1
|
Yu C, Sun R, Yang W, Gu T, Ying X, Ye L, Zheng Y, Fan S, Zeng X, Yao S. Exercise ameliorates osteopenia in mice via intestinal microbial-mediated bile acid metabolism pathway. Theranostics 2025; 15:1741-1759. [PMID: 39897551 PMCID: PMC11780523 DOI: 10.7150/thno.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. Methods: We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. Results: We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Conclusion: Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Xiaozhang Ying
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Yang Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| |
Collapse
|
2
|
Peng B, Feng Z, Yang A, Liu J, He J, Xu L, Tian C, Sheng X, Wang Y, Chen R, Wang X, Ren X, Geng B, Xia Y. TIMP1 regulates ferroptosis in osteoblasts by inhibiting TFRC ubiquitination: an in vitro and in vivo study. Mol Med 2024; 30:226. [PMID: 39578773 PMCID: PMC11585138 DOI: 10.1186/s10020-024-01000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND In clinical practice, alterations in the internal environment of type 2 diabetes can significantly affect bone quality. While the increased risk of fractures among diabetic patients is well-established, the precise mechanisms by which hyperglycemia influences bone quality remain largely unclear. METHODS Western blotting, immunohistochemistry (IHC), and micro-CT were used to examine ferroptosis-related protein expression and bone morphology changes in the bone tissues of type 2 diabetic mice. The CCK8 assay determined the optimal conditions for inducing ferroptosis in osteoblasts by high glucose and high fat (HGHF). Ferroptosis phenotypes in osteoblasts were analyzed using flow cytometry, Western blotting, and two-photon laser confocal microscopy. Transcriptomic sequencing of the control and HGHF groups, followed by bioinformatic analysis, identified and validated key genes. TIMP1 was knocked down in osteoblasts to assess its impact on ferroptosis, while TFRC expression was inhibited and activated to verify the role of TIMP1 in regulating ferroptosis through TFRC. The therapeutic effect of TIMP1 inhibition on osteoporosis was evaluated in a type 2 diabetic mouse model. RESULTS The expression of TIMP1 is increased in type 2 diabetic osteoporosis. In vitro, TIMP1 knockout inhibited ferroptosis in osteoblasts induced by high glucose and high fat (HGHF). However, overexpression of TFRC reversed the ferroptosis inhibition caused by TIMP1 knockout. Suppression of TIMP1 expression alleviated the progression of osteoporosis in type 2 diabetic mice. Mechanistic studies suggest that TIMP1 regulates HGHF-induced ferroptosis in osteoblasts through TFRC. CONCLUSION This study demonstrates that TIMP1 expression is increased during type 2 diabetic osteoporosis and that TIMP1 promotes ferroptosis in osteoblasts by regulating TFRC. These findings suggest that TIMP1 is a promising novel therapeutic target for type 2 diabetic osteoporosis.
Collapse
Grants
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
Collapse
Affiliation(s)
- Bo Peng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Zhiwei Feng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Ao Yang
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Jinmin Liu
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Jinwen He
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Lihu Xu
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Cong Tian
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoyun Sheng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Yaobin Wang
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Rongjin Chen
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Xingwen Wang
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Xiaojun Ren
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China.
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yayi Xia
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China.
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
4
|
Feng R, Cheng S, Zhang F, Xu K, Liu L, Yang M, Xu P. Evaluating the association between lifestyle factors and heel bone mineral density in different inflammatory states. Heliyon 2024; 10:e33435. [PMID: 39040264 PMCID: PMC11261795 DOI: 10.1016/j.heliyon.2024.e33435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Rationale It is unclear whether lifestyle factors affect bone mineral density (BMD) during different inflammatory states. Objective This study investigated the effects of coffee consumption, vitamin D (VD) intake, smoking, and alcohol consumption on heel BMD in adults with different inflammatory states. Methods The phenotypic data from 249,825 participants were analyzed using the UK Biobank cohort. The inflammatory status was evaluated using C-reactive protein (CRP) levels and the systemic immune-inflammation index. Linear regression analysis was used to examine the association between coffee consumption, VD, smoking, alcohol consumption, and heel BMD in adults with different inflammatory states. Linear regression models were used to analyze the interaction between inflammation and the four lifestyle factors with respect to their influence on heel BMD in adults. Results Our findings revealed that VD was positively associated with adult heel BMD (β = 2.41 × 10-2, SE = 5.14 × 10-3, P = 2.72 × 10-6), while alcohol consumption and smoking were negatively associated with adult heel BMD. Coffee was negatively associated with adult heel BMD in low inflammatory states (β = -1.27 × 10-2, SE = 4.79 × 10-3, P = 8.00 × 10-3), while there was no association between coffee and adult heel BMD in high inflammatory states. Overall, it was found that these four lifestyle factors interacted negatively with inflammatory states. Conclusion Our study suggests that VD is positively associated with adult heel BMD and that alcohol consumption and smoking are negatively associated with adult heel BMD. Coffee may reverse the adverse effects of inflammation on BMD when the patient is in a highly inflammatory state, thus acting as a protective agent against heel BMD in adults.
Collapse
Affiliation(s)
- Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shanxi, 710054, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shanxi, 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shanxi, 710054, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shanxi, 710054, China
| |
Collapse
|
5
|
Xie W, Donat A, Jiang S, Baranowsky A, Keller J. The emerging role of tranexamic acid and its principal target, plasminogen, in skeletal health. Acta Pharm Sin B 2024; 14:2869-2884. [PMID: 39027253 PMCID: PMC11252461 DOI: 10.1016/j.apsb.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The worldwide burden of skeletal diseases such as osteoporosis, degenerative joint disease and impaired fracture healing is steadily increasing. Tranexamic acid (TXA), a plasminogen inhibitor and anti-fibrinolytic agent, is used to reduce bleeding with high effectiveness and safety in major surgical procedures. With its widespread clinical application, the effects of TXA beyond anti-fibrinolysis have been noticed and prompted renewed interest in its use. Some clinical trials have characterized the effects of TXA on reducing postoperative infection rates and regulating immune responses in patients undergoing surgery. Also, several animal studies suggest potential therapeutic effects of TXA on skeletal diseases such as osteoporosis and fracture healing. Although a direct effect of TXA on the differentiation and function of bone cells in vitro was shown, few mechanisms of action have been reported. Here, we summarize recent findings of the effects of TXA on skeletal diseases and discuss the underlying plasminogen-dependent and -independent mechanisms related to bone metabolism and the immune response. We furthermore discuss potential novel indications for TXA application as a treatment strategy for skeletal diseases.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
6
|
Ji J, Wu S, Bao X, Liu S, Ye Y, Liu J, Guo J, Liu J, Wang X, Xia Z, Wei L, Zhang Y, Hao D, Huang D. Mediating oxidative stress through the Palbociclib/miR-141-3p/STAT4 axis in osteoporosis: a bioinformatics and experimental validation study. Sci Rep 2023; 13:19560. [PMID: 37949959 PMCID: PMC10638393 DOI: 10.1038/s41598-023-46813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis is a common bone disease characterized by loss of bone mass, reduced bone strength, and deterioration of bone microstructure. ROS-induced oxidative stress plays an important role in osteoporosis. However, the biomarkers and molecular mechanisms of oxidative stress are still unclear. We obtained the datasets from the Gene Expression Omnibus (GEO) database, and performed differential analysis, Venn analysis, and weighted correlation network analysis (WGCNA) analysis out the hub genes. Then, the correlation between inflammatory factors and hub genes was analyzed, and a Mendelian randomization (MR) analysis was performed on cytokines and osteoporosis outcomes. In addition, "CIBERSORT" was used to analyze the infiltration of immune cells and single-cell RNA-seq data was used to analyze the expression distribution of hub genes and cell-cell communications. Finally, we collected human blood samples for RT-qPCR and Elisa experiments, the miRNA-mRNA network was constructed using the miRBase database, the 3D structure was predicted using the RNAfold, Vfold3D database, and the drug sensitivity analysis was performed using the RNAactDrug database. We obtained three differentially expressed genes associated with oxidative stress: DBH, TAF15, and STAT4 by differential, WGCNA clustering, and Venn screening analyses, and further analyzed the correlation of these 3 genes with inflammatory factors and immune cell infiltration and found that STAT4 was significantly and positively correlated with IL-2. Single-cell data analysis showed that the STAT4 gene was highly expressed mainly in dendritic cells and monocytes. In addition, the results of RT-qPCR and Elisa experiments verified that the expression of STAT4 was consistent with the previous analysis, and a significant causal relationship between IL-2 and STAT4 SNPs and osteoporosis was found by Mendelian randomization. Finally, through miRNA-mRNA network and drug sensitivity analysis, we analyzed to get Palbociclib/miR-141-3p/STAT4 axis, which can be used for the prevention and treatment of osteoporosis. In this study, we proposed the Palbociclib/miR-141-3p/STAT4 axis for the first time and provided new insights into the mechanism of oxidative stress in osteoporosis.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Shaobo Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xueyuan Bao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Shixuan Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yuxing Ye
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiayuan Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jinniu Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiateng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Zhihao Xia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Liangliang Wei
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
7
|
Greere D, Grigorescu F, Manda D, Lautier C, Poianã C. INSULIN RESISTANCE AND PATHOGENESIS OF POSTMENOPAUSAL OSTEOPOROSIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:349-363. [PMID: 38356971 PMCID: PMC10863952 DOI: 10.4183/aeb.2023.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Osteoporosis (OP) is a disease predisposing postmenopausal women to fractures, and often accompanied by insulin resistance (IR) and metabolic syndrome (MetS). Previous studies provided contradictory results concerning prevalence of MetS in postmenopausal OP. To better understand the pathogenesis of IR, we reviewed cellular and molecular aspects and systematically reviewed studies providing homeostasis model assessment (HOMA) index. Bone is an active endocrine organ maintaining its integrity by orchestrated balance between bone formation and resorption. Both osteoblasts and osteoclasts contain receptors for insulin and insulin-like growth factor-1 (IGF-1) operating in skeletal development and in the adult life. Defects in this system generate systemic IR and bone-specific IR, which in turn regulates glucose homeostasis and energy metabolism through osteocalcin. Examination of genetic syndromes of extreme IR revealed intriguing features namely high bone mineral density (BMD) or accelerated growth. Studies of moderate forms of IR in postmenopausal women reveal positive correlations between HOMA index and BMD while correlations with osteocalcin were rather negative. The relation with obesity remains complex involving regulatory factors such as leptin and adiponectin to which the contribution of potential genetic factors and in particular, the correlation with the degree of obesity or body composition should be added.
Collapse
Affiliation(s)
- D.I.I. Greere
- “C.I. Parhon” National Institute of Endocrinology - Clinical Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| | - F. Grigorescu
- Institut Convergences Migrations - Molecular - Endocrinology, Montpellier, France
| | - D. Manda
- “C.I. Parhon” National Institute of Endocrinology - Molecular Cellular and Structural Endocrinology Laboratory, Bucharest, Romania
| | - C. Lautier
- Université de Montpellier, Montpellier, France
| | - C. Poianã
- “C.I. Parhon” National Institute of Endocrinology - Clinical Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| |
Collapse
|
8
|
Lopez N, Cohen SM, Emanuele M. Type 2 Diabetes and Bone Disease. Clin Rev Bone Miner Metab 2023; 21:21-31. [DOI: 10.1007/s12018-023-09288-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 01/05/2025]
|
9
|
Guo H, An Z, Wang N, Ge S, Cai J, Yu S, Zhou Y, Ying R, Zha K, Gu T, Zhao Y, Lu Y. Diabetes Mellitus Type 2 Patients with Abdominal Obesity Are Prone to Osteodysfunction: A Cross-Sectional Study. J Diabetes Res 2023; 2023:3872126. [PMID: 37102159 PMCID: PMC10125752 DOI: 10.1155/2023/3872126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/31/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction The interaction between diabetes, obesity, and bone metabolism was drawing increasing public attention. However, the osteometabolic changes in diabetes mellitus type 2 (T2DM) patients with abdominal obesity have not been fully revealed. This study is aimed at investigating the association between abdominal obesity indices and bone turnover markers among T2DM participants. Methods 4351 subjects were involved in the METAL study. Abdominal obesity indices included neck, waist, and hip circumference, visceral adiposity index (VAI), lipid accumulation product (LAP), waist-to-hip ratio (WHR), and Chinese visceral adiposity index (CVAI). They were applied to elucidate the nexus between β-C-terminal telopeptide (β-CTX), osteocalcin (OC), and intact N-terminal propeptide of type I collagen (P1NP). Results Abdominal obesity indices were strongly negatively associated with β-CTX and OC. Among males, five indices were negatively correlated with β-CTX (BMI, WC, LAP, WHR, and CVAI) and OC (BMI, NC, WC, WHR, and CVAI). There were no significant associations with P1NP. Among females, all eight indices were negatively associated with β-CTX. Seven indices were negatively related to OC (BMI, NC, WC, HC, LAP, WHR, and CVAI). The VAI was negatively correlated with P1NP. Conclusions The present study demonstrated that in T2DM, abdominal obesity had an obviously negative correlation with bone metabolism. Abdominal obesity indices were significantly negatively associated with skeletal destruction (β-CTX) and formation (OC). In routine clinical practice, these easily obtained indices could be used as a preliminary screening method and relevant factors for osteodysfunction incidence risk at no additional cost and may be of particular value for postmenopausal women in T2DM populations.
Collapse
Affiliation(s)
- Hui Guo
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Zengmei An
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaohong Ge
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Jian Cai
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Shiyan Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Rong Ying
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Kexi Zha
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Tao Gu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Yan Zhao
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Lei H, Liu J, Wang W, Yang X, Feng Z, Zang P, Lu B, Shao J. Association between osteocalcin, a pivotal marker of bone metabolism, and secretory function of islet beta cells and alpha cells in Chinese patients with type 2 diabetes mellitus: an observational study. Diabetol Metab Syndr 2022; 14:160. [PMID: 36307866 PMCID: PMC9615358 DOI: 10.1186/s13098-022-00932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Several recent studies have found that Osteocalcin (OCN), a multifunctional protein secreted exclusively by osteoblasts, is beneficial to glucose metabolism and type 2 diabetes mellitus (T2DM). However, the effects of OCN on islets function especially islet ɑ cells function in patients with type 2 diabetes mellitus characterized by a bi-hormonal disease are still unclear. The purpose of this cross-sectional study was to investigate the relationship between serum OCN and the secretion of islet β cells and ɑ cells in Chinese patients with type 2 diabetes mellitus. METHODS 204 patients with T2DM were enrolled. Blood glucose (FBG, PBG0.5h, PBG1h, PBG2h, PBG3h), insulin (FINS, INS0.5h, INS1h, INS2h, INS3h), C-peptide (FCP, CP0.5h, CP1h, CP2h, CP3h), and glucagon (GLA0, GLA0.5 h, GLA1h, GLA2h, GLA3h) levels were measured on 0 h, 0.5 h, 1 h, 2 h, and 3 h after a 100 g standard bread meal load. Early postprandial secretion function of islet β cells was calculated as Δcp0.5h = CP0.5-FCP. The patients were divided into low, medium and high groups (T1, T2 and T3) according to tertiles of OCN. Comparison of parameters among three groups was studied. Correlation analysis confirmed the relationship between OCN and pancreatic secretion. Multiple regression analysis showed independent contributors to pancreatic secretion. MAIN RESULTS FBG, and PBG2h were the lowest while Δcp0.5h was the highest in the highest tertile group (respectively, p < 0.05). INS3h, area under the curve of insulin (AUCins3h) in T3 Group were significantly lower than T1 Group (respectively, p < 0.05). GLA1h in T3 group was lower than T1 group (p < 0.05), and GLA0.5 h in T3 group was lower than T2 and T1 groups (p < 0.05). Correlation analysis showed OCN was inversely correlated with Homeostatic model of insulin resistance (HOMA-IR), INS3h, AUCins3h (p < 0.05), and was still inversely correlated with FCP, GLA0.5 h, GLA1h, area under the curve of glucagon (AUCgla3h) (respectively, p < 0.05) after adjustment for body mass index (BMI) and alanine aminotransferase (ALT). The multiple regression analysis showed that OCN was independent contributor to Δcp0.5h, GLA0.5h and GLA1h (respectively, p < 0.05). CONCLUSIONS Higher serum OCN level is closely related to better blood glucose control, higher insulin sensitivity, increased early-phase insulin secretion of islet β cells and appropriate inhibition of postprandial glucagon secretion of islet ɑ cells in adult patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Haiyan Lei
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jun Liu
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xinyi Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Zhouqin Feng
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China.
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Shen Y, Zhang Y, Zhou Z, Wang J, Han D, Sun J, Chen G, Tang Q, Sun W, Chen L. Dysfunction of macrophages leads to diabetic bone regeneration deficiency. Front Immunol 2022; 13:990457. [PMID: 36311779 PMCID: PMC9613949 DOI: 10.3389/fimmu.2022.990457] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Insufficient bone matrix formation caused by diabetic chronic inflammation can result in bone nonunion, which is perceived as a worldwide epidemic, with a substantial socioeconomic and public health burden. Macrophages in microenvironment orchestrate the inflammation and launch the process of bone remodeling and repair, but aberrant activation of macrophages can drive drastic inflammatory responses during diabetic bone regeneration. In diabetes mellitus, the proliferation of resident macrophages in bone microenvironment is limited, while enhanced myeloid differentiation of hematopoietic stem cells (HSCs) leads to increased and constant monocyte recruitment and thus macrophages shift toward the classic pro-inflammatory phenotype, which leads to the deficiency of bone regeneration. In this review, we systematically summarized the anomalous origin of macrophages under diabetic conditions. Moreover, we evaluated the deficit of pro-regeneration macrophages in the diabetic inflammatory microenvironment. Finally, we further discussed the latest developments on strategies based on targeting macrophages to promote diabetic bone regeneration. Briefly, this review aimed to provide a basis for modulating the biological functions of macrophages to accelerate bone regeneration and rescue diabetic fracture healing in the future.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jinyu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Dong Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Wei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Wei Sun,
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Wei Sun,
| |
Collapse
|
12
|
Babey ME, Ewing SK, Strotmeyer ES, Napoli N, Schafer AL, Vittinghoff E, Gundberg CM, Schwartz AV. No Evidence of Association Between Undercarboxylated Osteocalcin and Incident Type 2 Diabetes. J Bone Miner Res 2022; 37:876-884. [PMID: 35118705 PMCID: PMC10441038 DOI: 10.1002/jbmr.4519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
Mouse models suggest that undercarboxylated osteocalcin (ucOC), produced by the skeleton, protects against type 2 diabetes development, whereas human studies have been inconclusive. We aimed to determine if ucOC or total OC is associated with incident type 2 diabetes or changes in fasting glucose, insulin resistance (HOMA-IR), or beta-cell function (HOMA-Beta). A subcohort (n = 338; 50% women; 36% black) was identified from participants without diabetes at baseline in the Health, Aging, and Body Composition Study. Cases of incident type 2 diabetes (n = 137) were defined as self-report at an annual follow-up visit, use of diabetes medication, or elevated fasting glucose during 8 years of follow-up. ucOC and total OC were measured in baseline serum. Using a case-cohort design, the association between biomarkers and incident type 2 diabetes was assessed using robust weighted Cox regression. In the subcohort, linear regression models analyzed the associations between biomarkers and changes in fasting glucose, HOMA-IR, and HOMA-Beta over 9 years. Higher levels of ucOC were not statistically associated with increased risk of incident type 2 diabetes (adjusted hazard ratio = 1.06 [95% confidence interval, 0.84-1.34] per 1 standard deviation [SD] increase in ucOC). Results for %ucOC and total OC were similar. Adjusted associations of ucOC, %ucOC, and total OC with changes in fasting glucose, HOMA-IR, and HOMA-Beta were modest and not statistically significant. We did not find evidence of an association of baseline undercarboxylated or total osteocalcin with risk of incident type 2 diabetes or with changes in glucose metabolism in older adults. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Muriel E. Babey
- University of California San Francisco, Division of Endocrinology and Metabolism, San Francisco, CA, USA
| | - Susan K. Ewing
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Elsa S. Strotmeyer
- Department of Epidemiology, University of Pittsburgh, Center for Aging and Population Health, Pittsburgh, PA, USA
| | - Nicola Napoli
- Universita Campus Bio-Medico di Roma, Division of Endocrinology and Diabetes, Rome, Italy
| | - Anne L. Schafer
- University of California San Francisco, Division of Endocrinology and Metabolism, San Francisco, CA, USA
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
- San Francisco VA Medical Center, Endocrine Research Unit, Medical Service, San Francisco, CA, USA
| | - Eric Vittinghoff
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Caren M. Gundberg
- Yale University School of Medicine, Department of Orthopedics, New Haven, CT, USA
| | - Ann V. Schwartz
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| |
Collapse
|
13
|
Zha KX, An ZM, Ge SH, Cai J, Zhou Y, Ying R, Zhou J, Gu T, Guo H, Zhao Y, Wang NJ, Lu YL. FSH may mediate the association between HbA1c and bone turnover markers in postmenopausal women with type 2 diabetes. J Bone Miner Metab 2022; 40:468-477. [PMID: 35059887 DOI: 10.1007/s00774-021-01301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Recent studies in postmenopausal women have found associations of follicle-stimulating hormone (FSH) levels with both glucose metabolism and bone turnover. The objective of the study was to investigate whether FSH may contribute to suppressed bone turnover markers (BTMs) in postmenopausal women with type 2 diabetes (T2D). MATERIALS AND METHODS 888 postmenopausal women with T2D, 352 nondiabetes (prediabetes plus normoglycemia) were included from the METAL study. HbA1c, sex hormones, 25-hydroxy vitamin D (25(OH)D), serum procollagen type I N-terminal propeptide (P1NP), and β-C-terminal telopeptide (β-CTX) were measured. RESULTS P1NP and β-CTX decreased in postmenopausal T2D women compared with nondiabetes controls (both p < 0.001). The major factors responsible for the changes in P1NP were HbA1c (β = - 0.050, p < 0.001), 25(OH)D (β = - 0.003, p = 0.006), FSH (β = 0.001, p = 0.044) and metformin (β = - 0.109, p < 0.001), for β-CTX were HbA1c (β = - 0.049, p < 0.001), body mass index (BMI) (β = - 0.011, p = 0.005), 25(OH)D (β = - 0.003, p = 0.003), FSH (β = 0.002, p = 0.022) and metformin (β = - 0.091, p = 0.001) in postmenopausal T2D women based on multivariate regression analysis. With the increase in HbA1c, FSH decreased significantly (p for trend < 0.001). Mediation analysis demonstrated that FSH partly mediated the suppression of LnP1NP and Lnβ-CTX by HbA1c (β = - 0.009 and - 0.010, respectively), and Lnβ-CTX by BMI (β = - 0.015) when multiple confounders were considered (all p < 0.05). CONCLUSION HbA1c was the crucial determinant contributing to the suppression of BTMs. FSH might play a novel mediation role in BTM suppression due to HbA1c or BMI.
Collapse
Affiliation(s)
- Ke-Xi Zha
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Zeng-Mei An
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Shao-Hong Ge
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Jian Cai
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Ying Zhou
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Rong Ying
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Ji Zhou
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Tao Gu
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Hui Guo
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Yan Zhao
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Ning-Jian Wang
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China.
| | - Ying-Li Lu
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, 200011, China.
| |
Collapse
|
14
|
Ye X, Yu R, Jiang F, Hou X, Wei L, Bao Y, Jia W. Osteocalcin and Risks of Incident Diabetes and Diabetic Kidney Disease: A 4.6-Year Prospective Cohort Study. Diabetes Care 2022; 45:830-836. [PMID: 35090006 PMCID: PMC9016737 DOI: 10.2337/dc21-2113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to examine the relationship between osteocalcin (OC) and the risk of incident diabetes and the risk of incident diabetic kidney disease (DKD). RESEARCH DESIGN AND METHODS We followed 5,396 participants without diabetes (nondiabetes subcohort) and 1,174 participants with diabetes and normal kidney function (diabetes subcohort) at baseline. Logistic regression and modified Poisson regression models were used to estimate the relative risk (RR) of baseline OC levels with incident diabetes and DKD. RESULTS During a mean 4.6-year follow-up period, 296 cases of incident diabetes and 184 cases of incident DKD were identified. In the nondiabetes subcohort, higher OC levels were linearly associated with a decreased risk of diabetes (RR for 1-unit increase of loge-transformed OC 0.51 [95% CI 0.35-0.76]; RR for highest vs. lowest quartile 0.65 [95% CI 0.44-0.95]; P for trend < 0.05). In the diabetes subcohort, OC levels were linearly inversely associated with incident DKD (RR for 1-unit increase of loge-transformed OC 0.49 [95% CI 0.33-0.74]; RR for highest vs. lowest quartile 0.56 [95% CI 0.38-0.83]; P for trend < 0.05), even independent of baseline estimated glomerular filtration rate and urinary albumin-to-creatinine ratio. No significant interactions between OC and various subgroups on incident diabetes or DKD were observed. CONCLUSIONS Lower OC levels were associated with an increased risk of incident diabetes and DKD.
Collapse
Affiliation(s)
| | | | | | - Xuhong Hou
- Corresponding authors: Xuhong Hou, , and Weiping Jia,
| | | | | | - Weiping Jia
- Corresponding authors: Xuhong Hou, , and Weiping Jia,
| |
Collapse
|
15
|
Takashi Y, Kawanami D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int J Mol Sci 2022; 23:ijms23042376. [PMID: 35216490 PMCID: PMC8879859 DOI: 10.3390/ijms23042376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Bone contributes to supporting the body, protecting the central nervous system and other organs, hematopoiesis, the regulation of mineral metabolism (mainly calcium and phosphate), and assists in respiration. Bone has many functions in the body. Recently, it was revealed that bone also works as an endocrine organ and secretes several systemic humoral factors, including fibroblast growth factor 23 (FGF23), osteocalcin (OC), sclerostin, and lipocalin 2. Bone can communicate with other organs via these hormones. In particular, it has been reported that these bone-derived hormones are involved in glucose metabolism and diabetic complications. Some functions of these bone-derived hormones can become useful biomarkers that predict the incidence of diabetes and the progression of diabetic complications. Furthermore, other functions are considered to be targets for the prevention or treatment of diabetes and its complications. As is well known, diabetes is now a worldwide health problem, and many efforts have been made to treat diabetes. Thus, further investigations of the endocrine system through bone-derived hormones may provide us with new perspectives on the prediction, prevention, and treatment of diabetes. In this review, we summarize the role of bone-derived hormones in glucose metabolism, diabetic kidney disease, and cardiovascular disorders.
Collapse
|
16
|
Gong Y, Li N, Lai M, Fang F, Yang J, Kang M, Shen T, Peng Y, Wang Y. Consistently Low Levels of Osteocalcin From Late Pregnancy to Postpartum Are Related to Postpartum Abnormal Glucose Metabolism in GDM Patients. Front Endocrinol (Lausanne) 2022; 13:803624. [PMID: 35321337 PMCID: PMC8936089 DOI: 10.3389/fendo.2022.803624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Increasing evidence suggests that osteocalcin (OC), a marker of bone formation, plays an important role in glucose homoeostasis. Few studies have investigated the relationship between OC levels in gestational diabetes mellitus (GDM) patients and their postpartum glucose metabolism. This study evaluated the relationship between OC levels in late pregnancy, their longitudinal changes, and postpartum glucose metabolism among GDM patients. MEASURES Serum OC was measured in late pregnancy and the postpartum period for 721 GDM patients. All patients underwent a 75-g oral glucose tolerance test (OGTT) at 6-8 weeks postpartum. According to postpartum OGTT outcomes, patients were categorized into abnormal glucose metabolism (AGM) (n=255) and normal glucose tolerance (NGT) groups (n=466). Glucose metabolism-related indices were measured and calculated. Logistic regression analysis and linear mixed-effects model were used to assess the association between OC and postpartum AGM. RESULTS In late pregnancy, OC levels were lower in the AGM group than in the NGT group (13.93 ± 6.90 vs 15.33 ± 7.63 ng/ml, P=0.015). After delivery, OC levels increased in both groups. However, OC levels remained lower in the AGM group than in the NGT group (23.48 ± 7.84 vs 25.65 ± 8.37 ng/ml, P=0.001). Higher OC levels in late pregnancy were associated with decreased risk of progressing to postpartum AGM (OR:0.96, 95%CI:0.94-0.99). Linear mixed-effects analysis showed that postpartum AGM patients exhibited consistently lower OC levels than NGT group from late pregnancy to the postpartum period after adjustment for cofactors (β=-1.70, 95% CI: -2.78- -0.62). CONCLUSIONS In GDM patients, consistently low levels of OC from late pregnancy to postpartum were associated with increased postpartum AGM risk. The increase in serum OC may act as a protective factor to curb the progression of AGM at postpartum for GDM patients.
Collapse
Affiliation(s)
- Yujia Gong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyu Lai
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Yang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Kang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Shen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yufan Wang,
| |
Collapse
|
17
|
Zeng H, Ge J, Xu W, Ma H, Chen L, Xia M, Pan B, Lin H, Wang S, Gao X. Type 2 Diabetes Is Causally Associated With Reduced Serum Osteocalcin: A Genomewide Association and Mendelian Randomization Study. J Bone Miner Res 2021; 36:1694-1707. [PMID: 33956999 DOI: 10.1002/jbmr.4330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Recent advances indicate that bone and energy metabolism are closely related. However, little direct evidence on causality has been provided in humans. We aimed to assess the association of three bone-related biomarkers-25 hydroxyvitamin D (25OHD), parathyroid hormone (PTH), and osteocalcin (OCN)-with several metabolic phenotypes and investigate any causal relevance to the associations using a Mendelian randomization (MR) study. Serum 25OHD, PTH, and total OCN were measured at baseline in 5169 eligible Chinese participants in Changfeng study. Partial correlation and bivariate GREML analysis were used to estimate phenotypic and genetic correlations, respectively. Multiple linear regression and logistic regression were used to assess linear associations. Genomewide association analysis (GWAS) was performed. Bidirectional two-sample MR analyses were conducted to examine causal relationships between OCN and body mass index (BMI), diastolic blood pressure (DBP), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), glycated hemoglobin A1c (HbA1c), and type 2 diabetes (T2DM), using our GWAS result of OCN and GWAS statistics from Biobank Japan project (BBJ) and the largest meta-analysis of T2DM GWAS in East Asian population. Circulating OCN was significantly associated with higher DBP and HDL-C and decreased TG, blood glucose level, insulin resistance, liver fat content, bone mineral density, BMI, and a favorable body fat distribution pattern. GWAS identified one novel serum PTH locus and two novel serum OCN loci, explaining 0.81% and 1.98% of variances of PTH and OCN levels, respectively. MR analysis suggested a causal effect of T2DM on lower circulating OCN concentration (causal effect: -0.03; -0.05 to -0.01; p = 0.006 for T2DM_BBJ and -0.03; -0.05 to -0.01; p = 0.001 for T2DM_EAS). These findings indicate that T2DM might impact bone remodeling and provide a resource for understanding complex relationships between osteocalcin and metabolic (and related) traits in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jieyu Ge
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Fonseca Santos RK, Santos CB, Reis AR, Brandão-Lima PN, de Carvalho GB, Martini LA, Pires LV. Role of food fortification with vitamin D and calcium in the bone remodeling process in postmenopausal women: a systematic review of randomized controlled trials. Nutr Rev 2021; 80:826-837. [PMID: 34368851 DOI: 10.1093/nutrit/nuab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Foods containing vitamin D reduce the deficiency of this vitamin and improve bone turnover. OBJECTIVE To discuss effects of the intake of vitamin D-fortified foods in isolated form or associated with calcium on bone remodeling in postmenopausal women. DATA SOURCES PubMed, Lilacs, Scopus, and Bireme databases. OpenThesis and Google Scholar were searched as "grey literature". Medical subject headings or similar terms related to food fortified with vitamin D and bone in postmenopausal women were used. DATA EXTRACTION Information was collected on study methodology and characteristics of studied populations; dosage; the food matrix used as the fortification vehicle; duration of intervention; dietary intake; 25-hydroxyvitamin D [25(OH)D] levels; serum parathyroid hormone (PTH) concentrations; bone resorption and/or formation markers (ie, carboxy terminal cross-linked telopeptide of type I collagen [CTX], tartrate-resistant acid phosphatase isoform 5b [TRAP5b], and procollagen type 1 N-terminal propeptide [P1NP]); main results; and study limitations. DATA ANALYSIS Five randomized controlled trials involving postmenopausal women were included. The mean ages of participants ranged from 56.1 to 86.9 years. Daily consumption of soft plain cheese fortified with 2.5 µg of vitamin D3 and 302 mg of calcium for 4 weeks resulted in a mean increase of 0.8 ng/mL in 25(OH)D and 15.9 ng/mL in P1NP levels compared with baseline, and decreased CTX, TRAP5b, and PTH values. A similar intervention for 6 weeks, using fortified cheese, showed a reduction only in TRAP5b values (-0.64 U/L). Yogurt fortified with 10 µg of vitamin D3 and 800 mg of calcium did not change P1NP values after 8 weeks of intervention, but was associated with decreases of 0.0286 ng/mL and 1.06 U/L in PTH and TRAP5b, respectively. After 12 weeks of eating the fortified yogurt, 25(OH)D levels increased by a mean of 8.8 ng/mL and PTH levels decreased in by a mean of 0.0167 ng/mL. CONCLUSIONS The interventions contributed toward the improvement of the bone resorption process but not to the bone formation process in postmenopausal women. PROSPERO REGISTRATION NUMBER CRD42019131976.
Collapse
Affiliation(s)
- Ramara Kadija Fonseca Santos
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cynthia Batista Santos
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Aline Rocha Reis
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Paula Nascimento Brandão-Lima
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gabrielli Barbosa de Carvalho
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ligia Araújo Martini
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Liliane Viana Pires
- R.K. Fonseca Santos, C.B. Santos, A.R. Reis, G.B. de Carvalho, and L.V. Pires are with the Nutrition Sciences Post-Graduate Program, Department of Nutrition, Federal University of Sergipe, Sergipe, Brazil. P.N. Brandão-Lima is with the Post-Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil. L.A. Martini is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Guo H, Wang C, Jiang B, Ge S, Cai J, Zhou Y, Ying R, Zha K, Zhou J, Wang N, Zhu C, Cao C, Zhang L, Gu T, Zhao Y, Lu Y, An Z. Association of Insulin Resistance and β-cell Function With Bone Turnover Biomarkers in Dysglycemia Patients. Front Endocrinol (Lausanne) 2021; 12:554604. [PMID: 33841321 PMCID: PMC8027237 DOI: 10.3389/fendo.2021.554604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background The interrelation between glucose and bone metabolism is complex and has not been fully revealed. This study aimed to investigate the association between insulin resistance, β-cell function and bone turnover biomarker levels among participants with abnormal glycometabolism. Methods A total of 5277 subjects were involved through a cross-sectional study (METAL study, http://www.chictr.org.cn, ChiCTR1800017573) in Shanghai, China. Homeostasis model assessment of insulin resistance (HOMA-IR) and β-cell dysfunction (HOMA-%β) were applied to elucidate the nexus between β-C-terminal telopeptide (β-CTX), intact N-terminal propeptide of type I collagen (P1NP) and osteocalcin (OC). β-CTX, OC and P1NP were detected by chemiluminescence. Results HOMA-IR was negatively associated with β-CTX, P1NP and OC (regression coefficient (β) -0.044 (-0.053, -0.035), Q4vsQ1; β -7.340 (-9.130, -5.550), Q4vsQ1 and β -2.885 (-3.357, -2.412), Q4vsQ1, respectively, all P for trend <0.001). HOMA-%β was positively associated with β-CTX, P1NP and OC (β 0.022 (0.014, 0.031), Q4vsQ1; β 6.951 (5.300, 8.602), Q4vsQ1 and β 1.361 (0.921, 1.800), Q4vsQ1, respectively, all P for trend <0.001). Conclusions Our results support that lower bone turnover biomarker (β-CTX, P1NP and OC) levels were associated with a combination of higher prevalence of insulin resistance and worse β-cell function among dysglycemia patients. It is feasible to detect bone turnover in diabetes or hyperglycemia patients to predict the risk of osteoporosis and fracture, relieve patients' pain and reduce the expenses of long-term cure.
Collapse
Affiliation(s)
- Hui Guo
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Chiyu Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaohong Ge
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Jian Cai
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ying Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Rong Ying
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Kexi Zha
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ji Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Cao
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqin Zhang
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Tao Gu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Yan Zhao
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengmei An
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| |
Collapse
|
20
|
An Y, Liu S, Wang W, Dong H, Zhao W, Ke J, Zhao D. Low serum levels of bone turnover markers are associated with the presence and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes 2021; 13:111-123. [PMID: 32671958 DOI: 10.1111/1753-0407.13089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrates an association of type 2 diabetes mellitus (T2DM) and its microvascular complications with increased fracture risk. In this study, we aimed to evaluate the relationships between serum concentrations of bone turnover markers and the presence and/or severity of diabetic retinopathy (DR) among patients with T2DM. METHODS A total of 285 patients with T2DM comprising 168 patients without DR and 117 patients with DR were enrolled in the cross-sectional study. In the latter group, patients were further divided into patients of mild and severe DR stages. The biochemical parameters and bone turnover markers were determined in all participants. RESULTS This study found that serum levels of procollagen type 1 N-terminal propeptide (P1NP), a bone formation marker, and the bone resorption marker serum β-cross-linked C-telopeptide of type I collagen (β-CTX) were more decreased in diabetic patients with DR than in those without DR, with differences remaining significant (P < .05) in multivariate linear regression models after adjustments for multiple confounding factors. Osteocalcin and β-CTX levels were further reduced along with the severity of DR among participants with DR. Moreover, multivariate logistic regression analysis revealed that lower serum levels of P1NP and β-CTX were associated with higher odds for the presence of DR, while β-CTX was associated with the severity of DR. CONCLUSION Our results suggest that the development of DR might be involved in the progression of T2DM-induced deficits in bone formation and resorption or vice versa. Follow-up studies and further research are necessary to validate the associations and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yaxin An
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Simo Liu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Wenbo Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Huan Dong
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Wenying Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| |
Collapse
|
21
|
Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hartmann B, Holst JJ, Hermansen K, Gregersen S, Starup-Linde J. Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity. Bone 2020; 133:115230. [PMID: 31954199 DOI: 10.1016/j.bone.2020.115230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Abdominal obesity and type 2 diabetes are associated with insulin resistance and low bone turnover along with an increased fracture risk. The mode of action is poorly understood. The bone resorption marker, C-terminal telopeptide type 1 collagen (CTX), and to a lesser extent, the bone formation marker, Procollagen type 1 N-terminal propeptide (P1NP) appear to be inhibited by food consumption. The link between food consumption, insulin resistance and bone turnover remains to be clarified. Primarily we aimed to compare the postprandial CTX, P1NP and PTH responses by two frequently applied methods in assessing metabolic health; oral glucose tolerance test (OGTT) and mixed meal tolerance test. Secondly, we explored the effect of insulin resistance on bone marker responses. METHODS We enrolled 64 subjects with abdominal obesity. Following 10 h of fasting, subjects initially underwent a standard OGTT (300 kcal) and approximately one week later a mixed meal tolerance test (1130 kcal). Circulating CTX, P1NP and PTH were assessed on both days at time = 0, after 30 min and after 90 min for comparison of the two interventions. We analyzed glucose and insulin levels for the assessment of insulin resistance. Additionally, we measured plasma calcium levels along with the gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide 2 (GLP-2) in an attempt to identify possible mediators of the postprandial bone response. RESULTS CTX, P1NP and PTH were suppressed by OGTT and the mixed meal; the latter induced a more pronounced suppression after 90 min. Calcium levels were similar between OGTT and meal. GIP and GLP-2 levels increased after both interventions, although only the meal induced a sustained increase after 90 min. Fasting P1NP was inversely associated with insulin resistance. The meal-induced suppression of P1NP (but not CTX or PTH) was inversely associated with level of insulin resistance. CONCLUSION The acute postprandial suppression of bone turnover markers is extended after ingestion of a mixed meal compared to an OGTT. The response appears to be independent of gender and prompted by a reduction in PTH. The study additionally indicates a possible link between the development of insulin resistance and low bone turnover - which may be of key essence in the development of the fragile bone structure and increased fracture risk demonstrated in subjects with abdominal obesity and T2D.
Collapse
Affiliation(s)
- Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark.
| | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Denmark; Department of Endocrinology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| |
Collapse
|
22
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
23
|
Massera D, Xu S, Walker MD, Valderrábano RJ, Mukamal KJ, Ix JH, Siscovick DS, Tracy RP, Robbins JA, Biggs ML, Xue X, Kizer JR. Biochemical markers of bone turnover and risk of incident hip fracture in older women: the Cardiovascular Health Study. Osteoporos Int 2019; 30:1755-1765. [PMID: 31227885 PMCID: PMC6717520 DOI: 10.1007/s00198-019-05043-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
The relationships of osteocalcin (OC) and C-telopeptide of type I collagen (CTX) with long-term incidence of hip fracture were examined in 1680 post-menopausal women from a population-based study. CTX, but not OC, levels were associated with incident hip fracture in these participants, a relationship characterized by an inverted U-shape. INTRODUCTION We sought to investigate the relationships of OC, a marker of bone formation, and CTX, a marker of bone resorption, with long-term incidence of hip fracture in older women. METHODS We included 1680 women from the population-based Cardiovascular Health Study (mean [SD] age 74.5 [5.0] years). The longitudinal association of both markers with incidence of hip fracture was examined using multivariable Cox models. RESULTS During a median follow-up of 12.3 years, 288 incident hip fractures occurred. Linear spline analysis did not demonstrate an association between OC levels and incident hip fracture. By contrast, increasing levels of CTX up to the middle-upper range were associated with a significantly greater risk of hip fracture (HR = 1.52 per SD increment, 95% CI = 1.10-2.09), while further increases were associated with a marginally non-significant lower risk (HR = 0.80 per SD increment, 95% CI = 0.63-1.01), after full adjustment for potential confounders. In analyses of quartiles, CTX exhibited a similar inverted U-shaped relationship with incident fracture after adjustment, with a significant association observed only for the comparison of quartile 3 to quartile 1 (HR = 1.63, 95% CI = 1.10-2.43). In a subset with available measures, both OC and CTX were inversely associated with bone mineral density of the hip. CONCLUSION CTX, but not OC, levels were associated with incident hip fracture in post-menopausal women, a relationship characterized by an inverted U-shape. These findings highlight the complex relationship of bone turnover markers with hip fracture risk.
Collapse
Affiliation(s)
- D Massera
- New York University School of Medicine, New York, NY, USA
| | - S Xu
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - M D Walker
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - K J Mukamal
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - J H Ix
- University of California San Diego, San Diego, CA, USA
| | | | - R P Tracy
- University of Vermont, Burlington, VT, USA
| | - J A Robbins
- University of California Davis, Sacramento, CA, USA
| | - M L Biggs
- University of Washington, Seattle, WA, USA
| | - X Xue
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - J R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System and University of California San Francisco, 4150 Clement St, San Francisco, CA, 94121, USA.
| |
Collapse
|
24
|
Roles for osteocalcin in brain signalling: implications in cognition- and motor-related disorders. Mol Brain 2019; 12:23. [PMID: 30909971 PMCID: PMC6434857 DOI: 10.1186/s13041-019-0444-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
It is now generally accepted that the extra-skeleton functionalities of bone are multifaceted. Its endocrine functions came first to light when it was realized that osteoblasts, the bone forming cells, maintain energy homeostasis by improving glucose metabolism, insulin sensitivity and energy expenditure through osteocalcin, a multipurpose osteokine secreted by osteoblasts. Recently, the emerging knowledge on the functional aspects of this osteokine expanded to properties including adult and maternal regulation of cognitive functions. Therapeutic potential of this osteokine has also been recently reported in experimental Parkinson’s disease models. This review highlights such findings on the functions of osteocalcin in the brain and emphasizes on exploring and analyzing much more in-depth basic and clinical studies.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Type 2 diabetes is one of the most important public health diseases. Type 2 diabetes pathophysiology involves multiple pathways, in which micronutrients could play a role. Among them, interest has grown concerning vitamin K. The purpose of this review is to expose the latest studies on the role of vitamin K in glucose metabolism, a poorly known function of this vitamin. RECENT FINDINGS Animal experimentations and human observational and interventional studies were analyzed to evaluate the role of this vitamin in glucose metabolism. Daily intake of vitamin K seems to improve glucose metabolism and low intakes could be involved in type 2 diabetes pathophysiology. Recent data show that vitamin K could act on glucose metabolism via downstream targets such as osteocalcin, growth arrest-specific 6 protein, and matrix Gla protein. SUMMARY This review depicts new insights into the role of vitamin K in glucose metabolism regulation and depicts also the probable mechanisms underlying this association. Further studies will be needed to determine the dose and the duration of vitamin K treatment to achieve the strongest metabolic effect. Maybe the best strategy to improve glucose metabolism would be 'cocktails' of micronutrients associating vitamin K.
Collapse
Affiliation(s)
- Olivier Bourron
- Sorbonne Université, Diabetes Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université
- Institute of Cardiometabolism and Nutrition, ICAN, Paris, France
| | - Franck Phan
- Sorbonne Université, Diabetes Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université
- Institute of Cardiometabolism and Nutrition, ICAN, Paris, France
| |
Collapse
|