1
|
Matejko B, Tota Ł, Morawska-Tota M, Pałka T, Malecki MT, Klupa T. Assessment of selected muscle damage markers and zonulin concentration after maximum-intensity exercise in men with type 1 diabetes treated with a personal insulin pump. Acta Diabetol 2023; 60:1675-1683. [PMID: 37481476 PMCID: PMC10587266 DOI: 10.1007/s00592-023-02157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
AIM Exercise-induced muscle damage depends on exercise intensity and duration and on individual susceptibility. Mechanical and metabolic stress may disturb the intestinal microflora. The study evaluated selected muscle damage markers and zonulin concentration after maximum-intensity exercise in type 1 diabetes (T1D) men compared with healthy controls. METHODS The study involved 16 T1D participants and 28 controls matched by age (22.7 [21.3-25.1] vs. 22.6 [20.9-26.3] years), body mass index (24.2 ± 1.6 vs. 24.2 ± 1.9 kg/m2), and body fat percentage (16.1 ± 5.2 vs. 14.9 ± 4.6%). The T1D group had 11.3 ± 5.1 years of diabetes duration and a suboptimal mean glycated haemoglobin level of 7.2 ± 1.1%. The subjects underwent a graded running treadmill test until exhaustion. Lactate concentration was assessed in arterialized blood at baseline and 3 and 20 min after the test. Cortisol, testosterone, tumour necrosis factor α, myoglobin, lactate dehydrogenase, zonulin, and vitamin D levels were evaluated in cubital fossa vein blood before and 60 min after the test. RESULTS T1D patients presented higher baseline zonulin, myoglobin concentration, testosterone/cortisol ratio, and lower maximal oxygen uptake. On adjusting for the baseline values, the groups differed in zonulin, lactate dehydrogenase, and myoglobin levels, testosterone/cortisol ratio, and lactate concentration determined 20 min after exercise (P < 0.05). CONCLUSION Maximum-intensity exercise increased muscle and intestinal damage in T1D participants. In patients with lower physical activity, very-high-intensity exercise should be recommended with caution. Observing the anabolic-catabolic index may help individualize effort intensity in T1D individuals.
Collapse
Affiliation(s)
- Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, ul. Jakubowskiego 2, 30-688, Krakow, Poland.
- University Hospital in Krakow, Krakow, Poland.
| | - Łukasz Tota
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Małgorzata Morawska-Tota
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Krakow, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, ul. Jakubowskiego 2, 30-688, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, ul. Jakubowskiego 2, 30-688, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
2
|
Piras A, Raffi M. A Narrative Literature Review on the Role of Exercise Training in Managing Type 1 and Type 2 Diabetes Mellitus. Healthcare (Basel) 2023; 11:2947. [PMID: 37998439 PMCID: PMC10671220 DOI: 10.3390/healthcare11222947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia associated with impaired carbohydrate, lipid, and protein metabolism, with concomitant absence of insulin secretion or reduced sensitivity to its metabolic effects. Patients with diabetes mellitus have a 30% more risk of developing heart failure and cardiovascular disease compared to healthy people. Heart and cardiovascular problems are the first cause of death worldwide and the main complications which lead to high healthcare costs. Such complications can be delayed or avoided by taking prescribed medications in conjunction with a healthy lifestyle (i.e., diet and physical activity). The American College of Sports Medicine and the American Diabetes Association recommend that diabetic people reduce total sedentary time by incorporating physical activity into their weekly routine. This narrative literature review aims to summarize and present the main guidelines, pre-exercise cardiovascular screening recommendations, and considerations for patients with diabetes and comorbidities who are planning to participate in physical activity programs.
Collapse
Affiliation(s)
- Alessandro Piras
- Department of Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Milena Raffi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Association of HbA1c with VO 2max in Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:metabo12111017. [PMID: 36355100 PMCID: PMC9697838 DOI: 10.3390/metabo12111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the association between glycemic control (HbA1c) and functional capacity (VO2max) in individuals with type 1 diabetes (T1DM). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until July 2020. Randomized and observational controlled trials with a minimum number of three participants were included if cardio-pulmonary exercise tests to determine VO2max and HbA1c measurement has been performed. Pooled mean values were estimated for VO2max and HbA1c and weighted Pearson correlation and meta-regression were performed to assess the association between these parameters. We included 187 studies with a total of 3278 individuals with T1DM. The pooled mean HbA1c value was 8.1% (95%CI; 7.9−8.3%), and relative VO2max was 38.5 mL/min/kg (37.3−39.6). The pooled mean VO2max was significantly lower (36.9 vs. 40.7, p = 0.001) in studies reporting a mean HbA1c > 7.5% compared to studies with a mean HbA1c ≤ 7.5%. Weighted Pearson correlation coefficient was r = −0.19 (p < 0.001) between VO2max and HbA1c. Meta-regression adjusted for age and sex showed a significant decrease of −0.94 mL/min/kg in VO2max per HbA1c increase of 1% (p = 0.024). In conclusion, we were able to determine a statistically significant correlation between HbA1c and VO2max in individuals with T1DM. However, as the correlation was only weak, the association of HbA1c and VO2max might not be of clinical relevance in individuals with T1DM.
Collapse
|
4
|
Type-1 diabetes and pulmonary function tests. A meta-analysis. Respir Med 2022; 203:106991. [DOI: 10.1016/j.rmed.2022.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
|
5
|
Choo YJ, Cho CW, Chang MC. Effects of supervised exercise on aerobic capacity and quality of life in patients with chronic liver disease and patients who underwent liver transplantation: a systematic review and meta-analysis. Int J Rehabil Res 2022; 45:1-11. [PMID: 34678843 DOI: 10.1097/mrr.0000000000000502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic liver disease and liver transplantation are risk factors for poor physical health and quality of life. This meta-analysis aimed to examine whether supervised exercise improves the physical health and quality of life in patients with chronic liver disease and liver transplant. Articles were searched in four databases (MEDLINE, Cochrane, Embase, and the Web of Science) from 1 January 1990 to 6 July 2021. Studies that assessed the change in aerobic capacity and quality of life following supervised exercise in patients with chronic liver disease or in those who had undergone liver transplantation were included in this meta-analysis. The two independent reviewers extracted data and the methodological quality of the included studies was assessed by the Cochrane Handbook for Systematic Reviews of Interventions. The extracted data were statistically analyzed using review management software (RevMan 5.3). The meta-analysis included 11 studies, comprising 159 patients. We observed that aerobic capacity measured as VO2 peak and 6-min walking test improved in patients with chronic liver disease and liver transplant after supervised exercise. Among the parameters of Short-form-36 (SF-36) used for measuring the quality of life, only physical functioning improved after supervised exercise. The other parameters of SF-36 including role-physical, bodily pain, general health, vitality, social functioning, role-emotional, and mental health were not significantly improved after supervised exercise. Supervised exercise seems essential for patients with chronic liver disease and liver transplant. It was found to be helpful in enhancing the aerobic capacity and physical function in these patients.
Collapse
Affiliation(s)
- Yoo Jin Choo
- Production R&D Division Advanced Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation
| | | | - Min Cheol Chang
- Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front Endocrinol (Lausanne) 2021; 12:772865. [PMID: 34867819 PMCID: PMC8639866 DOI: 10.3389/fendo.2021.772865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
The potential relationship between diabetes and COVID-19 has been evaluated. However, new knowledge is rapidly emerging. In this study, we systematically reviewed the relationship between viral cell surface receptors (ACE2, AXL, CD147, DC-SIGN, L-SIGN and DPP4) and SARS-CoV-2 infection risk, and emphasized the implications of ACE2 on SARS-CoV-2 infection and COVID-19 pathogenesis. Besides, we updated on the two-way interactions between diabetes and COVID-19, as well as the treatment options for COVID-19 comorbid patients from the perspective of ACE2. The efficacies of various clinical chemotherapeutic options, including anti-diabetic drugs, renin-angiotensin-aldosterone system inhibitors, lipid-lowering drugs, anticoagulants, and glucocorticoids for COVID-19 positive diabetic patients were discussed. Moreover, we reviewed the significance of two different forms of ACE2 (mACE2 and sACE2) and gender on COVID-19 susceptibility and severity. This review summarizes COVID-19 pathophysiology and the best strategies for clinical management of diabetes patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Wu
- Department of Endocrinology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Abstract
BACKGROUND Individuals with diabetes are at a greater risk of hospitalization and mortality resulting from viral, bacterial, and fungal infections. The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread quickly to more than 213 countries and claimed 395,779 lives as of June 7, 2020. Notably, in several studies, diabetes is one of the most reported comorbidities in patients with severe COVID-19. SCOPE OF REVIEW In this review, I summarize the clinical data on the risk for infectious diseases in individuals with diabetes while highlighting the mechanisms for altered immune regulation. The focus is on coronaviruses. Based on the new clinical data obtained from COVID-19 patients, a discussion of mechanisms, such as cytokine storm, pulmonary and endothelial dysfunction, and hypercoagulation, that may render individuals with diabetes more vulnerable to COVID-19 is provided. MAJOR CONCLUSIONS Epidemiological studies show that poorly controlled diabetes is a risk factor for various infectious diseases. Given the global burden of diabetes and the pandemic nature of coronaviruses, understanding how diabetes affects COVID-19 severity is critical to designing tailored treatments and clinical management of individuals affected by diabetes.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Betacoronavirus
- COVID-19
- Child
- Comorbidity
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/immunology
- Female
- Humans
- Immunity, Cellular
- Immunity, Innate
- Incidence
- Male
- Mice
- Middle Aged
- Pandemics
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Risk Factors
- SARS-CoV-2
Collapse
Affiliation(s)
- Suheda Erener
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, 85764, Neuherberg, Germany.
| |
Collapse
|
8
|
Heyman E, Daussin F, Wieczorek V, Caiazzo R, Matran R, Berthon P, Aucouturier J, Berthoin S, Descatoire A, Leclair E, Marais G, Combes A, Fontaine P, Tagougui S. Muscle Oxygen Supply and Use in Type 1 Diabetes, From Ambient Air to the Mitochondrial Respiratory Chain: Is There a Limiting Step? Diabetes Care 2020; 43:209-218. [PMID: 31636081 DOI: 10.2337/dc19-1125] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/25/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Long before clinical complications of type 1 diabetes (T1D) develop, oxygen supply and use can be altered during activities of daily life. We examined in patients with uncomplicated T1D all steps of the oxygen pathway, from the lungs to the mitochondria, using an integrative ex vivo (muscle biopsies) and in vivo (during exercise) approach. RESEARCH DESIGN AND METHODS We compared 16 adults with T1D with 16 strictly matched healthy control subjects. We assessed lung diffusion capacity for carbon monoxide and nitric oxide, exercise-induced changes in arterial O2 content (SaO2, PaO2, hemoglobin), muscle blood volume, and O2 extraction (via near-infrared spectroscopy). We analyzed blood samples for metabolic and hormonal vasoactive moieties and factors that are able to shift the O2-hemoglobin dissociation curve. Mitochondrial oxidative capacities were assessed in permeabilized vastus lateralis muscle fibers. RESULTS Lung diffusion capacity and arterial O2 transport were normal in patients with T1D. However, those patients displayed blunted exercise-induced increases in muscle blood volume, despite higher serum insulin, and in O2 extraction, despite higher erythrocyte 2,3-diphosphoglycerate. Although complex I- and complex II-supported mitochondrial respirations were unaltered, complex IV capacity (relative to complex I capacity) was impaired in patients with T1D, and this was even more apparent in those with long-standing diabetes and high HbA1c. [Formula: see text]O2max was lower in patients with T1D than in the control subjects. CONCLUSIONS Early defects in microvascular delivery of blood to skeletal muscle and in complex IV capacity in the mitochondrial respiratory chain may negatively impact aerobic fitness. These findings are clinically relevant considering the main role of skeletal muscle oxidation in whole-body glucose disposal.
Collapse
Affiliation(s)
- Elsa Heyman
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Frédéric Daussin
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | | | - Robert Caiazzo
- Service de Chirurgie Générale et Endocrinienne, University Hospital of Lille, Lille, France.,UMR_1190 Recherche Translationnelle sur le Diabète, Faculté de Médecine de Lille, INSERM, Lille, France
| | - Régis Matran
- Department of Physiology, EA 2689 and IFR 22, Lille, France
| | - Phanélie Berthon
- Inter-university Laboratory of Human Movement Sciences EA7424, University of Savoie Mont Blanc, Chambéry, France
| | - Julien Aucouturier
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Serge Berthoin
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | | | - Erwan Leclair
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France.,Réseau québécois de recherche sur la douleur, Université de Sherbrooke, Montreal, Quebec, Canada
| | - Gaëlle Marais
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Adrien Combes
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Pierre Fontaine
- Department of Diabetology, Lille University Hospital, EA 4489, Lille, France
| | - Sémah Tagougui
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France.,Metabolic Diseases, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Donaghue KC, Marcovecchio ML, Wadwa RP, Chew EY, Wong TY, Calliari LE, Zabeen B, Salem MA, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2018: Microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes 2018; 19 Suppl 27:262-274. [PMID: 30079595 PMCID: PMC8559793 DOI: 10.1111/pedi.12742] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Kim C Donaghue
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Camperdown, Australia
| | | | - R P Wadwa
- University of Colorado School of Medicine, Denver, Colorado
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, the National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | | | - Bedowra Zabeen
- Department of Paediatrics and Changing Diabetes in Children Program, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka, Bangladesh
| | - Mona A Salem
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maria E Craig
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Camperdown, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol 2017; 54:615-630. [PMID: 28289908 DOI: 10.1007/s00592-017-0978-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy.
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
11
|
Tagougui S, Leclair E, Fontaine P, Matran R, Marais G, Aucouturier J, Descatoire A, Vambergue A, Oussaidene K, Baquet G, Heyman E. Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes. Med Sci Sports Exerc 2016; 47:231-9. [PMID: 24983346 PMCID: PMC4323553 DOI: 10.1249/mss.0000000000000424] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Purpose Aerobic fitness, as reflected by maximal oxygen (O2) uptake (V˙O2max), is impaired in poorly controlled patients with type 1 diabetes. The mechanisms underlying this impairment remain to be explored. This study sought to investigate whether type 1 diabetes and high levels of glycated hemoglobin (HbA1c) influence O2 supply including O2 delivery and release to active muscles during maximal exercise. Methods Two groups of patients with uncomplicated type 1 diabetes (T1D-A, n = 11, with adequate glycemic control, HbA1c <7.0%; T1D-I, n = 12 with inadequate glycemic control, HbA1c >8%) were compared with healthy controls (CON-A, n = 11; CON-I, n = 12, respectively) matched for physical activity and body composition. Subjects performed exhaustive incremental exercise to determine V˙O2max. Throughout the exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the vastus lateralis. Venous and arterialized capillary blood was sampled during exercise to assess arterial O2 transport and factors able to shift the oxyhemoglobin dissociation curve. Results Arterial O2 content was comparable between groups. However, changes in total hemoglobin (i.e., muscle blood volume) was significantly lower in T1D-I compared with that in CON-I. T1D-I also had impaired changes in deoxyhemoglobin levels and increase during high-intensity exercise despite normal erythrocyte 2,3-diphosphoglycerate levels. Finally, V˙O2max was lower in T1D-I compared with that in CON-I. No differences were observed between T1D-A and CON-A. Conclusions Poorly controlled patients displayed lower V˙O2max and blunted muscle deoxyhemoglobin increase. The latter supports the hypotheses of increase in O2 affinity induced by hemoglobin glycation and/or of a disturbed balance between nutritive and nonnutritive muscle blood flow. Furthermore, reduced exercise muscle blood volume in poorly controlled patients may warn clinicians of microvascular dysfunction occurring even before overt microangiopathy.
Collapse
Affiliation(s)
- Semah Tagougui
- 1Physical Activity, Muscle and Health, Lille, EA 4488, University of Lille 2, FRANCE; 2Department of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, CANADA; 3Department of Diabetology, Lille University Hospital, EA 4489, Lille, FRANCE; 4Department of Physiology, EA 2689 and IFR 22, Lille, FRANCE; and 5Regional Hospital Centre of Roubaix, FRANCE
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mohammed J, Deda L, Clarson CL, Stein RI, Cuerden MS, Mahmud FH. Assessment of habitual physical activity in adolescents with type 1 diabetes. Can J Diabetes 2015; 38:250-5. [PMID: 25092645 DOI: 10.1016/j.jcjd.2014.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To evaluate habitual physical activity in a cohort of adolescents with type 1 diabetes in relation to similarly aged control subjects. METHODS A cross-sectional case control study of 54 healthy adolescents and 66 patients with type 1 diabetes, 14 to 18 years of age, was conducted. Subjects were surveyed using the Habitual Activity Estimation Scale, a validated self-report instrument to assess activity levels in teens. Subjects' time was classified into categories ranging from inactive (lying down, resting) to very active (increased heart rate and diaphoresis). Active time, described in relative (%) and absolute hours per day was determined for each individual. Age, sex, weight, height and body mass index were recorded for all participants, and the charts of subjects with type 1 diabetes were reviewed for most recent levels of glycated hemoglobin, low-density lipoproteins, high-density lipoproteins, total cholesterol, triglycerides and blood pressure. A regression analysis was performed to determine factors associated with hours spent being active. RESULTS Subjects with type 1 diabetes spent similar hours being very active (3.4 hours vs. 3.5 hours, p=0.49) but reported more time being inactive than controls (2.0 hours vs. 1.3 hours, p=0.002). In both groups, female gender was associated with more hours spent being active. Metabolic control as assessed by glycated hemoglobin worsened with activity. In the group with type 1 diabetes, more hours spent being active were associated with lower systolic blood pressure, lower serum triglyceride levels, lower total cholesterol and higher high-density lipoproteins, whereas inactivity correlated with higher low-density lipoproteins and total cholesterol. CONCLUSIONS Adolescents with type 1 diabetes reported significantly more time being inactive than did healthy controls. In patients with type 1 diabetes, activity was associated with improved cardiovascular risk profile.
Collapse
Affiliation(s)
- Javed Mohammed
- Department of Pediatrics, University of Western Ontario and Lawson Health Research Institute, London, Ontario, Canada
| | - Livia Deda
- Section of Endocrinology, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Cheril L Clarson
- Department of Pediatric Endocrinology, University of Western Ontario and Lawson Health Research Institute, London, Ontario, Canada
| | - Robert I Stein
- Department of Pediatric Endocrinology, University of Western Ontario and Lawson Health Research Institute, London, Ontario, Canada
| | - Meaghan S Cuerden
- Division of Nephrology, University of Western Ontario and Lawson Health Research Institute, London, Ontario, Canada
| | - Farid H Mahmud
- Section of Endocrinology, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
13
|
Slim I, Khalaf F, Latiri I, Elfkih Z, Rouatbi S, Khochtali I, Ghannouchi I, Zinelabidine A, Ben Othman L, Miled H, Chaieb L, Ben Saad H. Lung function in poorly controlled type 1 North African diabetic patients: A case-control study. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2015. [DOI: 10.1016/j.ejcdt.2015.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
Abstract
Physical exercise is firmly incorporated in the management of type 1 diabetes (T1DM), due to multiple recognized beneficial health effects (cardiovascular disease prevention being preeminent). When glycemic values are not excessively low or high at the time of exercise, few absolute contraindications exist; practical guidelines regarding amount, type, and duration of age-appropriate exercise are regularly updated by entities such as the American Diabetes Association and the International Society for Pediatric and Adolescent Diabetes. Practical implementation of exercise regimens, however, may at times be problematic. In the poorly controlled patient, specific structural changes may occur within skeletal muscle fiber, which is considered by some to be a disease-specific myopathy. Further, even in well-controlled patients, several homeostatic mechanisms regulating carbohydrate metabolism often become impaired, causing hypo- or hyperglycemia during and/or after exercise. Some altered responses may be related to inappropriate exogenous insulin administration, but are often also partly caused by the "metabolic memory" of prior glycemic events. In this context, prior hyperglycemia correlates with increased inflammatory and oxidative stress responses, possibly modulating key exercise-associated cardio-protective pathways. Similarly, prior hypoglycemia correlates with impaired glucose counterregulation, resulting in greater likelihood of further hypoglycemia to develop. Additional exercise responses that may be altered in T1DM include growth factor release, which may be especially important in children and adolescents. These multiple alterations in the exercise response should not discourage physical activity in patients with T1DM, but rather should stimulate the quest for the identification of the exercise formats that maximize beneficial health effects.
Collapse
Affiliation(s)
- Pietro Galassetti
- Department of Pediatrics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
15
|
Stehno-Bittel L. Organ-based response to exercise in type 1 diabetes. ISRN ENDOCRINOLOGY 2012; 2012:318194. [PMID: 23251813 PMCID: PMC3518066 DOI: 10.5402/2012/318194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
While significant research has clearly identified sedentary behavior as a risk factor for type 2 diabetes and its subsequent complications, the concept that inactivity could be linked to the complications associated with type 1 diabetes (T1D) remains underappreciated. This paper summarizes the known effects of exercise on T1D at the tissue level and focuses on the pancreas, bone, the cardiovascular system, the kidneys, skeletal muscle, and nerves. When possible, the molecular mechanisms underlying the benefits of exercise for T1D are elucidated. The general benefits of increased activity on health and the barriers to increased exercise specific to people with T1D are discussed.
Collapse
Affiliation(s)
- Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Miculis CP, de Campos W, Gasparotto GS, Silva MP, Mascarenhas LP, Boguszewski MCS. Correlation of cardiorespiratory fitness with risk factors for cardiovascular disease in children with type 1 diabetes mellitus. J Diabetes Complications 2012; 26:419-23. [PMID: 22717466 DOI: 10.1016/j.jdiacomp.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/19/2012] [Accepted: 05/15/2012] [Indexed: 11/26/2022]
Abstract
UNLABELLED The objective of this study was to correlate CRF with cardiovascular risk factors in T1DM children. METHODS Fifty children and adolescents aged between 9 and 17 years with no diabetes complications and a mean diabetes duration of 4.6 years were selected. Antropometric, sexual maturation and blood pressure data were evaluated. CRF level was assessed with a 20-m shuttle run test. Laboratory tests were performed to verify fasting lipids and glycated hemoglobin. Statistical analyses were made with Pearson partial correlation, t test, and one-way ANOVA, with p≤0.05. RESULTS After adjustment for body adiposity and sexual maturity, inverse correlations among CRF and TC, TG, TC/HDL-C, TG/HDL-C, non-HDL-C, and SBP were statistically significant. Variables differing by sex included weight Z score, BMI Z score, skinfold thickness, percentage of body fat, and DBP. Boys had higher CRF compared to girls. CRF and TC differed significantly by sexual maturation status. CONCLUSION An inverse and significant relationship between CRF and most lipid profile's components and SBP in poor controlled T1DM children and adolescents was found, independently of body adiposity.
Collapse
Affiliation(s)
- Cristiane P Miculis
- Physical Education Departament, Federal University of Paraná, Curitiba, PR 80215-370, Brazil.
| | | | | | | | | | | |
Collapse
|
17
|
Pitocco D, Fuso L, Conte EG, Zaccardi F, Condoluci C, Scavone G, Incalzi RA, Ghirlanda G. The diabetic lung--a new target organ? Rev Diabet Stud 2012; 9:23-35. [PMID: 22972442 DOI: 10.1900/rds.2012.9.23] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several abnormalities of the respiratory function have been reported in patients with type 1 and type 2 diabetes. These abnormalities concern lung volume, pulmonary diffusing capacity, control of ventilation, bronchomotor tone, and neuroadrenergic bronchial innervation. Many hypotheses have emerged, and characteristic histological changes have been described in the "diabetic lung", which could explain this abnormal respiratory function. Given the specific abnormalities in diabetic patients, the lung could thus be considered as a target organ in diabetes. Although the practical implications of these functional changes are mild, the presence of an associated acute or chronic pulmonary and/or cardiac disease could determine severe respiratory derangements in diabetic patients. Another clinical consequence of the pulmonary involvement in diabetes is the accelerated decline in respiratory function. The rate of decline in respiratory function in diabetics has been found to be two-to-three times faster than in normal non-smoking subjects, as reported in longitudinal studies. This finding, together with the presence of anatomical and biological changes similar to those described in the aging lung, indicates that the "diabetic lung" could even be considered a model of accelerated aging. This review describes and analyses the current insight into the relationship of diabetes and lung disease, and suggests intensifying research into the lung as a possible target organ in diabetes.
Collapse
Affiliation(s)
- Dario Pitocco
- Diabetes Care Unit, Catholic University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|