1
|
Liu J, Lin Y, Huang Y, Yang Q, Li X, Ye Y, Zheng B, Song W. Efficacy and safety of acupuncture for painful diabetic neuropathy: a systematic review and meta-analysis. Front Neurol 2024; 15:1402458. [PMID: 38903165 PMCID: PMC11188462 DOI: 10.3389/fneur.2024.1402458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Background Painful diabetic neuropathy (PDN) is a common chronic neurological complication of diabetes mellitus. Medications are often used to relieve pain, but with significant side effects. Acupuncture is now a component of pragmatic and integrative treatment for PDN. An increasing number of relevant randomized controlled trials have been published in recent years, but a comprehensive meta-analysis has not yet been performed. The aim of this paper is to verify the effectiveness and safety of acupuncture for PDN by meta-analysis and trial sequential analysis (TSA). Methods All participants in this study should have had a PDN diagnosis and the trial group was treated with acupuncture. Eight databases, including EMbase, PubMed, Web of science, Cochrane Library, China Biology Medicine disc (CBM), China National Knowledge Infrastructure (CNKI), Wanfang and Chongqing VIP (CQVIP) were retrieved from inception to 5 April 2023. Meta-analysis was conducted utilizing RevMan 5.3 and Stata 15.0. TSA was performed to assess the adequacy of sample size for the outcomes. Results A total of 36 studies, comprising 2,739 PDN patients, were included. Among them, 1,393 patients were assigned to the trial group and 1,346 patients were treated in the control group. Outcomes covers the primary indicator Total effective rate (RR = 1.42, 95%CI [1.34, 1.52], p < 0.00001), with 21 studies reported, Pain intensity (SMD = -1.27, 95%CI [-1.58, -0.95], p < 0.00001), with 23 studies reported, and other outcomes, including motor nerve conduction velocity (MCV; MD = 3.58, 95%CI [2.77, 4.38], p < 0.00001), sensory nerve conduction velocity (SCV; MD = 3.62, 95%CI [2.75, 4.49], p < 0.00001), Depression score (SMD = -1.02, 95%CI [1.58, 0.46]), Toronto clinical scoring system (TCSS; MD = -2.41, 95%CI [-3.37, -1.45], p < 0.00001), Quality of life (SMD = 1.06, 95%CI [0.66, 1.46]), traditional Chinese medicine (TCM) syndrome score (MD = -4.99, 95%CI [-6.79, -3.18], p < 0.00001), suggesting that acupuncture have an ameliorating effect on PDN in various respect. Egger's test revealed publication bias for four outcomes. TSA showed that as for Total effective rate, Pain Intensity, MCV and SCV, the number of included studies was sufficient to support the conclusions. Conclusion Acupuncture demonstrates significant effectiveness in improving PDN outcomes, including Total effective rate, Pain intensity, MCV, SCV, Depression score, TCSS, Quality of life, TCM syndrome score. But the Adverse events rate is no different in trail group and control group. The publication bias presented in Total effective rate, Pain intensity, MCV and SCV can be remedied by Trim and filling method. Systematic review registration Prospero, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=477295.
Collapse
Affiliation(s)
- Jiaming Liu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yueqi Lin
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuheng Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qingyi Yang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaojie Li
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yinglan Ye
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bohui Zheng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Song
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Garcia-Mesa Y, Cabo R, González-Gay M, García-Piqueras J, Viña E, Martínez I, Cobo T, García-Suárez O. Relationship of PIEZO1 and PIEZO2 vascular expression with diabetic neuropathy. Front Physiol 2023; 14:1243966. [PMID: 38054043 PMCID: PMC10694834 DOI: 10.3389/fphys.2023.1243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction: Diabetic distal symmetric polyneuropathy (DDSP) is the most prevalent form of diabetic peripheral neuropathy, and 25% of patients develop pain in their toes. DDSP is associated with increased cutaneous microvessel density (MVD), reduced skin blood flow, endothelial dysfunction, and impaired fluid filtration with vasodilation. The Piezo family of mechanosensitive channels is known to be involved in the control of vascular caliber by converting mechanical force into intracellular signals. Furthermore, Piezo2 is particularly involved in peripheral pain mechanisms of DDSP patients. To date, very little is known about the number, structure, and PIEZO expression in cutaneous blood vessels (BVs) of individuals with DDSP and their relation with pain and time span of diabetes. Methods and results: We studied microvessels using endothelial markers (CD34 and CD31) and smooth cell marker (α-SMA) by indirect immunohistochemical assay in sections of the glabrous skin of the toes from patients and controls. MVD was assessed through CD34 and CD31 immunoreaction. MVD determined by CD34 is higher in short-term DDSP patients (less than 15 years of evolution), regardless of pain. However, long-term DDSP patients only had increased BV density in the painful group for CD31. BVs of patients with DDSP showed structural disorganization and loss of shape. The BVs affected by painful DDSP underwent the most dramatic structural changes, showing rupture, leakage, and abundance of material that occluded the BV lumen. Moreover, BVs of DDSP patients displayed a Piezo1 slight immunoreaction, whereas painful DDSP patients showed an increase in Piezo2 immunoreaction. Discussion: These results suggest that alterations in the number, structure, and immunohistochemical profile of specific BVs can explain the vascular impairment associated with painful DDSP, as well as the temporal span of diabetes. Finally, this study points out a possible correlation between increased vascular Piezo2 immunostaining and pain and decreased vascular Piezo1 immunostaining and the development of vasodilation deficiency.
Collapse
Affiliation(s)
- Yolanda Garcia-Mesa
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Roberto Cabo
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Mario González-Gay
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Sercivio de Angiología y Cirugía Vascular, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge García-Piqueras
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Servicio de Anatomía, Histología y Neurociencias, Universidad Autonoma de Madrid, Spain
| | - Eliseo Viña
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Servicio de Cardiología, Unidad de Hemodinámica y Cardiología Intervencionista, Hospital de Cabueñes, Gijón, Spain
| | - Irene Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Servicio de Cirugía Plástica y Reparadora, Fundación Hospital de Jove, Gijón, Spain
| | - Teresa Cobo
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
- Instituto Asturiano de Odontología S.L, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| |
Collapse
|
3
|
Marcinkevics Z, Rubins U, Aglinska A, Logina I, Glazunovs D, Grabovskis A. Contactless photoplethysmography for assessment of small fiber neuropathy. Front Physiol 2023; 14:1180288. [PMID: 37727661 PMCID: PMC10505793 DOI: 10.3389/fphys.2023.1180288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
Chronic pain is a prevalent condition affecting approximately one-fifth of the global population, with significant impacts on quality of life and work productivity. Small fiber neuropathies are a common cause of chronic pain, and current diagnostic methods rely on subjective self-assessment or invasive skin biopsies, highlighting the need for objective noninvasive assessment methods. The study aims to develop a modular prototype of a contactless photoplethysmography system with three spectral bands (420, 540, and 800 nm) and evaluate its potential for assessing peripheral neuropathy patients via a skin topical heating test and spectral analyses of cutaneous flowmotions. The foot topical skin heating test was conducted on thirty volunteers, including fifteen healthy subjects and fifteen neuropathic patients. Four cutaneous nerve fiber characterizing parameters were evaluated at different wavelengths, including vasomotor response trend, flare area, flare intensity index, and the spectral power of cutaneous flowmotions. The results show that neuropathic patients had significantly lower vasomotor response (50%), flare area (63%), flare intensity index (19%), and neurogenic component (54%) of cutaneous flowmotions compared to the control group, independent of photoplethysmography spectral band. An absolute value of perfusion was 20%-30% higher in the 420 nm band. Imaging photoplethysmography shows potential as a cost-effective alternative for objective and non-invasive assessment of neuropathic patients, but further research is needed to enhance photoplethysmography signal quality and establish diagnostic criteria.
Collapse
Affiliation(s)
- Zbignevs Marcinkevics
- Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, Riga, Latvia
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| | - Uldis Rubins
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| | - Alise Aglinska
- Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Inara Logina
- Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia
| | - Dmitrijs Glazunovs
- Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia
| | - Andris Grabovskis
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| |
Collapse
|
4
|
Lefaucheur JP. Assessment of autonomic nervous system dysfunction associated with peripheral neuropathies in the context of clinical neurophysiology practice. Neurophysiol Clin 2023; 53:102858. [PMID: 36966708 DOI: 10.1016/j.neucli.2023.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Peripheral neuropathies may involve the small diameter nerve fibers of the autonomic nervous system. In the presence of clinical signs compatible with dysautonomia, it is very difficult to affirm that these signs are really linked to an alteration in postganglionic autonomic innervation, and not to a lesion of the central nervous system or to a direct damage to the tissues and innervated organs. Also, in the context of the investigation of peripheral neuropathies, there is an interest in performing objective and quantitative assessment of distal autonomic innervation. The corresponding autonomic tests are mainly based on the exploration of sudomotor or vasomotor disorders of the limb extremities. In this article, we provide an overview of the various tests available for the study of the autonomic nervous system in clinical practice, including vasomotor reactivity tests, in particular based on laser Doppler techniques, and sudomotor tests, based on axon-reflexes produced by iontophoresis of cholinergic drugs or on the simpler measurement of electrochemical skin conductance by the Sudoscan® device.
Collapse
|
5
|
Coderre TJ. Contribution of microvascular dysfunction to chronic pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1111559. [PMID: 36817620 PMCID: PMC9932025 DOI: 10.3389/fpain.2023.1111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence that microvascular dysfunction is a pathology accompanying various injuries and conditions that produce chronic pain and may represent a significant contributing factor. Dysfunction that occurs within each component of the microvasculature, including arterioles, capillaries and venules impacts the health of surrounding tissue and produces pathology that can both initiate pain and influence pain sensitivity. This mini review will discuss evidence for a critical role of microvascular dysfunction or injury in pathologies that contribute to chronic pain conditions such as complex regional pain syndrome (CRPS) and fibromyalgia.
Collapse
|
6
|
Coelho MA, Jeyaraman M, Jeyaraman N, Rajendran RL, Sugano AA, Mosaner T, Santos GS, Bizinotto Lana JV, Lana AVSD, da Fonseca LF, Domingues RB, Gangadaran P, Ahn BC, Lana JFSD. Application of Sygen® in Diabetic Peripheral Neuropathies—A Review of Biological Interactions. Bioengineering (Basel) 2022; 9:bioengineering9050217. [PMID: 35621495 PMCID: PMC9138133 DOI: 10.3390/bioengineering9050217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
This study investigates the role of Sygen® in diabetic peripheral neuropathy, a severe disease that affects the peripheral nervous system in diabetic individuals. This disorder often impacts the lower limbs, causing significant discomfort and, if left untreated, progresses into more serious conditions involving chronic ulcers and even amputation in many cases. Although there are management strategies available, peripheral neuropathies are difficult to treat as they often present multiple causes, especially due to metabolic dysfunction in diabetic individuals. Gangliosides, however, have long been studied and appreciated for their role in neurological diseases. The monosialotetrahexosylganglioside (GM1) ganglioside, popularly known as Sygen, provides beneficial effects such as enhanced neuritic sprouting, neurotrophism, neuroprotection, anti-apoptosis, and anti-excitotoxic activity, being particularly useful in the treatment of neurological complications that arise from diabetes. This product mimics the roles displayed by neurotrophins, improving neuronal function and immunomodulation by attenuating exacerbated inflammation in neurons. Furthermore, Sygen assists in axonal stabilization and keeps nodal and paranodal regions of myelin fibers organized. This maintains an adequate propagation of action potentials and restores standard peripheral nerve function. Given the multifactorial nature of this complicated disorder, medical practitioners must carefully screen the patient to avoid confusion and misdiagnosis. There are several studies analyzing the role of Sygen in neurological disorders. However, the medical literature still needs more robust investigations such as randomized clinical trials regarding the administration of this compound for diabetic peripheral neuropathies, specifically.
Collapse
Affiliation(s)
- Marcelo Amaral Coelho
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine-Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - Naveen Jeyaraman
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - André Atsushi Sugano
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Tomas Mosaner
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - João Vitor Bizinotto Lana
- Medical Specialties School Centre, Centro Universitário Max Planck, Indaiatuba 13343-060, Brazil; (J.V.B.L.); (A.V.S.D.L.)
| | | | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Rafael Barnabé Domingues
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - José Fábio Santos Duarte Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| |
Collapse
|
7
|
Shillo P, Yiangou Y, Donatien P, Greig M, Selvarajah D, Wilkinson ID, Anand P, Tesfaye S. Nerve and Vascular Biomarkers in Skin Biopsies Differentiate Painful From Painless Peripheral Neuropathy in Type 2 Diabetes. FRONTIERS IN PAIN RESEARCH 2022; 2:731658. [PMID: 35295465 PMCID: PMC8915761 DOI: 10.3389/fpain.2021.731658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
Painful diabetic peripheral neuropathy can be intractable with a major impact, yet the underlying pain mechanisms remain uncertain. A range of neuronal and vascular biomarkers was investigated in painful diabetic peripheral neuropathy (painful-DPN) and painless-DPN and used to differentiate painful-DPN from painless-DPN. Skin biopsies were collected from 61 patients with type 2 diabetes (T2D), and 19 healthy volunteers (HV). All subjects underwent detailed clinical and neurophysiological assessments. Based on the neuropathy composite score of the lower limbs [NIS(LL)] plus seven tests, the T2D subjects were subsequently divided into three groups: painful-DPN (n = 23), painless-DPN (n = 19), and No-DPN (n = 19). All subjects underwent punch skin biopsy, and immunohistochemistry used to quantify total intraepidermal nerve fibers (IENF) with protein gene product 9.5 (PGP9.5), regenerating nerve fibers with growth-associated protein 43 (GAP43), peptidergic nerve fibers with calcitonin gene-related peptide (CGRP), and blood vessels with von Willebrand Factor (vWF). The results showed that IENF density was severely decreased (p < 0.001) in both DPN groups, with no differences for PGP9.5, GAP43, CGRP, or GAP43/PGP9.5 ratios. There was a significant increase in blood vessel (vWF) density in painless-DPN and No-DPN groups compared to the HV group, but this was markedly greater in the painful-DPN group, and significantly higher than in the painless-DPN group (p < 0.0001). The ratio of sub-epidermal nerve fiber (SENF) density of CGRP:vWF showed a significant decrease in painful-DPN vs. painless-DPN (p = 0.014). In patients with T2D with advanced DPN, increased dermal vasculature and its ratio to nociceptors may differentiate painful-DPN from painless-DPN. We hypothesized that hypoxia-induced increase of blood vessels, which secrete algogenic substances including nerve growth factor (NGF), may expose their associated nociceptor fibers to a relative excess of algogens, thus leading to painful-DPN.
Collapse
Affiliation(s)
- Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Philippe Donatien
- Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Marni Greig
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
8
|
Qureshi Z, Ali MN, Khalid M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J Diabetes Res 2022; 2022:9989272. [PMID: 35127954 PMCID: PMC8813291 DOI: 10.1155/2022/9989272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is the 4th most common disease affecting the world's population. It is accompanied by many complications that deteriorate the quality of life. Painful diabetic neuropathy (PDN) is one of the debilitating consequences of diabetes that effects one-third of diabetic patients. Unfortunately, there is no internationally recommended drug that directly hinders the pathological mechanisms that result in painful diabetic neuropathy. Clinical studies have shown that anticonvulsant and antidepressant therapies have proven fruitful in management of pain associated with PDN. Currently, the FDA approved medications for painful diabetic neuropathies include duloxetine, pregabalin, tapentadol extended release, and capsaicin (for foot PDN only). The FDA has also approved the use of spinal cord stimulation system for the treatment of diabetic neuropathy pain. The drugs recommended by other regulatory bodies include gabapentin, amitriptyline, dextromethorphan, tramadol, venlafaxine, sodium valproate, and 5 % lidocaine patch. These drugs are only partially effective and have adverse effects associated with their use. Treating painful symptoms in diabetic patient can be frustrating not only for the patients but also for health care workers, so additional clinical trials for novel and conventional treatments are required to devise more effective treatment for PDN with minimal side effects. This review gives an insight on the pathways involved in the pathogenesis of PDN and the potential pharmacotherapeutic agents. This will be followed by an overview on the FDA-approved drugs for PDN and commercially available topical analgesic and their effects on painful diabetic neuropathies.
Collapse
Affiliation(s)
- Zunaira Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Minahil Khalid
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
9
|
Sloan G, Alam U, Selvarajah D, Tesfaye S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev 2022; 18:e070721194556. [PMID: 34238163 DOI: 10.2174/1573399817666210707112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Painful diabetic peripheral neuropathy (painful-DPN) is a highly prevalent and disabling condition, affecting up to one-third of patients with diabetes. This condition can have a profound impact resulting in a poor quality of life, disruption of employment, impaired sleep, and poor mental health with an excess of depression and anxiety. The management of painful-DPN poses a great challenge. Unfortunately, currently there are no Food and Drug Administration (USA) approved disease-modifying treatments for diabetic peripheral neuropathy (DPN) as trials of putative pathogenetic treatments have failed at phase 3 clinical trial stage. Therefore, the focus of managing painful- DPN other than improving glycaemic control and cardiovascular risk factor modification is treating symptoms. The recommended treatments based on expert international consensus for painful- DPN have remained essentially unchanged for the last decade. Both the serotonin re-uptake inhibitor (SNRI) duloxetine and α2δ ligand pregabalin have the most robust evidence for treating painful-DPN. The weak opioids (e.g. tapentadol and tramadol, both of which have an SNRI effect), tricyclic antidepressants such as amitriptyline and α2δ ligand gabapentin are also widely recommended and prescribed agents. Opioids (except tramadol and tapentadol), should be prescribed with caution in view of the lack of definitive data surrounding efficacy, concerns surrounding addiction and adverse events. Recently, emerging therapies have gained local licenses, including the α2δ ligand mirogabalin (Japan) and the high dose 8% capsaicin patch (FDA and Europe). The management of refractory painful-DPN is difficult; specialist pain services may offer off-label therapies (e.g. botulinum toxin, intravenous lidocaine and spinal cord stimulation), although there is limited clinical trial evidence supporting their use. Additionally, despite combination therapy being commonly used clinically, there is little evidence supporting this practise. There is a need for further clinical trials to assess novel therapeutic agents, optimal combination therapy and existing agents to determine which are the most effective for the treatment of painful-DPN. This article reviews the evidence for the treatment of painful-DPN, including emerging treatment strategies such as novel compounds and stratification of patients according to individual characteristics (e.g. pain phenotype, neuroimaging and genotype) to improve treatment responses.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital, NHS Foundation Trust, Liverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
10
|
Kalteniece A, Ferdousi M, Azmi S, Khan SU, Worthington A, Marshall A, Faber CG, Lauria G, Boulton AJM, Soran H, Malik RA. Corneal nerve loss is related to the severity of painful diabetic neuropathy. Eur J Neurol 2021; 29:286-294. [PMID: 34570924 PMCID: PMC9292015 DOI: 10.1111/ene.15129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
Background and purpose Previously it has been shown that patients with painful diabetic neuropathy (PDN) have greater corneal nerve loss compared to patients with painless diabetic neuropathy. This study investigated if the severity of corneal nerve loss was related to the severity of PDN. Methods Participants with diabetic neuropathy (n = 118) and healthy controls (n = 38) underwent clinical and neurological evaluation, quantitative sensory testing, nerve conduction testing and corneal confocal microscopy and were categorized into those with no (n = 43), mild (n = 34) and moderate‐to‐severe (n = 41) neuropathic pain. Results Corneal nerve fibre density (p = 0.003), corneal nerve fibre length (p < 0.0001) and cold perception threshold (p < 0.0001) were lower and warm perception threshold was higher (p = 0.002) in patients with more severe pain, but there was no significant difference in the neuropathy disability score (p = 0.5), vibration perception threshold (p = 0.5), sural nerve conduction velocity (p = 0.3) and amplitude (p = 0.7), corneal nerve branch density (p = 0.06) and deep breathing heart rate variability (p = 0.08) between patients with differing severity of PDN. The visual analogue scale correlated significantly with corneal nerve fibre density (r = −0.3, p = 0.0002), corneal nerve branch density (r = −0.3, p = 0.001) and corneal nerve fibre length (r = −0.4, p < 0.0001). Receiver operating curve analysis showed that corneal nerve fibre density had an area under the curve of 0.78 with a sensitivity of 0.73 and specificity of 0.72 for the diagnosis of PDN. Conclusions Corneal confocal microscopy reveals increasing corneal nerve fibre loss with increasing severity of neuropathic pain and a good diagnostic outcome for identifying patients with PDN.
Collapse
Affiliation(s)
- Alise Kalteniece
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Saif Ullah Khan
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Anne Worthington
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit and Skin Biopsy, Peripheral Neuropathy and Neuropathic Pain Centre, IRCCS Foundation 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Andrew J M Boulton
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Handrean Soran
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK.,Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Qatar
| |
Collapse
|
11
|
O'Brien TD. Impaired dermal microvascular reactivity and implications for diabetic wound formation and healing: an evidence review. J Wound Care 2021; 29:S21-S28. [PMID: 32924808 DOI: 10.12968/jowc.2020.29.sup9.s21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetic foot ulcers (DFUs) are among the most consequential and costly complications faced by patients with diabetes and the global healthcare system. Acknowledged risk factors for DFUs include diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD), microtrauma and foot deformities. Research on additional risk factors for DFUs has recently focused on dysregulated, autonomic vasomotor control in the skin of patients with DPN. In particular, impaired dermal microvascular reactivity (IDMR) with its attendant reduction in nutritive capillary blood flow has been identified as an emerging risk factor. This especially relates to refractory wounds noted in patients without overt PAD signs. In this paper, evidence will be reviewed supporting the evolving understanding of IDMR and its impact on DFU formation and healing. Advances in diagnostic instrumentation driving this research along with the most promising potential therapies aimed at improving microvascular function in the diabetic foot will be discussed in brief.
Collapse
Affiliation(s)
- Todd D O'Brien
- Penobscot Community Health Care, Bangor, ME, US.,University of Maine, Orono, ME, US
| |
Collapse
|
12
|
Schlereth T, Morellini N, Lismont NCAM, Lemper C, Birklein F, Drummond PD. Alpha 1 adrenoceptor expression in skin, nerves and blood vessels of patients with painful diabetic neuropathy. Auton Neurosci 2021; 234:102814. [PMID: 33964567 DOI: 10.1016/j.autneu.2021.102814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Diabetic neuropathy (dNP) patients often suffer from severe neuropathic pain. It was suggested that alpha-1 adrenoceptor (α1-AR) hyperresponsiveness contributes to pain in dNP. The aim of our study was to quantify α1-AR expression using immunohistochemistry in skin biopsies of nine patients with painful diabetic neuropathy compared to 10 healthy controls. Additionally, the association between α1-AR expression and activation with spontaneous and sympathetically maintained pain (SMP) induced by intradermal injection of the α1-agonist phenylephrine was investigated. For control purposes the α2-agonist clonidine was injected in a different session. We found that dermal nerve density was significantly lower in dNP than in controls. However, α1-AR expression was significantly greater on cutaneous blood vessels and keratinocytes of dNP patients than controls. A similar trend, which failed to reach significance, was observed for dermal nerves. Intradermal injection of phenylephrine induced only minor pain, which resolved after a few minutes. Adrenergically evoked pain persisted for more than 15 min in only one patient, but none of the patients fulfilled the criteria for SMP (pain increase after injection of phenylephrine and decrease after clonidine). In conclusion, our results imply that SMP does not occur in dNP. However, elevated expression of α1-AR on keratinocytes and dermal blood vessels is an important finding, since this could contribute to dNP progression and supports the theory of receptor up-regulation of denervated structures. The implications of this α1-upregulation should be examined in further studies.
Collapse
Affiliation(s)
- Tanja Schlereth
- DKD Helios Klinik Wiesbaden, Department of Neurology, Aukammallee 33, 65191 Wiesbaden, Germany; University Medical Centre of the Johannes Gutenberg-University Mainz, Department of Neurology, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Natalie Morellini
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Noémie C A M Lismont
- University Medical Centre of the Johannes Gutenberg-University Mainz, Department of Neurology, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Cassandra Lemper
- University Medical Centre of the Johannes Gutenberg-University Mainz, Department of Neurology, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frank Birklein
- University Medical Centre of the Johannes Gutenberg-University Mainz, Department of Neurology, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
14
|
Ferdousi M, Azmi S, Kalteniece A, Petropoulos IN, Ponirakis G, Asghar O, Alam U, Marshall A, Boulton AJM, Efron N, Soran H, Jeziorska M, Malik RA. Greater small nerve fibre damage in the skin and cornea of type 1 diabetic patients with painful compared to painless diabetic neuropathy. Eur J Neurol 2021; 28:1745-1751. [PMID: 33523534 DOI: 10.1111/ene.14757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM Damage to small nociceptive fibres may contribute to painful diabetic neuropathy. We aimed to compare large and small nerve fibre measurements together with skin biopsy and corneal confocal microscopy in patients with type 1 diabetes and painful or painless diabetic neuropathy. METHODS We have assessed the McGill pain questionnaire, neuropathy disability score, vibration perception threshold, warm and cold sensation thresholds, electrophysiology, corneal confocal microscopy and skin biopsy in participants with type 1 diabetes and painful (n = 41) or painless (n = 50) diabetic neuropathy and control subjects (n = 50). RESULTS The duration of diabetes, body mass index, glycated haemoglobin (HbA1c), blood pressure and lipid profile did not differ between subjects with painful and painless neuropathy. Neuropathy disability score and vibration perception threshold were higher and sural nerve conduction velocity was lower, but sural nerve amplitude, peroneal nerve amplitude and conduction velocity and cold and warm sensation thresholds did not differ between patients with painful compared to painless diabetic neuropathy. However, intraepidermal nerve fibre density, corneal nerve fibre density, corneal nerve branch density and corneal nerve fibre length were significantly lower in subjects with painful compared to painless diabetic neuropathy. CONCLUSIONS There is evidence of more severe neuropathy, particularly small fibre damage in the skin and cornea, of patients with painful compared to painless diabetic neuropathy.
Collapse
Affiliation(s)
- Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | | | | | - Omar Asghar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J M Boulton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Handrean Soran
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK.,Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
15
|
Tan MWY, Tan WR, Kong ZQ, Toh JH, Wee WKJ, Teo EML, Cheng HS, Wang X, Tan NS. High Glucose Restraint of Acetylcholine-Induced Keratinocyte Epithelial-Mesenchymal Transition Is Mitigated by p38 Inhibition. J Invest Dermatol 2020; 141:1438-1449.e9. [PMID: 33333125 DOI: 10.1016/j.jid.2020.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023]
Abstract
Non-neuronal acetylcholine (Ach) plays important roles in various aspects of cell biology and homeostasis outside the neural system. Keratinocytes (KCs) have a functional cholinergic mechanism, suggesting that they respond to Ach. However, the physiological role and mechanism by which Ach modulates wound KC behavior in both nondiabetic and diabetic conditions are unexplored. We found an enrichment in neurotransmitter-related pathways in microdissected-migrating nondiabetic and diabetic KCs. We showed that Ach upregulated TGFβRII through Src-extracellular signal‒regulated kinase 1/2 pathway to potentiate TGFβ1-mediated epithelial‒mesenchymal transition in normoglycemic condition. Unexpectedly, KCs were nonresponsive to the elevated endogenous Ach in a hyperglycemic environment. We further showed that the activation of p38 MAPK in high glucose condition interferes with Src-extracellular signal‒regulated kinase 1/2 signaling, resulting in Ach resistance that could be rescued by inhibiting p38 MAPK. A better understanding of the cholinergic physiology in diabetic KCs could improve wound management and care. The finding suggests that mitigating the inhibitory effect of diabetic wound microenvironment has a direct clinical implication on the efficacy and safety of various wound healing agents to improve chronic diabetic wounds.
Collapse
Affiliation(s)
- Mark Wei Yi Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ze Qing Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jun Hong Toh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Kiat Jonathan Wee
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Erica Mei Ling Teo
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Department of Cell Biology, Institute of Ophthalmology, University College London, London, United Kingdom; Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Sun H, He M, Pang J, Guo X, Huo Y, Ma J. Continuous Lumbar Sympathetic Blockade Enhances the Effect of Lumbar Sympatholysis on Refractory Diabetic Neuropathy: A Randomized Controlled Trial. Diabetes Ther 2020; 11:2647-2655. [PMID: 32915421 PMCID: PMC7547930 DOI: 10.1007/s13300-020-00918-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION There are a number of options for the symptomatic treatment of peripheral neuropathy, but the overall treatment outcomes remain unsatisfactory. METHODS A total of 60 patients with refractory diabetic neuropathy were randomly assigned to two groups. Patients in Group A were treated with computed tomography (CT)-guided sympathetic neurolysis with alcohol, and patients in Group B were treated with a combined therapy of CT-guided catheterization to achieve continuous lumbar block for 4 weeks followed by neurolysis with alcohol administered via the catheter. The outcomes of these two treatment strategies were then analyzed in terms of pain relief, blood flow in the lower limb microcirculation, plasma levels of inflammatory mediators, and complications. RESULTS The visual analog scale (VAS) pain scores of all patients after treatment decreased significantly at the different evaluation time points compared with pre-treatment values, with the intergroup analysis revealing that the VAS scores were lower in Group B patients than in Group A patients at all post-treatment time points. Skin temperature, capillary filling time, and blood oxygen saturation level were significantly improved in all patients at the 1- and 7-day post-treatment assessment compared to pre-treatment values, but patients in Group B showed a greater improvement. The plasma levels of inflammatory mediators were lower in all patients at the 7-day post-treatment assessment compared to pre-treatment values, with those of patients in Group B being statistically significantly lower than those of patients in Group A. CONCLUSION Combined treatment with continuous lumbar sympathetic block followed by neurolysis with alcohol provided more benefit in all assessed outcomes than sympathetic alcohol neurolysis alone. The results show that the procedures were associated with satisfactory safety outcomes and sustained analgesic effects, thereby providing clinical evidence supporting the use of this novel treatment for patients with painful diabetic neuropathy.
Collapse
Affiliation(s)
- Haiyan Sun
- Center of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Mingwei He
- Center of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jinlei Pang
- Center of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiangfei Guo
- Center of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yansong Huo
- Center of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jun Ma
- Center of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
17
|
Hoong CWS, Tan MLS, Kao SL, Khoo EYH. Effects of external counter-pulsation on endothelial function assessed by peripheral artery tonometry, levels of glycaemia and metabolic markers in individuals with type 2 diabetes mellitus. Diabetes Metab Syndr 2020; 14:2139-2145. [PMID: 33334725 DOI: 10.1016/j.dsx.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS External counter-pulsation (ECP) generates sheer stress thereby improving endothelial function and anginal symptoms in coronary artery disease. Endothelial dysfunction is also involved in the pathogenesis of T2DM. The aim of this pilot study was to investigate the use of ECP at different doses in improving endothelial function and glycaemic markers in T2DM. METHODS This prospective study involved 46 subjects with T2DM randomly assigned to receive 35 sessions of ECP at different regimens (0.5 h versus 1 h) and duration (7 versus 12 weeks). Endothelial function was evaluated by reactive hyperaemia index (RHI) via peripheral arterial tonometry at the start, midpoint and end of study. Other secondary outcomes included fasting glucose, HOMA-IR, HbA1c, blood pressure, lipid profile, weight and vibration sense. RESULTS There was no change in RHI across all 3 regimens of ECP individually or collectively at the end of the study (ΔRHI +0.01%, p = 0.458). Glycaemic markers also remained unchanged at endpoint. Subgroup analysis showed an improvement in RHI (ΔRHI +20.6%, p = 0.0178) in subjects with more severe endothelial dysfunction at baseline. CONCLUSION ECP did not show a beneficial effect on endothelial function or glycemic control in this South-East Asian population with T2DM at any of the three regimens. This may partly be explained by less severe endothelial dysfunction and less insulin resistance in our population at baseline.
Collapse
Affiliation(s)
| | - Maudrene Luor Shyuan Tan
- Division of Endocrinology, University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Shih Ling Kao
- Division of Endocrinology, University Medicine Cluster, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eric Yin Hao Khoo
- Division of Endocrinology, University Medicine Cluster, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells 2020; 9:cells9081906. [PMID: 32824296 PMCID: PMC7465054 DOI: 10.3390/cells9081906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA) signaling is known to play key roles in the initiation and maintenance of various chronic pain models. Here we examined whether LPA signaling is also involved in diabetes-induced abnormal pain behaviors. The high-fat diet (HFD) showing elevation of blood glucose levels and body weight caused thermal, mechanical hyperalgesia, hypersensitivity to 2000 or 250 Hz electrical-stimulation and hyposensitivity to 5 Hz stimulation to the paw in wild-type (WT) mice. These HFD-induced abnormal pain behaviors and body weight increase, but not elevated glucose levels were abolished in LPA1−/− and LPA3−/− mice. Repeated daily intrathecal (i.t.) treatments with LPA1/3 antagonist AM966 reversed these abnormal pain behaviors. Similar abnormal pain behaviors and their blockade by daily AM966 (i.t.) or twice daily Ki16425, another LPA1/3 antagonist was also observed in db/db mice which show high glucose levels and body weight. Furthermore, streptozotocin-induced similar abnormal pain behaviors, but not elevated glucose levels or body weight loss were abolished in LPA1−/− and LPA3−/− mice. These results suggest that LPA1 and LPA3 play key roles in the development of both type I and type II diabetic neuropathic pain.
Collapse
|
19
|
Raghu ALB, Parker T, Aziz TZ, Green AL, Hadjipavlou G, Rea R, FitzGerald JJ. Invasive Electrical Neuromodulation for the Treatment of Painful Diabetic Neuropathy: Systematic Review and Meta-Analysis. Neuromodulation 2020; 24:13-21. [PMID: 32588933 DOI: 10.1111/ner.13216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Neuromodulation is a treatment option for people suffering from painful diabetic neuropathy (PDN) unresponsive to conventional pharmacotherapy. We systematically examined the pain outcomes of patients with PDN receiving any type of invasive neuromodulation for treatment of neuropathic pain. MATERIALS AND METHODS MEDLINE and Embase were searched through 10 January 2020, without language restriction. All study types were included. Two reviewers independently screened publications and extracted data. Quantitative meta-analysis was performed with pain scores converted to a standard 100-point scale. Randomized controlled trial (RCT) scores were pooled using the inverse variance method and expressed as mean differences. RESULTS RCTs of tonic spinal cord stimulation (t-SCS) showed greater pain improvement than best medical therapy at six months (intention-to-treat: 38/100, 95% CI: 29-47). By per-protocol analysis, case series of t-SCS and dorsal root ganglion stimulation (DRGS) showed improvement by 56 (95% CI: 39-73) and 55 (22-87), respectively, at 12 months. For t-SCS, the rate of failing a therapeutic stimulation trial was 16%, the risk of infection was 4%, and the rate of lead problems requiring surgery to resolve was 4% per year of follow-up. High-frequency SCS and burst SCS both showed efficacy, with few patients studied. CONCLUSION Efficacious, lasting and safe surgical pain management options are available to diabetic patients suffering from PDN. Tonic-SCS is the established standard of treatment; however, other SCS paradigms and DRGS are emerging as promising treatments offering comparable pain benefits, but with few cases published to date. Randomized controlled trials are ongoing to assess their relative merits.
Collapse
Affiliation(s)
- Ashley L B Raghu
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tariq Parker
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - George Hadjipavlou
- Nuffield Department of Anaesthesia, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rustam Rea
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - James J FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
20
|
Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. Sci Rep 2020; 10:3371. [PMID: 32099076 PMCID: PMC7042367 DOI: 10.1038/s41598-020-60422-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is believed to arise from damage to nociceptive C fibres in diabetic neuropathy (DN). We have utilised corneal confocal microscopy (CCM) to quantify the severity of small nerve fibre damage in relation to the severity of neuropathic pain and quality of life (QoL) in patients with and without painful DN. 30 controls and patients with painful (n = 78) and painless (n = 62) DN underwent assessment of large and small nerve fibre function, CCM, neuropathic symptoms (small fibre neuropathy symptom inventory questionnaire, neuropathic pain scale) and QoL (SF-36, pre-R-ODS and hospital anxiety and depression scale). Patients with painful compared to painless DN, had comparable neurophysiology and vibration perception, but lower corneal nerve fibre density (20.1 ± 0.87 vs. 24.13 ± 0.91, P = 0.005), branch density (44.4 ± 3.31 vs. 57.74 ± 3.98, P = 0.03), length (19.61 ± 0.81 vs. 22.77 ± 0.83, P = 0.01), inferior whorl length (18.03 ± 1.46 vs. 25.1 ± 1.95, P = 0.005) and cold sensation threshold (21.35 ± 0.99 vs. 26.08 ± 0.5, P < 0.0001) and higher warm sensation threshold (43.7 ± 0.49 vs. 41.37 ± 0.51, P = 0.004) indicative of small fibre damage. There was a significant association between all CCM parameters and the severity of painful neuropathic symptoms, depression score and QoL. CCM identifies small nerve fibre loss, which correlates with the severity of neuropathic symptoms and reduced QoL in patients with painful diabetic neuropathy.
Collapse
|
21
|
Pino L, de Souza MDGC, Lupi O, Bouskela E. Tuberculoid leprosy: An in vivo microvascular evaluation of cutaneous lesions. PLoS One 2020; 15:e0227654. [PMID: 31929590 PMCID: PMC6957169 DOI: 10.1371/journal.pone.0227654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/22/2019] [Indexed: 12/02/2022] Open
Abstract
Tuberculoid leprosy (TT) is characterized by cutaneous lesions called plaques. Although microvascular ultrastructure of TT patients’ skin is well-documented, little is known about functional aspects of their microcirculation. We aimed, for the first time, to evaluate, in vivo, the microcirculation of TT cutaneous lesions. Seven TT patients, males, under treatment were included in the study. The spectral analysis of frequency components of flowmotion (endothelial, sympathetic, myogenic, cardiac and respiratory) was performed using laser Doppler flowmetry (LDF). Endothelial dependent and independent vasodilatations were assessed by LDF associated to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis, respectively. Vessel density (VD), perfused vessel density (PVD), proportion of perfused vessels (PPV%), microvascular flow index (MFI) and flow heterogeneity index (FHI), reflecting tissue perfusion and oxygenation, were evaluated through sidestream dark field (SDF) imaging. All microvascular analysis were performed in TT lesions and in healthy skin in the contralateral limb of the same patient, used as control skin. VD, PVD and PPV% and MFI were significantly lower in the cutaneous lesion compared to contralateral healthy skin. The contribution of different frequency components of flowmotion, endothelial dependent and independent vasodilatations and FHI were not statistically different between control skin and cutaneous lesion. Our results suggest that TT cutaneous lesions have a significant impairment of tissue perfusion, which may aggravate peripheral nerve degeneration caused by Mycobacterium leprae infection.
Collapse
Affiliation(s)
- Livia Pino
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Coelho de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Omar Lupi
- Departamento de Dermatologia, Universidade Federal do Estado do Rio de Janeiro (UniRio), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Choi S, Kwon Y, Byeon S, Lee Y. Stimulation of autophagy improves vascular function in the mesenteric arteries of type 2 diabetic mice. Exp Physiol 2019; 105:192-200. [DOI: 10.1113/ep087737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Soo‐Kyoung Choi
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| | - Youngin Kwon
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| | - Seonhee Byeon
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| | - Young‐Ho Lee
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| |
Collapse
|
23
|
Improvement of peripheral vascular impairment by a phosphodiesterase type 5 inhibitor tadalafil prevents oxaliplatin-induced peripheral neuropathy in mice. J Pharmacol Sci 2019; 141:131-138. [PMID: 31734027 DOI: 10.1016/j.jphs.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic drug, frequently induces peripheral neuropathy. Accumulating evidences suggest a possible relationship between peripheral vascular impairment and peripheral neuropathy. In this study, we investigated the effects of vasodilators on cumulative peripheral neuropathy induced by repeated injections of oxaliplatin (10 mg/kg) once a week for 8 weeks in mice. Single injections of vasodilators, including a phosphodiesterase type 5 inhibitor tadalafil acutely alleviated oxaliplatin-induced cold hypersensitivity, while tadalafil had no effect on the mechanical hypersensitivity. By contrast, long-term administration of tadalafil (0.1% in chow diets) during the oxaliplatin injection period reduced the oxaliplatin-induced decreases in skin temperature and blood flow without affecting platinum concentrations in blood, sciatic nerves, and dorsal root ganglion. The long-term administration significantly suppressed cold, mechanical, and electrical current hypersensitivities as well as thermal hypoesthesia. Furthermore, it prevented the decreases in sensory nerve conductance velocity and the number of endoneurial microvessels, and axon degeneration in the sciatic nerves. In vitro studies confirmed that tadalafil does not interfere with the cytotoxicity of oxaliplatin against human cancer cell lines. Altogether, these results suggest that improvement of peripheral vascular impairment by tadalafil could alleviate and prevent oxaliplatin-induced peripheral neuropathy.
Collapse
|
24
|
Ponirakis G, Petropoulos IN, Alam U, Ferdousi M, Asghar O, Marshall A, Azmi S, Jeziorska M, Mahfoud ZR, Boulton AJM, Efron N, Nukada H, Malik RA. Hypertension Contributes to Neuropathy in Patients With Type 1 Diabetes. Am J Hypertens 2019; 32:796-803. [PMID: 31013342 PMCID: PMC6636691 DOI: 10.1093/ajh/hpz058] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) can lead to foot ulceration and amputation. There are currently no disease-modifying therapies for DPN. The aim of this study was to determine if hypertension contributes to DPN in patients with type 1 diabetes mellitus (T1DM). METHODS Subjects with T1DM (n = 70) and controls (n = 78) underwent a comprehensive assessment of DPN. RESULTS Hypertension was present in 40 of 70 T1DM subjects and 20 of 78 controls. Hypertension was associated with abnormal nerve conduction parameters (P = 0.03 to <0.001), increased vibration perception threshold (P = 0.01) and reduced corneal nerve fiber density and length (P = 0.02) in subjects with T1DM. However, after adjusting for confounding factors only tibial compound motor action potential and nerve conduction velocity were associated with hypertension (P = 0.03) and systolic blood pressure (P < 0.01 to <0.0001). Hypertension had no effect on neuropathy in subjects without diabetes. CONCLUSIONS This study shows that hypertension is associated with impaired nerve conduction in T1DM. It supports previous small trials showing that angiotensin-converting enzyme inhibitors improve nerve conduction and advocates the need for larger clinical trials with blood pressure lowering agents in DPN.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha, Qatar
| | | | - Uazman Alam
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
- Eye and Vision Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Maryam Ferdousi
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Omar Asghar
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Andrew Marshall
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Maria Jeziorska
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Ziyad R Mahfoud
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Andrew J M Boulton
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Hitoshi Nukada
- Nukada Institute for Medical and Biological Research, Chiba, Japan
| | - Rayaz A Malik
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha, Qatar
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
25
|
Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J, Gandhi R, Wilkinson ID, Tesfaye S. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr Diab Rep 2019; 19:32. [PMID: 31065863 PMCID: PMC6505492 DOI: 10.1007/s11892-019-1150-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The prevalence of diabetes mellitus and its chronic complications are increasing to epidemic proportions. This will unfortunately result in massive increases in diabetic distal symmetrical polyneuropathy (DPN) and its troublesome sequelae, including disabling neuropathic pain (painful-DPN), which affects around 25% of patients with diabetes. Why these patients develop neuropathic pain, while others with a similar degree of neuropathy do not, is not clearly understood. This review will look at recent advances that may shed some light on the differences between painful and painless-DPN. RECENT FINDINGS Gender, clinical pain phenotyping, serum biomarkers, brain imaging, genetics, and skin biopsy findings have been reported to differentiate painful- from painless-DPN. Painful-DPN seems to be associated with female gender and small fiber dysfunction. Moreover, recent brain imaging studies have found neuropathic pain signatures within the central nervous system; however, whether this is the cause or effect of the pain is yet to be determined. Further research is urgently required to develop our understanding of the pathogenesis of pain in DPN in order to develop new and effective mechanistic treatments for painful-DPN.
Collapse
Affiliation(s)
- Pallai Shillo
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Marni Greig
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Leanne Hunt
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Dinesh Selvarajah
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Jackie Elliott
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Rajiv Gandhi
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | | | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, Anand P, Tesfaye S. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144:177-191. [PMID: 30201394 DOI: 10.1016/j.diabres.2018.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus and its chronic complications continue to increase alarmingly. Consequently, the massive expenditure on diabetic distal symmetrical polyneuropathy (DSPN) and its sequelae, will also likely rise. Up to 50% of patients with diabetes develop DSPN, and about 20% develop neuropathic pain (painful-DSPN). Painful-DSPN can cast a huge burden on sufferers' lives with increased rates of unemployment, mental health disorders and physical co-morbidities. Unfortunately, due to limited understanding of the mechanisms leading to painful-DSPN, current treatments remain inadequate. Recent studies examining the pathophysiology of painful-DSPN have identified maladaptive alterations at the level of both the peripheral and central nervous systems. Additionally, genetic studies have suggested that patients with variants of voltage gated sodium channels may be more at risk of developing neuropathic pain in the presence of a disease trigger such as diabetes. We review the recent advances in genetics, skin biopsy immunohistochemistry and neuro-imaging, which have the potential to further our understanding of the condition, and identify targets for new mechanism based therapies.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Iain D Wilkinson
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Irene Tracey
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
27
|
Zaid IIA, Hussein MA, Mousa GS, Mohamed AR, Badr NM, Hamid AA. Acetylcholine iontophoresis in diabetic patients with and without peripheral neuropathy: a potential therapeutic tool. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_51_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Hiyama H, Yano Y, So K, Imai S, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. TRPA1 sensitization during diabetic vascular impairment contributes to cold hypersensitivity in a mouse model of painful diabetic peripheral neuropathy. Mol Pain 2018; 14:1744806918789812. [PMID: 29968518 PMCID: PMC6055098 DOI: 10.1177/1744806918789812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Diabetic peripheral neuropathy is a common long-term complication of diabetes. Accumulating evidence suggests that vascular impairment plays important roles in the pathogenesis of diabetic peripheral neuropathy, while the mechanism remains unclear. We recently reported that transient receptor potential ankyrin 1 (TRPA1) is sensitized by hypoxia, which can contribute to cold hypersensitivity. In this study, we investigated the involvement of TRPA1 and vascular impairment in painful diabetic peripheral neuropathy using streptozotocin-induced diabetic model mice. Results Streptozotocin-induced diabetic model mice showed mechanical and cold hypersensitivity with a peak at two weeks after the streptozotocin administration, which were likely to be paralleled with the decrease in the skin blood flow of the hindpaw. Streptozotocin-induced cold hypersensitivity was significantly inhibited by an antagonist HC-030031 (100 mg/kg) or deficiency for TRPA1, whereas mechanical hypersensitivity was unaltered. Consistent with these results, the nocifensive behaviors evoked by an intraplantar injection of the TRPA1 agonist allyl isothiocyanate (AITC) were enhanced two weeks after the streptozotocin administration. Both streptozotocin-induced cold hypersensitivity and the enhanced AITC-evoked nocifensive behaviors were significantly inhibited by a vasodilator, tadalafil (10 mg/kg), with recovery of the decreased skin blood flow. Similarly, in a mouse model of hindlimb ischemia induced by the ligation of the external iliac artery, AITC-evoked nocifensive behaviors were significantly enhanced three and seven days after the ischemic operation, whereas mechanical hypersensitivity was unaltered in TRPA1-knockout mice. However, no difference was observed between wild-type and TRPA1-knockout mice in the hyposensitivity for current or mechanical stimulation or the deceased density of intraepidermal nerve fibers eight weeks after the streptozotocin administration. Conclusion These results suggest that TRPA1 sensitization during diabetic vascular impairment causes cold, but not mechanical, hypersensitivity in the early painful phase of diabetic peripheral neuropathy. However, TRPA1 may play little or no role in the progression of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Haruka Hiyama
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Yuichi Yano
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Kanako So
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.,2 Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Satoshi Imai
- 3 Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| | - Kazuki Nagayasu
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Hisashi Shirakawa
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Takayuki Nakagawa
- 3 Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| | - Shuji Kaneko
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
29
|
Zhang TT, Xue R, Fan SY, Fan QY, An L, Li J, Zhu L, Ran YH, Zhang LM, Zhong BH, Li YF, Ye CY, Zhang YZ. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J Neuroinflammation 2018; 15:176. [PMID: 29879988 PMCID: PMC5992688 DOI: 10.1186/s12974-018-1216-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background Diabetic neuropathic pain (DNP) is a common and distressing complication in patients with diabetes, and the underlying mechanism remains unclear. Tricyclic antidepressants (TCAs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are recommended as first-line drugs for DNP. Ammoxetine is a novel and potent SNRI that exhibited a strong analgesic effect on models of neuropathic pain, fibromyalgia-related pain, and inflammatory pain in our primary study. The present study was undertaken to investigate the chronic treatment properties of ammoxetine on DNP and the underlying mechanisms for its effects. Methods The rat model of DNP was established by a single streptozocin (STZ) injection (60 mg/kg). Two weeks after STZ injection, the DNP rats were treated with ammoxetine (2.5, 5, and 10 mg/kg/day) for 4 weeks. The mechanical allodynia and locomotor activity were assayed to evaluate the therapeutic effect of ammoxetine. In mechanism study, the activation of microglia, astrocytes, the protein levels of pro-inflammatory cytokines, the mitogen-activated protein kinases (MAPK), and NF-κB were evaluated. Also, microglia culture was used to assess the direct effects of ammoxetine on microglial activation and the signal transduction mechanism. Results Treatment with ammoxetine for 4 weeks significantly relieved the mechanical allodynia and ameliorated depressive-like behavior in DNP rats. In addition, DNP rats displayed increased activation of microglia in the spinal cord, but not astrocytes. Ammoxetine reduced the microglial activation, accumulation of pro-inflammatory cytokines, and activation of p38 and c-Jun N-terminal kinase (JNK) in the spinal cord of DNP rats. Furthermore, ammoxetine displayed anti-inflammatory effects upon challenge with LPS in BV-2 microglia cells. Conclusion Our results suggest that ammoxetine may be an effective treatment for relieving DNP symptoms. Moreover, a reduction in microglial activation and pro-inflammatory release by inhibiting the p-p38 and p-JNK pathways is involved in the mechanism.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China.,Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Rui Xue
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Shi-Yong Fan
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Qiong-Yin Fan
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Lei An
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), No.11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yu-Hua Ran
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Li-Ming Zhang
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Bo-Hua Zhong
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Yun-Feng Li
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Cai-Ying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - You-Zhi Zhang
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
30
|
Agra KF, Pontes IEA, da Silva JR, Figueiroa JN, Clough GF, Alves JGB. Impaired neurovascular reactivity in the microvasculature of pregnant women with preeclampsia. Microcirculation 2017; 24. [DOI: 10.1111/micc.12383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/08/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Karine Ferreira Agra
- Department of Mother and Child Health; Instituto de Medicina Integral Prof. Fernando Figueira-IMIP; Recife Brazil
| | | | - José Roberto da Silva
- Department of Mother and Child Health; Instituto de Medicina Integral Prof. Fernando Figueira-IMIP; Recife Brazil
| | - José Natal Figueiroa
- Department of Mother and Child Health; Instituto de Medicina Integral Prof. Fernando Figueira-IMIP; Recife Brazil
| | | | - João Guilherme Bezerra Alves
- Department of Mother and Child Health; Instituto de Medicina Integral Prof. Fernando Figueira-IMIP; Recife Brazil
| |
Collapse
|
31
|
DuBrava S, Mardekian J, Sadosky A, Bienen EJ, Parsons B, Hopps M, Markman J. Using Random Forest Models to Identify Correlates of a Diabetic Peripheral Neuropathy Diagnosis from Electronic Health Record Data. PAIN MEDICINE 2017; 18:107-115. [PMID: 27252307 DOI: 10.1093/pm/pnw096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Objective To identify variables correlated with a diagnosis of diabetic peripheral neuropathy (DPN) using random forest modeling applied to electronic health records. Design Retrospective analysis. Setting Humedica de-identified electronic health records database. Subjects Subjects ≥ 18 years old with type 2 diabetes from January 1, 2008-September 30, 2013 having continuous data for 1 year pre- and postindex with DPN (n = 35,050) and without DPN (n = 288,328) were identified. Methods Demographic, clinical, and health care resource utilization variables (e.g., inpatient and outpatient encounters, medications, and procedures) were input into a random forest model to identify the most important correlates of a DPN diagnosis. Random forest modeling is a computationally extensive, robust data mining technique that accommodates large sets of variables to identify associated factors using an ensemble of classifications trees. Accuracy of the model was evaluated using receiver operating characteristic curves (ROC). Results The final random forest model consisted of the following variables (importance) associated with a DPN diagnosis: Charlson Comorbidity Index score (100%), age (37.1%), number of pre-index procedures and services (29.7%), number of pre-index outpatient prescriptions (24.2%), number of pre-index outpatient visits (18.3%), number of pre-index laboratory visits (16.9%), number of pre-index outpatient office visits (12.1%), number of inpatient prescriptions (5.9%), and number of pain-related medication prescriptions (4.4%). ROC analysis confirmed model performance, with an area under the curve of 0.824 and accuracy of 89.6% (95% confidence interval 89.4%, 89.8%). Conclusions Random forest modeling can determine likelihood of a DPN diagnosis. Further validation of the random forest model may help facilitate earlier diagnosis and enhance management strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Markman
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
32
|
The Relative Efficacy of Land-Based and Water-Based Exercise Training on Macro- and Microvascular Functions in Older Patients With Type 2 Diabetes. J Aging Phys Act 2017; 25:446-452. [DOI: 10.1123/japa.2016-0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microvascular and macrovascular dysfunction plays an important role in the pathogenesis of diabetic vascular disease. Twenty-nine older patients with type 2 diabetes were randomly assigned into the land-based (LB; n = 14) or water-based (WB; n = 15) groups. Both groups completed supervised aerobic cycling exercises three times per week for 12 weeks. The WB group performed cycling exercise training in warm water (36 °C) immersed to the hip level. After 12 weeks, blood glucose concentration and insulin resistance did not change but hemoglobin A1c levels decreased (P < .05) in both groups. Plasma nitric oxide concentrations increased (P < .05) in both groups. Flow-mediated dilation in the popliteal artery increased and arterial stiffness decreased (P < .05) in both exercise groups. Indices of microvascular reactivity improved (P < .05) only in the WB group. The benefits of warm water-based training were similar in general, and superior in some measures, to the more established land-based cycling exercise.
Collapse
|
33
|
Lewis JE, Atlas SE, Rasul A, Farooqi A, Lantigua L, Higuera OL, Fiallo A, Laria L, Picciani R, Wals K, Yehoshua Z, Mendez A, Konefal J, Goldberg S, Woolger J. New method of sudomotor function measurement to detect microvascular disease and sweat gland nerve or unmyelinated C fiber dysfunction in adults with retinopathy. J Diabetes Metab Disord 2017; 16:26. [PMID: 28616394 PMCID: PMC5468959 DOI: 10.1186/s40200-017-0307-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diabetes-associated microvascular complications such as retinopathy and neuropathy often lead to end-organ and tissue damage. Impaired skin microcirculation often precedes the detection of other advanced diabetic complications. The ANS-1 system contains a redesigned sympathetic skin response (ANS-1 SSR) device that measures sudomotor function, a photoplethysmography sensor, and a blood pressure device to comprehensively assess cardiac autonomic neuropathy and endothelial dysfunction. The purpose of this study was to determine the relationships between the ANS-1 SSR amplitude measured at the: (a) negative electrode (Nitric Oxide [NO] Sweat Peak) with microvascular diseases and associated vascular blood markers and (b) positive electrode (iSweat Peak) with C fiber function. METHODS All participants (healthy controls n = 50 and retinopathy patients n = 50) completed the ANS-1 system evaluation and a basic sociodemographic and medical history questionnaire, including a quality of life measure (SF-36). A small sample of blood was drawn to determine levels of homocysteine, blood urea nitrogen (BUN), C-reactive protein (CRP), and fibrinogen. Symptoms of peripheral foot neuropathy were assessed with a scale from 1 (none) to 10 (the worst). We used Spearman rank correlations, independent samples t-tests, and receiver operating characteristic curves to determine the specificity and sensitivity of the NO Sweat Peak as a potential screening marker of retinopathy. RESULTS The ANS-1 System Cardiometabolic Risk Score and all indicators of quality of life on the SF-36, other than Emotional Role Functioning, were significantly worse in the retinopathy patients. The sudomotor response marker NO Sweat Peak had a sensitivity of 88% and a specificity of 68% (Area Under the Curve = 0.81, p < 0.0001) to detect retinopathy. The NO Sweat Peak response marker inversely correlated with BUN (ρ = -0.41, p < 0.0001), homocysteine (ρ = -0.44, p < 0.0001), fibrinogen (ρ = -0.41, p < 0.0001), the Cardiac Autonomic Neuropathy score (ρ = -0.68, p < 0.0001), and the heart rate variability Total Power (ρ = -0.57, p < 0.0001), and it positively correlated with the Photoplethysmography Index (PTGi; ρ = 0.53 p < 0.0001). The ANS-1 system sudomotor response marker iSweat Peak inversely correlated with the severity of symptoms on the peripheral neuropathy scale (ρ = -0.56, p < 0.0001). CONCLUSION The results of the study show that this new method of measuring sympathetic skin response should be useful for detecting the earliest manifestations of microvascular disease and symptoms of C fiber dysfunction.
Collapse
Affiliation(s)
- John E. Lewis
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street Suite #1482A, Miami, FL 33136 USA
| | - Steven E. Atlas
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Ammar Rasul
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street Suite #1482A, Miami, FL 33136 USA
| | - Ashar Farooqi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street Suite #1482A, Miami, FL 33136 USA
| | - Laura Lantigua
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street Suite #1482A, Miami, FL 33136 USA
| | - Oscar L. Higuera
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street Suite #1482A, Miami, FL 33136 USA
| | - Andrea Fiallo
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street Suite #1482A, Miami, FL 33136 USA
| | | | | | - Ken Wals
- Aran Eye Associates, Miami, FL USA
| | - Zohar Yehoshua
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Armando Mendez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Janet Konefal
- Department of Family Medicine and Community Health, University of Miami, Miami Miller School of Medicine, Miami, FL USA
| | | | - Judi Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
34
|
Treu C, de Souza MDGC, Lupi O, Sicuro FL, Maranhão PA, Kraemer-Aguiar LG, Bouskela E. Structural and functional changes in the microcirculation of lepromatous leprosy patients - Observation using orthogonal polarization spectral imaging and laser Doppler flowmetry iontophoresis. PLoS One 2017; 12:e0175743. [PMID: 28419120 PMCID: PMC5395185 DOI: 10.1371/journal.pone.0175743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/30/2017] [Indexed: 01/22/2023] Open
Abstract
Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Mycobacterium leprae and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function in vivo. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by the Mycobacterium leprae.
Collapse
Affiliation(s)
- Curt Treu
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Coelho de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Omar Lupi
- Departamento de Dermatologia, Universidade Federal do Estado do Rio de Janeiro (Uni-Rio), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Lencastre Sicuro
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila Alves Maranhão
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Ambulatório de Obesidade, Policlínica Piquet Carneiro, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Emanuel AL, Nieuwenhoff MD, Klaassen ES, Verma A, Kramer MHH, Strijers R, Vrancken AFJE, Eringa E, Groeneveld GJ, Serné EH. Relationships Between Type 2 Diabetes, Neuropathy, and Microvascular Dysfunction: Evidence From Patients With Cryptogenic Axonal Polyneuropathy. Diabetes Care 2017; 40:583-590. [PMID: 28202549 DOI: 10.2337/dc16-1690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/22/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study investigated whether the relationship between neuropathy and microvascular dysfunction in patients with type 2 diabetes is independent of diabetes-related factors. For this purpose, we compared skin microvascular function in patients with type 2 diabetes with that of patients with cryptogenic axonal polyneuropathy (CAP), a polyneuropathy of unknown etiology. RESEARCH DESIGN AND METHODS Cross-sectional information was collected from 16 healthy controls (HCs), 16 patients with CAP, 15 patients with type 2 diabetes with polyneuropathy (DPN), and 11 patients with type 2 diabetes without polyneuropathy. Axonal degeneration was assessed with skin biopsy and nerve conduction studies. Microvascular skin vasodilation was measured using laser Doppler fluxmetry combined with iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). RESULTS Patients with CAP and DPN demonstrated a similar decrease in intraepidermal nerve fiber density and sural sensory nerve action potential compared with HCs. The vasodilator response to ACh was similar among patients with CAP (relative mean difference based on log values 13.3%; 95% CI -35.0 to 97.7%; P = 0.652) but was lower in the patients with diabetes with neuropathy (157.5%; 42.0-366.7%; P = 0.003) and without neuropathy (174.2%; 44.2-421.3%; P = 0.003) compared with HCs. No significant differences were found between the groups of patients with diabetes (P = 0.845). The vasodilator response to SNP was not significantly different among the groups (P = 0.082). CONCLUSIONS In this study, endothelium-dependent vasodilation was reduced in patients with type 2 diabetes regardless of the presence of polyneuropathy, whereas microvascular vasodilation was normal in patients with CAP. These data suggest that in type 2 diabetes, neuropathy does not contribute to impaired microvascular endothelium-dependent vasodilation and vice versa. In addition, this study suggests that impaired microvascular vasodilation does not contribute to CAP.
Collapse
Affiliation(s)
- Anna L Emanuel
- VU University Medical Center, Amsterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- Centre for Human Drug Research, Leiden, the Netherlands.,Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | | | | | - Rob Strijers
- VU University Medical Center, Amsterdam, the Netherlands
| | | | - Etto Eringa
- VU University Medical Center, Amsterdam, the Netherlands
| | - Geert Jan Groeneveld
- VU University Medical Center, Amsterdam, the Netherlands.,Centre for Human Drug Research, Leiden, the Netherlands
| | - Erik H Serné
- VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Bailey A, Wingard D, Allison M, Summers P, Calac D. Acupuncture Treatment of Diabetic Peripheral Neuropathy in an American Indian Community. J Acupunct Meridian Stud 2017; 10:90-95. [DOI: 10.1016/j.jams.2016.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
|
37
|
Marche P, Dubois S, Abraham P, Parot-Schinkel E, Gascoin L, Humeau-Heurtier A, Ducluzeau PH, Mahe G. Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes. Sci Rep 2017; 7:44322. [PMID: 28287157 PMCID: PMC5347083 DOI: 10.1038/srep44322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120.
Collapse
Affiliation(s)
- P Marche
- Endocrinology Department, University Hospital of Angers, Angers, France
| | - S Dubois
- Endocrinology Department, University Hospital of Angers, Angers, France
| | - P Abraham
- Laboratory of Vascular Investigations, University Hospital of Angers, UMR CNRS6214/INSERM1083, LUNAM Université, Angers, France
| | - E Parot-Schinkel
- Methodology and Biostatistics Unit, University Hospital of Angers, Angers, France
| | - L Gascoin
- Laboratory of Vascular Investigations, University Hospital of Angers, UMR CNRS6214/INSERM1083, LUNAM Université, Angers, France
| | - A Humeau-Heurtier
- University of Angers, LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Angers, France
| | - P H Ducluzeau
- Endocrinology Department, University Hospital of Tours, Tours, France
| | - G Mahe
- INSERM Clinical Investigation Center (CIC 14 14), Rennes, France, Université de Rennes 1 and LUNAM University, Inserm 1083/CNRS 6214, Faculty of Medicine, Angers, France
| |
Collapse
|
38
|
Tesfaye S, Selvarajah D, Gandhi R, Greig M, Shillo P, Fang F, Wilkinson ID. Diabetic peripheral neuropathy may not be as its name suggests: evidence from magnetic resonance imaging. Pain 2016; 157 Suppl 1:S72-S80. [PMID: 26785159 DOI: 10.1097/j.pain.0000000000000465] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diabetic peripheral neuropathy (DPN) affects up to 50% of patients with diabetes and is a major cause of morbidity and increased mortality. Its clinical manifestations include distressing painful neuropathic symptoms and insensitivity to trauma that result in foot ulcerations and amputations. Several recent studies have implicated poor glycemic control, duration of diabetes, hyperlipidemia (particularly hypertryglyceridaemia), elevated albumin excretion rates, and obesity as risk factors for the development of DPN. However, similar data are not available for painful DPN. Moreover, although there is now strong evidence for the importance of peripheral nerve microvascular disease in the pathogenesis of DPN, peripheral structural biomarkers of painful DPN are lacking. However, there is now emerging evidence for the involvement of the central nervous system in both painful and painless DPN afforded by magnetic resonance imaging. This review will focus on this emerging evidence for central changes in DPN, hitherto considered a peripheral nerve disease only.
Collapse
Affiliation(s)
- Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom Department of Human Metabolism Unit, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom Academic Unit of Radiology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Park HS, Yun HM, Jung IM, Lee T. Role of Laser Doppler for the Evaluation of Pedal Microcirculatory Function in Diabetic Neuropathy Patients. Microcirculation 2016; 23:44-52. [DOI: 10.1111/micc.12254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/31/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Hyung Sub Park
- Department of Surgery; Seoul National University Bundang Hospital; Seoul National University College of Medicine; Gyeonggi Korea
| | - Han Mi Yun
- Department of Surgery; Seoul National University Bundang Hospital; Seoul National University College of Medicine; Gyeonggi Korea
| | - In Mok Jung
- Department of Surgery; Seoul Metropolitan Government Seoul National University Boramae Medical Center; Seoul National University College of Medicine; Seoul Korea
| | - Taeseung Lee
- Department of Surgery; Seoul National University Bundang Hospital; Seoul National University College of Medicine; Gyeonggi Korea
| |
Collapse
|
40
|
Salek S, Bahrpeyma F, Mohajeri-Tehrani MR. Intermittent pneumatic compression therapy improves functional and dynamic balance and neuropathy severity in neuropathic patients with type 2 diabetes. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Olver TD, Laughlin MH. Endurance, interval sprint, and resistance exercise training: impact on microvascular dysfunction in type 2 diabetes. Am J Physiol Heart Circ Physiol 2015; 310:H337-50. [PMID: 26408541 DOI: 10.1152/ajpheart.00440.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/16/2015] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply "more is better." Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved blood glucose control, EX programs should involve upper and lower body exercise and modulate intensity to augment skeletal muscle fiber recruitment. Under conditions of limited mobility, it may be necessary to train skeletal muscle groups separately to maximize whole body skeletal muscle fiber recruitment.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri;
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
42
|
Körei AE, Istenes I, Papanas N, Kempler P. Small-Fiber Neuropathy: A Diabetic Microvascular Complication of Special Clinical, Diagnostic, and Prognostic Importance. Angiology 2015; 67:49-57. [PMID: 25957257 DOI: 10.1177/0003319715583595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Damage of small nerve fibers may lead to a large variety of clinical symptoms. Small-fiber neuropathy underlies the symptoms of painful diabetic neuropathy, which may decrease quality of life. It also contributes to the poor prognosis of diabetic neuropathy because it plays a key role in the pathogenesis of foot ulceration and autonomic neuropathy. Impairment of small nerve fibers is considered the earliest alteration in the course of diabetic neuropathy. Therefore, assessment of functional and morphological abnormalities of small nerve fibers may enable timely diagnosis. The definition, symptoms, and clinical significance of small-fiber neuropathy are considered in the present review. An apparently more complex interaction between small-fiber impairment and microcirculation is extensively discussed. Diagnostic modalities include morphometric and functional methods. Corneal confocal microscopy and punch skin biopsy are considered gold standards, but noninvasive functional tests are also diagnostically useful. However, in routine clinical practice, small-fiber neuropathy is diagnosed by its typical clinical presentation. Finally, prompt treatment should be initiated following diagnosis.
Collapse
Affiliation(s)
- A E Körei
- First Department of Medicine, Semmelweis University, Budapest, Hungary
| | - I Istenes
- First Department of Medicine, Semmelweis University, Budapest, Hungary
| | - N Papanas
- Second Department of Internal Medicine, Outpatient Clinic of the Diabetic Foot, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - P Kempler
- First Department of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
44
|
Feng L, Liu WK, Deng L, Tian JX, Tong XL. Clinical efficacy of aconitum-containing traditional Chinese medicine for diabetic peripheral neuropathic pain. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:109-17. [PMID: 24467538 DOI: 10.1142/s0192415x14500074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetic peripheral neuropathy is a common chronic complication of diabetes. Routine clinical management uses analgesics to relieve pain in combination with drugs for nerve repair. The drugs are often not effective for the severe pain cases, and these western medications also have side effects. We report a more effective treatment of diabetic peripheral neuropathic pain using a high dose of a traditional Chinese medicine, aconitum (including both Radix aconite preparata and Radix aconite kusnezoffii), in combination with Huangqi Guizhi Wuwu Tang (i.e., astragalus, cassia twig, white peony root, and spatholobi). In order to achieve stronger analgesic effects, we increased the clinical dosage of aconitum from 15 to 120 g. The aconitum was boiled for 6-8 hours, and licorice was also used to reduce potential toxicities of aconitum. In the four reported cases, the patients' neuropathic pain was remarkably reduced and the EMG profile was also improved with this treatment regimen. Adverse reactions were not observed during the therapy. Thus, aconitum represents a promising and safe treatment for the well-being of patients and their diabetic peripheral neuropathic pain. Future controlled clinical trials using traditional Chinese medicines containing aconitum in treating the neuropathic pain are warranted.
Collapse
Affiliation(s)
- Ling Feng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | | | | | | | | |
Collapse
|
45
|
Sadosky A, Hopper J, Parsons B. Painful diabetic peripheral neuropathy: results of a survey characterizing the perspectives and misperceptions of patients and healthcare practitioners. PATIENT-PATIENT CENTERED OUTCOMES RESEARCH 2014; 7:107-14. [PMID: 24263740 PMCID: PMC3929775 DOI: 10.1007/s40271-013-0038-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Little information exists on the understanding and management of painful diabetic peripheral neuropathy (pDPN) between patients and healthcare practitioners (HCPs). Objective The objective of this study was to characterize the patient perspective of pDPN and identify gaps in patient and HCP perceptions of pDPN. Methods An online survey of patients with type 1 or 2 diabetes mellitus who reported experiencing any symptoms consistent with diabetic peripheral neuropathy (DPN) and HCPs who treat diabetes was conducted in 2012 in the USA. Patients were recruited via the Survey Sampling national consumer research panel, and HCPs were recruited from Epocrates’ national research panel. Survey questions focused on the impact, understanding, and management of pDPN, and interactions between patients and their HCPs. Respondents who reported pain were re-contacted to obtain further information on pain severity using a numerical rating scale (0 = no pain, 10 = most pain). Results Respondents included 1,004 patients (53 % female, average age 55 years) and 500 HCPs (250 generalists, 150 specialists, and 100 nurses/physician assistants). While 83 % of patients reported pDPN symptoms, only 41 % of these patients had been diagnosed with DPN. Eighty-five percent of those with pDPN reported that it impacts daily activities. In contrast, HCPs estimated that of their patients who experienced any type of DPN symptom, 41 % experienced pain and 38 % had daily activity limitations because of their symptoms. Most HCPs (64 %) never had their patients complete a DPN assessment questionnaire, and only 41 % perform specific diagnostic tests on all patients who report DPN symptoms. Patients and HCPs both showed substantial clinical misperceptions regarding the cause and management of pDPN; 53 % of HCPs believed that adequate blood glucose control could reverse DPN, and 43 % of pDPN patients were not sure if DPN was reversible. There was also substantial discordance between patients and HCPs regarding discussions of DPN; only 49 % of pDPN patients reported that they speak about symptoms at “every” or “most” appointments with their HCP but 73 % of HCPs reported discussing DPN symptoms at “every” or “most” visits. Conclusions Not only do misperceptions exist on the cause and management of pDPN among patients and HCPs, but there are additional disparities between the patient and HCP perspectives. These results suggests a need for (1) educational initiatives on pDPN that target patients and HCPs, and (2) initiating improved dialogue between patients and their HCPs for discussing appropriate management of pDPN that is distinct from treatment of the underlying diabetes. Electronic supplementary material The online version of this article (doi:10.1007/s40271-013-0038-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alesia Sadosky
- Pfizer, Inc., 235 East 42nd Street, New York, NY, 10017, USA,
| | | | | |
Collapse
|
46
|
Sensory correlates of pain in peripheral neuropathies. Clin Neurophysiol 2014; 125:1048-58. [DOI: 10.1016/j.clinph.2013.09.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 08/26/2013] [Accepted: 09/30/2013] [Indexed: 01/04/2023]
|
47
|
Didangelos T, Doupis J, Veves A. Painful diabetic neuropathy: clinical aspects. HANDBOOK OF CLINICAL NEUROLOGY 2014; 126:53-61. [PMID: 25410214 DOI: 10.1016/b978-0-444-53480-4.00005-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Painful diabetic neuropathy (PDN) is one of several clinical syndromes in patients with diabetic peripheral neuropathy (DPN) and presents a major challenge for optimal management. The epidemiology of PDN has not been extensively studied. On the basis of available data, the prevalence of pain ranges from 10% to 20% in patients with diabetes and from 40% to 50% in those with diabetic neuropathy. Neuropathic pain can be disabling and devastating, with a significant impact on the patient's quality of life and associated healthcare cost. Pathophysiologic mechanisms underlying PDN are similar to other neuropathic pain disorders and broadly invoke peripheral and central sensitization. The natural course of PDN is variable, with the majority of patients experiencing spontaneous improvement and resolution of pain. Quantifying neuropathic pain is difficult, especially in clinical practice, but has improved recently in clinical trials with the development of neuropathic pain-specific tools, such as the Neuropathic Pain Questionnaire and the Neuropathic Pain Symptom Inventory. Hyperglycemia-induced pathways result in nerve dysfunction and damage, which lead to hyperexcitable peripheral and central pathways of pain. Glycemic control may prevent or partially reverse DPN and modulate PDN.
Collapse
Affiliation(s)
- Triantafyllos Didangelos
- 1st Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, "AHEPA" Hospital, Greece
| | - John Doupis
- Internal Medicine and Diabetes Department, Salamis Naval Hospital, Salamis, Greece
| | - Aristidis Veves
- Microcirculation Laboratory and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Abstract
Microvascular dysfunction in diabetes plays a crucial role in the development of diabetic complications. The skin, as one of the most accessible organs, serves as a model for the investigation of microvascular dysfunction. Several non-invasive, mostly laser-Doppler-based methods have been developed lately to assess microvascular function in the skin. Microvascular functional changes occur even in the prediabetic state and become more complex with overt diabetes, being exacerbated by the presence of peripheral and/or autonomic diabetic neuropathy. The present article aims at shedding light on the implication of endothelial and neurovascular dysfunction in microvascular changes in diabetes, highlighting the contribution of different forms of diabetic neuropathy.
Collapse
Affiliation(s)
- Alin Stirban
- Profil Institute for Metabolic Research, Hellersbergstr. 9, 41460, Neuss, Germany,
| |
Collapse
|
49
|
Xu L, Tang D, Guan M, Xie C, Xue Y. Effect of high-fat diet on peripheral neuropathy in C57BL/6 mice. Int J Endocrinol 2014; 2014:305205. [PMID: 25404943 PMCID: PMC4227356 DOI: 10.1155/2014/305205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022] Open
Abstract
Objective. Dyslipidemia may contribute to the development of peripheral neuropathy, even in prediabetics; however, few studies have evaluated vascular dysfunction and oxidative stress in patients with peripheral neuropathy. Methods. Using high-fat diet- (HFD-) induced prediabetic C57BL/6 mice, we assessed motor and sensory nerve conduction velocity (NCV) using a BIOPAC System and thermal algesia with a Plantar Test (Hargreaves' method) Analgesia Meter. Intraepidermal nerve fiber density and mean dendrite length were tested following standard protocols. Vascular endothelial growth factor-A (VEGF-A) and 12/15-lipoxygenase (12/15-LOX) were evaluated by immunohistochemistry and Western blot, respectively. Results. HFD-fed mice showed deficits in motor and sensory NCV, thermal hyperalgesia, reduced mean dendrite length, and VEGF-A expression in the plantar skin and increased 12/15-LOX in the sciatic nerve (P < 0.05 compared with controls). Conclusion. HFD may cause large myelinated nerve and small sensory nerve fiber damage, thus leading to neuropathy. The mean dendrite length may be a more sensitive marker for early detection of peripheral neuropathy. Reduced blood supply to the nerves and increased oxidative stress may contribute to the development and severity of peripheral neuropathy.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dou Tang
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Meiping Guan
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cuihua Xie
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoming Xue
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- *Yaoming Xue:
| |
Collapse
|
50
|
Abstract
Although a number of the diabetic neuropathies may result in painful symptomatology, this review focuses on the most common: chronic sensorimotor distal symmetrical polyneuropathy (DSPN). It is estimated that 15-20% of diabetic patients may have painful DSPN, but not all of these will require therapy. In practice, the diagnosis of DSPN is a clinical one, whereas for longitudinal studies and clinical trials, quantitative sensory testing and electrophysiological assessment are usually necessary. A number of simple numeric rating scales are available to assess the frequency and severity of neuropathic pain. Although the exact pathophysiological processes that result in diabetic neuropathic pain remain enigmatic, both peripheral and central mechanisms have been implicated, and extend from altered channel function in peripheral nerve through enhanced spinal processing and changes in many higher centers. A number of pharmacological agents have proven efficacy in painful DSPN, but all are prone to side effects, and none impact the underlying pathophysiological abnormalities because they are only symptomatic therapy. The two first-line therapies approved by regulatory authorities for painful neuropathy are duloxetine and pregabalin. α-Lipoic acid, an antioxidant and pathogenic therapy, has evidence of efficacy but is not licensed in the U.S. and several European countries. All patients with DSPN are at increased risk of foot ulceration and require foot care, education, and if possible, regular podiatry assessment.
Collapse
Affiliation(s)
- Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Sheffield, U.K
| | - Andrew J.M. Boulton
- Institute for Endocrinology and Diabetes, University of Manchester, Manchester, U.K
| | - Anthony H. Dickenson
- Neuroscience, Physiology and Pharmacology, University College London, London, U.K
| |
Collapse
|