1
|
Katare PB, Dalmao-Fernandez A, Mengeste AM, Hamarsland H, Ellefsen S, Bakke HG, Kase ET, Thoresen GH, Rustan AC. Energy metabolism in skeletal muscle cells from donors with different body mass index. Front Physiol 2022; 13:982842. [DOI: 10.3389/fphys.2022.982842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m2) and individuals with obesity (BMI>30 kg/m2). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups. Alterations in protein expression were investigated using proteomic analysis, and energy metabolism was studied using radiolabeled substrates. Gene Ontology enrichment analysis showed that glycolytic, apoptotic, and hypoxia pathways were upregulated, whereas the pentose phosphate pathway was downregulated in myotubes from donors with obesity compared to myotubes from lean donors. Moreover, fatty acid, glucose, and amino acid uptake were increased in myotubes from individuals with obesity. However, fatty acid oxidation was reduced, glucose oxidation was increased in myotubes from subjects with obesity compared to cells from lean. Pretreatment of myotubes with palmitic acid (PA) or eicosapentaenoic acid (EPA) for 24 h increased glucose oxidation and oleic acid uptake. EPA pretreatment increased the glucose and fatty acid uptake and reduced leucine fractional oxidation in myotubes from donors with obesity. In conclusion, these results suggest that myotubes from individuals with obesity showed increased fatty acid, glucose, and amino acid uptake compared to cells from lean donors. Furthermore, myotubes from individuals with obesity had reduced fatty acid oxidative capacity, increased glucose oxidation, and a higher glycolytic reserve capacity compared to cells from lean donors. Fatty acid pretreatment enhances glucose metabolism, and EPA reduces oleic acid and leucine fractional oxidation in myotubes from donor with obesity, suggesting increased metabolic flexibility after EPA treatment.
Collapse
|
2
|
Lund J, Krapf SA, Sistek M, Bakke HG, Bartesaghi S, Peng XR, Rustan AC, Thoresen GH, Kase ET. SENP2 is vital for optimal insulin signaling and insulin-stimulated glycogen synthesis in human skeletal muscle cells. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100061. [PMID: 34909683 PMCID: PMC8663970 DOI: 10.1016/j.crphar.2021.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Sentrin-specific protease (SENP) 2 has been suggested as a possible novel drug target for the treatment of obesity and type 2 diabetes mellitus after observations of a palmitate-induced increase in SENP2 that lead to increased fatty acid oxidation and improved insulin sensitivity in skeletal muscle cells from mice. However, no precedent research has examined the role of SENP2 in human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism as well as insulin sensitivity in human skeletal muscle using cultured primary human myotubes. Acute (4 h) oleic acid oxidation was reduced in SENP2-knockdown (SENP2-KD) cells compared to control cells, with no difference in uptake. After prelabeling (24 h) with oleic acid, total lipid content and incorporation into triacylglycerol was decreased, while incorporation into other lipids, as well as complete oxidation and β-oxidation was increased in SENP2-KD cells. Basal glucose uptake (i.e., not under insulin-stimulated conditions) was higher in SENP2-KD cells, whereas oxidation was similar to control myotubes. Further, basal glycogen synthesis was not different in SENP2-KD myotubes, but both insulin-stimulated glycogen synthesis and AktSer473 phosphorylation was completely blunted in SENP2-KD cells. In conclusion, SENP2 plays an important role in fatty acid and glucose metabolism in human myotubes. Interestingly, it also appears to have a pivotal role in regulating myotube insulin sensitivity. Future studies should examine the role of SENP2 in regulation of insulin sensitivity in other tissues and in vivo, defining the potential for SENP2 as a drug target.
Collapse
Affiliation(s)
- Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Corresponding author. Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Solveig A. Krapf
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Medina Sistek
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Eili T. Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
3
|
Mengeste AM, Rustan AC, Lund J. Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring) 2021; 29:1582-1595. [PMID: 34464025 DOI: 10.1002/oby.23227] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations in lipid turnover. In addition, fatty acid oxidation is decreased, probably at the level of complete oxidation, as β -oxidation may be enhanced in obesity, which indicates mitochondrial dysfunction. Metabolic changes in skeletal muscle with obesity promote metabolic inflexibility, ectopic lipid accumulation, and formation of toxic lipid intermediates. Skeletal muscle also acts as an endocrine organ, secreting myokines that participate in interorgan cross talk. This review highlights interventions and some possible targets for treatment through action on skeletal muscle energy metabolism. Effects of exercise in vivo on obesity have been compared with simulation of endurance exercise in vitro on myotubes (electrical pulse stimulation). Possible pharmaceutical targets, including signaling pathways and drug candidates that could modify lipid storage and turnover or increase mitochondrial function or cellular energy expenditure through adaptive thermogenic mechanisms, are discussed.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Sopariwala DH, Likhite N, Pei G, Haroon F, Lin L, Yadav V, Zhao Z, Narkar VA. Estrogen-related receptor α is involved in angiogenesis and skeletal muscle revascularization in hindlimb ischemia. FASEB J 2021; 35:e21480. [PMID: 33788962 PMCID: PMC11135633 DOI: 10.1096/fj.202001794rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle ischemia is a major consequence of peripheral arterial disease (PAD) or critical limb ischemia (CLI). Although therapeutic options for resolving muscle ischemia in PAD/CLI are limited, the issue is compounded by poor understanding of the mechanisms driving muscle vascularization. We found that nuclear receptor estrogen-related receptor alpha (ERRα) expression is induced in murine skeletal muscle by hindlimb ischemia (HLI), and in cultured myotubes by hypoxia, suggesting a potential role for ERRα in ischemic response. To test this, we generated skeletal muscle-specific ERRα transgenic (TG) mice. In these mice, ERRα drives myofiber type switch from glycolytic type IIB to oxidative type IIA/IIX myofibers, which are typically associated with more vascular supply in muscle. Indeed, RNA sequencing and functional enrichment analysis of TG muscle revealed that "paracrine angiogenesis" is the top-ranked transcriptional program activated by ERRα in the skeletal muscle. Immunohistochemistry and angiography showed that ERRα overexpression increases baseline capillarity, arterioles and non-leaky blood vessel formation in the skeletal muscles. Moreover, ERRα overexpression facilitates ischemic neo-angiogenesis and perfusion recovery in hindlimb musculature of mice subjected to HLI. Therefore, ERRα is a hypoxia inducible nuclear receptor that is involved in skeletal muscle angiogenesis and could be potentially targeted for treating PAD/CLI.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Neah Likhite
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Gungsheng Pei
- Center for Precision Medicine, School of Biomedical Informatics, UTHealth, Houston, TX, USA
| | - Fnu Haroon
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Lisa Lin
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
- Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Vikas Yadav
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
- Current address: Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Zhongming Zhao
- Center for Precision Medicine, School of Biomedical Informatics, UTHealth, Houston, TX, USA
- Human Genetics Center, School of Public Health, UTHealth, Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
- Graduate School of Biomedical Sciences, UTHealth, TX, USA
| |
Collapse
|
5
|
Chung KW. Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells 2021; 10:cells10040880. [PMID: 33924316 PMCID: PMC8068994 DOI: 10.3390/cells10040880] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
During aging, body adiposity increases with changes in the metabolism of lipids and their metabolite levels. Considering lipid metabolism, excess adiposity with increased lipotoxicity leads to various age-related diseases, including cardiovascular disease, cancer, arthritis, type 2 diabetes, and Alzheimer's disease. However, the multifaceted nature and complexities of lipid metabolism make it difficult to delineate its exact mechanism and role during aging. With advances in genetic engineering techniques, recent studies have demonstrated that changes in lipid metabolism are associated with aging and age-related diseases. Lipid accumulation and impaired fatty acid utilization in organs are associated with pathophysiological phenotypes of aging. Changes in adipokine levels contribute to aging by modulating changes in systemic metabolism and inflammation. Advances in lipidomic techniques have identified changes in lipid profiles that are associated with aging. Although it remains unclear how lipid metabolism is regulated during aging, or how lipid metabolites impact aging, evidence suggests a dynamic role for lipid metabolism and its metabolites as active participants of signaling pathways and regulators of gene expression. This review describes recent advances in our understanding of lipid metabolism in aging, including established findings and recent approaches.
Collapse
Affiliation(s)
- Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46214, Korea
| |
Collapse
|
6
|
Ménégaut L, Jalil A, Pilot T, van Dongen K, Crespy V, Steinmetz E, Pais de Barros JP, Geissler A, Le Goff W, Venteclef N, Lagrost L, Gautier T, Thomas C, Masson D. Regulation of glycolytic genes in human macrophages by oxysterols: a potential role for liver X receptors. Br J Pharmacol 2021; 178:3124-3139. [PMID: 33377180 DOI: 10.1111/bph.15358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Subset of macrophages within the atheroma plaque displays a high glucose uptake activity. Nevertheless, the molecular mechanisms and the pathophysiological significance of this high glucose need remain unclear. While the role for hypoxia and hypoxia inducible factor 1α has been demonstrated, the contribution of lipid micro-environment and more specifically oxysterols is yet to be explored. EXPERIMENTAL APPROACH Human macrophages were conditioned in the presence of homogenates from human carotid plaques, and expression of genes involved in glucose metabolism was quantified. Correlative analyses between gene expression and the oxysterol composition of plaques were performed. KEY RESULTS Conditioning of human macrophages by plaque homogenates induces expression of several genes involved in glucose uptake and glycolysis including glucose transporter 1 (SLC2A1) and hexokinases 2 and 3 (HK2 and HK3). This activation is significantly correlated to the oxysterol content of the plaque samples and is associated with a significant increase in the glycolytic activity of the cells. Pharmacological inverse agonist of the oxysterol receptor liver X receptor (LXR) partially reverses the induction of glycolysis genes without affecting macrophage glycolytic activity. Chromatin immunoprecipitation analysis confirms the implication of LXR in the regulation of SLC2A1 and HK2 genes. CONCLUSION AND IMPLICATIONS While our work supports the role of oxysterols and the LXR in the modulation of macrophage metabolism in atheroma plaques, it also highlights some LXR-independent effects of plaques samples. Finally, this study identifies hexokinase 3 as a promising target in the context of atherosclerosis. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Pilot
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Kevin van Dongen
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| | - Valentin Crespy
- Department of Cardiovascular Surgery, CHU Dijon, Dijon, France
| | - Eric Steinmetz
- Department of Cardiovascular Surgery, CHU Dijon, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,Lipidomic Analytic Platform, UBFC, Dijon, France
| | | | - Wilfried Le Goff
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB, Université de Paris, Université Paris, Paris, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| |
Collapse
|
7
|
Ozkan H, Yakan A. Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Ann Hepatol 2020; 18:715-724. [PMID: 31204236 DOI: 10.1016/j.aohep.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 03/19/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES The objectives of this study were to investigate the underlying mechanism of PPARα, LXRα, ChREBP, and SREBP-1c at the level of gene and protein expression with high-energy diets in liver and skeletal muscle. MATERIALS AND METHODS Metabolic changes with consumption of high fat (Hfat), high sucrose (Hsuc) and high fructose (Hfru) diets were assessed. Levels of mRNA and protein of PPARα, LXRα, ChREBP, and SREBP-1c were investigated. Body weight changes, histological structure of liver and plasma levels of some parameters were also examined. RESULTS In Hfru group, body weights were higher than other groups (P<0.05). In liver, LXRα levels of Hsuc and Hfru groups were upregulated as 1.87±0.30 (P<0.05) and 2.01±0.29 (P<0.01). SREBP-1c levels were upregulated as 4.52±1.25 (P<0.05); 4.05±1.11 (P<0.05) and 3.85±1.04 (P<0.05) in Hfat, Hsuc, and Hfru groups, respectively. In skeletal muscle, LXRα and SREBP-1c were upregulated as 1.77±0.30 (P<0.05) and 2.71±0.56 (P<0.05), in the Hfru group. Protein levels of ChREBP (33.92±8.84ng/mg protein (P<0.05)) and SREBP-1c (135.16±15.57ng/mg protein (P<0.001)) in liver were higher in Hfru group. In skeletal muscle, LXRα, ChREBP and SREBP-1c in Hfru group were 6.67±0.60, 7.11±1.29 and 43.17±6.37ng/mg, respectively (P<0.05; P<0.01; P<0.05). The rats in Hfru group had the most damaged livers. CONCLUSION Besides liver, fructose consumption significantly effects skeletal muscle and leads to weight gain, triggers lipogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Huseyin Ozkan
- Department of Genetic, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey.
| | - Akin Yakan
- Department of Animal Breeding, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
8
|
Ménégaut L, Thomas C, Jalil A, Julla JB, Magnani C, Ceroi A, Basmaciyan L, Dumont A, Le Goff W, Mathew MJ, Rébé C, Dérangère V, Laubriet A, Crespy V, Pais de Barros JP, Steinmetz E, Venteclef N, Saas P, Lagrost L, Masson D. Interplay between Liver X Receptor and Hypoxia Inducible Factor 1α Potentiates Interleukin-1β Production in Human Macrophages. Cell Rep 2020; 31:107665. [DOI: 10.1016/j.celrep.2020.107665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
|
9
|
Su W, Mao Z, Liu Y, Zhang X, Zhang W, Gustafsson JA, Guan Y. Role of HSD17B13 in the liver physiology and pathophysiology. Mol Cell Endocrinol 2019; 489:119-125. [PMID: 30365983 DOI: 10.1016/j.mce.2018.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (HSD17Bs) comprise a large family of 15 members that are mainly involved in sex hormone metabolism. Some HSD17Bs enzymes also play key roles in cholesterol and fatty acid metabolism. Recent study showed that hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), an enzyme with unknown biological function, is a novel liver-specific lipid droplet (LD)-associated protein in mouse and humans. HSD17B13 expression is markedly upregulated in patients and mice with non-alcoholic fatty liver disease (NAFLD). Hepatic overexpression of HSD17B13 promotes lipid accumulation in the liver. In this review, we summarize recent progress regarding the role of HSD17B13 in the regulation of hepatic lipid homeostasis and discuss genetic, genomic and proteomic evidence supporting the pathogenic role of HSD17B13 in NAFLD. We also emphasize its potential as a biomarker of advanced liver disease, such as non-alcoholic steatohepatitis (NASH) and liver cancer.
Collapse
Affiliation(s)
- Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China; Department of Pathology, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhuo Mao
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yiao Liu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Weizhen Zhang
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, 3013 Cullen Blv, 77204, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China.
| |
Collapse
|
10
|
Gaster M. The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. APMIS 2018; 127:3-26. [DOI: 10.1111/apm.12908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Gaster
- Laboratory for Molecular Physiology Department of Pathology and Department of Endocrinology Odense University Hospital Odense Denmark
| |
Collapse
|
11
|
Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev 2018; 70:98-111. [PMID: 30130687 DOI: 10.1016/j.ctrv.2018.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is one of the most common chronic disease worldwide and affects all cross-sections of the society including children, women, youth and adults. Scientific evidence has linked diabetes to higher incidence, accelerated progression and increased aggressiveness of different cancers. Among the different forms of cancer, research has reinforced a link between diabetes and the risk of breast cancer. Some studies have specifically linked diabetes to the highly aggressive, triple negative breast cancers (TNBCs) which do not respond to conventional hormonal/HER2 targeted interventions, have chances of early recurrence, metastasize, tend to be more invasive in nature and develop drug resistance. Commonly used anti-diabetic drugs, such as metformin, have recently gained importance in the treatment of breast cancer due to their proposed anti-cancer properties. Here we discuss the link between diabetes and breast cancer, the metabolic disturbances in diabetes that support the development of breast cancer, the challenges involved and future perspective and directions. We link the three main metabolic disturbances (dyslipidemia, hyperinsulinemia and hyperglycemia) that occur in diabetes to potential aberrant molecular pathways that may lead to the development of an oncogenic phenotype of the breast tissue, thereby leading to acceleration of cell growth, proliferation, migration, inflammation, angiogenesis, EMT and metastasis and inhibition of apoptosis in breast cancer cells. Furthermore, managing diabetes and treating cancer using a combination of anti-diabetic and classical anti-cancer drugs should prove to be more efficient in the treatment diabetes associated cancers.
Collapse
|
12
|
Li YW, Wang CH, Chen CJ, Wang CCN, Lin CL, Cheng WK, Shen HY, Lim YP. Effects of antiepileptic drugs on lipogenic gene regulation and hyperlipidemia risk in Taiwan: a nationwide population-based cohort study and supporting in vitro studies. Arch Toxicol 2018; 92:2829-2844. [DOI: 10.1007/s00204-018-2263-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
|
13
|
Ji Q, Zhao Y, Yuan A, Pu J, He B. Deficiency of liver-X-receptor-α reduces glucose uptake and worsens post-myocardial infarction remodeling. Biochem Biophys Res Commun 2017; 488:489-495. [PMID: 28511797 DOI: 10.1016/j.bbrc.2017.05.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Liver X receptor α (LXRα) is an endogenous protective receptor against ischemic heart diseases. However, whether LXRα regulated glucose metabolism in ischemic heart diseases has not been investigated. In this study we investigated the involvement of LXRα on glucose metabolism in cardiac remodeling after myocardial infarction (MI). MI was induced in mice by permanent ligation of the left anterior descending coronary artery (LCA). Genetic LXRα deletion significantly worsened cardiac remodeling and impaired cardiac function at 4 weeks after MI. Cardiac 18F-fluorodeoxyglucose (FDG) uptake by positron emission tomography (PET) demonstrated that the FDG standardized uptake value (SUV) was significantly lower in LXRα-/- mice as compared to WT mice. Mechanistically, GLUT1/4 and AMPK phosphorylation were significantly downregulated while CD36 expression was markedly upregulated in LXRα-/- mice. This study demonstrated that deficiency of LXRα decreased glucose uptake after MI, resulting in a metabolic shift that suppressed glucose metabolism, which was in association with adverse cardiac remodeling.
Collapse
Affiliation(s)
- Qingqi Ji
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Ancai Yuan
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| |
Collapse
|
14
|
Lund J, Rustan AC, Løvsletten NG, Mudry JM, Langleite TM, Feng YZ, Stensrud C, Brubak MG, Drevon CA, Birkeland KI, Kolnes KJ, Johansen EI, Tangen DS, Stadheim HK, Gulseth HL, Krook A, Kase ET, Jensen J, Thoresen GH. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism. PLoS One 2017; 12:e0175441. [PMID: 28403174 PMCID: PMC5389842 DOI: 10.1371/journal.pone.0175441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men. METHODS Healthy sedentary men, aged 40-62 years, with normal weight (body mass index (BMI) < 25 kg/m2) or overweight (BMI ≥ 25 kg/m2) were included. Fatty acid and glucose metabolism were studied in myotubes using [14C]oleic acid and [14C]glucose, respectively. Gene and protein expressions, as well as DNA methylation were measured for selected genes. RESULTS The 12-week training intervention improved endurance, strength and insulin sensitivity in vivo, and reduced the participants' body weight. Biopsy-derived cultured human myotubes after exercise showed increased total cellular oleic acid uptake (30%), oxidation (46%) and lipid accumulation (34%), as well as increased fractional glucose oxidation (14%) compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism. CONCLUSIONS 12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro.
Collapse
Affiliation(s)
- Jenny Lund
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils G. Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jonathan M. Mudry
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgrim M. Langleite
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yuan Z. Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Stensrud
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mari G. Brubak
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo, University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristoffer J. Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hans K. Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hanne L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo, University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eili T. Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Su W, Peng J, Li S, Dai YB, Wang CJ, Xu H, Gao M, Ruan XZ, Gustafsson JÅ, Guan YF, Zhang XY. Liver X receptor α induces 17β-hydroxysteroid dehydrogenase-13 expression through SREBP-1c. Am J Physiol Endocrinol Metab 2017; 312:E357-E367. [PMID: 28270440 DOI: 10.1152/ajpendo.00310.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023]
Abstract
Liver X receptors, including LXRα and LXRβ, are known to be master regulators of liver lipid metabolism. Activation of LXRα increases hepatic lipid storage in lipid droplets (LDs). 17β-Hydroxysteroid dehydrogenase-13 (17β-HSD13), a recently identified liver-specific LD-associated protein, has been reported to be involved in the development of nonalcoholic fatty liver disease. However, little is known about its transcriptional regulation. In the present study, we aimed at determining whether 17β-HSD13 gene transcription is controlled by LXRs. We found that treatment with T0901317, a nonspecific LXR agonist, increased both 17β-HSD13 mRNA and protein levels in cultured hepatocytes. It also significantly upregulated hepatic 17β-HSD13 expression in wild-type (WT) and LXRβ-/- mice but not in LXRα-/- mice. Basal expression of 17β-HSD13 in the livers of LXRα-/- mice was lower than that in the livers of WT and LXRβ-/- mice. Moreover, induction of hepatic 17β-HSD13 expression by T0901317 was almost completely abolished in SREBP-1c-/- mice. Bioinformatics analysis revealed a consensus sterol regulatory element (SRE)-binding site in the promoter region of the 17β-HSD13 gene. A 17β-HSD13 gene promoter-driven luciferase reporter and ChIP assays further confirmed that the 17β-HSD13 gene was under direct control of SREBP-1c. Collectively, these findings demonstrate that LXRα activation induces 17β-HSD13 expression in a SREBP-1c-dependent manner. 17β-HSD13 may be involved in the development of LXRα-mediated fatty liver.
Collapse
Affiliation(s)
- Wen Su
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
| | - Jun Peng
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Sha Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yu-Bing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Chun-Jiong Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Hu Xu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; and
| | - Min Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xiong-Zhong Ruan
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; and
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Stockholm, Sweden
| | - You-Fei Guan
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; and
| | - Xiao-Yan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; and
| |
Collapse
|
16
|
Ho GTT, Kase ET, Wangensteen H, Barsett H. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells. Molecules 2017; 22:E90. [PMID: 28067838 PMCID: PMC6155811 DOI: 10.3390/molecules22010090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.
Collapse
Affiliation(s)
- Giang Thanh Thi Ho
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Helle Wangensteen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
17
|
Åstrand OAH, Viktorsson EÖ, Kristensen AL, Ekeberg D, Røberg-Larsen H, Wilson SR, Gabrielsen M, Sylte I, Rustan AC, Thoresen GH, Rongved P, Kase ET. Synthesis, in vitro and in vivo biological evaluation of new oxysterols as modulators of the liver X receptors. J Steroid Biochem Mol Biol 2017; 165:323-330. [PMID: 27471149 DOI: 10.1016/j.jsbmb.2016.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 11/24/2022]
Abstract
Liver X Receptor (LXR) modulators have shown potential as drugs since they target genes affecting metabolism and fatty acid synthesis. LXR antagonists are of particular interest since they are able to reduce the synthesis of complex fatty acids and glucose uptake. Based on molecular modeling, five new cholesterol mimics were synthesized, where four contained a hydroxyl group in the 22-S-position. The new compounds were screened in vitro against several genes affecting lipid metabolism. The compound that performed best in vitro was a dimethylamide derivative of 22(S)-hydroxycholesterol and it was chosen for in vivo testing. However, the blood plasma analysis from the in vivo tests revealed a concentration lower than needed to give any response, indicating either rapid metabolism or low bioavailability.
Collapse
Affiliation(s)
- Ove Alexander Høgmoen Åstrand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Elvar Örn Viktorsson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Aleksander Lim Kristensen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Dag Ekeberg
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
| | - Hanne Røberg-Larsen
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Arild Christian Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Rongved
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
18
|
Oh CJ, Ha CM, Choi YK, Park S, Choe MS, Jeoung NH, Huh YH, Kim HJ, Kweon HS, Lee JM, Lee SJ, Jeon JH, Harris RA, Park KG, Lee IK. Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury. Kidney Int 2016; 91:880-895. [PMID: 28040265 DOI: 10.1016/j.kint.2016.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 02/01/2023]
Abstract
Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Chae-Myeong Ha
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Keun Choi
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Mi Sun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Yang Hoon Huh
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyo-Jeong Kim
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hee-Seok Kweon
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Joo Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Robert A Harris
- Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
19
|
Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system. Mol Aspects Med 2016; 49:31-46. [DOI: 10.1016/j.mam.2016.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/08/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023]
|
20
|
Cannon MV, Silljé HHW, Sijbesma JWA, Vreeswijk-Baudoin I, Ciapaite J, van der Sluis B, van Deursen J, Silva GJJ, de Windt LJ, Gustafsson JÅ, van der Harst P, van Gilst WH, de Boer RA. Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization. EMBO Mol Med 2016; 7:1229-43. [PMID: 26160456 PMCID: PMC4568954 DOI: 10.15252/emmm.201404669] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathological cardiac hypertrophy is characterized by a shift in metabolic substrate utilization from fatty acids to glucose, but the molecular events underlying the metabolic remodeling remain poorly understood. Here, we investigated the role of liver X receptors (LXRs), which are key regulators of glucose and lipid metabolism, in cardiac hypertrophic pathogenesis. Using a transgenic approach in mice, we show that overexpression of LXRα acts to protect the heart against hypertrophy, fibrosis, and dysfunction. Gene expression profiling studies revealed that genes regulating metabolic pathways were differentially expressed in hearts with elevated LXRα. Functionally, LXRα overexpression in isolated cardiomyocytes and murine hearts markedly enhanced the capacity for myocardial glucose uptake following hypertrophic stress. Conversely, this adaptive response was diminished in LXRα-deficient mice. Transcriptional changes induced by LXRα overexpression promoted energy-independent utilization of glucose via the hexosamine biosynthesis pathway, resulting in O-GlcNAc modification of GATA4 and Mef2c and the induction of cytoprotective natriuretic peptide expression. Our results identify LXRα as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to chronic cardiac stress, and suggest that modulating LXRα may provide a unique opportunity for intervening in myocyte metabolism.
Collapse
Affiliation(s)
- Megan V Cannon
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jürgen W A Sijbesma
- Department of Nuclear Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Inge Vreeswijk-Baudoin
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolita Ciapaite
- Department Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart van der Sluis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan van Deursen
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Gustavo J J Silva
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Zhang B, Shang P, Qiangba Y, Xu A, Wang Z, Zhang H. The association of NR1H3 gene with lipid deposition in the pig. Lipids Health Dis 2016; 15:99. [PMID: 27229308 PMCID: PMC4880824 DOI: 10.1186/s12944-016-0269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 01/14/2023] Open
Abstract
Background Nuclear receptor subfamily 1, group H, member 3 (NR1H3, an alias for Liver X receptor α, LXRα) is a member of the LXR nuclear receptor super family and is an important regulator of lipid and fatty acid accumulation in the liver, adipose and skeletal muscle. Methods In this study, single-nucleotide polymorphisms (SNPs) from six populations of pig (Sus scrofa) were screened by PCR-sequencing and genotyped, and its association with backfat thickness was analyzed in a population of New Huai line (NHP, n = 117). In addition, quantitative real-time PCR and western blot were used to measure expression of NR1H3 in the liver tissue, backfat and longissimus dorsi muscle of DSP (n = 10), TP (n = 10) and YY (n = 10) pigs. Results Three SNPs (exon2-C105T, exon2-G106C, and exon5-A201C) were screened and exon5-A201C was identified; the genotype frequencies were significantly different between indigenous and introduced breeds. The CC genotype was associated with higher backfat thickness than the AA and AC genotypes in the NYP. NR1H3 mRNA and protein expression were higher in the liver and longissimus dorsi of DSP and TP than in those of YY. This increased NR1H3 expression might be associated with higher lipid deposition. NR1H3 expression in the backfat of YY was not lower than that in DSP or TP, which might because NR1H3 has an alternative regulatory function for lipid metabolism in the subcutaneous fat of pigs. Conclusions Our results suggest that allele A of the exon5-A201C in NR1H3 may promote a reduction in backfat thickness, and differences in NR1H3 expression may be associated with differences in lipid deposition capacity among pigs.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing, 100193, People's Republic of China
| | - Peng Shang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing, 100193, People's Republic of China
| | - Yangzong Qiangba
- College of Agriculture and Animal Husbandry, Tibet University, Linzhi, 860000, People's Republic of China
| | - Aishi Xu
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing, 100193, People's Republic of China
| | - Zhixiu Wang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing, 100193, People's Republic of China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing, 100193, People's Republic of China.
| |
Collapse
|
22
|
Stevenson JL, Miller MK, Skillman HE, Paton CM, Cooper JA. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal. Eur J Nutr 2016; 56:1845-1857. [PMID: 27193583 DOI: 10.1007/s00394-016-1226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine substrate oxidation responses to saturated fatty acid (SFA)-rich meals before and after a 7-day polyunsaturated fatty acid (PUFA)-rich diet versus control diet. METHODS Twenty-six, normal-weight, adults were randomly assigned to either PUFA or control diet. Following a 3-day lead-in diet, participants completed the pre-diet visit where anthropometrics and resting metabolic rate (RMR) were measured, and two SFA-rich HF meals (breakfast and lunch) were consumed. Indirect calorimetry was used to determine fat oxidation (Fox) and energy expenditure (EE) for 4 h after each meal. Participants then consumed a PUFA-rich diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 21 % of total energy was PUFA) or control diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 7 % of total energy was PUFA) for the next 7 days. Following the 7-day diet, participants completed the post-diet visit. RESULTS From pre- to post-PUFA-rich diet, there was no change in RMR (16.3 ± 0.8 vs. 16.4 ± 0.8 kcal/20 min) or in incremental area under the curve for EE (118.9 ± 20.6-126.9 ± 14.1 kcal/8h, ns). Fasting respiratory exchange ratio increased from pre- to post-PUFA-rich diet only (0.83 ± 0.1-0.86 ± 0.1, p < 0.05). The postprandial change in Fox increased from pre- to post-visit in PUFA-rich diet (0.03 ± 0.1-0.23 ± 0.1 g/15 min for cumulative Fox; p < 0.05), whereas controls showed no change. CONCLUSIONS Adopting a PUFA-rich diet initiates greater fat oxidation after eating occasional high SFA meals compared to a control diet, an effect achieved in 7 days.
Collapse
Affiliation(s)
- Jada L Stevenson
- Department of Nutritional Sciences, Texas Christian University, Fort Worth, TX, USA.,Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Mary K Miller
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Hannah E Skillman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chad M Paton
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.,Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA, 30622, USA
| | - Jamie A Cooper
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA, 30622, USA.
| |
Collapse
|
23
|
Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts 2016; 6:177-90. [PMID: 25945723 DOI: 10.1515/bmc-2015-0007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 11/15/2022] Open
Abstract
The liver X receptors (LXR) are crucial regulators of metabolism. After ligand binding, they regulate gene transcription and thereby mediate changes in metabolic pathways. Modulation of LXR and their downstream targets has appeared to be a promising treatment for metabolic diseases especially atherosclerosis and cholesterol metabolism. However, the complexity of LXR action in various metabolic tissues and the liver side effect of LXR activation have slowed down the interest for LXR drugs. In this review, we summarized the role of LXR in the main metabolically active tissues with a special focus on obesity and associated diseases in mammals. We will also discuss the dual interplay between the two LXR isoforms suggesting that they may collaborate to establish a fine and efficient system for the maintenance of metabolism homeostasis.
Collapse
|
24
|
Emerging role of liver X receptors in cardiac pathophysiology and heart failure. Basic Res Cardiol 2015; 111:3. [PMID: 26611207 PMCID: PMC4661180 DOI: 10.1007/s00395-015-0520-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/03/2015] [Indexed: 01/09/2023]
Abstract
Liver X receptors (LXRs) are master regulators of metabolism and have been studied for their pharmacological potential in vascular and metabolic disease. Besides their established role in metabolic homeostasis and disease, there is mounting evidence to suggest that LXRs may exert direct beneficial effects in the heart. Here, we aim to provide a conceptual framework to explain the broad mode of action of LXRs and how LXR signaling may be an important local and systemic target for the treatment of heart failure. We discuss the potential role of LXRs in systemic conditions associated with heart failure, such as hypertension, diabetes, and renal and vascular disease. Further, we expound on recent data that implicate a direct role for LXR activation in the heart, for its impact on cardiomyocyte damage and loss due to ischemia, and effects on cardiac hypertrophy, fibrosis, and myocardial metabolism. Taken together, the accumulating evidence supports the notion that LXRs may represent a novel therapeutic target for the treatment of heart failure.
Collapse
|
25
|
Kase ET, Feng YZ, Badin PM, Bakke SS, Laurens C, Coue M, Langin D, Gaster M, Thoresen GH, Rustan AC, Moro C. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1194-201. [DOI: 10.1016/j.bbalip.2015.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 01/10/2023]
|
26
|
Poletto AC, Furuya DT, David-Silva A, Ebersbach-Silva P, Santos CL, Corrêa-Giannella ML, Passarelli M, Machado UF. Oleic and linoleic fatty acids downregulate Slc2a4/GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Mol Cell Endocrinol 2015; 401:65-72. [PMID: 25486510 DOI: 10.1016/j.mce.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
Oleic (OA) and linoleic (LA) fatty acids may be important regulators of Slc2a4 gene (GLUT4 protein) in skeletal muscle, thus participating in insulin resistance. We investigated the effect of OA and LA on the Slc2a4/GLUT4 expression in L6 muscle cells; as well as potential transcriptional regulators. OA and LA (50-400 µM) decreased the Slc2a4/GLUT4 expression in a dose-dependent way (maximum of ~50%, P < 0.001). OA and LA did not alter the Slc2a4-binding activity of oxysterols-receptor-LXR-alpha and peroxisome-proliferator-activated-receptor-gamma; but decreased the Slc2a4-binding activity of the sterol-regulatory-element-binding-protein-1 (SREBP1) enhancer (50%, P < 0.001), and increased (~30%, P < 0.001) the nuclear proteins binding into the Slc2a4-nuclear-factor-NF-kappa-B-binding site (repressor), and the phosphorylation of the inhibitors of nuclear-factor-kappa-B-kinase alpha/beta (150-300%, P < 0.001). In sum, OA and LA are potent inhibitors of the Slc2a4/GLUT4 expression in muscle cells; an effect involving reduced SREBP1 and increased NFKB transcriptional activity. These regulations may participate in the fatty acid-related pathophysiology of insulin resistance.
Collapse
Affiliation(s)
- Ana Cláudia Poletto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniela Tomie Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline David-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia Ebersbach-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camilo Lellis Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- Department of Internal Medicine, Endocrinology, and Laboratory for Cellular and Molecular Endocrinology (LIM-25), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM10), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
27
|
Hijmans BS, Tiemann CA, Grefhorst A, Boesjes M, van Dijk TH, Tietge UJF, Kuipers F, van Riel NAW, Groen AK, Oosterveer MH. A systems biology approach reveals the physiological origin of hepatic steatosis induced by liver X receptor activation. FASEB J 2014; 29:1153-64. [PMID: 25477282 DOI: 10.1096/fj.14-254656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
Liver X receptor (LXR) agonists exert potent antiatherosclerotic actions but simultaneously induce excessive triglyceride (TG) accumulation in the liver. To obtain a detailed insight into the underlying mechanism of hepatic TG accumulation, we used a novel computational modeling approach called analysis of dynamic adaptations in parameter trajectories (ADAPT). We revealed that both input and output fluxes to hepatic TG content are considerably induced on LXR activation and that in the early phase of LXR agonism, hepatic steatosis results from only a minor imbalance between the two. It is generally believed that LXR-induced hepatic steatosis results from increased de novo lipogenesis (DNL). In contrast, ADAPT predicted that the hepatic influx of free fatty acids is the major contributor to hepatic TG accumulation in the early phase of LXR activation. Qualitative validation of this prediction showed a 5-fold increase in the contribution of plasma palmitate to hepatic monounsaturated fatty acids on acute LXR activation, whereas DNL was not yet significantly increased. This study illustrates that complex effects of pharmacological intervention can be translated into distinct patterns of metabolic regulation through state-of-the-art mathematical modeling.
Collapse
Affiliation(s)
- Brenda S Hijmans
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Christian A Tiemann
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Aldo Grefhorst
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Marije Boesjes
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Natal A W van Riel
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Maaike H Oosterveer
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Høgmoen Åstrand OA, Gikling I, Sylte I, Rustan AC, Thoresen GH, Rongved P, Kase ET. Development of new LXR modulators that regulate LXR target genes and reduce lipogenesis in human cell models. Eur J Med Chem 2014; 74:258-63. [DOI: 10.1016/j.ejmech.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/13/2022]
|
29
|
Huang C. Natural modulators of liver X receptors. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:76-85. [DOI: 10.1016/s2095-4964(14)60013-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 2014; 11:10. [PMID: 24520982 PMCID: PMC3925357 DOI: 10.1186/1743-7075-11-10] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/08/2014] [Indexed: 01/26/2023] Open
Abstract
Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs’ pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA USA.
| |
Collapse
|
31
|
Parikh M, Patel K, Soni S, Gandhi T. Liver X Receptor: A Cardinal Target for Atherosclerosis and Beyond. J Atheroscler Thromb 2014. [DOI: 10.5551/jat.19778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
32
|
Lee KW, Cho JG, Kim CM, Kang AY, Kim M, Ahn BY, Chung SS, Lim KH, Baek KH, Sung JH, Park KS, Park SG. Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity. J Biol Chem 2013; 288:32886-96. [PMID: 24072712 DOI: 10.1074/jbc.m113.496331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a central regulator of adipogenesis and modulates glucose and lipid metabolism. In this study, herpesvirus-associated ubiquitin-specific protease (HAUSP) was isolated as a binding partner of PPARγ. Both endogenous and exogenous PPARγ associated with HAUSP in co-immunoprecipitation analysis. HAUSP, but not the catalytically inactive HAUSP C223S mutant, increased the stability of both endogenous and exogenous PPARγ through its deubiquitinating activity. Site-directed mutagenesis experiments showed that the Lys(462) residue of PPARγ is critical for ubiquitination. HBX 41,108, a specific inhibitor of HAUSP, abolished the increase in PPARγ stability induced by HAUSP. In addition, knockdown of endogenous HAUSP using siRNA decreased PPARγ protein levels. HAUSP enhanced the transcriptional activity of both exogenous and endogenous PPARγ in luciferase activity assays. Quantitative RT-PCR analysis showed that HAUSP increased the transcript levels of PPARγ target genes in HepG2 cells, resulting in the enhanced uptake of glucose and fatty acids, and vice versa, upon siRNA knockdown of HAUSP. In vivo analysis using adenoviruses confirmed that HAUSP, but not the HAUSP C223S mutant, decreased blood glucose and triglyceride levels, which are associated with the increased expression of endogenous PPARγ and lipid accumulation in the liver. Our results demonstrate that the stability and activity of PPARγ are modulated by the deubiquitinating activity of HAUSP, which may be a target for the development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Kyeong Won Lee
- From the Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongnogu, Seoul 110-744
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pettersson AML, Stenson BM, Lorente-Cebrián S, Andersson DP, Mejhert N, Krätzel J, Aström G, Dahlman I, Chibalin AV, Arner P, Laurencikiene J. LXR is a negative regulator of glucose uptake in human adipocytes. Diabetologia 2013; 56:2044-54. [PMID: 23765184 DOI: 10.1007/s00125-013-2954-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/16/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Obesity increases the risk of developing type 2 diabetes mellitus, characterised by impaired insulin-mediated glucose uptake in peripheral tissues. Liver X receptor (LXR) is a positive regulator of adipocyte glucose transport in murine models and a possible target for diabetes treatment. However, the levels of LXRα are increased in obese adipose tissue in humans. We aimed to investigate the transcriptome of LXR and the role of LXR in the regulation of glucose uptake in primary human adipocytes. METHODS The insulin responsiveness of human adipocytes differentiated in vitro was characterised, adipocytes were treated with the LXR agonist GW3965 and global transcriptome profiling was determined by microarray, followed by quantitative RT-PCR (qRT-PCR), western blot and ELISA. Basal and insulin-stimulated glucose uptake was measured and the effect on plasma membrane translocation of glucose transporter 4 (GLUT4) was assayed. RESULTS LXR activation resulted in transcriptional suppression of several insulin signalling genes, such as AKT2, SORBS1 and CAV1, but caused only minor changes (<15%) in microRNA expression. Activation of LXR impaired the plasma membrane translocation of GLUT4, but not the expression of its gene, SLC2A4. LXR activation also diminished insulin-stimulated glucose transport and lipogenesis in adipocytes obtained from overweight individuals. Furthermore, AKT2 expression was reduced in obese adipose tissue, and AKT2 and SORBS1 expression was inversely correlated with BMI and HOMA index. CONCLUSIONS/INTERPRETATION In contrast to murine models, LXR downregulates insulin-stimulated glucose uptake in human adipocytes from overweight individuals. This could be due to suppression of Akt2, c-Cbl-associated protein and caveolin-1. These findings challenge the idea of LXR as a drug target in the treatment of diabetes.
Collapse
Affiliation(s)
- A M L Pettersson
- Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, Novum, 14186 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aas V, Bakke SS, Feng YZ, Kase ET, Jensen J, Bajpeyi S, Thoresen GH, Rustan AC. Are cultured human myotubes far from home? Cell Tissue Res 2013; 354:671-82. [PMID: 23749200 DOI: 10.1007/s00441-013-1655-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Vigdis Aas
- Institute of Pharmacy and Biomedical Laboratory Science, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Viennois E, Mouzat K, Dufour J, Morel L, Lobaccaro JM, Baron S. Selective liver X receptor modulators (SLiMs): what use in human health? Mol Cell Endocrinol 2012; 351:129-41. [PMID: 21907760 DOI: 10.1016/j.mce.2011.08.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 11/28/2022]
Abstract
Liver X receptors (LXR) are members of the nuclear receptor family. As activated transcription factors, their putative association with human diseases makes them promising pharmacological targets because of the large potential to develop ligands. LXR are mainly considered as intracellular cholesterol "sensors" whose activation leads to decreased plasma cholesterol. They also modulate numerous physiological functions: fatty acid synthesis and metabolism, glucose homeostasis, steroidogenesis, immunity, and neurological homeostasis. LXR-deficiency in mouse results in several phenotypes mimicking pathological conditions in humans. This review will be focused on the various natural and synthetic LXR agonists and antagonists. Putative clinical targets including atherosclerosis, diabetes, Alzheimer's disease, skin disorders, and cancer will be covered.
Collapse
Affiliation(s)
- Emilie Viennois
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
36
|
Nikolić N, Bakke SS, Kase ET, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V. Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One 2012; 7:e33203. [PMID: 22457744 PMCID: PMC3310863 DOI: 10.1371/journal.pone.0033203] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022] Open
Abstract
Background and Aims Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes. Methods Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting. Results High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells. Conclusions Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.
Collapse
Affiliation(s)
- Nataša Nikolić
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kase ET, Nikolić N, Hessvik NP, Fjeldheim ÅK, Jensen J, Thoresen GH, Rustan AC. Dietary Supplementation with 22-S-Hydroxycholesterol to Rats Reduces Body Weight Gain and the Accumulation of Liver Triacylglycerol. Lipids 2012; 47:483-93. [DOI: 10.1007/s11745-012-3663-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/29/2012] [Indexed: 01/08/2023]
|
38
|
Hessvik NP, Bakke SS, Smith R, Ravna AW, Sylte I, Rustan AC, Thoresen GH, Kase ET. The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism. J Steroid Biochem Mol Biol 2012; 128:154-64. [PMID: 22051079 DOI: 10.1016/j.jsbmb.2011.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/23/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
The aim of this study was to explore the effects of 22(S)-hydroxycholesterol (22(S)-HC) on lipid and glucose metabolism in human-derived cells from metabolic active tissues. Docking of T0901317 and 22(S)-HC showed that both substances fitted into the ligand binding domain of liver X receptors (LXR). Results show that while several lipogenic genes were induced by T0901317 in myotubes, HepG2 cells and SGBS cells, effect of 22(S)-HC varied more between cell types. In myotubes, most lipogenic genes were downregulated or unchanged by 22(S)-HC, whereas a more diverse pattern was found in HepG2 and SGBS cells. Treatment with 22(S)-HC induced sterol regulatory element binding transcription factor 1 in SGBS and HepG2 cells, but not in myotubes. Fatty acid synthase was downregulated by 22(S)-HC in myotubes, upregulated in SGBS and unchanged in HepG2 cells. De novo lipogenesis was increased by T0901317 in all cell models, whereas differently affected by 22(S)-HC depending on the cell type; decreased in myotubes and HepG2 cells, whereas increased in SGBS cells. Oxidation of linoleic acid was reduced by 22(S)-HC in all cell models while glucose uptake increased and tended to increase in myotubes and SGBS cells, respectively. Cholesterol efflux was unaffected by 22(S)-HC treatment. These results show that 22(S)-HC affects LXR-regulated processes differently in various cell types. Ability of 22(S)-HC to reduce lipogenesis and lipid accumulation in myotubes and hepatocytes indicate that 22(S)-HC might reduce lipid accumulation in non-adipose tissues, suggesting a potential role for 22(S)-HC or a similar LXR modulator in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Thoresen GH, Hessvik NP, Bakke SS, Aas V, Rustan AC. Metabolic switching of human skeletal muscle cells in vitro. Prostaglandins Leukot Essent Fatty Acids 2011; 85:227-34. [PMID: 21549583 DOI: 10.1016/j.plefa.2011.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted.
Collapse
Affiliation(s)
- G H Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
40
|
Abstract
Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Cruz-Garcia L, Sánchez-Gurmaches J, Gutiérrez J, Navarro I. Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-α in rainbow trout myocytes. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:125-36. [DOI: 10.1016/j.cbpa.2011.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/15/2011] [Accepted: 05/17/2011] [Indexed: 01/27/2023]
|
42
|
Overexpression of PGC-1α increases fatty acid oxidative capacity of human skeletal muscle cells. Biochem Res Int 2011; 2012:714074. [PMID: 21904680 PMCID: PMC3166714 DOI: 10.1155/2012/714074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/29/2011] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) overexpression on the oxidative capacity of human skeletal muscle cells ex vivo. PGC-1α overexpression increased the oxidation rate of palmitic acid and mRNA expression of genes regulating lipid metabolism, mitochondrial biogenesis, and function in human myotubes. Basal and insulin-stimulated deoxyglucose uptake were decreased, possibly due to upregulation of PDK4 mRNA. Expression of fast fiber-type gene marker (MHCIIa) was decreased. Compared to skeletal muscle in vivo, PGC-1α overexpression increased expression of several genes, which were downregulated during the process of cell isolation and culturing. In conclusion, PGC-1α overexpression increased oxidative capacity of cultured myotubes by improving lipid metabolism, increasing expression of genes involved in regulation of mitochondrial function and biogenesis, and decreasing expression of MHCIIa. These results suggest that therapies aimed at increasing PGC-1α expression may have utility in treatment of obesity and obesity-related diseases.
Collapse
|
43
|
PPARα–LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem J 2011; 437:521-30. [DOI: 10.1042/bj20110702] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
LXR (liver X receptor) and PPARα (peroxisome-proliferator-activated receptor α) are nuclear receptors that control the expression of genes involved in glucose and lipid homoeostasis. Using wild-type and PPARα-null mice fed on an LXR-agonist-supplemented diet, the present study analysed the impact of pharmacological LXR activation on the expression of metabolically important genes in skeletal muscle, testing the hypothesis that LXR activation can modulate PPAR action in skeletal muscle in a manner dependent on nutritional status. In the fed state, LXR activation promoted a gene profile favouring lipid storage and glucose oxidation, increasing SCD1 (stearoyl-CoA desaturase 1) expression and down-regulating PGC-1α (PPARγ co-activator-1α) and PDK4 (pyruvate dehydrogenase kinase 4) expression. PPARα deficiency enhanced LXR stimulation of SCD1 expression, and facilitated elevated SREBP-1 (sterol-regulatory-element-binding protein-1) expression. However, LXR-mediated down-regulation of PGC-1α and PDK4 was opposed and reversed by PPARα deficiency. During fasting, prior LXR activation augmented PPARα signalling to heighten FA (fatty acid) oxidation and decrease glucose oxidation by augmenting fasting-induced up-regulation of PGC-1α and PDK4 expression, effects opposed by PPARα deficiency. Starvation-induced down-regulation of SCD1 expression was opposed by antecedent LXR activation in wild-type mice, an effect enhanced further by PPARα deficiency, which may elicit increased channelling of FA into triacylglycerol to limit lipotoxicity. Our results also identified potential regulatory links between the protein deacetylases SIRT1 (sirtuin 1) and SIRT3 and PDK4 expression in muscle from fasted mice, with a requirement for PPARα. In summary, we therefore propose that a LXR–PPARα signalling axis acts as a metabolostatic regulatory mechanism to optimize substrate selection and disposition in skeletal muscle according to metabolic requirement.
Collapse
|
44
|
Baranowski M, Zabielski P, Błachnio-Zabielska AU, Harasiuk D, Górski J. LXR activation prevents exhaustive exercise-induced hypoglycaemia and spares muscle glycogen but does not enhance running endurance in untrained rats. Acta Physiol (Oxf) 2011; 201:373-9. [PMID: 20887359 DOI: 10.1111/j.1748-1716.2010.02199.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Liver X receptors (LXRs) are ligand-activated transcription factors that play an important role in regulation of hepatic lipid and carbohydrate metabolism. However, to date there is very few information on the role of LXRs in skeletal muscle. Moreover, it remains obscure whether LXR activation affects physical endurance. Therefore, we aimed to examine effects of selective LXR activator--T0901317--on running endurance and skeletal muscle exercise metabolism in rats. METHODS The animals were assigned to two groups (n=20) receiving either vehicle or T0901317 (10 mg kg(-1) day(-1) ) for 1 week. One day after the final administration, half of the rats in each group were exercised until exhaustion on the electrically driven treadmill. All animals were then anaesthetized and samples of the soleus, red and white sections of the gastrocnemius muscle, epididymal fat pad and liver were excised. RESULTS We found that LXR activation prevented exhaustive exercise-induced hypoglycaemia. T0901317 also shifted substrate utilization in working muscles in favour of fatty acids as indicated by its glycogen sparing effect, enhanced consumption of intramuscular triacylglycerol and upregulation of genes promoting fatty acid oxidation and suppressing carbohydrate oxidation. However, running time to exhaustion was not improved. CONCLUSION We conclude that LXR activation increases fatty acid utilization during exercise which, however, does not translate into measurable enhancement of exercise endurance.
Collapse
Affiliation(s)
- M Baranowski
- Department of Physiology, Medical University of Białystok, Mickiewicza 2c, Białystok, Poland.
| | | | | | | | | |
Collapse
|
45
|
Lin S, Yang Z, Liu H, Tang L, Cai Z. Beyond glucose: metabolic shifts in responses to the effects of the oral glucose tolerance test and the high-fructose diet in rats. MOLECULAR BIOSYSTEMS 2011; 7:1537-48. [PMID: 21350749 DOI: 10.1039/c0mb00246a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-fructose diet-fed rats as one of the insulin resistant models was used widely for understanding the mechanisms of type 2 diabetes mellitus. Systems-level metabolic profiling of the rat model, however, has not been deciphered clearly. To address this issue, mass spectrometry-based metabolomics was employed to unlock the metabolic snapshots of the oral glucose tolerance test (oGTT) effect in either healthy or diabetic rats, as well as to delineate the metabolic signatures in tissues of rats fed with high-fructose diet. Several differentiating metabolites were highlighted to reveal the metabolic perturbation of the oGTT effects in healthy and diabetic rats, which involved amino acid biosynthesis, polyunsaturated fatty acids, phospholipids and purine metabolism. Surprisingly, the patterns of relationships for the metabolic phenotypes by using data mining revealed that glucose ingestion might induce the healthy group to display its trajectory towards diabetic status, while only a very slight influence was observed on the high-fructose diet-fed rats 120 min after glucose ingestion. The data treatment for liver, skeletal muscle and brain tissues suggested that oxidative stress, such as lipid peroxidation and the declined antioxidant, the elevated amino acids and the perturbation of fatty acids, were caused by the high-fructose diet in liver and skeletal muscle tissues. On the other hand, the up-regulation in purine biosynthesis and the decreased concentrations for amino acids were observed in the cerebral cortex and hippocampus tissues. Collectively, the obtained results might provide a new insight not only for the impairment of glucose tolerance but also for the dietary style in rats.
Collapse
Affiliation(s)
- Shuhai Lin
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
46
|
Viennois E, Pommier AJC, Mouzat K, Oumeddour A, Hajjaji FZE, Dufour J, Caira F, Volle DH, Baron S, Lobaccaro JMA. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets 2011; 15:219-32. [DOI: 10.1517/14728222.2011.547853] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Hanke N, Scheibe RJ, Manukjan G, Ewers D, Umeda PK, Chang KC, Kubis HP, Gros G, Meissner JD. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:377-89. [PMID: 21215280 DOI: 10.1016/j.bbamcr.2010.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle.
Collapse
Affiliation(s)
- Nina Hanke
- Department of Physiology, Vegetative Physiology 4220, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hessvik NP, Bakke SS, Fredriksson K, Boekschoten MV, Fjørkenstad A, Koster G, Hesselink MK, Kersten S, Kase ET, Rustan AC, Thoresen GH. Metabolic switching of human myotubes is improved by n-3 fatty acids. J Lipid Res 2010; 51:2090-104. [PMID: 20363834 DOI: 10.1194/jlr.m003319] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition ("fed") to a high fatty acid, low glucose ("fasted") condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.
Collapse
Affiliation(s)
- N P Hessvik
- Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hamlat N, Negazzi S, Forcheron F, Bricca G, Beylot M, Aouichat-Bouguerra S. Lipogenesis in arterial wall and vascular smooth muscle cells of Psammomys obesus: its regulation and abnormalities in diabetes. DIABETES & METABOLISM 2010; 36:221-8. [PMID: 20303812 DOI: 10.1016/j.diabet.2010.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/01/2010] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
AIM Lipogenesis is expressed in vascular smooth muscle cells (VSMCs), and such in situ lipogenesis could be providing the fatty acids for triglyceride synthesis and cholesterol esterification, and contributing to lipid accumulation in the arterial wall. This study investigated both the expression and regulation of lipogenesis in VSMCs to determine if they are modified in Psammomys obesus gerbils fed a high-fat diet as a model of insulin resistance and diabetes. METHODS Aortas were collected from diabetic and non-diabetic P. obesus for histological examination, measurement of lipogenic gene expression and VSMC culture. RESULTS The aortas of diabetic animals exhibited lipid deposits and foam cells as well as disorganization of elastic fibres. However, lipogenic gene expression was not modified. VSMCs in vitro from the aortas of diabetic animals had, compared with cells from non-diabetic animals, lower mRNA levels of SREBP-1c and ChREBP. An adipogenic medium stimulated moderate FAS and ACC1 expression in cells from both diabetic and non-diabetic animals, but glucose and insulin on their own had no such stimulatory action. Also, triiodothyronine (T3) had a clear stimulatory action, while angiotensin II had a moderate effect, in cells from non-diabetic P. obesus, but not from diabetic animals, whereas LXR agonists stimulated lipogenesis in cells from both animal groups. CONCLUSION Lipogenesis is expressed in the arterial walls and VSMCs of P. obesus. However, its expression was not increased in diabetes, and did not respond to either T3 or angiotensin II. Therefore, lipogenesis in situ is unlikely to contribute to the accumulation of lipids in the arterial walls of diabetic P. obesus gerbils.
Collapse
Affiliation(s)
- N Hamlat
- ERI22-EA4173, faculté Rockefeller, UCB Lyon 1, 8, avenue Rockfeller, 69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
50
|
Weedon-Fekjaer MS, Dalen KT, Solaas K, Staff AC, Duttaroy AK, Nebb HI. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells. J Lipid Res 2010; 51:1886-96. [PMID: 20219900 DOI: 10.1194/jlr.m004978] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Placental fatty acid transport and metabolism are important for proper growth and development of the feto-placental unit. The nuclear receptors, liver X receptors alpha and beta (LXRalpha and LXRbeta), are key regulators of lipid metabolism in many tissues, but little is known about their role in fatty acid transport and metabolism in placenta. The current study investigates the LXR-mediated regulation of long-chain acyl-CoA synthetase 3 (ACSL3) and its functions in human placental trophoblast cells. We demonstrate that activation of LXR increases ACSL3 expression, acyl-CoA synthetase activity, and fatty acid uptake in human tropholast cells. Silencing of ACSL3 in these cells attenuates the LXR-mediated increase in acyl-CoA synthetase activity. Furthermore, we show that ACSL3 is directly regulated by LXR through a conserved LXR responsive element in the ACSL3 promoter. Our results suggest that LXR plays a regulatory role in fatty acid metabolism by direct regulation of ACSL3 in human placental trophoblast cells.
Collapse
Affiliation(s)
- M Susanne Weedon-Fekjaer
- Faculty of Medicine, University of Oslo, and Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|