1
|
Lv S, Zhu Z, Xiao H. Flavonoids and their metal complexes as potential agents for diabetes mellitus with future perspectives. Crit Rev Food Sci Nutr 2025:1-31. [PMID: 39902771 DOI: 10.1080/10408398.2025.2461238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health burden, with hyperglycemia as the main hallmark. This review commences with a concise overview of the intricate mechanisms underlying glucose uptake and utilization in organisms. Notably, we emphasize that T2DM management strategies pivot on delaying carbohydrate digestion, augmenting insulin secretion, and enhancing insulin sensitivity in target tissues. Unfortunately, the drugs currently available in the market for the treatment of T2DM have unpleasant side effects, spurring an urgent quest for safer and more efficacious alternatives. Flavonoids, emerging as a promising class of bioactive compounds derived from plants, offer a multi-faceted approach to diabetes treatment. Specifically, they potently inhibit enzymes such as α-amylase, α-glucosidase, dipeptidyl peptidase-4 (DPP-4), glycogen phosphorylase (GP) and protein-tyrosine phosphatase-1B (PTP1B). Through an in-depth analysis, this review not only summarizes these inhibitory actions but also establishes the structure-activity relationship (SAR), providing a blueprint for rational drug design. However, the clinical translation of flavonoids has been hampered by their suboptimal water solubility and bioavailability, attributable to the characteristic carbonyl and hydroxyl groups. Ingeniously, this chemical quirk has been harnessed to engineer metal chelates, which exhibit enhanced pharmacokinetic profiles. Herein, we offer an exhaustive overview of the latest advancements in flavonoid metal complexes research, spotlighting their potential as next-generation diabetes therapeutics. Available data are poised to galvanize the development of novel flavonoid derivatives, be it as potent drugs or functional foods, for combating T2DM.
Collapse
Affiliation(s)
- Shuang Lv
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhenbao Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, USA
| |
Collapse
|
2
|
Lamantia V, Bissonnette S, Beaudry M, Cyr Y, Rosiers CD, Baass A, Faraj M. EPA and DHA inhibit LDL-induced upregulation of human adipose tissue NLRP3 inflammasome/IL-1β pathway and its association with diabetes risk factors. Sci Rep 2024; 14:27146. [PMID: 39511203 PMCID: PMC11543682 DOI: 10.1038/s41598-024-73672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Elevated numbers of atherogenic lipoproteins (apoB) predict the incidence of type 2 diabetes (T2D). We reported that this may be mediated via the activation of the NLRP3 inflammasome, as low-density lipoproteins (LDL) induce interleukin-1 beta (IL-1β) secretion from human white adipose tissue (WAT) and macrophages. However, mitigating nutritional approaches remained unknown. We tested whether omega-3 eicosapentaenoic and docosahexaenoic acids (EPA and DHA) treat LDL-induced upregulation of WAT IL-1β-secretion and its relation to T2D risk factors. Twelve-week intervention with EPA and DHA (2.7 g/day, Webber Naturals) abolished baseline group-differences in WAT IL-1β-secretion between subjects with high-apoB (N = 17) and low-apoB (N = 16) separated around median plasma apoB. Post-intervention LDL failed to trigger IL-1β-secretion and inhibited it in lipopolysaccharide-stimulated WAT. Omega-3 supplementation also improved β-cell function and postprandial fat metabolism in association with higher blood EPA and mostly DHA. It also blunted the association of WAT NLRP3 and IL1B expression and IL-1β-secretion with multiple cardiometabolic risk factors including adiposity. Ex vivo, EPA and DHA inhibited WAT IL-1β-secretion in a dose-dependent manner. In conclusion, EPA and DHA treat LDL-induced upregulation of WAT NLRP3 inflammasome/IL-1β pathway and related T2D risk factors. This may aid in the prevention of T2D and related morbidities in subjects with high-apoB.Clinical Trail Registration ClinicalTrials.gov (NCT04496154): Omega-3 to Reduce Diabetes Risk in Subjects with High Number of Particles That Carry "Bad Cholesterol" in the Blood - Full Text View - ClinicalTrials.gov.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Myriam Beaudry
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
| | - Alexis Baass
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Gouaref I, Otmane A, Makrelouf M, Abderrhmane SA, Haddam AEM, Koceir EA. Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction. Int J Mol Sci 2024; 25:9288. [PMID: 39273236 PMCID: PMC11395650 DOI: 10.3390/ijms25179288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The coexistence of SAH with T2DM is a common comorbidity. In this study, we investigated the link between altered plasma antioxidant trace elements (ATE: manganese, selenium, zinc, and copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile, which is modified during SAH-T2DM association compared to the healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of total SFA, palmitic acid, arachidonic acid, and PUFA ω6/PUFA ω3; drop in tandem of PUFA/SFA and EPA + DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA rise, concurrent drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitant enhancement of Cu, Mn, and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitant rise of ApoB100/ApoA1, Ox-LDL, tHcy, and Lp(a)), and inflammation (higher of Hs-CRP, fibrinogen and ferritin). Our study opens to new therapeutic targets and to better dietary management, such as to establishing dietary ATE and PUFA ω6/PUFA ω3 or PUFA/SFA reference values for atherosclerotic risk prevention in hypertensive/diabetic patients.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| | - Amel Otmane
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Mohamed Makrelouf
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache (ex. HCA de Aïn Naâdja), Algiers 16208, Algeria
| | - Ali El Mahdi Haddam
- Diabetology Unit, University Hospital Center, Mohamed Lamine Debaghine, Algiers I-University, Bab El Oued, Algiers 16000, Algeria
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| |
Collapse
|
4
|
Zhu T, Chen Q, Chen H, You L, Liu D, Zhang X, Li F, Wu H, Tang J, Lin D, Sun K, Yan L, Ren M. Independent and interactive associations of heart rate and obesity with type 2 diabetes mellites: A population-based study. J Diabetes 2024; 16:e13529. [PMID: 38599825 PMCID: PMC11006609 DOI: 10.1111/1753-0407.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Although obesity and heart rate (HR) were closely related to the prevalence and development of type 2 diabetes mllitus (T2DM), few studies have shown a co-association effect of them on T2DM. We aimed at assessing the interactive effects of HR and obesity with prevalence of T2DM in Chinese population, providing the exact cutpoint of the risk threshold for blood glucose with high HR. MATERIALS AND METHODS In the Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal study (REACTION) cohorts (N = 8398), the relationship between HR and T2DM was explored by linear regression, logistic regression, and restricted cubic spline, and odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Interaction terms between HR and body mass index (BMI) and HR and waist circumference (WC) were introduced into the logistic regression model. RESULTS In those with HR > 88.0 beats/min, fasting plasma glucose and oral glucose tolerance tests were significantly correlated with HR, and the prevalence of T2DM was highly correlated with HR (all p < .05). There were interactive associations of HR and obesity in patients with T2DM with HR < 74 beats/min. CONCLUSION High HR was in interaction with obesity, associating with prevalence of T2DM. The newly subdivided risk threshold for HR with T2DM might be HR > 88 beats/minute.
Collapse
Affiliation(s)
- Tianxin Zhu
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Qingyu Chen
- Health Examination Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hongxing Chen
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Lili You
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Dan Liu
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaoyun Zhang
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Feng Li
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hongshi Wu
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Juying Tang
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Diaozhu Lin
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Kan Sun
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Li Yan
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meng Ren
- Department of Endocrinology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Huang H, Zhao T, Li J, Shen J, Xiao R, Ma W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl Microbiol Biotechnol 2023; 107:7251-7267. [PMID: 37733050 DOI: 10.1007/s00253-023-12754-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has a major comorbidity known as diabetes-associated cognitive dysfunction (DACD). Studies have demonstrated that the gut microbiota is crucial in mediating the cognitive abnormalities that occur in diabetic individuals. Additionally, changes in dietary fatty acid intake levels, inflammatory cytokines, and microRNAs (miRs) have an effect on cognitive performance. However, further studies are needed to identify the link between gut microbiota and cognition in T2DM patients and the role that the above indicators play in this process. In order to provide a new rationale for the treatment of cognitive dysfunction in diabetes, this study was conducted in the middle-aged and elderly Beijing population to examine the differences in gut microbiota between DACD and T2DM patients as well as to further explore the role of erythrocyte membrane fatty acids, inflammatory cytokines, and miRs in gut microbiota-mediated cognitive impairment. According to the results, the abundance of norank_f_Eubacterium_coprostanoligenes_group, Acidaminococcus, Enterorhabdus, and norank_f_Clostridium_methylpentosum_group was higher in DACD patients compared to T2DM patients at the genus level. Compared with T2DM patients, plasma interleukin-12 (IL-12) concentrations were significantly higher in DACD patients than in T2DM patients, and IL-12 was significantly positively correlated with norank_f_Eubacterium_coprostanoligenes_group. In addition, plasma miR-142-5p was significantly positively correlated with Enterorhabdus and norank_f_Eubacterium_coprostanoligenes_group. We therefore hypothesize that cognitive impairment in T2DM patients is associated with altered gut microbial composition and that the effect of microbiota on cognition may be mediated through IL-12 and miR-142-5p. KEY POINTS: • Type 2 diabetes with or without cognitive impairment differs in gut microbiota. • Differential genera of gut microbiota were associated with inflammatory cytokines. • Differential genera of gut microbiota were associated with plasma microRNAs.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
6
|
Khalili L, Valdes-Ramos R, Harbige LS. Effect of n-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites 2021; 11:metabo11110742. [PMID: 34822400 PMCID: PMC8620218 DOI: 10.3390/metabo11110742] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022] Open
Abstract
Beneficial effects of n-3 fatty acids on metabolic biomarkers in patients with type 2 diabetes (T2DM) has been reported. The objectives of this current research were to investigate the effects of n-3 supplementation on metabolic factors, weight, and body mass index (BMI) in patients with type 2 diabetes mellitus (T2DM), using a meta-analysis of randomized, controlled trials (RCTs). Online databases PubMed, Embase, Web of Science, and Science Direct were searched until 2021 to identify eligible articles. Thirty trials were included. The results showed that n-3 consumption can significantly reduce glycemic factors including fasting blood sugar (FBS) (−0.36 (−0.71 to −0.01)), glycated hemoglobulin (HbA1c) (−0.74 (−1.13 to −0.35)), and homeostatic model assessment of insulin resistance (HOMA.IR) (−0.58 (−1.13 to −0.03)). Furthermore, significant improvement in lipid profile including triglycerides (TG) (−0.27 (−0.37 to −0.18)), total cholesterol (−0.60 (−0.88 to −0.32)), low density lipoprotein (LDL) (−0.54 (−0.85 to −0.23)), and high-density lipoprotein (HDL) (0.60 (0.23 to 0.96)) levels were found in the present meta-analysis. The reduction in the inflammatory marker’s tumor necrosis factor-alpha (TNF-α) (−0.13 (−0.75 to 0.48)) and c-reactive protein (CRP) (−0.72 (−1.70 to 0.27)), as well as weight (−0.09 (−0.24 to 0.07)) and BMI (−0.13 (−0.29 to 0.02)) were not statistically significant. Furthermore, the findings revealed that the optimal dose and duration of n-3 consumption for patients with T2DM is 1000–2000 mg/d for more than 8 weeks. The present meta-analysis and review reveals that n-3 supplementation can improve glycemic factors and lipid profile in patients with T2DM. Furthermore, n-3 supplementation may provide beneficial effects on inflammatory markers and body weight if used at the appropriate dose and duration.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence: (L.K.); (L.S.H.)
| | - Roxana Valdes-Ramos
- Lider del Cuerpo Academico de Nutricion y Salud, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan, esq. Jesus Carranza, Col. Moderna de la Cruz, Toluca 52180, Mexico;
| | - Laurence S. Harbige
- Lipidomics and Nutrition Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
- Correspondence: (L.K.); (L.S.H.)
| |
Collapse
|
7
|
Gouaref I, Bouazza A, Abderrhmane SA, Koceir EA. Lipid Profile Modulates Cardiometabolic Risk Biomarkers Including Hypertension in People with Type-2 Diabetes: A Focus on Unbalanced Ratio of Plasma Polyunsaturated/Saturated Fatty Acids. Molecules 2020; 25:E4315. [PMID: 32962299 PMCID: PMC7570813 DOI: 10.3390/molecules25184315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with lipid metabolism disorder, particularly elevated plasma levels of non-esterified free fatty acids (NEFFA) and an increased cardiovascular disease risk, such as essential hypertension (H). The plasma unbalance of saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio is a likely contributor, but the mechanisms involved are not clearly elucidated. The aim of this study is to explore the association between plasma SFA/PUFA ratio and the clusters of cardiometabolic syndrome (CMS), including the atherogenic biomarkers, inflammatory status, feeding patterns, and physical activity in people with T2DM with or without essential hypertension. The study was conducted on 784 adult male and female participants, aged between 30 and 50 years, and divided into 3 groups: 100 T2DM without hypertension (D); 368 T2DM with hypertension (DM); and 316 hypertensive participants without T2DM (H). All Participants were phenotyped regarding CMS clusters according to the NCEP/ATPIII criteria. Insulin resistance was assessed by Homeostasis model assessment (HOMA model). Metabolic, atherogenic, and inflammatory parameters were analyzed by biochemical methods; NEFFA by microfluorimetry; SFA, PUFA-n6 and PUFA-n3 by gas phase chromatography. Dietary lipids and physical activity were analyzed through the use of validated questionnaires. The clusters of CMS were found in all groups. Dyslipidemia was correlated with accretion NEFFA levels in all groups, but more accentuated in the DH group (r = +0.77; p < 0.001). Similarly, plasma PUFA/SFA ratio and PUFA-3 level was lower, concomitantly with a higher plasma ApoB100/ApoA1 (p < 0.001), lipoprotein (a), homocysteine (p < 0.001), and pro-inflammatory cytokines (TNFα, IL-6, IL1-β) in the DH group. Likewise, the depletion of PUFA-n3/PUFA-n6 ratio is associated with the decrease of omega 3-DHA (docosahexaenoic acid) and omega 3-EPA (eicosapentaenoic acid) (p < 0.001). It appears that the PUFAs-n3 ratio modulates cardiometabolic risk, inflammatory state and atherogenic biomarkers. The plasma unbalanced ratio of SFA/PUFA reflects dietary fatty acids intake. The contribution of dietary lipids is undisputed. Nutritional recommendations are required to determine the fatty acids ratio (saturated and unsaturated) provided in the diet.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16123 Algiers, Algeria; (I.G.); (A.B.)
| | - Asma Bouazza
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16123 Algiers, Algeria; (I.G.); (A.B.)
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache, 244 (16208-Kouba) Algiers, Algeria;
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16123 Algiers, Algeria; (I.G.); (A.B.)
| |
Collapse
|
8
|
Faraj M. LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue. J Biomed Res 2020; 34:251-259. [PMID: 32701068 PMCID: PMC7386410 DOI: 10.7555/jbr.34.20190124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) and cardiovascular disease (CVD) share many risk factors such as obesity, unhealthy lifestyle, and metabolic syndrome, whose accumulation over years leads to disease onset. However, while lowering plasma low-density lipoprotein cholesterol (LDLC) is cardio-protective, novel evidence have recognised a role for common LDLC-lowering variants (e.g. in HMGCR, PCSK9, and LDLR) and widely used hypocholesterolemic drugs that mimic the effects of some of these variants (statins) in higher risk for T2D. As these conditions decrease plasma LDLC by increasing tissue-uptake of LDL, a role for LDL receptor (LDLR) pathway was proposed. While underlying mechanisms remain to be fully elucidated, work from our lab reported that native LDL directly provoke the dysfunction of human white adipose tissue (WAT) and the activation of WAT NLRP3 (Nucleotide-binding domain and Leucine-rich repeat Receptor, containing a Pyrin domain 3) inflammasome, which play a major role in the etiology of T2D. However, while elevated plasma numbers of apolipoprotein B (apoB)-containing lipoproteins (measured as apoB, mostly as LDL) is associated with WAT dysfunction and related risk factors for T2D in our cohort, this relation was strengthened in regression analysis by lower plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). This supports a central role for upregulated pathway of LDLR and/or other receptors regulated by PCSK9 such as cluster of differentiation 36 (CD36) in LDL-induced anomalies. Targeting receptor-mediated uptake of LDL into WAT may reduce WAT inflammation, WAT dysfunction, and related risk for T2D without increasing the risk for CVD.
Collapse
Affiliation(s)
- May Faraj
- Cardiovascular and Metabolic Disease Division, Montreal Clinical Research Institute, Montréal, Québec H2W 1R7, Canada;Department of Nutrition, Faculty of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada;Montréal Diabetes Research Center, Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
9
|
Jin JL, Cao YX, Liu HH, Zhang HW, Guo YL, Wu NQ, Zhu CG, Xu RX, Gao Y, Sun J, Dong Q, Li JJ. Impact of free fatty acids on prognosis in coronary artery disease patients under different glucose metabolism status. Cardiovasc Diabetol 2019; 18:134. [PMID: 31610783 PMCID: PMC6791018 DOI: 10.1186/s12933-019-0936-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the present study is to examine the effects of free fatty acids (FFAs) on major cardiovascular events (MACEs) in patients with stable coronary artery disease (CAD) and different glucose metabolism status. Methods In this study, we consecutively enrolled 5443 patients from March 2011 to May 2015. Patients were categorized according to both status of glucose metabolism status [diabetes mellitus (DM), pre-diabetes (Pre-DM), normal glycaemia regulation (NGR)] and FFAs levels. All subjects were followed up for the occurrence of the MACEs. Results During a median of 6.7 years’ follow-up, 608 MACEs occurred. A twofold higher FFAs level was independently associated with MACEs after adjusting for confounding factors [Hazard Ratio (HR): 1.242, 95% confidence interval (CI) 1.084–1.424, p value = 0.002]. Adding FFAs to the Cox model increased the C-statistic by 0.015 (0.005–0.027). No significant difference in MACEs was observed between NGR and Pre-DM groups (p > 0.05). When patients were categorized by both status of glucose metabolism and FFAs levels, medium and high FFAs were associated with significantly higher risk of MACEs in Pre-DM [1.736 (1.018–2.959) and 1.779 (1.012–3.126), all p-value < 0.05] and DM [2.017 (1.164–3.494) and 2.795 (1.619–4.824), all p-value < 0.05]. Conclusions The present data indicated that baseline FFAs levels were associated with the prognosis in DM and Pre-DM patients with CAD, suggesting that FFAs may be a valuable predictor in patients with impaired glucose metabolism.
Collapse
Affiliation(s)
- Jing-Lu Jin
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Ye-Xuan Cao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Hui-Hui Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Hui-Wen Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China.
| |
Collapse
|
10
|
Abstract
Purpose of Review It is estimated that over 400 million people worldwide are living with diabetes. Excess adiposity is the strongest risk factor for non-insulin-dependent diabetes, type 2. Lifestyle interventions have demonstrated that diet plays a critical role in preventing the onset of type 2 diabetes. Dietary fat is not only a source of energy and nutrients, but also bioactive fatty acids. The purpose of this review was to examine data from recent prospective cohort studies and dietary interventions to determine if there are benefits to fat consumption on diabetes risk. Recent Findings The consumption of fish and marine n-3 fatty acids among Asian populations and regular-fat dairy foods and trans-palmitoleic acid (trans-16, n-7) among Western populations may be associated with reduced risk for type 2 diabetes. Summary Whereas some dietary fat may contribute to reduced diabetes risk, lifestyle recommendations to balance calories with physical activity are prudent at this time.
Collapse
Affiliation(s)
- Beth H Rice Bradley
- Department of Nutrition and Food Sciences, University of Vermont, 109 Carrigan Drive, 255 MLS Carrigan Wing, Burlington, VT, 05405, USA.
| |
Collapse
|
11
|
Johnston LW, Harris SB, Retnakaran R, Giacca A, Liu Z, Bazinet RP, Hanley AJ. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018; 61:821-830. [PMID: 29275428 DOI: 10.1007/s00125-017-4534-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to determine the longitudinal associations of individual NEFA with the pathogenesis of diabetes, specifically with differences in insulin sensitivity and beta cell function over 6 years in a cohort of individuals who are at risk for diabetes. METHODS In the Prospective Metabolism and Islet Cell Evaluation (PROMISE) longitudinal cohort, 477 participants had serum NEFA measured at the baseline visit and completed an OGTT at three time points over 6 years. Outcome variables were calculated using the OGTT values. At each visit, insulin sensitivity was assessed using the HOMA2 of insulin sensitivity (HOMA2-%S) and the Matsuda index, while beta cell function was assessed using the insulinogenic index over HOMA-IR (IGI/IR) and the insulin secretion-sensitivity index-2 (ISSI-2). Generalised estimating equations were used, adjusting for time, waist, sex, ethnicity, baseline age, alanine aminotransferase (ALT) and physical activity. NEFA were analysed as both concentrations (nmol/ml) and proportions (mol%) of the total fraction. RESULTS Participants' (73% female, 70% with European ancestry) insulin sensitivity and beta cell function declined by 14-21% over 6 years of follow-up. In unadjusted models, several NEFA (e.g. 18:1 n-7, 22:4 n-6) were associated with lower insulin sensitivity, however, nearly all of these associations were attenuated in fully adjusted models. In adjusted models, total NEFA, 16:0, 18:1 n-9 and 18:2 n-6 (as concentrations) were associated with 3.7-8.0% lower IGI/IR and ISSI-2, while only 20:5 n-3 (as mol%) was associated with 7.7% higher HOMA2-%S. CONCLUSIONS/INTERPRETATION Total NEFA concentration was a strong predictor of lower beta cell function over 6 years. Our results suggest that the association with beta cell function is due to the absolute size of the serum NEFA fraction, rather than the specific fatty acid composition.
Collapse
Affiliation(s)
- Luke W Johnston
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Stewart B Harris
- Centre for Studies in Family Medicine, University of Western Ontario, London, ON, Canada
| | - Ravi Retnakaran
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada.
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Metabolic response to omega-3 fatty acid supplementation in patients with diabetic nephropathy: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2017; 36:79-84. [DOI: 10.1016/j.clnu.2015.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022]
|
13
|
Cobb J, Eckhart A, Motsinger-Reif A, Carr B, Groop L, Ferrannini E. α-Hydroxybutyric Acid Is a Selective Metabolite Biomarker of Impaired Glucose Tolerance. Diabetes Care 2016; 39:988-95. [PMID: 27208342 DOI: 10.2337/dc15-2752] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma metabolites that distinguish isolated impaired glucose tolerance (iIGT) from isolated impaired fasting glucose (iIFG) may be useful biomarkers to predict IGT, a high-risk state for the development of type 2 diabetes. RESEARCH DESIGN AND METHODS Targeted metabolomics with 23 metabolites previously associated with dysglycemia was performed with fasting plasma samples from subjects without diabetes at time 0 of an oral glucose tolerance test (OGTT) in two observational cohorts: RISC (Relationship Between Insulin Sensitivity and Cardiovascular Disease) and DMVhi (Diabetes Mellitus and Vascular Health Initiative). Odds ratios (ORs) for a one-SD change in the metabolite level were calculated using multiple logistic regression models controlling for age, sex, and BMI to test for associations with iIGT or iIFG versus normal. Selective biomarkers of iIGT were further validated in the Botnia study. RESULTS α-Hydroxybutyric acid (α-HB) was most strongly associated with iIGT in RISC (OR 2.54 [95% CI 1.86-3.48], P value 5E-9) and DMVhi (2.75 [1.81-4.19], 4E-5) while having no significant association with iIFG. In Botnia, α-HB was selectively associated with iIGT (2.03 [1.65-2.49], 3E-11) and had no significant association with iIFG. Linoleoyl-glycerophosphocholine (L-GPC) and oleic acid were also found to be selective biomarkers of iIGT. In multivariate IGT prediction models, addition of α-HB, L-GPC, and oleic acid to age, sex, BMI, and fasting glucose significantly improved area under the curve in all three cohorts. CONCLUSIONS α-HB, L-GPC, and oleic acid were shown to be selective biomarkers of iIGT, independent of age, sex, BMI, and fasting glucose, in 4,053 subjects without diabetes from three European cohorts. These biomarkers can be used in predictive models to identify subjects with IGT without performing an OGTT.
Collapse
Affiliation(s)
| | | | - Alison Motsinger-Reif
- Department of Statistics, Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | | | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | | |
Collapse
|
14
|
Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A, Zhuang Y, Tyagi E, Zhang Q, Lee JH, Morselli M, Orozco L, Guo W, Kilts TM, Zhu J, Zhang B, Pellegrini M, Xiao X, Young MF, Gomez-Pinilla F, Yang X. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders. EBioMedicine 2016; 7:157-66. [PMID: 27322469 PMCID: PMC4909610 DOI: 10.1016/j.ebiom.2016.04.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
Abstract
Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Fructose promotes transcriptomic and epigenomic reprogramming to perturb brain networks linking metabolism and brain function. The extracellular matrix genes Bgn and Fmod emerge as key regulators of gene networks responsive to fructose. The omega-3 fatty acid DHA reverses fructose-induced genomic and network reprogramming.
Meng et al. report fructose as a powerful inducer of genomic and epigenomic variability with the capacity to reorganize gene networks critical for central metabolic regulation and neuronal processes in the brain; conversely, an omega-3 fatty acid, DHA, has the potential to normalize the genomic impact of fructose. Our findings help explain the pathogenic actions of fructose on prevalent metabolic and brain disorders and provide proof-of-concept for nutritional remedies supported by nutrigenomics evidence. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.
Collapse
Affiliation(s)
- Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Noble
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rahul Agrawal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Mikhail
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ethika Tyagi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qing Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701, Korea
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luz Orozco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weilong Guo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Synthetic & Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Tina M Kilts
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|