1
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
2
|
Eriksen R, White MC, Dawed AY, Perez IG, Posma JM, Haid M, Sharma S, Prehn C, Thomas EL, Koivula RW, Bizzotto R, Mari A, Giordano GN, Pavo I, Schwenk JM, De Masi F, Tsirigos KD, Brunak S, Viñuela A, Mahajan A, McDonald TJ, Kokkola T, Rutters F, Beulens J, Muilwijk M, Blom M, Elders P, Hansen TH, Fernandez-Tajes J, Jones A, Jennison C, Walker M, McCarthy MI, Pedersen O, Ruetten H, Forgie I, Holst JJ, Thomsen HS, Ridderstråle M, Bell JD, Adamski J, Franks PW, Hansen T, Holmes E, Frost G, Pearson ER. The Association of Cardiometabolic, Diet and Lifestyle Parameters With Plasma Glucagon-like Peptide-1: An IMI DIRECT Study. J Clin Endocrinol Metab 2024; 109:e1697-e1707. [PMID: 38686701 PMCID: PMC11318998 DOI: 10.1210/clinem/dgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 05/02/2024]
Abstract
CONTEXT The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHODS We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. RESULTS Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.
Collapse
Affiliation(s)
- Rebeca Eriksen
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Margaret C White
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Adem Y Dawed
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Isabel Garcia Perez
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Joram M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
- Health Data Research UK, London NW1 2BE, UK
| | - Mark Haid
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Sapna Sharma
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764 Bavaria, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Robert W Koivula
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, 221 00 Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Roberto Bizzotto
- Institute of Neuroscience–National Research Council, 35127 Padua, Italy
| | - Andrea Mari
- Institute of Neuroscience–National Research Council, 35127 Padua, Italy
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, 221 00 Malmö, Sweden
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, 1030 Vienna, Austria
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH—Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Federico De Masi
- Department of Health Technology, Kgs Lyngby and The Novo Nordisk Foundation Center for Protein Research, Technical University of Denmark, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantinos D Tsirigos
- Department of Health Technology, Kgs Lyngby and The Novo Nordisk Foundation Center for Protein Research, Technical University of Denmark, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Brunak
- Department of Health Technology, Kgs Lyngby and The Novo Nordisk Foundation Center for Protein Research, Technical University of Denmark, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ana Viñuela
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Timothy J McDonald
- NIHR Exeter Clinical Research Facility, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK
| | - Tarja Kokkola
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Femke Rutters
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Joline Beulens
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Mirthe Muilwijk
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Marieke Blom
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Petra Elders
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Angus Jones
- NIHR Exeter Clinical Research Facility, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK
| | - Chris Jennison
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), Newcastle University, Newcastle upon Tyne NE3 1DQ, UK
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LH, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hartmut Ruetten
- Sanofi-Aventis Deutschland GmbH, R&D, 65926 Frankfurt am Main, Germany
| | - Ian Forgie
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik S Thomsen
- Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, 221 00 Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elaine Holmes
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Gary Frost
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
3
|
Musso G, Pinach S, Saba F, De Michieli F, Cassader M, Gambino R. Endoscopic duodenal mucosa ablation techniques for diabetes and nonalcoholic fatty liver disease: A systematic review. MED 2024; 5:735-758.e2. [PMID: 38579730 DOI: 10.1016/j.medj.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is increasing at an alarming rate, and only 50% of patients with T2DM achieve or maintain adequate glycemic control with pharmacological therapies. Metabolic surgery demonstrated superior efficacy compared to medical therapy but is unfeasible for most patients with T2DM. Duodenal mucosal resurfacing (DMR) by hydrothermal mucosal ablation, recellularization via electroporation therapy (ReCET), and photodynamic therapy are novel endoscopic procedures that use thermal, electrical, and photochemical energy, respectively, to ablate and reset dysfunctional duodenal mucosa. We assessed the data on the effects of these techniques on glycemic control and nonalcoholic fatty liver disease (NAFLD). METHODS We systematically searched independently and in duplicate English and non-English language publications through January 31st, 2024. Outcomes assessed were an improvement in different metabolic health parameters and the safety of duodenal mucosal ablation (DMA) procedures. Outcomes were presented descriptively. FINDINGS We selected 12 reports reporting results from 3 randomized and 6 uncontrolled trials (seven evaluating DMR, two evaluating ReCET, all with a low risk of bias) for a total of 317 patients enrolled. DMA reduced HbA1c, fasting plasma glucose, and liver fat. When combined with newer antidiabetic drugs, it allowed insulin discontinuation in up to 86% patients. No major safety signal emerged. CONCLUSIONS All DMA techniques improve glucose homeostasis; DMR and ReCET appear to be safe in patients with T2DM. If confirmed by future randomized trials and by trials with histological endpoints in NAFLD, then DMA appears to be a promising alternative or complement option to medications for T2DM and NAFLD treatment. FUNDING This study received no funding.
Collapse
Affiliation(s)
- Giovanni Musso
- MECAU San Luigi Gonzaga Hospital, Orbassano, Turin, Italy.
| | - Silvia Pinach
- Department of Medical Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Francesca Saba
- Department of Medical Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Franco De Michieli
- Department of Medical Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
5
|
Thomas S, Besecker B, Choe Y, Christofides E. Postprandial glycemic response to a high-protein diabetes-specific nutritional shake compared to isocaloric instant oatmeal in people with type 2 diabetes: a randomized, controlled, crossover trial. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1399410. [PMID: 38903056 PMCID: PMC11188454 DOI: 10.3389/fcdhc.2024.1399410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024]
Abstract
Introduction Minimizing postprandial glucose response is an important goal for overall diabetes management. Diabetes-specific nutritional shakes (DSNS) have been clinically shown to minimize postprandial glucose response in people with type 2 diabetes (T2DM) compared to high-glycemic foods. However, it is unknown how a high-protein, low-fat DSNS impacts the GLP-1 response. Methods We tested the postprandial glucose, insulin, and GLP-1 response to a high-protein, low-fat diabetes-specific nutritional shake (DSNS-HP) compared to isocaloric instant oatmeal (IOM) in a randomized, controlled, crossover study in adults with T2DM (n = 24). Participants were randomly selected to receive IOM or DSNS-HP on two test days. Glucose, insulin, and total GLP-1 concentration were measured at baseline and 15, 30, 45, 60, 90, 120, 180, and 240 min postprandially. Results Compared to IOM, the glucose-positive area under the curve (pAUC) was significantly lower (P = .021). DSNS-HP significantly increased GLP-1 pAUC response by 213% (P <.001) with a corresponding increase in insulin pAUC (P = .033) compared to IOM. Discussion A high-protein, low-fat DSNS leads to favorable changes in GLP-1 response and is a suitable option to minimize blood glucose response in people with type 2 diabetes.
Collapse
Affiliation(s)
- Sara Thomas
- Scientific and Medical Affairs, Abbott Nutrition, Columbus, OH, United States
| | - Beth Besecker
- Scientific and Medical Affairs, Abbott Nutrition, Columbus, OH, United States
| | - Yong Choe
- Scientific and Medical Affairs, Abbott Nutrition, Columbus, OH, United States
| | | |
Collapse
|
6
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Ayoub M, Faris C, Juranovic T, Chela H, Daglilar E. The Use of Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus Does Not Increase the Risk of Pancreatic Cancer: A U.S.-Based Cohort Study. Cancers (Basel) 2024; 16:1625. [PMID: 38730578 PMCID: PMC11082986 DOI: 10.3390/cancers16091625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND GLP-1 RAs are widely used for T2DM treatment due to their cardiorenal and metabolic benefits. This study examines the risk of pancreatic cancer with GLP-1 RA use in patients with T2DM. METHODS We analyzed TriNetX's deidentified research database using the U.S. Collaborative Network comprising 62 healthcare organizations across the U.S.A. Patients with T2DM were split into two cohorts: one receiving GLP-1 RAs, and one not receiving GLP-1 RAs. We excluded patients with known risk factors for pancreatic cancer, including pancreatic cysts, a personal or family history of BRCA1, BRCA2, CDKN2A, KRAS, MEN1, MLH1, MSH2, NOTCH1, PALB2, PMS2, and PRSS1S genes, family history of pancreatic cancer, and VHL syndrome. Using a 1:1 propensity score-matching model based on baseline characteristics and comorbidities, we created comparable cohorts. We then compared the rate of pancreatic cancer between the two cohorts at a 7-year interval. RESULTS Out of 7,146,015 identified patients with T2DM, 10.3% were on a GLP-1 RA and 89.7% were not. Post-PSM, 721,110 patients were in each group. Patients on GLP-1 RAs had a 0.1% risk compared to a 0.2% risk of pancreatic cancer in the 7-year timeframe. CONCLUSION The use of GLP-1 RAs in patients with type 2 diabetes mellitus (T2DM) does not appear to substantially elevate the risk of pancreatic cancer; in fact, it may potentially exert a protective effect.
Collapse
Affiliation(s)
- Mark Ayoub
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA;
| | - Carol Faris
- Department of General Surgery, Marshall University, Huntington, WV 25755, USA;
| | - Tajana Juranovic
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA;
| | - Harleen Chela
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| |
Collapse
|
8
|
Hoffman EG, D’Souza NC, Liggins RT, Riddell MC. Pharmacologic inhibition of somatostatin receptor 2 to restore glucagon counterregulation in diabetes. Front Pharmacol 2024; 14:1295639. [PMID: 38298268 PMCID: PMC10829877 DOI: 10.3389/fphar.2023.1295639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Glucose homeostasis is primarily maintained by pancreatic hormones, insulin and glucagon, with an emerging role for a third islet hormone, somatostatin, in regulating insulin and glucagon responses. Under healthy conditions, somatostatin secreted from pancreatic islet δ-cells inhibits both insulin and glucagon release through somatostatin receptor- induced cAMP-mediated downregulation and paracrine inhibition of β- and α-cells, respectively. Since glucagon is the body's most important anti-hypoglycemic hormone, and because glucagon counterregulation to hypoglycemia is lost in diabetes, the study of somatostatin biology has led to new investigational medications now in development that may help to restore glucagon counterregulation in type 1 diabetes. This review highlights the normal regulatory role of pancreatic somatostatin signaling in healthy islet function and how the inhibition of somatostatin receptor signaling in pancreatic α-cells may restore normal glucagon counterregulation in diabetes mellitus.
Collapse
Affiliation(s)
- Emily G. Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Ninoschka C. D’Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | - Michael C. Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
10
|
Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Front Mol Biosci 2023; 10:1130625. [PMID: 37287751 PMCID: PMC10242023 DOI: 10.3389/fmolb.2023.1130625] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
DPP-4 inhibition is an interesting line of therapy for treating Type 2 Diabetes Mellitus (T2DM) and is based on promoting the incretin effect. Here, the authors have presented a brief appraisal of DPP-4 inhibitors, their modes of action, and the clinical efficiency of currently available drugs based on DPP-4 inhibitors. The safety profiles as well as future directions including their potential application in improving COVID-19 patient outcomes have also been discussed in detail. This review also highlights the existing queries and evidence gaps in DPP-4 inhibitor research. Authors have concluded that the excitement surrounding DPP-4 inhibitors is justified because in addition to controlling blood glucose level, they are good at managing risk factors associated with diabetes.
Collapse
|
11
|
Weninger SN, Ding A, Browne EN, Frost ML, Schiro G, Laubitz D, Duca FA. Longitudinal Characterization of the Gut Microbiota in the Diabetic ZDSD Rat Model and Therapeutic Potential of Oligofructose. Metabolites 2023; 13:660. [PMID: 37233701 PMCID: PMC10220957 DOI: 10.3390/metabo13050660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The complex development of type 2 diabetes (T2D) creates challenges for studying the progression and treatment of the disease in animal models. A newly developed rat model of diabetes, the Zucker Diabetic Sprague Dawley (ZDSD) rat, closely parallels the progression of T2D in humans. Here, we examine the progression of T2D and associated changes in the gut microbiota in male ZDSD rats and test whether the model can be used to examine the efficacy of potential therapeutics such as prebiotics, specifically oligofructose, that target the gut microbiota. Bodyweight, adiposity, and fed/fasting blood glucose and insulin were recorded over the course of the study. Glucose and insulin tolerance tests were performed, and feces collected at 8, 16, and 24 weeks of age for short-chain fatty acids and microbiota analysis using 16s rRNA gene sequencing. At the end of 24 weeks of age, half of the rats were supplemented with 10% oligofructose and tests were repeated. We observed a transition from healthy/nondiabetic to prediabetic and overtly diabetic states, via worsened insulin and glucose tolerance and significant increases in fed/fasted glucose, followed by a significant decrease in circulating insulin. Acetate and propionate levels were significantly increased in the overt diabetic state compared to healthy and prediabetic. Microbiota analysis demonstrated alterations in the gut microbiota with shifts in alpha and beta diversity as well as alterations in specific bacterial genera in healthy compared to prediabetic and diabetic states. Oligofructose treatment improved glucose tolerance and shifted the cecal microbiota of the ZDSD rats during late-stage diabetes. These findings underscore the translational potential of ZDSD rats as a model of T2D and highlight potential gut bacteria that could impact the development of the disease or serve as a biomarker for T2D. Additionally, oligofructose treatment was able to moderately improve glucose homeostasis.
Collapse
Affiliation(s)
- Savanna N. Weninger
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Angela Ding
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Elizabeth N. Browne
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Morgan L. Frost
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Frank A. Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Umapathysivam MM, Araldi E, Hastoy B, Dawed AY, Vatandaslar H, Sengupta S, Kaufmann A, Thomsen S, Hartmann B, Jonsson AE, Kabakci H, Thaman S, Grarup N, Have CT, Færch K, Gjesing AP, Nawaz S, Cheeseman J, Neville MJ, Pedersen O, Walker M, Jennison C, Hattersley AT, Hansen T, Karpe F, Holst JJ, Jones AG, Ristow M, McCarthy MI, Pearson ER, Stoffel M, Gloyn AL. Type 2 Diabetes risk alleles in Peptidyl-glycine Alpha-amidating Monooxygenase influence GLP-1 levels and response to GLP-1 Receptor Agonists. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288197. [PMID: 37090505 PMCID: PMC10120798 DOI: 10.1101/2023.04.07.23288197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.
Collapse
Affiliation(s)
- Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Department of Endocrinology, Queen Elizabeth Hospital, SA Health, Australia
- Southern Adelaide and Diabetes and Endocrinology Service, Bedford Park, Australia
- NHRMC Centre of Clinical research Excellence in Nutritional Physiology, Interventions and outcomes University of Adelaide, South Australia, Australia
| | - Elisa Araldi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Department of Cardiology and Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adem Y Dawed
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adrian Kaufmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Søren Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
| | - Anna E Jonsson
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
| | - Niels Grarup
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian T Have
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Færch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anette P Gjesing
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Jane Cheeseman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, UK
| | | | | | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Angus G Jones
- University of Exeter College of Medicine & Health, Exeter, UK
| | - Michael Ristow
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | - Ewan R Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Stanford Diabetes Research Centre, Stanford, USA
| |
Collapse
|
13
|
Hoffmann C, Schwarz PE, Mantzoros CS, Birkenfeld AL, Wolfrum C, Solimena M, Bornstein SR, Perakakis N. Circulating levels of gastrointestinal hormones in prediabetes reversing to normoglycemia or progressing to diabetes in a year-A cross-sectional and prospective analysis. Diabetes Res Clin Pract 2023; 199:110636. [PMID: 36940795 DOI: 10.1016/j.diabres.2023.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
AIMS We aimed to compare the concentrations of GLP-1, glucagon and GIP (established regulators of glucose homeostasis) and glicentin (emerging new metabolic marker)during an OGTT in patients with normal glucose tolerance (NGT), prediabetes and diabetes at onset, and one-year before, when all had prediabetes. METHODS GLP-1, glucagon, GIP and glicentin concentrations were measured and compared with markers of body composition, insulin sensitivity and β-cell function at a 5-timepoint OGTT in 125 subjects (30 diabetes, 65 prediabetes, 30 NGT) and in 106 of them one-year before, when all had prediabetes. RESULTS At baseline, when all subjects were in prediabetic state, hormonal levels did not differ between groups. One year later, patients progressing to diabetes had lower postprandial increases of glicentin and GLP-1, lower postprandial decrease of glucagon, and higher levels of fasting GIP compared to patients regressing to NGT. Changes in glicentin and GLP-1 AUC within this year correlated negatively with changes in Glucose AUC of OGTT and with changes in markers of beta cell function. CONCLUSION Incretins, glucagon and glicentin profiles in prediabetic state cannot predict future glycemic traits, but prediabetes progressing to diabetes is accompanied by deterioration of postprandial increases of GLP-1 and glicentin.
Collapse
Affiliation(s)
- Carlotta Hoffmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Peter E Schwarz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), Department of Internal Medicine IV, Department of Endocrinology, Diabetology and Nephrology, University Hospital of Eberhard-Karls-University Tübingen,Geissweg 3, 72076 Tübingen, Germany; Diabetes and Nutritional Sciences, King's College London, Strand, London WC2R 2LS, UK; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls University of Tübingen, Geissweg 3, 72076 Tübingen, Germany
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany; Diabetes and Nutritional Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
14
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
15
|
Identification of Genipin as a Potential Treatment for Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24032131. [PMID: 36768454 PMCID: PMC9917294 DOI: 10.3390/ijms24032131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has been rising dramatically in many countries around the world. The main signatures of T2D are insulin resistance and dysfunction of β-cells. While there are several pharmaceutical therapies for T2D, no effective treatment is available for reversing the functional decline of pancreatic β-cells in T2D patients. It has been well recognized that glucagon-like peptide-1 (GLP-1), which is an incretin hormone secreted from intestinal L-cells, plays a vital role in regulating glycemic homeostasis via potentiating glucose-stimulated insulin secretion and promoting β-cell function. We found that genipin, a natural compound from Elli, can directly target intestinal L-cells, leading to the secretion of GLP-1. Incubation of the cells with genipin elicited a rapid increase in intracellular Ca2+. Inhibition of PLC ablated genipin-stimulated Ca2+ increase and GLP-1 secretion, suggesting that genipin-induced GLP-1 release from cells is dependent on the PLC/Ca2+ pathway. In vivo, acute administration of genipin stimulated GLP-1 secretion in mice. Chronically, treatment with genipin via oral gavage at 50 mg/kg/day for 6 weeks reversed hyperglycemia and insulin resistance in high-fat-diet (HFD)-induced obese mice. Moreover, genipin alleviated the impaired lipid metabolism and decreased lipid accumulation in the liver of obese mice. These results suggest that naturally occurring genipin might potentially be a novel agent for the treatment of T2D and diet-induced fatty liver disease.
Collapse
|
16
|
Nie L, Yan Q, Zhang S, Cao Y, Zhou X. Duodenal Mucosa: A New Target for the Treatment of Type 2 Diabetes. Endocr Pract 2023; 29:53-59. [PMID: 36309189 DOI: 10.1016/j.eprac.2022.10.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE After a high-fat and high-sugar diet, the duodenal mucosa of rodents proliferate and trigger the signal of insulin resistance, which may be the cause of type 2 diabetes (T2D). In response to this phenomenon, researchers have designed the duodenal mucosal resurfacing (DMR) procedure, mainly through the hydrothermal ablation procedure, to restore the normal mucosal surface, thereby correcting this abnormal metabolic signal. This article aims to understand the changes in duodenum before and after the onset or treatment of T2D, and the potential mechanisms of DMR procedure. METHODS A literature search of PubMed and Web of Science was conducted using appropriate keywords. RESULTS Both animal and clinical studies have shown that the villus thickness, intestinal cells, glucose transporters, enteric nerves, and gut microbiota and their metabolites in the duodenum undergo corresponding changes before and after the onset or treatment of T2D. These changes may be related to the pathogenesis of T2D. DMR procedure may produce beneficial glycemic and hepatic metabolic effects by regulating these changes. CONCLUSION The duodenum is an important metabolic signaling center, and limiting nutrient exposure to this critical region will have powerful metabolic benefits. The DMR procedure may regulate glycemic and hepatic parameters through various mechanisms, which needs to be further confirmed by a large number of animal and clinical studies.
Collapse
Affiliation(s)
- LiJuan Nie
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - QianHua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - YuTian Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - XiQiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Chong SC, Sukor N, Robert SA, Ng KF, Kamaruddin NA. Fasting and stimulated glucagon-like peptide-1 exhibit a compensatory adaptive response in diabetes and pre-diabetes states: A multi-ethnic comparative study. Front Endocrinol (Lausanne) 2022; 13:961432. [PMID: 36157456 PMCID: PMC9501699 DOI: 10.3389/fendo.2022.961432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 12/26/2022] Open
Abstract
Background Impaired secretion of glucagon-like peptide-1 (GLP-1) among Caucasians contributes to reduced incretin effect in type 2 diabetes mellitus (T2DM) patients. However, studies emanating from East Asia suggested preserved GLP-1 levels in pre-diabetes (pre-DM) and T2DM. We aimed to resolve these conflicting findings by investigating GLP-1 levels during oral glucose tolerance test (OGTT) among Malay, Chinese, and Indian ethnicities with normal glucose tolerance (NGT), pre-DM, and T2DM. The association between total GLP-1 levels, insulin resistance, and insulin sensitivity, and GLP-1 predictors were also analyzed. Methods A total of 174 subjects were divided into NGT (n=58), pre-DM (n=54), and T2DM (n=62). Plasma total GLP-1 concentrations were measured at 0, 30, and 120 min during a 75-g OGTT. Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA of insulin sensitivity (HOMA-IS), and triglyceride-glucose index (TyG) were calculated. Results Total GLP-1 levels at fasting and 30 min were significantly higher in T2DM compared with pre-DM and NGT (27.18 ± 11.56 pmol/L vs. 21.99 ± 10.16 pmol/L vs. 16.24 ± 7.79 pmol/L, p=0.001; and 50.22 ± 18.03 pmol/L vs. 41.05 ± 17.68 pmol/L vs. 31.44 ± 22.59 pmol/L, p<0.001; respectively). Ethnicity was a significant determinant of AUCGLP-1, with the Indians exhibiting higher GLP-1 responses than Chinese and Malays. Indians were the most insulin resistant, whereas Chinese were the most insulin sensitive. The GLP-1 levels were positively correlated with HOMA-IR and TyG but negatively correlated with HOMA-IS. This relationship was evident among Indians who exhibited augmented GLP-1 responses proportionately to their high insulin-resistant states. Conclusion This is the first study that showed GLP-1 responses are augmented as IR states increase. Fasting and post-OGTT GLP-1 levels are raised in T2DM and pre-DM compared to that in NGT. This raises a possibility of an adaptive compensatory response that has not been reported before. Among the three ethnic groups, the Indians has the highest IR and GLP-1 levels supporting the notion of an adaptive compensatory secretion of GLP-1.
Collapse
Affiliation(s)
- Shiau Chin Chong
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Norlela Sukor
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Sarah Anne Robert
- Department of Pharmacy, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Kim Fong Ng
- Department of Cardiology, Hospital Sultanah Aminah Johor Bahru, Johor, Malaysia
| | - Nor Azmi Kamaruddin
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: From the gut to the brain. Front Neurosci 2022; 16:947240. [PMID: 35958993 PMCID: PMC9358980 DOI: 10.3389/fnins.2022.947240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inappropriate food intake behavior is one of the main drivers for fat mass development leading to obesity. Importantly the gut microbiota-mediated signals have emerged as key actors regulating food intake acting mainly on the hypothalamus, and thereby controlling hunger or satiety/satiation feelings. However, food intake is also controlled by the hedonic and reward systems leading to food intake based on pleasure (i.e., non-homeostatic control of food intake). This review focus on both the homeostatic and the non-homeostatic controls of food intake and the implication of the gut microbiota on the control of these systems. The gut-brain axis is involved in the communications between the gut microbes and the brain to modulate host food intake behaviors through systemic and nervous pathways. Therefore, here we describe several mediators of the gut-brain axis including gastrointestinal hormones, neurotransmitters, bioactive lipids as well as bacterial metabolites and compounds. The modulation of gut-brain axis by gut microbes is deeply addressed in the context of host food intake with a specific focus on hedonic feeding. Finally, we also discuss possible gut microbiota-based therapeutic approaches that could lead to potential clinical applications to restore food reward alterations. Therapeutic applications to tackle these dysregulations is of utmost importance since most of the available solutions to treat obesity present low success rate.
Collapse
|
19
|
Holter MM, Phuong DJ, Lee I, Saikia M, Weikert L, Fountain S, Anderson ET, Fu Q, Zhang S, Sloop KW, Cummings BP. 14-3-3-zeta mediates GLP-1 receptor agonist action to alter α cell proglucagon processing. SCIENCE ADVANCES 2022; 8:eabn3773. [PMID: 35867787 PMCID: PMC9307243 DOI: 10.1126/sciadv.abn3773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Recent studies demonstrate that α cells contribute to glucose-stimulated insulin secretion (GSIS). Glucagon-like peptide-1 receptor (GLP-1R) agonists potently potentiate GSIS, making these drugs useful for diabetes treatment. However, the role of α and β cell paracrine interactions in the effects of GLP-1R agonists is undefined. We previously found that increased β cell GLP-1R signaling activates α cell GLP-1 expression. Here, we characterized the bidirectional paracrine cross-talk by which α and β cells communicate to mediate the effects of the GLP-1R agonist, liraglutide. We find that the effect of liraglutide to enhance GSIS is blunted by α cell ablation in male mice. Furthermore, the effect of β cell GLP-1R signaling to activate α cell GLP-1 is mediated by a secreted protein factor that is regulated by the signaling protein, 14-3-3-zeta, in mouse and human islets. These data refine our understanding of GLP-1 pharmacology and identify 14-3-3-zeta as a potential target to enhance α cell GLP-1 production.
Collapse
Affiliation(s)
- Marlena M. Holter
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Isaac Lee
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Mridusmita Saikia
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY, USA
| | - Lisa Weikert
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Samantha Fountain
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Elizabeth T. Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Kyle W. Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Bethany P. Cummings
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
20
|
Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. An inter-organ neural circuit for appetite suppression. Cell 2022; 185:2478-2494.e28. [PMID: 35662413 PMCID: PMC9433108 DOI: 10.1016/j.cell.2022.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.
Collapse
Affiliation(s)
- Tong Zhang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Department of Colorectal Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China,Jinan University, Guangzhou, Guangdong 510632, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Wenfei Han
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Correspondence: (W.H.), (I.E.d.A.)
| | - Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Artificial Intelligence and Emerging Technologies in Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Lead contact,Correspondence: (W.H.), (I.E.d.A.)
| |
Collapse
|
21
|
Moon JS, Riopel M, Seo JB, Herrero-Aguayo V, Isaac R, Lee YS. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022; 71:1508-1524. [PMID: 35472707 PMCID: PMC9233300 DOI: 10.2337/db21-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
In obesity, increased mitochondrial metabolism with the accumulation of oxidative stress leads to mitochondrial damage and β-cell dysfunction. In particular, β-cells express antioxidant enzymes at relatively low levels and are highly vulnerable to oxidative stress. Early in the development of obesity, β-cells exhibit increased glucose-stimulated insulin secretion in order to compensate for insulin resistance. This increase in β-cell function under the condition of enhanced metabolic stress suggests that β-cells possess a defense mechanism against increased oxidative damage, which may become insufficient or decline at the onset of type 2 diabetes. Here, we show that metabolic stress induces β-cell hypoxia inducible factor 2α (HIF-2α), which stimulates antioxidant gene expression (e.g., Sod2 and Cat) and protects against mitochondrial reactive oxygen species (ROS) and subsequent mitochondrial damage. Knockdown of HIF-2α in Min6 cells exaggerated chronic high glucose-induced mitochondrial damage and β-cell dysfunction by increasing mitochondrial ROS levels. Moreover, inducible β-cell HIF-2α knockout mice developed more severe β-cell dysfunction and glucose intolerance on a high-fat diet, along with increased ROS levels and decreased islet mitochondrial mass. Our results provide a previously unknown mechanism through which β-cells defend against increased metabolic stress to promote β-cell compensation in obesity.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Vicente Herrero-Aguayo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Corresponding author: Yun Sok Lee,
| |
Collapse
|
22
|
Martchenko A, Biancolin AD, Martchenko SE, Brubaker PL. Nobiletin ameliorates high fat-induced disruptions in rhythmic glucagon-like peptide-1 secretion. Sci Rep 2022; 12:7271. [PMID: 35508494 PMCID: PMC9068808 DOI: 10.1038/s41598-022-11223-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted by the intestinal L cell in response to nutrient intake. However, GLP-1 secretion also follows a circadian rhythm which is disrupted by the saturated fatty acid palmitate in vitro and high-fat diet (HFD) feeding in vivo. The flavonoid nobiletin is a clock enhancer which improves metabolic homeostasis. Therefore, the aim of this study was to elucidate whether and how nobiletin mitigates the negative effects of palmitate and HFD-feeding on rhythmic GLP-1 release. Pre-treatment of murine GLUTag L cells with palmitate dampened the GLP-1 secretory response at the normal peak of secretion, while nobiletin co-treatment restored GLP-1 secretion and upregulated the ‘metabolic pathway’ transcriptome. Mice fed a HFD also lost their GLP-1 secretory rhythm in association with markedly increased GLP-1 levels and upregulation of L cell transcriptional pathways related to ‘sensing’ and ‘transducing’ cellular stimuli at the normal peak of GLP-1 release. Nobiletin co-administration reduced GLP-1 levels to more physiological levels and upregulated L cell ‘oxidative metabolism’ transcriptional pathways. Furthermore, nobiletin improved colonic microbial 16S rRNA gene diversity and reduced the levels of Proteobacteria in HFD-fed mice. Collectively, this study establishes that nobiletin improves the normal rhythm in GLP-1 secretion following fat-induced disruption.
Collapse
Affiliation(s)
- Alexandre Martchenko
- Department of Physiology, University of Toronto, Rm 3366 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Andrew D Biancolin
- Department of Physiology, University of Toronto, Rm 3366 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sarah E Martchenko
- Department of Physiology, University of Toronto, Rm 3366 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Rm 3366 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Khattab FM, Fawzy M. Incretin serum level as a biomarker of insulin Resistance in acne vulgaris patients. J Cosmet Dermatol 2022; 21:5181-5186. [PMID: 35478371 DOI: 10.1111/jocd.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the relationship between serum Incretin and acne vulgaris (AV) and insulin resistance (IR), and to find the biological indicators of acne vulgaris with insulin resistance. METHODS 60 patients diagnosed with acne vulgaris in the dermatology department of Zagazig University and 56 healthy people in the health examination center of this hospital were collected respectively as the control group; all the included people were drawn fasting blood to test serum Incretin, blood lipids, sex hormones and INS release test to explore the role of serum Incretin in acne vulgaris and insulin resistance. RESULTS The average level of Incretin in the acne group was lower than that in the control group, and the difference was statistically significant (t=7.189, P<0.001). The average level of Incretin in the acne group with insulin resistance was lower than that in the acne without insulin resistance group, the difference was statistically significant (t=22.328, P<0.001). In the acne group, the insulin resistance index decreased with the increase of Incretin level, and the two showed a negative correlation. (R = -0.711, P<0.001.( CONCLUSIONS: Patients with acne vulgaris are prone to have insulin resistance. Insulin resistance in patients with acne vulgaris is negatively correlated with Incretin. Serum Incretin may be expected to be a biomarker for diagnosing acne vulgaris patients with insulin resistance. The severity of acne vulgaris may have no obvious correlation with insulin resistance and serum incretin.
Collapse
Affiliation(s)
- Fathia M Khattab
- Dermatology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Manal Fawzy
- Dermatology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
24
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Nasr NE, Sadek KM. Role and mechanism(s) of incretin-dependent therapies for treating diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18408-18422. [PMID: 35031999 DOI: 10.1007/s11356-022-18534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Diabetes mellitus (DM) is a worldwide ailment which leads to chronic complications like cardiac disorders, renal perturbations, limb amputation and blindness. Type one diabetes (T1DM), Type two diabetes (T2DM), Another types of diabetes, such as genetic errors in function of β-cell and action of insulin, cystic fibrosis, chemical-instigated diabetes or following tissue transplantation), and pregnancy DM (GDM). In response to nutritional ingestion, the gut may release a pancreatic stimulant that affects carbohydrate metabolism. The duodenum produces a 'chemical excitant' that stimulates pancreatic output, and researchers have sought to cure diabetes using gut extract injections, coining the word 'incretin' to describe the phenomena. Incretins include GIP and GLP-1. The 'enteroinsular axis' is the link between pancreas and intestine. Nutrient, neuronal and hormonal impulses from intestine to cells secreting insulin were thought to be part of this axis. In addition, the hormonal component, incretin, must meet two requirements: (1) it secreted by foods, mainly carbohydrates, and (2) it must induce an insulinotropic effect which is glucose-dependent. In this review, we clarify the ability of using incretin-dependent treatments for treating DM.
Collapse
Affiliation(s)
- Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
26
|
Jonik S, Marchel M, Grabowski M, Opolski G, Mazurek T. Gastrointestinal Incretins-Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease-State of the Art. BIOLOGY 2022; 11:biology11020288. [PMID: 35205155 PMCID: PMC8869592 DOI: 10.3390/biology11020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary The presented manuscript contains the most current and extensive summary of the role of the most predominant gastrointestinal hormones—GIP and GLP-1 in the pathophysiology of atherosclerosis and coronary artery disease both in animals and humans. We have described GIP and GLP-1 as (1) expressed in many human tissues, (2) emphasized relationship between GIP and GLP-1 and inflammation, (3) highlighted importance of GIP and GLP-1-dependent pathways in atherosclerosis and coronary artery disease and (4) proved that GIP and GLP-1 could be used as markers of incidence, clinical course and recurrence of coronary artery disease, and related to extent and severity of atherosclerosis and myocardial ischemia. Our initial review may state a cornerstone for the future, however, there are still many unknowns and understatements on this topic. Due to the widespread growing interest for the potential use of incretins in cardiovascular diseases, we think that further research in this direction is desirable. For the future, we would like to recognize GIP and GLP-1 as widely implemented into clinical practice as new biomarkers of atherosclerosis and coronary artery disease. Abstract Coronary artery disease (CAD), which is the manifestation of atherosclerosis in coronary arteries, is the most common single cause of death and is responsible for disabilities of millions of people worldwide. Despite numerous dedicated clinical studies and an enormous effort to develop diagnostic and therapeutic methods, coronary atherosclerosis remains one of the most serious medical problems of the modern world. Hence, new markers are still being sought to identify and manage CAD optimally. Trying to face this problem, we have raised the question of the most predominant gastrointestinal hormones; glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), mainly involved in carbohydrates disorders, could be also used as new markers of incidence, clinical course, and recurrence of CAD and are related to extent and severity of atherosclerosis and myocardial ischemia. We describe GIP and GLP-1 as expressed in many animal and human tissues, known to be connected to inflammation and related to enormous noncardiac and cardiovascular (CV) diseases. In animals, GIP and GLP-1 improve endothelial function and lead to reduced atherosclerotic plaque macrophage infiltration and stabilize atherosclerotic lesions by directly blocking monocyte migration. Moreover, in humans, GIPR activation induces the pro-atherosclerotic factors ET-1 (endothelin-1) and OPN (osteopontin) but also has anti-atherosclerotic effects through secretion of NO (nitric oxide). Furthermore, four large clinical trials showed a significant reduction in composite of CV death, MI, and stroke in long-term follow-up using GLP-1 analogs for DM 2 patients: liraglutide in LEADER, semaglutide in SUSTAIN-6, dulaglutide in REWIND and albiglutide in HARMONY. However, very little is known about GIP metabolism in the acute phase of myocardial ischemia or for stable patients with CAD, which constitutes a direction for future research. This review aims to comprehensively discuss the impact of GIP and GLP-1 on atherosclerosis and CAD and its potential therapeutic implications.
Collapse
|
27
|
Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice. Nutrients 2022; 14:nu14030692. [PMID: 35277051 PMCID: PMC8839473 DOI: 10.3390/nu14030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.
Collapse
|
28
|
Waris N, Bano S, Fawwad A, Basit A. Association of fasting glucagon-like peptide-1 and glucose dependent insulinotropic polypeptide with dyslipidemia in newly diagnosed diabetes. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-01028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Holter MM, Saikia M, Cummings BP. Alpha-cell paracrine signaling in the regulation of beta-cell insulin secretion. Front Endocrinol (Lausanne) 2022; 13:934775. [PMID: 35957816 PMCID: PMC9360487 DOI: 10.3389/fendo.2022.934775] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 01/14/2023] Open
Abstract
As an incretin hormone, glucagon-like peptide 1 (GLP-1) lowers blood glucose levels by enhancing glucose-stimulated insulin secretion from pancreatic beta-cells. Therapies targeting the GLP-1 receptor (GLP-1R) use the classical incretin model as a physiological framework in which GLP-1 secreted from enteroendocrine L-cells acts on the beta-cell GLP-1R. However, this model has come into question, as evidence demonstrating local, intra-islet GLP-1 production has advanced the competing hypothesis that the incretin activity of GLP-1 may reflect paracrine signaling of GLP-1 from alpha-cells on GLP-1Rs on beta-cells. Additionally, recent studies suggest that alpha-cell-derived glucagon can serve as an additional, albeit less potent, ligand for the beta-cell GLP-1R, thereby expanding the role of alpha-cells beyond that of a counterregulatory cell type. Efforts to understand the role of the alpha-cell in the regulation of islet function have revealed both transcriptional and functional heterogeneity within the alpha-cell population. Further analysis of this heterogeneity suggests that functionally distinct alpha-cell subpopulations display alterations in islet hormone profile. Thus, the role of the alpha-cell in glucose homeostasis has evolved in recent years, such that alpha-cell to beta-cell communication now presents a critical axis regulating the functional capacity of beta-cells. Herein, we describe and integrate recent advances in our understanding of the impact of alpha-cell paracrine signaling on insulin secretory dynamics and how this intra-islet crosstalk more broadly contributes to whole-body glucose regulation in health and under metabolic stress. Moreover, we explore how these conceptual changes in our understanding of intra-islet GLP-1 biology may impact our understanding of the mechanisms of incretin-based therapeutics.
Collapse
Affiliation(s)
- Marlena M. Holter
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- *Correspondence: Marlena M. Holter,
| | - Mridusmita Saikia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Bethany P. Cummings
- School of Medicine, Department of Surgery, Center for Alimentary and Metabolic Sciences, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
30
|
Villaño D, Zafrilla P, García-Viguera C, Domínguez-Perles R. A UHPLC/MS/MS method for the analysis of active and inactive forms of GLP-1 and GIP incretins in human plasma. Talanta 2022; 236:122806. [PMID: 34635208 DOI: 10.1016/j.talanta.2021.122806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/27/2022]
Abstract
Glucagon-like peptide (GLP)-1 and the glucose-dependent insulinotropic peptide (GIP) are incretin hormones that regulate the nutrient-stimulated insulin secretion from pancreatic β-cells. Their low plasma concentrations and rapid clearance pose certain methodological challenges for their detection and quantification. The currently available immunomediated techniques to monitor these hormones overestimate, to some extent, their actual concentration. Hence, the present study is aimed at developing a robust and reliable methodology for the identification and quantification of active and inactive forms of the incretins GLP-1 and GIP, in human plasma, by UHPLC-ESI-QqQ-MS/MS. A comparative study of different SPE cartridges was carried out, being identified OASIS HLB as the most efficient one, with recoveries up to 80%. The method provides adequate linearity, from 4.88 to 1250 nM, and low intervals of LOD and LOQ for each analyte (ranges from 0.01 to 3.42 nM and from 0.10 to 34.17 nM, respectively). The methodology described was validated upon a clinical trial with overweight subjects (n = 20) (ClinicalTrials.gov NCT04016337), showing the capacity of the newly developed methodology to detect the augment of the plasma concentration of both GLP-17-36 and GLP-19-36 between 30 and 60 min after the consumption of a sucrose sweetened fruit-based beverage, while the plasma concentration of GIP remained in levels lower than the LOQ. The proposed methodology provides further insights into the mechanisms of action of bioactive compounds and food components in the frame of the glycemic control and would contribute to the assessment of the efficacy of antidiabetic drugs.
Collapse
Affiliation(s)
- Débora Villaño
- Universidad Católica San Antonio de Murcia (UCAM), Research Group of Nutrition and Oxidative Stress, School of Pharmacy, Faculty of Health Sciences, Campus de los Jerónimos, 30107, Guadalupe, Murcia, Spain.
| | - Pilar Zafrilla
- Universidad Católica San Antonio de Murcia (UCAM), Research Group of Nutrition and Oxidative Stress, School of Pharmacy, Faculty of Health Sciences, Campus de los Jerónimos, 30107, Guadalupe, Murcia, Spain
| | - Cristina García-Viguera
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology (CEBAS-CSIC), University Campus de Espinardo, Edif. 25, 30100, Murcia, Spain
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology (CEBAS-CSIC), University Campus de Espinardo, Edif. 25, 30100, Murcia, Spain
| |
Collapse
|
31
|
Le J, Ji H, Zhou X, Wei X, Chen Y, Fu Y, Ma Y, Han Q, Sun Y, Gao Y, Wu H. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front Pharmacol 2021; 12:714586. [PMID: 34764866 PMCID: PMC8576406 DOI: 10.3389/fphar.2021.714586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Zhou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Nanjing University of Chinese Medicine Affiliated 81st Hospital, Nanjing, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
32
|
Holst JJ. Treatment of Type 2 Diabetes and Obesity on the Basis of the Incretin System: The 2021 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2021; 70:2468-2475. [PMID: 34711671 PMCID: PMC8928930 DOI: 10.2337/dbi21-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In my lecture given on the occasion of the 2021 Banting Medal for Scientific Achievement, I briefly described the history of the incretin effect and summarized some of the developments leading to current therapies of obesity and diabetes based on the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In the text below, I discuss in further detail the role of these two hormones for postprandial insulin secretion in humans on the basis of recent studies with antagonists. Their direct and indirect actions on the β-cells are discussed next as well as their contrasting actions on glucagon secretion. After a brief discussion of their effect on insulin sensitivity, I describe their immediate actions in patients with type 2 diabetes and emphasize the actions of GLP-1 on β-cell glucose sensitivity, followed by a discussion of their extrapancreatic actions, including effects on appetite and food intake in humans. Finally, possible mechanisms of action of GIP-GLP-1 coagonists are discussed, and it is concluded that therapies based on incretin actions are likely to change the current hesitant therapy of both obesity and diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kanie T, Mizuno A, Takaoka Y, Suzuki T, Yoneoka D, Nishikawa Y, Tam WWS, Morze J, Rynkiewicz A, Xin Y, Wu O, Providencia R, Kwong JS. Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 10:CD013650. [PMID: 34693515 PMCID: PMC8812344 DOI: 10.1002/14651858.cd013650.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death globally. Recently, dipeptidyl peptidase-4 inhibitors (DPP4i), glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-glucose co-transporter-2 inhibitors (SGLT2i) were approved for treating people with type 2 diabetes mellitus. Although metformin remains the first-line pharmacotherapy for people with type 2 diabetes mellitus, a body of evidence has recently emerged indicating that DPP4i, GLP-1RA and SGLT2i may exert positive effects on patients with known CVD. OBJECTIVES To systematically review the available evidence on the benefits and harms of DPP4i, GLP-1RA, and SGLT2i in people with established CVD, using network meta-analysis. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and the Conference Proceedings Citation Index on 16 July 2020. We also searched clinical trials registers on 22 August 2020. We did not restrict by language or publication status. SELECTION CRITERIA We searched for randomised controlled trials (RCTs) investigating DPP4i, GLP-1RA, or SGLT2i that included participants with established CVD. Outcome measures of interest were CVD mortality, fatal and non-fatal myocardial infarction, fatal and non-fatal stroke, all-cause mortality, hospitalisation for heart failure (HF), and safety outcomes. DATA COLLECTION AND ANALYSIS Three review authors independently screened the results of searches to identify eligible studies and extracted study data. We used the GRADE approach to assess the certainty of the evidence. We conducted standard pairwise meta-analyses and network meta-analyses by pooling studies that we assessed to be of substantial homogeneity; subgroup and sensitivity analyses were also pursued to explore how study characteristics and potential effect modifiers could affect the robustness of our review findings. We analysed study data using the odds ratios (ORs) and log odds ratios (LORs) with their respective 95% confidence intervals (CIs) and credible intervals (Crls), where appropriate. We also performed narrative synthesis for included studies that were of substantial heterogeneity and that did not report quantitative data in a usable format, in order to discuss their individual findings and relevance to our review scope. MAIN RESULTS We included 31 studies (287 records), of which we pooled data from 20 studies (129,465 participants) for our meta-analysis. The majority of the included studies were at low risk of bias, using Cochrane's tool for assessing risk of bias. Among the 20 pooled studies, six investigated DPP4i, seven studied GLP-1RA, and the remaining seven trials evaluated SGLT2i. All outcome data described below were reported at the longest follow-up duration. 1. DPP4i versus placebo Our review suggests that DPP4i do not reduce any risk of efficacy outcomes: CVD mortality (OR 1.00, 95% CI 0.91 to 1.09; high-certainty evidence), myocardial infarction (OR 0.97, 95% CI 0.88 to 1.08; high-certainty evidence), stroke (OR 1.00, 95% CI 0.87 to 1.14; high-certainty evidence), and all-cause mortality (OR 1.03, 95% CI 0.96 to 1.11; high-certainty evidence). DPP4i probably do not reduce hospitalisation for HF (OR 0.99, 95% CI 0.80 to 1.23; moderate-certainty evidence). DPP4i may not increase the likelihood of worsening renal function (OR 1.08, 95% CI 0.88 to 1.33; low-certainty evidence) and probably do not increase the risk of bone fracture (OR 1.00, 95% CI 0.83 to 1.19; moderate-certainty evidence) or hypoglycaemia (OR 1.11, 95% CI 0.95 to 1.29; moderate-certainty evidence). They are likely to increase the risk of pancreatitis (OR 1.63, 95% CI 1.12 to 2.37; moderate-certainty evidence). 2. GLP-1RA versus placebo Our findings indicate that GLP-1RA reduce the risk of CV mortality (OR 0.87, 95% CI 0.79 to 0.95; high-certainty evidence), all-cause mortality (OR 0.88, 95% CI 0.82 to 0.95; high-certainty evidence), and stroke (OR 0.87, 95% CI 0.77 to 0.98; high-certainty evidence). GLP-1RA probably do not reduce the risk of myocardial infarction (OR 0.89, 95% CI 0.78 to 1.01; moderate-certainty evidence), and hospitalisation for HF (OR 0.95, 95% CI 0.85 to 1.06; high-certainty evidence). GLP-1RA may reduce the risk of worsening renal function (OR 0.61, 95% CI 0.44 to 0.84; low-certainty evidence), but may have no impact on pancreatitis (OR 0.96, 95% CI 0.68 to 1.35; low-certainty evidence). We are uncertain about the effect of GLP-1RA on hypoglycaemia and bone fractures. 3. SGLT2i versus placebo This review shows that SGLT2i probably reduce the risk of CV mortality (OR 0.82, 95% CI 0.70 to 0.95; moderate-certainty evidence), all-cause mortality (OR 0.84, 95% CI 0.74 to 0.96; moderate-certainty evidence), and reduce the risk of HF hospitalisation (OR 0.65, 95% CI 0.59 to 0.71; high-certainty evidence); they do not reduce the risk of myocardial infarction (OR 0.97, 95% CI 0.84 to 1.12; high-certainty evidence) and probably do not reduce the risk of stroke (OR 1.12, 95% CI 0.92 to 1.36; moderate-certainty evidence). In terms of treatment safety, SGLT2i probably reduce the incidence of worsening renal function (OR 0.59, 95% CI 0.43 to 0.82; moderate-certainty evidence), and probably have no effect on hypoglycaemia (OR 0.90, 95% CI 0.75 to 1.07; moderate-certainty evidence) or bone fracture (OR 1.02, 95% CI 0.88 to 1.18; high-certainty evidence), and may have no impact on pancreatitis (OR 0.85, 95% CI 0.39 to 1.86; low-certainty evidence). 4. Network meta-analysis Because we failed to identify direct comparisons between each class of the agents, findings from our network meta-analysis provided limited novel insights. Almost all findings from our network meta-analysis agree with those from the standard meta-analysis. GLP-1RA may not reduce the risk of stroke compared with placebo (OR 0.87, 95% CrI 0.75 to 1.0; moderate-certainty evidence), which showed similar odds estimates and wider 95% Crl compared with standard pairwise meta-analysis. Indirect estimates also supported comparison across all three classes. SGLT2i was ranked the best for CVD and all-cause mortality. AUTHORS' CONCLUSIONS Findings from both standard and network meta-analyses of moderate- to high-certainty evidence suggest that GLP-1RA and SGLT2i are likely to reduce the risk of CVD mortality and all-cause mortality in people with established CVD; high-certainty evidence demonstrates that treatment with SGLT2i reduce the risk of hospitalisation for HF, while moderate-certainty evidence likely supports the use of GLP-1RA to reduce fatal and non-fatal stroke. Future studies conducted in the non-diabetic CVD population will reveal the mechanisms behind how these agents improve clinical outcomes irrespective of their glucose-lowering effects.
Collapse
Affiliation(s)
- Takayoshi Kanie
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Mizuno
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
- Penn Medicine Nudge Unit, University of Pennsylvania Philadelphia, Philadelphia, PA, USA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshimitsu Takaoka
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Takahiro Suzuki
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Daisuke Yoneoka
- Division of Biostatistics and Bioinformatics, Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yuri Nishikawa
- Department of Gerontological Nursing and Healthcare Systems Management, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Gerontological Nursing, Kyorin University, Tokyo, Japan
| | - Wilson Wai San Tam
- Alice Lee Center for Nursing Studies, NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Jakub Morze
- Department of Human Nutrition, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrzej Rynkiewicz
- Department of Cardiology and Cardiosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Yiqiao Xin
- Health Economics and Health Technology Assessment (HEHTA), Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Olivia Wu
- Health Economics and Health Technology Assessment (HEHTA), Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rui Providencia
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Joey Sw Kwong
- Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
| |
Collapse
|
34
|
Morrow NM, Hanson AA, Mulvihill EE. Distinct Identity of GLP-1R, GLP-2R, and GIPR Expressing Cells and Signaling Circuits Within the Gastrointestinal Tract. Front Cell Dev Biol 2021; 9:703966. [PMID: 34660576 PMCID: PMC8511495 DOI: 10.3389/fcell.2021.703966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Enteroendocrine cells directly integrate signals of nutrient content within the gut lumen with distant hormonal responses and nutrient disposal via the production and secretion of peptides, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Given their direct and indirect control of post-prandial nutrient uptake and demonstrated translational relevance for the treatment of type 2 diabetes, malabsorption and cardiometabolic disease, there is significant interest in the locally engaged circuits mediating these metabolic effects. Although several specific populations of cells in the intestine have been identified to express endocrine receptors, including intraepithelial lymphocytes (IELs) and αβ and γδ T-cells (Glp1r+) and smooth muscle cells (Glp2r+), the definitive cellular localization and co-expression, particularly in regards to the Gipr remain elusive. Here we review the current state of the literature and evaluate the identity of Glp1r, Glp2r, and Gipr expressing cells within preclinical and clinical models. Further elaboration of our understanding of the initiating G-protein coupled receptor (GPCR) circuits engaged locally within the intestine and how they become altered with high-fat diet feeding can offer insight into the dysregulation observed in obesity and diabetes.
Collapse
Affiliation(s)
- Nadya M Morrow
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio A Hanson
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Montreal Diabetes Research Center CRCHUM-Pavillion R, Montreal, QC, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Paternoster S, Simpson PV, Kokh E, Kizilkaya HS, Rosenkilde MM, Mancera RL, Keating DJ, Massi M, Falasca M. Pharmacological and structure-activity relationship studies of oleoyl-lysophosphatidylinositol synthetic mimetics. Pharmacol Res 2021; 172:105822. [PMID: 34411732 DOI: 10.1016/j.phrs.2021.105822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are relentlessly spreading worldwide. The beginning of the 21st century has seen the introduction of mechanistically novel types of drugs, aimed primarily at keeping these pathologies under control. In particular, an important family of therapeutics exploits the beneficial physiology of the gut-derived glucagon-like peptide-1 (GLP-1), with important clinical benefits, from glycaemic control to cardioprotection. Nonetheless, these protein-based drugs act systemically as exogenous GLP-1 mimetics and are not exempt from side effects. The food-derived lipid oleoyl-lysophosphatidylinositol (LPI) is a potent GPR119-dependent GLP-1 secreting agent. Here we present a structure-activity relationship (SAR) study of a synthetic library of oleoyl-LPI mimetics capable to induce the physiological release of GLP-1 from gastrointestinal enteroendocrine cells (EECs). The best lead compounds have shown potent and efficient release of GLP-1 in vitro from human and murine cells, and in vivo in diabetic db/db mice. We have also generated a molecular model of oleoyl-LPI, as well as its best performing analogues, interacting with the orthosteric site of GPR119, laying foundational evidence for their pharmacological activity.
Collapse
Affiliation(s)
- Silvano Paternoster
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Elena Kokh
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ricardo L Mancera
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
36
|
Rosenberg J, Jacob J, Desai P, Park J, Donovan L, Kim JY. Incretin Hormones: Pathophysiological Risk Factors and Potential Targets for Type 2 Diabetes. J Obes Metab Syndr 2021; 30:233-247. [PMID: 34521773 PMCID: PMC8526293 DOI: 10.7570/jomes21053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted metabolic disorder associated with distinctive pathophysiological disturbances. One of the pathophysiological risk factors observed in T2D is dysregulation of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Both hormones stimulate insulin secretion by acting postprandially on pancreatic β-cell receptors. Oral glucose administration stimulates increased insulin secretion in comparison with isoglycemic intravenous glucose administration, a phenomenon known as the incretin effect. While the evidence for incretin defects in individuals with T2D is growing, the etiology behind this attenuated incretin effect in T2D is not clearly understood. Given their central role in T2D pathophysiology, incretins are promising targets for T2D therapeutics. The present review synthesizes the recent attempts to explain the biological importance of incretin hormones and explore potential pharmacological approaches that target the incretins.
Collapse
Affiliation(s)
- Jared Rosenberg
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Jordan Jacob
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Priya Desai
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Jeremy Park
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Lorin Donovan
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Joon Young Kim
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
37
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
38
|
Zhang D, Wen Z, Jiang T, Sun Y. The incessant increase curve during oral glucose tolerance tests in Chinese adults with type 2 diabetes and its association with gut hormone levels. Peptides 2021; 143:170595. [PMID: 34116121 DOI: 10.1016/j.peptides.2021.170595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
Glucose curve shapes during oral glucose tolerance tests (OGTTs) are mainly classified as incessant increase, monophasic and biphasic. Youth with an incessant increase curve have worse β-cell function. The aim of this paper was to investigate the incessant increase curve in Chinese adults with type 2 diabetes (T2DM), and its association with β-cell function and gut hormone levels. Eighty-nine Chinese patients (59 males and 30 females) were included in this study with a mean age of 50.56 ± 16.00 years. They were all recently diagnosed with T2DM and underwent 180-min OGTTs. Data on demographics, β-cell function, and insulin sensitivity were also collected. Gut hormones, including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, were also detected during the OGTT. A total of 39.3 % of subjects had an incessant increase in the glucose response curve, while 59.6 % had a monophasic curve. Because only one curve was classified as biphasic, patients with a biphasic curve were omitted from further research. Lower plasma C-peptide, HOMA2-β, area under the curve (AUC) of C-peptide, and ratio of AUC of insulin to AUC of glucose were found in patients with incessant increase curves compared to those with monophasic curves (P < 0.05). Higher glycated hemoglobin (HbA1c) was found in subjects with an incessant increase curve (P < 0.05). Importantly, fasting plasma ghrelin was lower and incremental ghrelin at 120 min was higher in the incessant increase group (P < 0.05), irrespective of age, sex, body mass index (BMI), fasting glucose, and fasting insulin. Time to peak is also a parameter of the OGTT curve shape. In the late-peak group, GLP-1 at 120 min and the AUC of GLP-1 were elevated compared with those in the early-peak group (P < 0.05). In Chinese adults with T2DM, the incessant increase in OGTT shape indicated impaired insulin secretion. Lower fasting ghrelin and absence of ghrelin drops after glucose load may be associated with the incessant increase OGTT shape. In addition, compensatory elevated GLP-1 dose not prevent peak delay in the OGTT curve. Gut hormones may have an effect on OGTT shapes in T2DM adults.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhen Wen
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Tao Jiang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Yuyan Sun
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
39
|
Watkins JD, Koumanov F, Gonzalez JT. Protein- and Calcium-Mediated GLP-1 Secretion: A Narrative Review. Adv Nutr 2021; 12:2540-2552. [PMID: 34192748 PMCID: PMC8634310 DOI: 10.1093/advances/nmab078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is an incretin hormone produced in the intestine that is secreted in response to nutrient exposure. GLP-1 potentiates glucose-dependent insulin secretion from the pancreatic β cells and promotes satiety. These important actions on glucose metabolism and appetite have led to widespread interest in GLP-1 receptor agonism. Typically, this involves pharmacological GLP-1 mimetics or targeted inhibition of dipeptidyl peptidase-IV, the enzyme responsible for GLP-1 degradation. However, nutritional strategies provide a widely available, cost-effective alternative to pharmacological strategies for enhancing hormone release. Recent advances in nutritional research have implicated the combined ingestion of protein and calcium with enhanced endogenous GLP-1 release, which is likely due to activation of receptors with high affinity and/or sensitivity for amino acids and calcium. Specifically targeting these receptors could enhance gut hormone secretion, thus providing a new therapeutic option. This narrative review provides an overview of the latest research on protein- and calcium-mediated GLP-1 release with an emphasis on human data, and a perspective on potential mechanisms that link potent GLP-1 release to the co-ingestion of protein and calcium. In light of these recent findings, potential future research directions are also presented.
Collapse
Affiliation(s)
- Jonathan D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Françoise Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
40
|
The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes. J Clin Med 2021; 10:jcm10112487. [PMID: 34199839 PMCID: PMC8200068 DOI: 10.3390/jcm10112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to investigate the changes in glucagon levels in people with diabetes after the ingestion of a mixed meal and the correlations of variation in glucagon levels with incretin and clinico-biochemical characteristics. METHODS Glucose, C-peptide, glucagon, intact glucagon-like peptide 1 (iGLP-1), and intact glucose-dependent insulinotropic polypeptide (iGIP) were measured in blood samples collected from 317 people with diabetes before and 30 min after the ingestion of a standard mixed meal. The delta (Δ) is the 30-min value minus the basal value. RESULTS At 30 min after meal ingestion, the glucagon level showed no difference relative to the basal value, whereas glucose, C-peptide, iGLP-1, and iGIP levels showed a significant increase. In univariate analysis, Δglucagon showed not only a strong correlation with HbA1c but also a significant correlation with fasting glucose, Δglucose, and estimated glomerular filtration rate. However, Δglucagon showed no significant correlations with ΔiGLP-1 and ΔiGIP. In the hierarchical multiple regression analysis, HbA1c was the only variable that continued to show the most significant correlation with Δglucagon. CONCLUSIONS People with diabetes showed no suppression of glucagon secretion after meal ingestion. Patients with poorer glycemic control may show greater increase in postprandial glucagon level, and this does not appear to be mediated by incretin.
Collapse
|
41
|
The Microbiota and the Gut-Brain Axis in Controlling Food Intake and Energy Homeostasis. Int J Mol Sci 2021; 22:ijms22115830. [PMID: 34072450 PMCID: PMC8198395 DOI: 10.3390/ijms22115830] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota-diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota-brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut-endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota-diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut-brain axis function and, thus, combat obesity.
Collapse
|
42
|
The Function of Gastrointestinal Hormones in Obesity-Implications for the Regulation of Energy Intake. Nutrients 2021; 13:nu13061839. [PMID: 34072172 PMCID: PMC8226753 DOI: 10.3390/nu13061839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity and the challenges of prevention prompted researchers to investigate the mechanisms that control food intake. Food ingestion triggers several physiological responses in the digestive system, including the release of gastrointestinal hormones from enteroendocrine cells that are involved in appetite signalling. Disturbed regulation of gut hormone release may affect energy homeostasis and contribute to obesity. In this review, we summarize the changes that occur in the gut hormone balance during the pre- and postprandial state in obesity and the alterations in the diurnal dynamics of their plasma levels. We further discuss how obesity may affect nutrient sensors on enteroendocrine cells that sense the luminal content and provoke alterations in their secretory profile. Gastric bypass surgery elicits one of the most favorable metabolic outcomes in obese patients. We summarize the effect of different strategies to induce weight loss on gut enteroendocrine function. Although the mechanisms underlying obesity are not fully understood, restoring the gut hormone balance in obesity by targeting nutrient sensors or by combination therapy with gut peptide mimetics represents a novel strategy to ameliorate obesity.
Collapse
|
43
|
DBPR108, a novel dipeptidyl peptidase-4 inhibitor with antihyperglycemic activity. Life Sci 2021; 278:119574. [PMID: 33961850 DOI: 10.1016/j.lfs.2021.119574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022]
Abstract
AIMS Dipeptidyl peptidase 4 (DPP-4) is a valid molecular drug target from which its inhibitors have been developed as medicines for treating diabetes. The present study evaluated a new synthetic DPP-4-specific inhibitor of small molecule DBPR108 for pharmacology and pharmacokinetic profiles. MAIN METHODS DBPR108 of various doses was orally administered to rats, diabetic mice, and dogs and the systemic circulating DPP-4 activities in the animals were measured to demonstrate the pharmacological mechanisms of action via DPP-4 inhibition. Upon an oral administration of DBPR108, the serum active GLP-1 and insulin levels of the rats challenged with an oral glucose ingestion were measured. Oral glucose tolerance test in diet-induced obese mice was performed to examine if DBPR108 increases the glucose tolerability in animals. KEY FINDINGS Orally administered DBPR108 inhibited the systemic plasma DPP-4 activities in rats, dogs and diabetic mice in a dose-dependent manner. DBPR108 caused elevated serum levels of active GLP-1 and insulin in the rats. DBPR108 dose-dependently increased the glucose tolerability in diet-induced obese (DIO) mice and, furthermore, DIO mice treated with DBPR108 (0.1 mg/kg) in combination with metformin (50 or 100 mg/kg) showed a prominently strong increase in the glucose tolerability. SIGNIFICANCE DBPR108 is a novel DPP-4-selective inhibitor of small molecule that demonstrated potent in vivo pharmacological effects and good safety profiles in animals. DBPR108 is now a drug candidate being further developed in the clinical studies as therapeutics for treating diabetes.
Collapse
|
44
|
McGlone ER, Malallah K, Cuenco J, Wewer Albrechtsen NJ, Holst JJ, Vincent RP, Ling C, Khan OA, Verma S, Ahmed AR, Walters JRF, Khoo B, Bloom SR, Tan TMM. Differential effects of bile acids on the postprandial secretion of gut hormones: a randomized crossover study. Am J Physiol Endocrinol Metab 2021; 320:E671-E679. [PMID: 33459181 DOI: 10.1152/ajpendo.00580.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bile acids (BA) regulate postprandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The postprandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effects of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on postprandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon, and ghrelin. Twelve healthy volunteers underwent a mixed meal test 60 min after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg), or no BA in a randomized crossover study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin, and fibroblast growth factor 19 were measured prior to BA administration at -60 and 0 min (just prior to mixed meal) and 15, 30, 60, 120, 180, and 240 min after the meal. UDCA and CDCA provoked differential gut hormone responses; UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced postprandial secretion of GIP, with an associated reduction in postprandial insulin secretion. Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmed in obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.NEW & NOTEWORTHY Oral CDCA and UDCA have different effects on gut and pancreatic hormone secretion. A single dose of CDCA increased fasting secretion of the hormones GLP-1 and OXM with an accompanying increase in insulin secretion. CDCA also reduced postprandial GIP secretion, which was associated with reduced insulin. In contrast, UDCA did not change gut hormone secretion fasting or postprandially. Oral CDCA could be beneficial to patients with obesity and diabetes.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Khalefah Malallah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Joyceline Cuenco
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Royce P Vincent
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Charlotte Ling
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Omar A Khan
- Department of Surgery, St. George's University Hospitals NHS Trust, London, United Kingdom
| | - Surabhi Verma
- Leadiant Biosciences, Amberley House, Windsor, Berkshire, United Kingdom
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julian R F Walters
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Bernard Khoo
- Endocrinology, UCL Division of Medicine, Royal Free Hospital, London, United Kingdom
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tricia M M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Meek CL, Lewis HB, Burling K, Reimann F, Gribble F. Expected values for gastrointestinal and pancreatic hormone concentrations in healthy volunteers in the fasting and postprandial state. Ann Clin Biochem 2021; 58:108-116. [PMID: 33175577 PMCID: PMC7961662 DOI: 10.1177/0004563220975658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gastrointestinal hormones regulate intestinal transit, control digestion, influence appetite and promote satiety. Altered production or action of gut hormones, including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and peptide YY (PYY), may contribute to the biological basis of obesity and altered glucose homeostasis. However, challenges in analytical methodology and lack of clarity on expected values for healthy individuals have limited progress in this field. The aim of this study was to describe expected concentrations of gastrointestinal and pancreatic hormones in healthy volunteers following a standardized meal test (SMT) or 75 g oral glucose tolerance test (OGTT). METHODS A total of 28 healthy volunteers (12 men, 16 women; mean age 31.3 years; mean body mass index 24.9 kg/m2) were recruited to attend a hospital clinic on two occasions. Volunteers had blood sampling in the fasting state and were given, in randomized order, an oral glucose tolerance test (OGTT) and standardized mixed liquid meal test with venepuncture at timed intervals for 4 h after ingestion. Analytical methods for gut and pancreatic hormones were assessed and optimized. Concentrations of gut and pancreatic hormones were measured and used to compile ranges of expected values. RESULTS Ranges of expected values were created for glucose, insulin, glucagon, GLP-1, GIP, PYY and free fatty acids in response to a standardized mixed liquid meal or OGTT. Intact proinsulin and C-peptide levels were also measured following the OGTT. CONCLUSIONS These ranges of expected values can now be used to compare gut hormone concentrations between healthy individuals and patient groups.
Collapse
Affiliation(s)
- Claire L Meek
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| | - Hannah B Lewis
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| | - Keith Burling
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
- Core Biochemical Assay Laboratory, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| | - Fiona Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
46
|
Zhao M, Ren K, Xiong X, Cheng M, Zhang Z, Huang Z, Han X, Yang X, Alejandro EU, Ruan HB. Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells. Cell Rep 2021; 32:108013. [PMID: 32783937 PMCID: PMC7457433 DOI: 10.1016/j.celrep.2020.108013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal L cells regulate a wide range of metabolic processes, and L-cell dysfunction has been implicated in the pathogenesis of obesity and diabetes. However, it is incompletely understood how luminal signals are integrated to control the development of L cells. Here we show that food availability and gut microbiota-produced short-chain fatty acids control the posttranslational modification on intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) in intestinal epithelial cells. Via FOXO1 O-GlcNAcylation, O-GlcNAc transferase (OGT) suppresses expression of the lineage-specifying transcription factor Neurogenin 3 and, thus, L cell differentiation from enteroendocrine progenitors. Intestinal epithelial ablation of OGT in mice not only causes L cell hyperplasia and increased secretion of glucagon-like peptide 1 (GLP-1) but also disrupts gut microbial compositions, which notably contributes to decreased weight gain and improved glycemic control. Our results identify intestinal epithelial O-GlcNAc signaling as a brake on L cell development and function in response to nutritional and microbial cues. Zhao et al. identify OGT in intestinal epithelial cells as a “molecular brake” on L cell development and function in response to nutritional and microbial cues. OGT inhibits Ngn3 gene transcription and enteroendocrine differentiation via FOXO1 O-GlcNAcylation. Microbiota-derived SCFAs drive epithelial O-GlcNAcylation, which further influences gut microbiota to control systemic metabolism.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; College of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Meng Cheng
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Saikia M, Holter MM, Donahue LR, Lee IS, Zheng QC, Wise JL, Todero JE, Phuong DJ, Garibay D, Coch R, Sloop KW, Garcia-Ocana A, Danko CG, Cummings BP. GLP-1 receptor signaling increases PCSK1 and β cell features in human α cells. JCI Insight 2021; 6:141851. [PMID: 33554958 PMCID: PMC7934853 DOI: 10.1172/jci.insight.141851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that potentiates glucose-stimulated insulin secretion. GLP-1 is classically produced by gut L cells; however, under certain circumstances α cells can express the prohormone convertase required for proglucagon processing to GLP-1, prohormone convertase 1/3 (PC1/3), and can produce GLP-1. However, the mechanisms through which this occurs are poorly defined. Understanding the mechanisms by which α cell PC1/3 expression can be activated may reveal new targets for diabetes treatment. Here, we demonstrate that the GLP-1 receptor (GLP-1R) agonist, liraglutide, increased α cell GLP-1 expression in a β cell GLP-1R-dependent manner. We demonstrate that this effect of liraglutide was translationally relevant in human islets through application of a new scRNA-seq technology, DART-Seq. We found that the effect of liraglutide to increase α cell PC1/3 mRNA expression occurred in a subcluster of α cells and was associated with increased expression of other β cell-like genes, which we confirmed by IHC. Finally, we found that the effect of liraglutide to increase bihormonal insulin+ glucagon+ cells was mediated by the β cell GLP-1R in mice. Together, our data validate a high-sensitivity method for scRNA-seq in human islets and identify a potentially novel GLP-1-mediated pathway regulating human α cell function.
Collapse
Affiliation(s)
- Mridusmita Saikia
- Department of Biomedical Sciences and
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | | | | | | | | | | | | | | | | | - Reilly Coch
- Cayuga Medical Center, Ithaca, New York, USA
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Lilly, Indianapolis, Indiana, USA
| | | | - Charles G Danko
- Department of Biomedical Sciences and
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | | |
Collapse
|
48
|
Luse MA, Heiston EM, Malin SK, Isakson BE. Cellular and Functional Effects of Insulin Based Therapies and Exercise on Endothelium. Curr Pharm Des 2021; 26:3760-3767. [PMID: 32693765 DOI: 10.2174/1381612826666200721002735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
Endothelial dysfunction is a hallmark of type 2 diabetes that can have severe consequences on vascular function, including hypertension and changes in blood flow, as well as exercise performance. Because endothelium is also the barrier for insulin movement into tissues, it acts as a gatekeeper for transport and glucose uptake. For this reason, endothelial dysfunction is a tempting area for pharmacological and/or exercise intervention with insulin-based therapies. In this review, we describe the current state of drugs that can be used to treat endothelial dysfunction in type 2 diabetes and diabetes-related diseases (e.g., obesity) at the molecular levels, and also discuss their role in exercise.
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Virginia, United States
| | - Emily M Heiston
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Virginia, United States
| | - Steven K Malin
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Virginia, United States
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Virginia, United States
| |
Collapse
|
49
|
Activation of the GLP-1 receptor by chloropyrimidine derivatives. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Min T, Bain SC. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Ther 2021; 12:143-157. [PMID: 33325008 PMCID: PMC7843845 DOI: 10.1007/s13300-020-00981-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) based therapy is an established treatment option for the management of type 2 diabetes mellitus (T2DM) and is recommended early in the treatment algorithm owing to glycaemic efficacy, weight reduction and favourable cardiovascular outcomes. Glucose-dependent insulinotropic polypeptide (GIP), on the other hand, was thought to have no potential as a glucose-lowering therapy because of observations showing no insulinotropic effect from supraphysiological infusion in people with T2DM. However, emerging evidence has illustrated that co-infusion of GLP-1 and GIP has a synergetic effect, resulting in significantly increased insulin response and glucagonostatic response, compared with separate administration of each hormone. These observations have led to the development of a dual GIP/GLP-1 receptor agonist, known as a 'twincretin'. Tirzepatide is a novel dual GIP/GLP-1 receptor agonist formulated as a synthetic peptide containing 39 amino acids, based on the native GIP sequence. Pre-clinical trials and phase 1 and 2 clinical trials indicate that tirzepatide has potent glucose lowering and weight loss with adverse effects comparable to those of established GLP-1 receptor agonists. The long-term efficacy, safety and cardiovascular outcomes of tirzepatide will be investigated in the SURPASS phase 3 clinical trial programme. In this paper, we will review the pre-clinical and phase 1 and 2 trials for tirzepatide in the management of T2DM and give an overview of the SURPASS clinical trials.
Collapse
Affiliation(s)
- Thinzar Min
- Diabetes Research Group, Swansea University Medical School, Swansea, SA2 8PP, UK.
- Department of Diabetes and Endocrinology, Neath Port Talbot Hospital, Swansea Bay University Health Board, Swansea, SA12 7BX, UK.
| | - Stephen C Bain
- Diabetes Research Group, Swansea University Medical School, Swansea, SA2 8PP, UK
- Department of Diabetes and Endocrinology, Singleton Hospital, Swansea Bay University Health Board, Swansea, SA2 8QA, UK
| |
Collapse
|