr-ablated pancreatic islets (ex vivo). GSIS was attenuated in both Ghsr−/− mice and Ghsr-ablated islets, while the islet morphology was similar between WT and Ghsr−/− mice. To elucidate the mechanism underpinning Ghsr-mediated GSIS, we investigated the key steps of the GSIS signaling cascade. The gene expression of glucose transporter 2 (Glut2) and the glucose-metabolic intermediate—glucose-6-phosphate (G6P) were reduced in Ghsr-ablated islets, supporting decreased glucose uptake. There was no difference in mitochondrial DNA content in the islets of WT and Ghsr−/− mice, but the ATP/ADP ratio in Ghsr−/− islets was significantly lower than that of WT islets. Moreover, the expression of pancreatic and duodenal homeobox 1 (Pdx1), as well as insulin signaling genes of insulin receptor (IR) and insulin receptor substrates 1 and 2 (IRS1/IRS2), was downregulated in Ghsr−/− islets. Akt is the key mediator of the insulin signaling cascade. Concurrently, Akt phosphorylation was reduced in the pancreas of Ghsr−/− mice under both insulin-stimulated and homeostatic conditions. These findings demonstrate that GHS-R ablation affects key components of the insulin signaling pathway in the pancreas, suggesting the existence of a cross-talk between GHS-R and the insulin signaling pathway in pancreatic islets, and GHS-R likely regulates GSIS via the Akt-Pdx1-GLUT2 pathway.
Collapse
|
6
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Lu X, Huang L, Huang Z, Feng D, Clark RJ, Chen C. LEAP-2: An Emerging Endogenous Ghrelin Receptor Antagonist in the Pathophysiology of Obesity. Front Endocrinol (Lausanne) 2021; 12:717544. [PMID: 34512549 PMCID: PMC8428150 DOI: 10.3389/fendo.2021.717544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2), originally described as an antimicrobial peptide, has recently been recognized as an endogenous blocker of growth hormone secretagogue receptor 1a (GHS-R1a). GHS-R1a, also known as ghrelin receptor, is a G protein-coupled receptor (GPCR) widely distributed on the hypothalamus and pituitary gland where it exerts its major functions of regulating appetite and growth hormone (GH) secretion. The activity of GHS-R1a is controlled by two counter-regulatory endogenous ligands: Ghrelin (activation) and LEAP-2 (inhibition). Ghrelin activates GHS-R1a on the neuropeptide Y/Agouti-related protein (NPY/AgRP) neurons at the arcuate nucleus (ARC) to promote appetite, and on the pituitary somatotrophs to stimulate GH release. On the flip side, LEAP-2, acts both as an endogenous competitive antagonist of ghrelin and an inverse agonist of constitutive GHS-R1a activity. Such a biological property of LEAP-2 vigorously blocks ghrelin's effects on food intake and hormonal secretion. In circulation, LEAP-2 displays an inverse pattern as to ghrelin; it increases with food intake and obesity (positive energy balance), whereas decreases upon fasting and weight loss (negative energy balance). Thus, the LEAP-2/ghrelin molar ratio fluctuates in response to energy status and modulation of this ratio conversely influences energy intake. Inhibiting ghrelin's activity has shown beneficial effects on obesity in preclinical experiments, which sheds light on LEAP-2's anti-obesity potential. In this review, we will analyze LEAP-2's effects from a metabolic point of view with a focus on metabolic hormones (e.g., ghrelin, GH, and insulin), and discuss LEAP-2's potential as a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Xuehan Lu
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Dandan Feng
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Richard J. Clark
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Chen Chen,
| |
Collapse
|
8
|
El K, Capozzi ME, Campbell JE. Repositioning the Alpha Cell in Postprandial Metabolism. Endocrinology 2020; 161:5910252. [PMID: 32964214 PMCID: PMC7899437 DOI: 10.1210/endocr/bqaa169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Glucose homeostasis is maintained in large part due to the actions of the pancreatic islet hormones insulin and glucagon, secreted from β- and α-cells, respectively. The historical narrative positions these hormones in opposition, with insulin primarily responsible for glucose-lowering and glucagon-driving elevations in glucose. Recent progress in this area has revealed a more complex relationship between insulin and glucagon, highlighted by data demonstrating that α-cell input is essential for β-cell function and glucose homeostasis. Moreover, the common perception that glucagon levels decrease following a nutrient challenge is largely shaped by the inhibitory effects of glucose administration alone on the α-cell. Largely overlooked is that a mixed nutrient challenge, which is more representative of typical human feeding, actually stimulates glucagon secretion. Thus, postprandial metabolism is associated with elevations, not decreases, in α-cell activity. This review discusses the recent advances in our understanding of how α-cells regulate metabolism, with a particular focus on the postprandial state. We highlight α- to β-cell communication, a term that describes how α-cell input into β-cells is a critical axis that regulates insulin secretion and glucose homeostasis. Finally, we discuss the open questions that have the potential to advance this field and continue to evolve our understanding of the role that α-cells play in postprandial metabolism.
Collapse
Affiliation(s)
- Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina
- Correspondence: Jonathan E. Campbell, 300 N Duke Street, Durham, North Carolina 27701. E-mail:
| |
Collapse
|
9
|
Cervone DT, Lovell AJ, Dyck DJ. Regulation of adipose tissue and skeletal muscle substrate metabolism by the stomach-derived hormone, ghrelin. Curr Opin Pharmacol 2020; 52:25-32. [DOI: 10.1016/j.coph.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
|
10
|
Walker JT, Haliyur R, Nelson HA, Ishahak M, Poffenberger G, Aramandla R, Reihsmann C, Luchsinger JR, Saunders DC, Wang P, Garcia-Ocaña A, Bottino R, Agarwal A, Powers AC, Brissova M. Integrated human pseudoislet system and microfluidic platform demonstrate differences in GPCR signaling in islet cells. JCI Insight 2020; 5:137017. [PMID: 32352931 PMCID: PMC7259531 DOI: 10.1172/jci.insight.137017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Pancreatic islets secrete insulin from β cells and glucagon from α cells, and dysregulated secretion of these hormones is a central component of diabetes. Thus, an improved understanding of the pathways governing coordinated β and α cell hormone secretion will provide insight into islet dysfunction in diabetes. However, the 3D multicellular islet architecture, essential for coordinated islet function, presents experimental challenges for mechanistic studies of intracellular signaling pathways in primary islet cells. Here, we developed an integrated approach to study the function of primary human islet cells using genetically modified pseudoislets that resemble native islets across multiple parameters. Further, we developed a microperifusion system that allowed synchronous acquisition of GCaMP6f biosensor signal and hormone secretory profiles. We demonstrate the utility of this experimental approach by studying the effects of Gi and Gq GPCR pathways on insulin and glucagon secretion by expressing the designer receptors exclusively activated by designer drugs (DREADDs) hM4Di or hM3Dq. Activation of Gi signaling reduced insulin and glucagon secretion, while activation of Gq signaling stimulated glucagon secretion but had both stimulatory and inhibitory effects on insulin secretion, which occur through changes in intracellular Ca2+. The experimental approach of combining pseudoislets with a microfluidic system allowed the coregistration of intracellular signaling dynamics and hormone secretion and demonstrated differences in GPCR signaling pathways between human β and α cells.
Collapse
Affiliation(s)
- John T. Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Heather A. Nelson
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Ishahak
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| | - Gregory Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Conrad Reihsmann
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph R. Luchsinger
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Li R, Li Y, Li C, Zheng D, Chen P. Gut Microbiota and Endocrine Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:143-164. [DOI: 10.1007/978-981-15-2385-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|