1
|
Miller C, Madden-Doyle L, Jayasena C, McIlroy M, Sherlock M, O'Reilly MW. Mechanisms in endocrinology: hypogonadism and metabolic health in men-novel insights into pathophysiology. Eur J Endocrinol 2024; 191:R1-R17. [PMID: 39344641 DOI: 10.1093/ejendo/lvae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hypogonadism in men is associated with an adverse metabolic phenotype and increased mortality. Reciprocally, obesity and insulin resistance can suppress the hypothalamic-pituitary-gonadal axis in the absence of structural organic disease, further perpetuating a cycle of metabolic dysfunction and low testosterone. The mechanisms underpinning this bidirectional association are complex as hypogonadism is a heterogenous syndrome, and obesity is associated with metabolic perturbations in glucose and lipid metabolism even in the presence of normal testicular function. However, distinct molecular defects specific to testosterone deficiency have been identified in pathways relating to glucose and lipid metabolism in target metabolic depots such as adipose tissue and skeletal muscle. This review discusses the etiology and prevalence of metabolic disease in male hypogonadism, with a specific focus on both disease mechanisms and novel potential approaches to enhance our understanding.
Collapse
Affiliation(s)
- Clare Miller
- Academic Department of Endocrinology, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Lauren Madden-Doyle
- Academic Department of Endocrinology, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Channa Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Marie McIlroy
- Academic Department of Endocrinology, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Michael W O'Reilly
- Academic Department of Endocrinology, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
2
|
de Silva NL, Grant B, Minhas S, Jayasena CN. Cardiovascular disease and testosterone therapy in male hypogonadism. Ann N Y Acad Sci 2024; 1540:121-132. [PMID: 39243393 DOI: 10.1111/nyas.15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This review assesses the evidence of the physiological effects of testosterone on cardiovascular health, the association between male hypogonadism and cardiovascular health, and the effects of testosterone therapy on cardiovascular health in male hypogonadism. Preclinical studies suggest complex effects of testosterone on cardiovascular risk by acting on skeletal muscle, cardiomyocytes, vasculature, adipocytes, insulin action, and erythropoiesis. Furthermore, low testosterone has a bi-directional association with cardiometabolic risk. Observational studies have reported worse metabolic profiles in men with organic hypogonadism. However, a consistent association between major cardiovascular events and male hypogonadism has not been established. Hematocrit increases with testosterone therapy; however, most studies do not report an increase in venous thromboembolism risk. Although some observational studies and a small randomized controlled study reported an increased risk of cardiovascular disease, recent data confirm the medium-term cardiovascular safety of testosterone therapy in middle-aged and older men with low testosterone.
Collapse
Affiliation(s)
- Nipun Lakshitha de Silva
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo, Sri Lanka
| | - Bonnie Grant
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Suks Minhas
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Channa N Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
3
|
Mauvais-Jarvis F, Lindsey SH. Metabolic benefits afforded by estradiol and testosterone in both sexes: clinical considerations. J Clin Invest 2024; 134:e180073. [PMID: 39225098 PMCID: PMC11364390 DOI: 10.1172/jci180073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Testosterone (T) and 17β-estradiol (E2) are produced in male and female humans and are potent metabolic regulators in both sexes. When E2 and T production stops or decreases during aging, metabolic dysfunction develops and promotes degenerative metabolic and vascular disease. Here, we discuss the shared benefits afforded by E2 and T for metabolic function human females and males. In females, E2 is central to bone and vascular health, subcutaneous adipose tissue distribution, skeletal muscle insulin sensitivity, antiinflammatory immune function, and mitochondrial health. However, T also plays a role in female skeletal, vascular, and metabolic health. In males, T's conversion to E2 is fundamental to bone and vascular health, as well as prevention of excess visceral adiposity and the promotion of insulin sensitivity via activation of the estrogen receptors. However, T and its metabolite dihydrotestosterone also prevent excess visceral adiposity and promote skeletal muscle growth and insulin sensitivity via activation of the androgen receptor. In conclusion, T and E2 are produced in both sexes at sex-specific concentrations and provide similar and potent metabolic benefits. Optimizing levels of both hormones may be beneficial to protect patients from cardiometabolic disease and frailty during aging, which requires further study.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Medicine Service, Section of Endocrinology, Hormone Therapy Clinic, Southeast Louisiana VA Medical Center, New Orleans, Louisiana, USA
- Deming Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA
| | - Sarah H. Lindsey
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Grossmann M, Wittert GA. Testosterone in prevention and treatment of type 2 diabetes in men: Focus on recent randomized controlled trials. Ann N Y Acad Sci 2024; 1538:45-55. [PMID: 39039746 DOI: 10.1111/nyas.15188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In epidemiological studies, lowered serum testosterone concentrations are common in men with obesity, prediabetes, and established type 2 diabetes (T2D). In men with prediabetes, lowered serum testosterone also predicts a future risk of T2D in men. Administration of testosterone consistently reduces fat mass and increases skeletal muscle mass-body compositional changes expected to be metabolically favorable. In men with established T2D, the effects of testosterone treatment on glycemic measures are inconsistent. Irrespective of baseline serum testosterone concentration in men with prediabetes or newly diagnosed early-onset T2D, testosterone treatment prescribed in conjunction with a lifestyle program has been reported to reduce the risk of T2D by 40% after 2 years, suggesting that either a lifestyle program is required to facilitate the glycemic benefit of testosterone treatment and/or that testosterone treatment has more favorable effects on glycemia in men early in the evolution or onset of the disease. The durability of the benefit and longer-term safety of testosterone treatment have not been established. Therefore, more studies are required before testosterone treatment can be recommended for the prevention and/or treatment of men with or at elevated risk of T2D who do not have hypogonadism due to an established disease of the hypothalamic-pituitary-testicular axis.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Gary A Wittert
- Freemasons Centre for Male Health and Well-being, South Australia Health and Medical Research Centre, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine Unit, Royal Adelaide Hospital, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Seipone ID, Mendham AE, Storbeck KH, Oestlund I, Kufe CN, Chikowore T, Masemola M, Crowther NJ, Kengne AP, Norris S, Olsson T, Brown T, Micklesfield LK, Goedecke JH. SHBG, Free Testosterone, and Type 2 Diabetes Risk in Middle-aged African Men: A Longitudinal Study. J Endocr Soc 2024; 8:bvae129. [PMID: 39055720 PMCID: PMC11272087 DOI: 10.1210/jendso/bvae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives To investigate longitudinal changes in SHBG and free testosterone (free T) levels among Black middle-aged African men, with and without coexistent HIV, and explore associations with incident dysglycaemia and measures of glucose metabolism. Design This longitudinal study enrolled 407 Black South African middle-aged men, comprising primarily 322 men living without HIV (MLWOH) and 85 men living with HIV (MLWH), with normal fasting glucose at enrollment. Follow-up assessments were conducted after 3.1 ± 1.5 years. Methods At baseline and follow-up, SHBG, albumin, and total testosterone were measured and free T was calculated. An oral glucose tolerance test at follow-up determined dysglycaemia (impaired fasting glucose, impaired glucose tolerance, type 2 diabetes) and glucose metabolism parameters including insulin sensitivity (Matsuda index), insulin resistance (homeostasis model assessment of insulin resistance), and beta(β)-cell function (disposition index). The primary analysis focussed on MLWOH, with a subanalysis on MLWH to explore whether associations in MLWOH differed from MLWH. Results The prevalence of dysglycaemia at follow-up was 17% (n = 55) in MLWOH. Higher baseline SHBG was associated with a lower risk of incident dysglycaemia (odds ratio 0.966; 95% confidence interval 0.945-0.987) and positively associated with insulin sensitivity (β = 0.124, P < .001) and β-cell function (β = 0.194, P = .001) at follow-up. Free T did not predict dysglycaemia. In MLWH, dysglycaemia prevalence at follow-up was 12% (n = 10). Neither baseline SHBG nor free T were associated with incident dysglycaemia and glucose metabolism parameters in MLWH. Conclusion SHBG levels predict the development of dysglycaemia in middle-aged African men but do not exhibit the same predictive value in MLWH.
Collapse
Affiliation(s)
- Ikanyeng D Seipone
- Biomedical Research Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Amy E Mendham
- Riverland Academy of Clinical Excellence, Riverland Mallee Coorong Local Health Network, South Australia Health, Berri, SA 5343, Australiacountry
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Health through Physical Activity, Lifestyle and Sport Research Centre, FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Clement N Kufe
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Tinashe Chikowore
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Maphoko Masemola
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service and University of the Witwatersrand Faculty of Health Sciences, Johannesburg 2000, South Africa
| | - Andre Pascal Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
| | - Shane Norris
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 90187, Sweden
| | - Todd Brown
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Lisa K Micklesfield
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Julia H Goedecke
- Biomedical Research Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
6
|
Mauvais-Jarvis F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 2024; 20:56-69. [PMID: 37923858 DOI: 10.1038/s41581-023-00781-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine and Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA.
- Endocrine service, Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
7
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Enríquez J, Sosa-Larios T, Díaz-Díaz E, Morimoto S. The potent contraceptive gestodene exerts insulinotropic effects through its a-ring reduced metabolites with intrinsic estrogen-like activity in pancreatic β-cells. J Endocrinol Invest 2023:10.1007/s40618-022-01977-2. [PMID: 36705838 DOI: 10.1007/s40618-022-01977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/30/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE The contraceptive gestodene is a potent synthetic progestin used in several low-dose contraceptive formulations. Clinical studies reported a relationship between long-term use of combined oral contraceptives containing gestodene (GDN) and profound alterations in glucose metabolism in women. The observation that contraceptive synthetic progestins exert hormone-like effects other than their progestational activities, prompted us to investigate whether GDN may induce estrogen-like effects, even though GDN does not interact with estrogen receptors. The aim of this study was to investigate whether GDN affect pancreatic β-cell activity, directly or through its conversion to other bioactive metabolites. METHODS The effects of GDN and its two derivatives 3β,5α-tetrahydro-GDN and 3α,5α-tetrahydro-GDN on insulin 2 (Ins II) and glucokinase (Gk) expression and glucose-stimulated insulin secretion were determined in pancreatic islets from female rats. RESULTS Gestodene did exert significant effects on islet β-cells activity. The most striking finding was that 3β,5α-tetrahydro-GDN and 3α,5α-tetrahydro-GDN had greater stimulatory effects on Ins II and Gk expression than that observed with GDN, consistent with their effects on glucose-stimulated insulin secretion. The effects on gene expression induced by GDN-derivatives were abolished by ICI 182,780 and MPP. In addition, the presence of inhibitors of androgen and progestin-metabolizing enzymes eliminated gene expression induced by GDN. These results indicated that GDN is metabolized to A-ring reduced metabolites with estrogen-like activities and through this mechanism, GDN may affect β-cell activity. CONCLUSIONS Altogether, the data suggest that 19-nortestosterone-derived contraceptives such as GDN, possess insulinotropic effects through their conversion into metabolites with intrinsic estrogen-like activity in pancreatic β-cells.
Collapse
Affiliation(s)
- J Enríquez
- Department of Reproductive Biology, Carlos Gual Castro", Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Mexico City, 14080, México.
| | - T Sosa-Larios
- Department of Reproductive Biology, Carlos Gual Castro", Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Mexico City, 14080, México
| | - E Díaz-Díaz
- Department of Reproductive Biology, Carlos Gual Castro", Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Mexico City, 14080, México
| | - S Morimoto
- Department of Reproductive Biology, Carlos Gual Castro", Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Mexico City, 14080, México
| |
Collapse
|
9
|
Abstract
In the absence of obesity, adverse lifestyle behaviours, and use of medication such as opioids serum testosterone concentrations decrease by only a minimal amount at least until very advanced age in most men. Obesity is heterogeneous in its phenotype, and it is the accumulation of excess adipose tissue viscerally associated with insulin resistance, dyslipidaemia, inflammation, hypothalamic leptin resistance and gliosis that underpins the functional hypogonadism of obesity. Both central (hypothalamic) and peripheral mechanisms are involved resulting in a low serum total testosterone concentration, while LH and FSH are typically in the normal range. Peripherally a decrease in serum sex hormone binding globulin (SHBG) concentration only partially explains the decrease in testosterone and there is increasing evidence for direct effects in the testis. Men with obesity associated functional hypogonadism and serum testosterone concentrations below 16 nmol/L are at increased risk of incident type 2 diabetes (T2D); high testosterone concentrations are protective. The magnitude of weight loss is linearly associated with an increase in serum testosterone concentration and with the likelihood of preventing T2D or reverting newly diagnosed disease; treatment with testosterone for 2 years increases the probability of a positive outcome from a lifestyle intervention alone by approximately 40%. Whether the additional favourable benefits of testosterone treatment on muscle mass and strength and bone density and quality in the long-term remains to be determined.
Collapse
Affiliation(s)
- Gary Wittert
- University of Adelaide, Adelaide, Australia.
- Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia.
- South Australian Health and Medical Research Institute North Terrace Adelaide, 5000, SA, Adelaide, Australia.
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria4, Germany
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Germany
| |
Collapse
|
10
|
Castell AL, Goubault C, Ethier M, Fergusson G, Tremblay C, Baltz M, Dal Soglio D, Ghislain J, Poitout V. β Cell mass expansion during puberty involves serotonin signaling and determines glucose homeostasis in adulthood. JCI Insight 2022; 7:160854. [PMID: 36107617 PMCID: PMC9675460 DOI: 10.1172/jci.insight.160854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023] Open
Abstract
Puberty is associated with transient insulin resistance that normally recedes at the end of puberty; however, in overweight children, insulin resistance persists, leading to an increased risk of type 2 diabetes. The mechanisms whereby pancreatic β cells adapt to pubertal insulin resistance, and how they are affected by the metabolic status, have not been investigated. Here, we show that puberty is associated with a transient increase in β cell proliferation in rats and humans of both sexes. In rats, β cell proliferation correlated with a rise in growth hormone (GH) levels. Serum from pubertal rats and humans promoted β cell proliferation, suggesting the implication of a circulating factor. In pubertal rat islets, expression of genes of the GH/serotonin (5-hydroxytryptamine [5-HT]) pathway underwent changes consistent with a proliferative effect. Inhibition of the pro-proliferative 5-HT receptor isoform HTR2B blocked the increase in β cell proliferation in pubertal islets ex vivo and in vivo. Peripubertal metabolic stress blunted β cell proliferation during puberty and led to altered glucose homeostasis later in life. This study identifies a role of GH/GH receptor/5-HT/HTR2B signaling in the control of β cell mass expansion during puberty and identifies a mechanistic link between pubertal obesity and the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Anne-Laure Castell
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine and
| | - Clara Goubault
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, University of Montreal, Quebec, Canada
| | - Mélanie Ethier
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marie Baltz
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Dorothée Dal Soglio
- CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine and
| |
Collapse
|
11
|
Li Z, Fan Y, Xie C, Liu J, Guan X, Li S, Huang Y, Zeng R, Chen H, Su Z. High-fidelity reprogramming into Leydig-like cells by CRISPR activation and paracrine factors. PNAS NEXUS 2022; 1:pgac179. [PMID: 36714877 PMCID: PMC9802085 DOI: 10.1093/pnasnexus/pgac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
Androgen deficiency is a common medical conditions that affects males of all ages. Transplantation of testosterone-producing cells is a promising treatment for male hypogonadism. However, getting a cell source with the characteristics of Leydig cells (LCs) is still a challenge. Here, a high-efficiency reprogramming of skin-derived fibroblasts into functional Leydig-like cells (LLCs) based on epigenetic mechanism was described. By performing an integrated analysis of genome-wide DNA methylation and transcriptome profiling in LCs and fibroblasts, the potentially epigenetic-regulating steroidogenic genes and signaling pathways were identified. Then by using CRISPR/dCas9 activation system and signaling pathway regulators, the male- or female-derived fibroblasts were reprogrammed into LLCs with main LC-specific traits. Transcriptomic analysis further indicated that the correlation coefficients of global genes and transcription factors between LLCs and LCs were higher than 0.81 and 0.96, respectively. After transplantation in the testes of hypogonadal rodent models, LLCs increased serum testosterone concentration significantly. In type 2 diabetic rats model, LLCs which were transplanted in armpit, have the capability to restore the serum testosterone level and improve the hyperglycemia status. In conclusion, our approach enables skin-derived fibroblasts reprogramming into LLCs with high fidelity, providing a potential cell source for the therapeutics of male hypogonadism and metabolic-related comorbidities.
Collapse
Affiliation(s)
| | | | | | - Jierong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- To whom correspondence should be addressed:
| | | | - Zhijian Su
- To whom correspondence should be addressed:
| |
Collapse
|
12
|
Abstract
Type 2 diabetes (T2D) and obesity are common and associated with increased morbidity and mortality. Cross-sectional and longitudinal studies have demonstrated a clear association between T2D, obesity and reduced total testosterone concentration. This relationship becomes less significant or absent with correction for changes in body composition, supporting the notion that changes in body composition are mediating these effects. Moreover, this mediating effect of body composition changes is bi-directional, as evidenced by interventional studies of weight loss and testosterone treatment. On the one hand, in obese men, serum testosterone increases markedly with weight loss. On the other hand, testosterone improves body composition. This relationship is driven by multiple complex interaction between obesity and insulin resistance and the hypothalamic-pituitary-testicular axis, at all levels. Data from randomised control trials have demonstrated that intervention with testosterone therapy increases muscle mass and reduces adiposity. Most recently it has been shown that treatment with testosterone prevents progression of impaired glucose tolerance to T2D, or reverses newly diagnosed T2D beyond lifestyle intervention alone. At present there are insufficient safety data to support the use of testosterone for prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Mahesh Umapathysivam
- Endocrine and Metabolic Health Unit, Royal Adelaide Hospital, South Australia; School of Medicine, University of Adelaide, South Australia
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Gary A Wittert
- Endocrine and Metabolic Health Unit, Royal Adelaide Hospital, South Australia; School of Medicine, University of Adelaide, South Australia; Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute.
| |
Collapse
|
13
|
Kumarendran B, O'Reilly MW, Subramanian A, Šumilo D, Toulis K, Gokhale KM, Wijeratne CN, Coomarasamy A, Tahrani AA, Azoulay L, Arlt W, Nirantharakumar K. Polycystic Ovary Syndrome, Combined Oral Contraceptives, and the Risk of Dysglycemia: A Population-Based Cohort Study With a Nested Pharmacoepidemiological Case-Control Study. Diabetes Care 2021; 44:2758-2766. [PMID: 34649997 PMCID: PMC8669537 DOI: 10.2337/dc21-0437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Irregular menstrual cycles are associated with increased cardiovascular mortality. Polycystic ovary syndrome (PCOS) is characterized by androgen excess and irregular menses; androgens are drivers of increased metabolic risk in women with PCOS. Combined oral contraceptive pills (COCPs) are used in PCOS both for cycle regulation and to reduce the biologically active androgen fraction. We examined COCP use and risk of dysglycemia (prediabetes and type 2 diabetes) in women with PCOS. RESEARCH DESIGN AND METHODS Using a large U.K. primary care database (The Health Improvement Network [THIN]; 3.7 million patients from 787 practices), we carried out a retrospective population-based cohort study to determine dysglycemia risk (64,051 women with PCOS and 123,545 matched control subjects), as well as a nested pharmacoepidemiological case-control study to investigate COCP use in relation to dysglycemia risk (2,407 women with PCOS with [case subjects] and without [control subjects] a diagnosis of dysglycemia during follow-up). Cox models were used to estimate the unadjusted and adjusted hazard ratio, and conditional logistic regression was used to obtain adjusted odds ratios (aORs). RESULTS The adjusted hazard ratio for dysglycemia in women with PCOS was 1.87 (95% CI 1.78-1.97, P < 0.001; adjustment for age, social deprivation, BMI, ethnicity, and smoking), with increased rates of dysglycemia in all BMI subgroups. Women with PCOS and COCP use had a reduced dysglycemia risk (aOR 0.72, 95% CI 0.59-0.87). CONCLUSIONS In this study, limited by its retrospective nature and the use of routinely collected electronic general practice record data, which does not allow for exclusion of the impact of prescription-by-indication bias, women with PCOS exposed to COCPs had a reduced risk of dysglycemia across all BMI subgroups. Future prospective studies should be considered for further understanding of these observations and potential causality.
Collapse
Affiliation(s)
- Balachandran Kumarendran
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
- Department of Community and Family Medicine, Faculty of Medicine, University of Jaffna, Kokkuvil, Sri Lanka
| | - Michael W O'Reilly
- Department of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Republic of Ireland
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Anuradhaa Subramanian
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Dana Šumilo
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Konstantinos Toulis
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Krishna M Gokhale
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Chandrika N Wijeratne
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Arri Coomarasamy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Abd A Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Laurent Azoulay
- Department of Epidemiology, Biostatistics and Occupational Health and Gerald Bronfman Department of Oncology, McGill University, Toronto, Canada
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K.
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K.
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| |
Collapse
|
14
|
Ortiz-Huidobro RI, Velasco M, Larqué C, Escalona R, Hiriart M. Molecular Insulin Actions Are Sexually Dimorphic in Lipid Metabolism. Front Endocrinol (Lausanne) 2021; 12:690484. [PMID: 34220716 PMCID: PMC8251559 DOI: 10.3389/fendo.2021.690484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
The increment in energy-dense food and low physical activity has contributed to the current obesity pandemic, which is more prevalent in women than in men. Insulin is an anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is dysregulated due to a reduced insulin action on its target organs, producing insulin resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is central in metabolic diseases due to the critical role that this tissue plays in energy homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin actions and their relationship with the physiology and pathophysiology of adipose tissue. Until recently, most of the physiological and pharmacological studies were done in males without considering sexual dimorphism, which is relevant. There is ample clinical and epidemiological evidence of its contribution to the establishment and progression of metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that should be considered in design of sex-targeted therapeutic strategies and public health policies to address obesity and diabetes.
Collapse
Affiliation(s)
- Rosa Isela Ortiz-Huidobro
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Myrian Velasco
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rene Escalona
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marcia Hiriart
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|