1
|
Klindt C, Truong JK, Bennett AL, Pachura KJ, Herebian D, Mayatepek E, Luedde T, Ebert M, Karpen SJ, Dawson PA. Hepatic bile acid accretion correlates with cholestatic liver injury and therapeutic response in Cyp2c70 knockout mice with a humanized bile acid composition. Am J Physiol Gastrointest Liver Physiol 2024; 327:G789-G809. [PMID: 39350733 DOI: 10.1152/ajpgi.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/12/2024]
Abstract
Cyp2c70 knockout (KO) mice lack the liver enzyme responsible for synthesis of 6-hydroxylated muricholate bile acid species and possess a more hydrophobic human-like bile acid composition. Cyp2c70 KO mice develop cholestatic liver injury that can be prevented by the administration of an ileal bile acid transporter (IBAT) inhibitor. In this study, we investigated the potential of an ileal bile acid transporter (IBAT) inhibitor (SC-435) and steroidal farnesoid X receptor (FXR) agonist (cilofexor) to modulate established hepatobiliary injury and the consequent relationship of intrahepatic bile acid content and hydrophobicity to the cholestatic liver injury phenotype. Oral administration of SC-435, cilofexor, or combined treatment for 2 wk markedly reduced serum markers of liver injury and improved histological and gene expression markers of fibrosis, liver inflammation, and ductular reaction in male and female Cyp2c70 KO mice, with the greatest benefit in the combination treatment group. The IBAT inhibitor and FXR agonist significantly reduced intrahepatic bile acid content but not hepatic bile acid pool hydrophobicity, and markers of liver injury were strongly correlated with intrahepatic total bile acid and taurochenodeoxycholic acid accretion. Biomarkers of liver injury increased linearly with similar hepatic thresholds for pathological accretion of hydrophobic bile acids in male and female Cyp2c70 KO mice. These findings further support targeting intrahepatic bile acid retention as a component of treatments for cholestatic liver disease.NEW & NOTEWORTHY Bile acids are implicated as a common contributor to the pathogenesis and progression of cholestatic liver disease. Using a mouse model with a humanized bile acid composition, we demonstrated that mono and combination therapy using an IBAT inhibitor and FXR nonsteroidal agonist were effective at reducing hepatic bile acid accretion and reversing liver injury, without reducing hepatic bile acid hydrophobicity. The findings support the concept of a therapeutically tractable threshold for bile acid-induced liver injury.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jennifer K Truong
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Rectify Pharma, Cambridge, Massachusetts, United States
| | - Ashley L Bennett
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Saul J Karpen
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Paul A Dawson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
2
|
Tiley JB, Beaudoin JJ, Derebail VK, Murphy WA, Park CC, Veeder JA, Tran L, Beers JL, Jia W, Stewart PW, Brouwer KLR. Altered bile acid and coproporphyrin-I disposition in patients with autosomal dominant polycystic kidney disease. Br J Clin Pharmacol 2024. [PMID: 39317666 DOI: 10.1111/bcp.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
AIMS Serum, liver and urinary bile acids are increased, and hepatic transport protein levels are decreased in a non-clinical model of polycystic kidney disease. Similar changes in patients with autosomal dominant polycystic kidney disease (ADPKD) may predispose them to drug-induced liver injury (DILI) and hepatic drug-drug interactions (DDIs). Systemic coproporphyrin-I (CP-I), an endogenous biomarker for hepatic OATP1B function and MRP2 substrate, is used to evaluate OATP1B-mediated DDI risk in humans. In this clinical observational cohort-comparison study, bile acid profiles and CP-I concentrations in healthy volunteers and patients with ADPKD were compared. METHODS Serum and urine samples from healthy volunteers (n = 16) and patients with ADPKD (n = 8) were collected. Serum bile acids, and serum and urine CP-I concentrations, were quantified by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS Patients with ADPKD exhibited increased serum concentrations of total (1.3-fold) and taurine-conjugated (2.8-fold) bile acids compared to healthy volunteers. Specifically, serum concentrations of six bile acids known to be more hydrophobic/hepatotoxic (glycochenodeoxycholate, taurochenodeoxycholate, taurodeoxycholate, lithocholate, glycolithocholate and taurolithocholate) were increased (1.5-, 2.9-, 2.8-, 1.6-, 1.7- and 2.7-fold, respectively) in patients with ADPKD. Furthermore, serum CP-I concentrations were elevated and the renal clearance of CP-I was reduced in patients with ADPKD compared to healthy volunteers. CONCLUSIONS Increased exposure to bile acids may increase susceptibility to DILI in some patients with ADPKD. Furthermore, the observed increase in serum CP-I concentrations could be attributed, in part, to impaired OATP1B function in patients with ADPKD, which could increase the risk of DDIs involving OATP1B substrates compared to healthy volunteers.
Collapse
Affiliation(s)
- Jacqueline B Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vimal K Derebail
- UNC Kidney Center, Division of Nephrology and Hypertension, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christine C Park
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin A Veeder
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lana Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Paul W Stewart
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Kayashima A, Sujino T, Fukuhara S, Miyamoto K, Kubosawa Y, Ichikawa M, Kawasaki S, Takabayashi K, Iwasaki E, Kato M, Honda A, Kanai T, Nakamoto N. Unique bile acid profiles in the bile ducts of patients with primary sclerosing cholangitis. Hepatol Commun 2024; 8:e0452. [PMID: 38780302 PMCID: PMC11124737 DOI: 10.1097/hc9.0000000000000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The relationship between primary sclerosing cholangitis (PSC) and biliary bile acids (BAs) remains unclear. Although a few studies have compared PSC biliary BAs with other diseases, they did not exclude the influence of cholestasis, which affects the composition of BAs. We compared biliary BAs and microbiota among patients with PSC, controls without cholestasis, and controls with cholestasis, based on the hypothesis that alterations in BAs underlie the pathophysiology of PSC. METHODS Bile samples were obtained using endoscopic retrograde cholangiopancreatography from patients with PSC (n = 14), non-hepato-pancreato-biliary patients without cholestasis (n = 15), and patients with cholestasis (n = 13). RESULTS The BA profiles showed that patients with PSC and cholestasis controls had significantly lower secondary BAs than non-cholestasis controls, as expected, whereas the ratio of cholic acid/chenodeoxycholic acid in patients with PSC was significantly lower despite cholestasis, and the ratio of (cholic acid + deoxycholic acid)/(chenodeoxycholic acid + lithocholic acid) in patients with PSC was significantly lower than that in the controls with or without cholestasis. The BA ratio in the bile of patients with PSC showed a similar trend in the serum. Moreover, there were correlations between the alteration of BAs and clinical data that differed from those of the cholestasis controls. Biliary microbiota did not differ among the groups. CONCLUSIONS Patients with PSC showed characteristic biliary and serum BA compositions that were different from those in other groups. These findings suggest that the BA synthesis system in patients with PSC differs from that in controls and patients with other cholestatic diseases. Our approach to assessing BAs provides insights into the pathophysiology of PSC.
Collapse
Affiliation(s)
- Atsuto Kayashima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Seiichiro Fukuhara
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | | | - Yoko Kubosawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shintaro Kawasaki
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Eisuke Iwasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Motohiko Kato
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University, Ibaraki Medical Center, Ibaraki, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Mireault M, Rose CF, Karvellas CJ, Sleno L. Perturbations in human bile acid profiles following drug-induced liver injury investigated using semitargeted high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9731. [PMID: 38469943 DOI: 10.1002/rcm.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
RATIONALE Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in North America. To investigate the effect of drug-induced liver injury (DILI) on circulating bile acid (BA) profiles, serum from ALF patients and healthy controls were analyzed using a semitargeted high-resolution mass spectrometry approach to measure BAs in their unconjugated and amidated forms and their glucuronide and sulfate conjugates. METHODS Human serum samples from 20 healthy volunteers and 34 ALF patients were combined with deuterated BAs and extracted, prior to liquid chromatography high-resolution tandem mass spectrometry analysis. A mix of 46 standards helped assign 26 BAs in human serum by accurate mass and retention time matching. Moreover, other isomers of unconjugated and amidated BAs, as well as glucuronide and sulfate conjugates, were assigned by accurate mass filtering. In vitro incubations of standard BAs provided increased information for certain peaks of interest. RESULTS A total of 275 BA metabolites, with confirmed or putative assignments, were measured in human serum samples. APAP overdose significantly influenced the levels of most BAs, promoting glycine conjugation, and, to a lesser extent, taurine conjugation. When patient outcome was considered, 11 BAs were altered significantly, including multiple sulfated species. Although many of the BAs measured did not have exact structures assigned, several putatively identified BAs of interest were further characterized using in vitro incubations. CONCLUSION An optimized chromatographic separation tailored to BAs of ranging polarities was combined with accurate mass measurements to investigate the effect that DILI has on their complex profiles and metabolism to a much wider extent than previously possible. The analysis of complex BA profiles enabled in-depth analysis of the BA metabolism perturbations in ALF, including certain metabolites related to patient outcomes.
Collapse
Affiliation(s)
- Myriam Mireault
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine and Gastroenterology/Hepatology, University of Alberta, Edmonton, Alberta, Canada
| | - Lekha Sleno
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
5
|
Chen W, Lin F, Feng X, Yao Q, Yu Y, Gao F, Zhou J, Pan Q, Wu J, Yang J, Yu J, Cao H, Li L. MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation. Asian J Pharm Sci 2024; 19:100889. [PMID: 38419761 PMCID: PMC10900800 DOI: 10.1016/j.ajps.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (ExoMSC) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2-/- mice and multicellular organoids established from PSC patients. The results showed that ExoMSC ameliorated liver fibrosis in Mdr2-/- mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis, and the percentage of CD4+IL-17A+T cells was reduced both in ExoMSC-treated Mdr2-/- mice (Mdr2-/--Exo) in vivo and ExoMSC-treated Th17 differentiation progressed in vitro. Furthermore, ExoMSC improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids. Thus, our data demonstrate the anti-fibrosis effect of ExoMSC in PSC disease by inhibiting Th17 differentiation, and ameliorating the Th17-induced microenvironment, indicating the promising potential therapeutic role of ExoMSC in liver fibrosis of PSC or Th17-related diseases.
Collapse
Affiliation(s)
- Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
6
|
Lu Q, Zhu Y, Wang C, Zhang R, Miao Y, Chai Y, Jiang Z, Yu Q. Obeticholic acid protects against lithocholic acid-induced exogenous cell apoptosis during cholestatic liver injury. Life Sci 2024; 337:122355. [PMID: 38104861 DOI: 10.1016/j.lfs.2023.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
AIMS Lithocholic acid (LCA)-induced cholestasis was accompanied by the occurrence of apoptosis, which indicated that anti-apoptosis was a therapeutic strategy for primary biliary cholangitis (PBC). As an agonist of (Farnesoid X receptor) FXR, we supposed that the hepatoprotection of Obeticholic acid (OCA) against cholestatic liver injury is related to anti-apoptosis beside of the bile acids (BAs) regulation. Herein, we explored the non-metabolic regulating mechanism of OCA for resisting LCA-induced cholestatic liver injury via anti-apoptosis. MAIN METHODS LCA-induced cholestatic liver injury mice were pretreated with OCA to evaluate its hepatoprotective effect and mechanism. Biochemical and pathological indicators were used to detect the protective effect of OCA on LCA-induced cholestatic liver injury. The bile acids (BAs) profile in serum was detected by LC-MS/MS. Hepatocyte BAs metabolism, apoptosis and inflammation related genes and proteins alteration were investigated by biochemical determination. KEY FINDINGS OCA improved LCA-induced cholestasis and hepatic apoptosis in mice. The BA profile in serum was changed by OCA mainly manifested as a reduction of taurine-conjugated bile acids, which was due to the upregulation of FXR-related bile acid efflux transporters bile salt export pump (BSEP), multi-drug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3). Apoptosis related proteins cleaved caspase-3, cleaved caspase-8 and cleaved PARP were obviously reduced after OCA treatment. SIGNIFICANCE OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which will provide new evidence for the application of OCA to ameliorate PBC in clinical.
Collapse
Affiliation(s)
- Qian Lu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yangping Zhu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Changling Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Rongmi Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Nanjing 210009, China.
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Takeuchi K, Yasuhiko O. Non-invasive Visualization and Characterization of Bile Canaliculus Formation Using Refractive Index Tomography. Biol Pharm Bull 2024; 47:1163-1171. [PMID: 38880624 DOI: 10.1248/bpb.b24-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The vital role of bile canaliculus (BC) in liver function is closely related to its morphology. Electron microscopy has contributed to understanding BC morphology; however, its invasiveness limits its use in living specimens. Here, we report non-invasive characterization of BC formation using refractive index (RI) tomography. First, we investigated and characterized the RI distribution of BCs in two-dimensional (2D) cultured HepG2 cells. BCs were identified based on their distinct morphology and functionality, as confirmed using a fluorescence-labeled bile acid analog. The RI distribution of BCs exhibited three common features: (1) luminal spaces with a low RI between adjacent hepatocytes; (2) luminal spaces surrounded by a membranous structure with a high RI; and (3) multiple microvillus structures with a high RI within the lumen. Second, we demonstrated the characterization of BC structures in a three-dimensional (3D) culture model, which is more relevant to the in vivo environment but more difficult to evaluate than 2D cultures. Various BC structures were identified inside HepG2 spheroids with the three features of RI distribution. Third, we conducted comparative analyses and found that the BC lumina of spheroids had higher circularity and lower RI standard deviation than 2D cultures. We also addressed comparison of BC and intracellular lumen-like structures within a HepG2 spheroid, and found that the BC lumina had higher RI and longer perimeter than intracellular lumen-like structures. Our demonstration of the non-destructive, label-free visualization and quantitative characterization of living BC structures will be a basis for various hepatological and pharmaceutical applications.
Collapse
Affiliation(s)
- Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K
| | | |
Collapse
|
9
|
Du Y, de Jong IEM, Gupta K, Waisbourd-Zinman O, Har-Zahav A, Soroka CJ, Boyer JL, Llewellyn J, Liu C, Naji A, Polacheck WJ, Wells RG. Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease. Biofabrication 2023; 16:015004. [PMID: 37820623 PMCID: PMC10587873 DOI: 10.1088/1758-5090/ad0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Exploring the pathogenesis of and developing therapies for cholestatic liver diseases such as primary sclerosing cholangitis (PSC) remains challenging, partly due to a paucity ofin vitromodels that capture the complex environments contributing to disease progression and partly due to difficulty in obtaining cholangiocytes. Here we report the development of a human vascularized bile duct-on-a-chip (VBDOC) that uses cholangiocyte organoids derived from normal bile duct tissue and human vascular endothelial cells to model bile ducts and blood vessels structurally and functionally in three dimensions. Cholangiocytes in the duct polarized, formed mature tight junctions and had permeability properties comparable to those measured inex vivosystems. The flow of blood and bile was modeled by perfusion of the cell-lined channels, and cholangiocytes and endothelial cells displayed differential responses to flow. We also showed that the device can be constructed with biliary organoids from cells isolated from both bile duct tissue and the bile of PSC patients. Cholangiocytes in the duct became more inflammatory under the stimulation of IL-17A, which induced peripheral blood mononuclear cells and differentiated Th17 cells to transmigrate across the vascular channel. In sum, this human VBDOC recapitulated the vascular-biliary interface structurally and functionally and represents a novel multicellular platform to study inflammatory and fibrotic cholestatic liver diseases.
Collapse
Affiliation(s)
- Yu Du
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Iris E M de Jong
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kapish Gupta
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Orit Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carol J Soroka
- Department of Internal Medicine, Section of Digestive Diseases and Liver Center, Yale University School of Medicine, New Haven, CT, United States of America
| | - James L Boyer
- Department of Internal Medicine, Section of Digestive Diseases and Liver Center, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jessica Llewellyn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
10
|
Javitt NB. Alkaline phosphatase: Need for an earlier time-table. Liver Int 2023; 43:2046. [PMID: 37469282 DOI: 10.1111/liv.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Li Y, Wang Q, Jin J, Tan B, Ren J, Song G, Zou B, Weng F, Yan D, Qiu F. 15,16-dihydrotanshinone I in Danshen ethanol extract aggravated cholestasis by inhibiting Cyp3a11 mediated bile acids hydroxylation. Toxicol Lett 2023; 377:62-70. [PMID: 36804361 DOI: 10.1016/j.toxlet.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Our previous study found that high-dose Tanshinones Capsule (TC) aggravated cholestasis in mice. To explore its underlying mechanism, main tanshinones components (15,16-dihydrotanshinone I (DTI), cryptotanshinone (CTS) and tanshinone IIA (TSA)) form TC were studied separately. Bile acids (BAs) that were primarily metabolized by hydroxylation were identified, and then the inhibitory effect of each tanshinones on their hydroxylation were evaluated. The anti-cholestasis effect of each tanshinones were studied in mice, the hepatic concentrations of BAs and tanshinones were measured and analyzed as well. The effect of tanshinones on Cyp3a11 protein expression was investigated. DTI exhibited inhibitory effect on the hydroxylation of lithocholic acid (LCA), taurolithocholic acid (TLCA) and taurochenodeoxycholic acid (TCDCA), their IC50 values were 0.81, 0.36 and 1.29 μM, respectively. The hydroxylation of LCA, TLCA and TCDCA were mediated by Cyp3a11. Low-dose DTI, CTS and TSA ameliorated cholestatic liver injury in mice, while high-dose DTI didn't exhibit anti-cholestatic effect. The hepatic BAs profiles indicated that hydroxylation of BAs was inhibited in high-dose DTI group. DTI and TSA up-regulated the protein expression of Cyp3a11. As the hepatic concentration of DTI increased, the inhibitory effect at enzymatic activity level overwhelmed its up-regulation effect at protein level, thus resulted in worsening of cholestasis.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment center for science and technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ren
- AI Lab, Tencent, Shenzhen, China
| | - Guochao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Aseem SO, Hylemon PB, Zhou H. Bile Acids and Biliary Fibrosis. Cells 2023; 12:cells12050792. [PMID: 36899928 PMCID: PMC10001305 DOI: 10.3390/cells12050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
13
|
Lenci I, Milana M, Signorello A, Grassi G, Baiocchi L. Secondary bile acids and the biliary epithelia: The good and the bad. World J Gastroenterol 2023; 29:357-366. [PMID: 36687129 PMCID: PMC9846939 DOI: 10.3748/wjg.v29.i2.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine. Nowadays several researches demonstrated an important role of biliary epithelia (i.e. cholangiocytes) in bile formation. The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases, such as primary biliary cholangitis or primary sclerosing cholangitis. Bile acids (BAs), produced by the liver, are the most represented organic molecules in bile. The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules. In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary (deriving by bacterial manipulation of primary molecules) ones. This class of BAs is demonstrated to have relevant biological effects, ranging from toxic to therapeutic ones. In this family ursodeoxycholic and lithocholic acid present the most interesting features. The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage. These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | - Martina Milana
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | | | | | | |
Collapse
|
14
|
Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, Wang HH, Wang DQH, Portincasa P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022; 14:nu14234950. [PMID: 36500979 PMCID: PMC9738051 DOI: 10.3390/nu14234950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/β-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-328-4687215
| |
Collapse
|
15
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Yamane J, Wada T, Otsuki H, Inomata K, Suzuki M, Hisaki T, Sekine S, Kouzuki H, Kobayashi K, Sone H, Yamashita JK, Osawa M, Saito MK, Fujibuchi W. StemPanTox: A fast and wide-target drug assessment system for tailor-made safety evaluations using personalized iPS cells. iScience 2022; 25:104538. [PMID: 35754715 PMCID: PMC9218511 DOI: 10.1016/j.isci.2022.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
An alternative model that reliably predicts human-specific toxicity is necessary because the translatability of effects on animal models for human disease is limited to context. Previously, we developed a method that accurately predicts developmental toxicity based on the gene networks of undifferentiated human embryonic stem (ES) cells. Here, we advanced this method to predict adult toxicities of 24 chemicals in six categories (neurotoxins, cardiotoxins, hepatotoxins, two types of nephrotoxins, and non-genotoxic carcinogens) and achieved high predictability (AUC = 0.90-1.00) in all categories. Moreover, we screened for an induced pluripotent stem (iPS) cell line to predict the toxicities based on the gene networks of iPS cells using transfer learning of the gene networks of ES cells, and predicted toxicities in four categories (neurotoxins, hepatotoxins, glomerular nephrotoxins, and non-genotoxic carcinogens) with high performance (AUC = 0.82-0.99). This method holds promise for tailor-made safety evaluations using personalized iPS cells.
Collapse
Affiliation(s)
- Junko Yamane
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takumi Wada
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hironori Otsuki
- Toxicological Research Laboratories, Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Koji Inomata
- Toxicological Research Laboratories, Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Mutsumi Suzuki
- Toxicological Research Laboratories, Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Tomoka Hisaki
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11, Takashima, Nishi-ku, Yokohama-shi, Kanagawa 220-0011, Japan
| | - Shuichi Sekine
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11, Takashima, Nishi-ku, Yokohama-shi, Kanagawa 220-0011, Japan
| | - Hirokazu Kouzuki
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11, Takashima, Nishi-ku, Yokohama-shi, Kanagawa 220-0011, Japan
| | - Kenta Kobayashi
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideko Sone
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa 245-0066, Japan
| | - Jun K Yamashita
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsujiro Osawa
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Megumu K Saito
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wataru Fujibuchi
- Center for IPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Ueda H, Honda A, Miyazaki T, Morishita Y, Hirayama T, Iwamoto J, Nakamoto N, Ikegami T. Sex-, age-, and organ-dependent improvement of bile acid hydrophobicity by ursodeoxycholic acid treatment: A study using a mouse model with human-like bile acid composition. PLoS One 2022; 17:e0271308. [PMID: 35819971 PMCID: PMC9275687 DOI: 10.1371/journal.pone.0271308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Cyp2a12-/-Cyp2c70-/- double knockout (DKO) mice have a human-like hydrophobic bile acid (BA) composition and show reduced fertility and liver injury. Ursodeoxycholic acid (UDCA) is a hydrophilic and cytoprotective BA used to treat various liver injuries in humans. This study investigated the effects of orally administered UDCA on fertility and liver injury in DKO mice. UDCA treatment prevented abnormal delivery (miscarriage and preterm birth) in pregnant DKO mice, presumably by increasing the hydrophilicity of serum BAs. UDCA also prevented liver damage in six-week-old DKO mice, however liver injury emerged in UDCA-treated 20-week-old female, but not male, DKO mice. In 20-week-old male UDCA-treated DKO mice, conjugated plus unconjugated UDCA proportions in serum, liver, and bile were 71, 64, and 71% of the total BAs, respectively. In contrast, conjugated plus unconjugated UDCA proportions in serum, liver, and bile of females were 56, 34, and 58% of the total BAs, respectively. The UDCA proportion was considerably low in female liver only and was compensated by highly hydrophobic lithocholic acid (LCA). Therefore, UDCA treatment markedly reduced the BA hydrophobicity index in the male liver but not in females. This appears to be why UDCA treatment causes liver injury in 20-week-old female mice. To explore the cause of LCA accumulation in the female liver, we evaluated the hepatic activity of CYP3A11 and SULT2A1, which metabolize LCAs to more hydrophilic BAs. However, there was no evidence to suggest that either enzyme activity was lower in females than in males. As female mice have a larger BA pool than males, excessive loading of LCAs on the hepatic bile salt export pump (BSEP) may be the reason for the hepatic accumulation of LCAs in female DKO mice with prolonged UDCA treatment. Our results suggest that the improvement of BA hydrophobicity in DKO mice by UDCA administration is sex-, age-, and organ-dependent.
Collapse
Affiliation(s)
- Hajime Ueda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.,Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Junichi Iwamoto
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Nobuhiro Nakamoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Keio University School of Medicine, Tokyo, Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
18
|
Yue H, Li Y, Cai W, Bai X, Dong P, Wang J. Antarctic krill peptide alleviates liver fibrosis via downregulating the secondary bile acid mediated NLRP3 signaling pathway. Food Funct 2022; 13:7740-7749. [PMID: 35762853 DOI: 10.1039/d1fo04241f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liver fibrosis is a necessary process for liver disease. Recent studies have reported that the enterohepatic circulation of bile acid plays a vital role in developing liver fibrosis. The Antarctic krill peptide (AKP) has been proved to have a variety of activities such as antioxidant and anti-inflammatory, but any possible influence on liver fibrosis remains unclear. In the current study, the liver fibrosis mice were intraperitoneal injection of carbon tetrachloride (2.5%, 10 mL kg-1) and oral administration AKP (400 mg kg-1) for 30 days. The results showed that the AKP supplement decreased the serum ALT and AST levels, reduced the content of liver TNF-α and Collagen I, and improved liver inflammation and fibrosis, which was also confirmed by H&E and Masson staining. Bile acid is an important metabolite for the gut microbiota. We found that the AKP supplement alleviated the gut microbiota dysbiosis remarkably, as indicated by increased species richness and diversity, and decreased overgrowth of genera Bifidobacterium, Lactobacillus, Bacteroides, Clostridiales and Fusicatenibacter. Furthermore, AKP mediated gut microbiota improvement decreased the intestinal bile salt hydrolase and 7α-dehydroxylation activities, resulting in the decrease of secondary bile acid taurodeoxycholic acid (TDCA) and taurolithocholic acid (TLCA) concentrations. Mechanistically, AKP inhibited NLRP3 signal by downregulating the secondary bile acid, decreased cleaved Caspase-1 expression to suppress IL-1β-mediated hepatic stellate cell activation. This study reports for the first time that AKP improved liver fibrosis via improving the gut microbiota mediated bile acid-NLRP3 signaling, which might provide new ideas and evidence for Antarctic krill's high-value utilization.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Xiaolin Bai
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
19
|
Li W, Chen H, Qian Y, Wang S, Luo Z, Shan J, Kong X, Gao Y. Integrated Lipidomics and Metabolomics Study of Four Chemically Induced Mouse Models of Acute Intrahepatic Cholestasis. Front Pharmacol 2022; 13:907271. [PMID: 35754480 PMCID: PMC9213752 DOI: 10.3389/fphar.2022.907271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
Lithocholic acid (LCA), alpha-naphthyl isothiocyanate (ANIT), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and ethinyl estradiol (EE) are four commonly used chemicals for the construction of acute intrahepatic cholestasis. In order to better understand the mechanisms of acute cholestasis caused by these chemicals, the metabolic characteristics of each model were summarized using lipidomics and metabolomics techniques. The results showed that the bile acid profile was altered in all models. The lipid metabolism phenotype of the LCA group was most similar to that of primary biliary cirrhosis (PBC) patients. The ANIT group and the DDC group had similar metabolic disorder characteristics, which were speculated to be related to hepatocyte necrosis and inflammatory pathway activation. The metabolic profile of the EE group was different from other models, suggesting that estrogen-induced cholestasis had its special mechanism. Ceramide and acylcarnitine accumulation was observed in all model groups, indicating that acute cholestasis was closely related to mitochondrial dysfunction. With a deeper understanding of the mechanism of acute intrahepatic cholestasis, this study also provided a reference for the selection of appropriate chemicals for cholestatic liver disease models.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Formulaology, School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yihan Qian
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Wang Q, Song GC, Weng FY, Zou B, Jin JY, Yan DM, Tan B, Zhao J, Li Y, Qiu FR. Hepatoprotective Effects of Glycyrrhetinic Acid on Lithocholic Acid-Induced Cholestatic Liver Injury Through Choleretic and Anti-Inflammatory Mechanisms. Front Pharmacol 2022; 13:881231. [PMID: 35712714 PMCID: PMC9194553 DOI: 10.3389/fphar.2022.881231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholestasis is a clinical syndrome triggered by the accumulation and aggregation of bile acids by subsequent inflammatory responses. The present study investigated the protective effect of glycyrrhetinic acid (GA) on the cholestatic liver injury induced by lithocholic acid (LCA) from both anti-inflammatory and choleretic mechanistic standpoints. Male C57BL/6 mice were treated with LCA twice daily for 4 days to induce intrahepatic cholestasis. GA (50 mg/kg) and pregnenolone 16α-carbonitrile (PCN, 45 mg/kg) were intraperitoneally injected 3 days before and throughout the administration of LCA, respectively. Plasma biochemical indexes were determined by assay kits, and hepatic bile acids were quantified by LC-MS/MS. Hematoxylin and eosin staining of liver sections was performed for pathological examination. Protein expression of the TLRs/NF-κB pathway and the mRNA levels of inflammatory cytokines and chemokines were examined by Western blotting and PCR, respectively. Finally, the hepatic expression of pregnane X receptor (PXR) and farnesoid X receptor (FXR) and their target genes encoding metabolic enzymes and transporters was evaluated. GA significantly reversed liver necrosis and decreased plasma ALT and ALP activity. Plasma total bile acids, total bilirubin, and hepatic bile acids were also remarkably preserved. More importantly, the recruitment of inflammatory cells to hepatic sinusoids was alleviated. Additionally, the protein expression of TLR2, TLR4, and p-NF-κBp65 and the mRNA expression of CCL2, CXCL2, IL-1β, IL-6, and TNF-α were significantly decreased. Moreover, GA significantly increased the expression of hepatic FXR and its target genes, including BSEP, MRP3, and MRP4. In conclusion, GA protects against LCA-induced cholestatic liver injury by inhibiting the TLR2/NF-κB pathway and upregulating hepatic FXR expression.
Collapse
Affiliation(s)
- Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Chao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng-Yi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-Ming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Liu J, Ding L, Zhai X, Wang D, Xiao C, Hui X, Sun T, Yu M, Zhang Q, Li M, Xiao X. Maternal Dietary Betaine Prevents High-Fat Diet-Induced Metabolic Disorders and Gut Microbiota Alterations in Mouse Dams and Offspring From Young to Adult. Front Microbiol 2022; 13:809642. [PMID: 35479641 PMCID: PMC9037091 DOI: 10.3389/fmicb.2022.809642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life is a critical window for preventing the intergenerational transmission of metabolic diseases. Betaine has been proven to play a role in improving glucose and lipid metabolism disorders in animal models. However, whether maternal betaine supplementation plays a role in regulating gut microbiota in both dams and offspring remains unclear. In this study, C57BL/6 female mice were fed with control diet (Ctr), high-fat diet (HF), and high-fat with betaine supplementation (0.3% betaine in the diet, HFB) from 3 weeks prior to mating and lasted throughout pregnancy and lactation. After weaning, the offspring got free access to normal chow diet until 20 weeks of age. We found that maternal dietary betaine supplementation significantly improved glucose and insulin resistance, as well as reduced free fatty acid (FFA) concentration in dams and offspring from young to adult. When compared to the HF group, Intestinimonas and Acetatifactor were reduced by betaine supplementation in dams; Desulfovibrio was reduced in 4-week-old offspring of the HFB group; and Lachnoclostridium was enriched in 20-week-old offspring of the HFB group. Moreover, the persistent elevated genus Romboutsia in both dams and offspring in the HFB group was reported for the first time. Overall, maternal betaine could dramatically alleviate the detrimental effects of maternal overnutrition on metabolism in both dams and offspring. The persistent alterations in gut microbiota might play critical roles in uncovering the intergenerational metabolic benefits of maternal betaine, which highlights evidence for combating generational metabolic diseases.
Collapse
Affiliation(s)
- Jieying Liu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Ding
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhai
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianshu Sun
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Zhou W, Anakk S. Rebuttal to: The Benevolent Bile: Bile Acids as Stimulants of Liver Regeneration. Cell Mol Gastroenterol Hepatol 2022; 13:1481-1482. [PMID: 35144029 PMCID: PMC9043299 DOI: 10.1016/j.jcmgh.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
24
|
Bile Acids Activate NLRP3 Inflammasome, Promoting Murine Liver Inflammation or Fibrosis in a Cell Type-Specific Manner. Cells 2021; 10:cells10102618. [PMID: 34685598 PMCID: PMC8534222 DOI: 10.3390/cells10102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) as important signaling molecules are considered crucial in development of cholestatic liver injury, but there is limited understanding on the involved cell types and signaling pathways. The aim of this study was to evaluate the inflammatory and fibrotic potential of key BA and the role of distinct liver cell subsets focusing on the NLRP3 inflammasome. C57BL/6 wild-type (WT) and Nlrp3−/− mice were fed with a diet supplemented with cholic (CA), deoxycholic (DCA) or lithocholic acid (LCA) for 7 days. Additionally, primary hepatocytes, Kupffer cells (KC) and hepatic stellate cells (HSC) from WT and Nlrp3−/− mice were stimulated with aforementioned BA ex vivo. LCA feeding led to strong liver damage and activation of NLRP3 inflammasome. Ex vivo KC were the most affected cells by LCA, resulting in a pro-inflammatory phenotype. Liver damage and primary KC activation was both ameliorated in Nlrp3-deficient mice or cells. DCA feeding induced fibrotic alterations. Primary HSC upregulated the NLRP3 inflammasome and early fibrotic markers when stimulated with DCA, but not LCA. Pro-fibrogenic signals in liver and primary HSC were attenuated in Nlrp3−/− mice or cells. The data shows that distinct BA induce NLRP3 inflammasome activation in HSC or KC, promoting fibrosis or inflammation.
Collapse
|
25
|
Reich M, Spomer L, Klindt C, Fuchs K, Stindt J, Deutschmann K, Höhne J, Liaskou E, Hov JR, Karlsen TH, Beuers U, Verheij J, Ferreira-Gonzalez S, Hirschfield G, Forbes SJ, Schramm C, Esposito I, Nierhoff D, Fickert P, Fuchs CD, Trauner M, García-Beccaria M, Gabernet G, Nahnsen S, Mallm JP, Vogel M, Schoonjans K, Lautwein T, Köhrer K, Häussinger D, Luedde T, Heikenwalder M, Keitel V. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J Hepatol 2021; 75:634-646. [PMID: 33872692 DOI: 10.1016/j.jhep.2021.03.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and progressive fibrosis of the biliary tree. The bile acid receptor TGR5 (GPBAR1) is found on biliary epithelial cells (BECs), where it promotes secretion, proliferation and tight junction integrity. Thus, we speculated that changes in TGR5-expression in BECs may contribute to PSC pathogenesis. METHODS TGR5-expression and -localization were analyzed in PSC livers and liver tissue, isolated bile ducts and BECs from Abcb4-/-, Abcb4-/-/Tgr5Tg and ursodeoxycholic acid (UDCA)- or 24-norursodeoxycholic acid (norUDCA)-fed Abcb4-/- mice. The effects of IL8/IL8 homologues on TGR5 mRNA and protein levels were studied. BEC gene expression was analyzed by single-cell transcriptomics (scRNA-seq) from distinct mouse models. RESULTS TGR5 mRNA expression and immunofluorescence staining intensity were reduced in BECs of PSC and Abcb4-/- livers, in Abcb4-/- extrahepatic bile ducts, but not in intrahepatic macrophages. No changes in TGR5 BEC fluorescence intensity were detected in liver tissue of other liver diseases, including primary biliary cholangitis. Incubation of BECs with IL8/IL8 homologues, but not with other cytokines, reduced TGR5 mRNA and protein levels. BECs from Abcb4-/- mice had lower levels of phosphorylated Erk and higher expression levels of Icam1, Vcam1 and Tgfβ2. Overexpression of Tgr5 abolished the activated inflammatory phenotype characteristic of Abcb4-/- BECs. NorUDCA-feeding restored TGR5-expression levels in BECs in Abcb4-/- livers. CONCLUSIONS Reduced TGR5 levels in BECs from patients with PSC and Abcb4-/- mice promote development of a reactive BEC phenotype, aggravate biliary injury and thus contribute to the pathogenesis of sclerosing cholangitis. Restoration of biliary TGR5-expression levels represents a previously unknown mechanism of action of norUDCA. LAY SUMMARY Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease-associated with progressive inflammation of the bile duct, leading to fibrosis and end-stage liver disease. Bile acid (BA) toxicity may contribute to the development and disease progression of PSC. TGR5 is a membrane-bound receptor for BAs, which is found on bile ducts and protects bile ducts from BA toxicity. In this study, we show that TGR5 levels were reduced in bile ducts from PSC livers and in bile ducts from a genetic mouse model of PSC. Our investigations indicate that lower levels of TGR5 in bile ducts may contribute to PSC development and progression. Furthermore, treatment with norUDCA, a drug currently being tested in a phase III trial for PSC, restored TGR5 levels in biliary epithelial cells.
Collapse
Affiliation(s)
- Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Katharina Fuchs
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Kathleen Deutschmann
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Johanna Höhne
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Evaggelia Liaskou
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Johannes R Hov
- Norwegian PSC Research Centre and Section of Gastroenterology at the Department of Transplantation Medicine, and Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Centre and Section of Gastroenterology at the Department of Transplantation Medicine, and Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research and Department of Pathology, Amsterdam University Medical Centers, Location AMC, AGEM Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research and Department of Pathology, Amsterdam University Medical Centers, Location AMC, AGEM Amsterdam, The Netherlands
| | | | - Gideon Hirschfield
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Canada
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Christoph Schramm
- I. Department of Medicine and Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Claudia Daniela Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Jan-Philipp Mallm
- Single Cell Open Lab, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Marina Vogel
- DKFZ Genomics and Proteomics Core Facility, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Lautwein
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
26
|
Specific Secondary Bile Acids Control Chicken Necrotic Enteritis. Pathogens 2021; 10:pathogens10081041. [PMID: 34451506 PMCID: PMC8427939 DOI: 10.3390/pathogens10081041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Necrotic enteritis (NE), mainly induced by the pathogens of Clostridium perfringens and coccidia, causes huge economic losses with limited intervention options in the poultry industry. This study investigated the role of specific bile acids on NE development. Day-old broiler chicks were assigned to six groups: noninfected, NE, and NE with four bile diets of 0.32% chicken bile, 0.15% commercial ox bile, 0.15% lithocholic acid (LCA), or 0.15% deoxycholic acid (DCA). The birds were infected with Eimeria maxima at day 18 and C. perfringens at day 23 and 24. The infected birds developed clinical NE signs. The NE birds suffered severe ileitis with villus blunting, crypt hyperplasia, epithelial line disintegration, and massive immune cell infiltration, while DCA and LCA prevented the ileitis histopathology. NE induced severe body weight gain (BWG) loss, while only DCA prevented NE-induced BWG loss. Notably, DCA reduced the NE-induced inflammatory response and the colonization and invasion of C. perfringens compared to NE birds. Consistently, NE reduced the total bile acids in the ileal digesta, while dietary DCA and commercial bile restored it. Together, this study showed that DCA and LCA reduced NE histopathology, suggesting that secondary bile acids, but not total bile acid levels, play an essential role in controlling the enteritis.
Collapse
|
27
|
Song MH, Shim WS. Lithocholic Acid Activates Mas-Related G Protein-Coupled Receptors, Contributing to Itch in Mice. Biomol Ther (Seoul) 2021; 30:38-47. [PMID: 34263729 PMCID: PMC8724838 DOI: 10.4062/biomolther.2021.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
The present study focused on lithocholic acid (LCA), a secondary bile acid that contributes to cholestatic pruritus. Although recent studies have found that LCA acts on MAS-related G protein-coupled receptor family member X4 (MRGPRX4) in humans, it is unclear which subtypes of MRGPRs are activated by LCA in mice since there is no precise ortholog of human MRGPRX4 in the mouse genome. Using calcium imaging, we found that LCA could activate mouse Mrgpra1 when transiently expressed in HEK293T cells. Moreover, LCA similarly activates mouse Mrgprb2. Importantly, LCA-induced responses showed dose-dependent effects through Mrgpra1 and Mrgprb2. Moreover, treatment with QWF (an antagonist of Mrgpra1 and Mrgprb2), YM254890 (Gαq inhibitor), and U73122 (an inhibitor of phospholipase C) significantly suppressed the LCA-induced responses, implying that the LCA-induced responses are indeed mediated by Mrgpra1 and Mrgprb2. Furthermore, LCA activated primary cultures of mouse sensory neurons and peritoneal mast cells, suggesting that Mrgpra1 and Mrgprb2 contribute to LCA-induced pruritus. However, acute injection of LCA did not induce noticeable differences in scratching behavior, implying that the pruritogenic role of LCA may be marginal in non-cholestatic conditions. In summary, the present study identified for the first time that LCA can activate Mrgpra1 and Mrgprb2. The current findings provide further insight into the similarities and differences between human and mouse MRGPR families, paving a way to understand the complex roles of these pruriceptors.
Collapse
Affiliation(s)
- Myung-Hyun Song
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.,Gachon Institute of Pharmaceutical Sciences, Incheon 21936, Republic of Korea
| |
Collapse
|
28
|
Sheps JA, Wang R, Wang J, Ling V. The protective role of hydrophilic tetrahydroxylated bile acids (THBA). Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158925. [PMID: 33713832 DOI: 10.1016/j.bbalip.2021.158925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 01/14/2023]
Abstract
Bile acids are key components of bile required for human health. In humans and mice, conditions of reduced bile flow, cholestasis, induce bile acid detoxification by producing tetrahydroxylated bile acids (THBA), more hydrophilic and less cytotoxic than the usual bile acids, which are typically di- or tri-hydroxylated. Mice deficient in the Bile Salt Export Pump (Bsep, or Abcb11), the primary bile acid transporter in liver cells, produce high levels of THBA, and avoid the severe liver damage typically seen in humans with BSEP deficiencies. THBA can suppress bile acid-induced liver damage in Mdr2-deficient mice, caused by their lack of phospholipids in bile exposing their biliary tracts to unbound bile acids. Here we review THBA-related works in both animals and humans, and discuss their potential relevance and applications as a class of functional bile acids.
Collapse
Affiliation(s)
- Jonathan A Sheps
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Renxue Wang
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jianshe Wang
- Department of Pediatrics, Fudan University Shanghai Medical College, The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Victor Ling
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Wu T, Yang M, Xu H, Wang L, Wei H, Ji G. Serum Bile Acid Profiles Improve Clinical Prediction of Nonalcoholic Fatty Liver in T2DM patients. J Proteome Res 2021; 20:3814-3825. [PMID: 34043368 DOI: 10.1021/acs.jproteome.1c00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The present study aimed to assess the ability of serum bile acid profiles to predict the development of nonalcoholic fatty liver (NAFL) in type 2 diabetes mellitus (T2DM) patients. Methods: Using targeted ultraperformance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry (TQ/MS), we compared serum bile acid levels in T2DM patients with NAFL (n = 30) and age- and sex-matched T2DM patients without NAFL (n = 36) at the first time. Second, an independent cohort study of T2DM patients with NAFL (n = 17) and age- and sex-matched T2DM patients without NAFL (n = 20) was used to validate the results. The incremental benefits of serum biomarkers, clinical variables alone, or with biomarkers were then evaluated using receiver operating characteristic (ROC) curves and decision curve analysis. The area under the curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used to evaluate the biomarker predictive abilities. Results: The serum bile acid profiles in T2DM patients with NAFL were significantly different from T2DM patients without NAFL, as characterized by the significant elevation of LCA, TLCA, TUDCA, CDCA-24G, and TCDCA, which may be potential biomarkers for the identification of NAFL in T2DM patients. Based on the improvement in AUC, IDI, and NRI, the addition of 5 bile acids to a model with clinical variables statistically improved its predictive value. Similar results were found in the validation cohort. Conclusions: These results highlight that the detected biomarkers may contribute to the progression of NAFL in T2DM patients, and these biomarkers particularly in combination may help in the diagnosis of NAFL and allow earlier intervention in T2DM patients.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Ming Yang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Lei Wang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Huafeng Wei
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| |
Collapse
|
30
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
31
|
Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQH. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020; 12:E3709. [PMID: 33266235 PMCID: PMC7760347 DOI: 10.3390/nu12123709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver from cholesterol. BA undergo continuous enterohepatic recycling through intestinal biotransformation by gut microbiome and reabsorption into the portal tract for uptake by hepatocytes. BA are detergent molecules aiding the digestion and absorption of dietary fat and fat-soluble vitamins, but also act as important signaling molecules via the nuclear receptor, farnesoid X receptor (FXR), and the membrane-associated G protein-coupled bile acid receptor 1 (GPBAR-1) in the distal intestine, liver and extra hepatic tissues. The hydrophilic-hydrophobic balance of the BA pool is finely regulated to prevent BA overload and liver injury. By contrast, hydrophilic BA can be hepatoprotective. The ultimate effects of BA-mediated activation of GPBAR-1 is poorly understood, but this receptor may play a role in protecting the remnant liver and in maintaining biliary homeostasis. In addition, GPBAR-1 acts on pathways involved in inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity, and sinusoidal blood flow. Recent evidence suggests that environmental factors influence GPBAR-1 gene expression. Thus, targeting GPBAR-1 might improve liver protection, facilitating beneficial metabolic effects through primary prevention measures. Here, we discuss the complex pathways linked to BA effects, signaling properties of the GPBAR-1, mechanisms of liver damage, gene-environment interactions, and therapeutic aspects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
32
|
Liu SP, Bian ZH, Zhao ZB, Wang J, Zhang W, Leung PSC, Li L, Lian ZX. Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:252-271. [PMID: 32076943 DOI: 10.1007/s12016-020-08778-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.
Collapse
Affiliation(s)
- Shou-Pei Liu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhen-Hua Bian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi-Bin Zhao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jinjun Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Liang Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhe-Xiong Lian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
33
|
An P, Wei G, Huang P, Li W, Qi X, Lin Y, Vaid KA, Wang J, Zhang S, Li Y, Or YS, Jiang L, Popov YV. A novel non-bile acid FXR agonist EDP-305 potently suppresses liver injury and fibrosis without worsening of ductular reaction. Liver Int 2020; 40:1655-1669. [PMID: 32329946 PMCID: PMC7384094 DOI: 10.1111/liv.14490] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND EDP-305 is a novel and potent farnesoid X receptor (FXR) agonist, with no/minimal cross-reactivity to TGR5 or other nuclear receptors. Herein we report therapeutic efficacy of EDP-305, in direct comparison with the first-in-class FXR agonist obeticholic acid (OCA), in mouse models of liver disease. METHODS EDP-305 (10 and 30 mg/kg/day) or OCA (30mg/kg/day) was tested in mouse models of pre-established biliary fibrosis (BALBc.Mdr2-/-, n = 9-12/group) and steatohepatitis induced by methionine/choline-deficient diet (MCD, n = 7-12/group). Effects on biliary epithelium were evaluated in vivo and in primary EpCAM + hepatic progenitor cell (HPC) cultures. RESULTS In a BALBc.Mdr2-/- model, EDP-305 reduced serum transaminases by up to 53% and decreased portal pressure, compared to untreated controls. Periportal bridging fibrosis was suppressed by EDP-305 at both doses, with up to a 39% decrease in collagen deposition in high-dose EDP-305. In MCD-fed mice, EDP-305 treatment reduced serum ALT by 62% compared to controls, and profoundly inhibited perisinusoidal 'chicken wire' fibrosis, with over 80% reduction in collagen deposition. In both models, treatment with 30mg/kg OCA reduced serum transaminases up to 30%, but did not improve fibrosis. The limited impact on fibrosis was mediated by cholestasis-independent worsening of ductular reaction by OCA in both disease models; OCA but not EDP-305 at therapeutic doses promoted ductular proliferation in healthy mice and favoured differentiation of primary HPC towards cholangiocyte lineage in vitro. CONCLUSIONS EDP-305 potently improved pre-established liver injury and hepatic fibrosis in murine biliary and metabolic models of liver disease, supporting the clinical evaluation of EDP-305 in fibrotic liver diseases including cholangiopathies and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ping An
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Division of Gastroenterology and HepatologyRenmin HospitalWuhan UniversityWuhanChina
| | - Guangyan Wei
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Pinzhu Huang
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Colon and Rectum SurgeryThe Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouChina
| | - Wenda Li
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Hepatobiliary SurgerSun Yat-sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaolong Qi
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Institute of Portal HypertensionThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Yi Lin
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Kahini A. Vaid
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Jun Wang
- Division of NeurosurgeryRenmin HospitalWuhan UniversityWuhanChina
| | | | - Yang Li
- Enanta Pharmaceuticals, Inc.WatertownMAUSA
| | - Yat Sun Or
- Enanta Pharmaceuticals, Inc.WatertownMAUSA
| | | | - Yury V. Popov
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
34
|
Merlen G, Bidault-Jourdainne V, Kahale N, Glenisson M, Ursic-Bedoya J, Doignon I, Garcin I, Humbert L, Rainteau D, Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver Int 2020; 40:1005-1015. [PMID: 32145703 DOI: 10.1111/liv.14427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/13/2023]
Abstract
During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | | | - Nicolas Kahale
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Mathilde Glenisson
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - José Ursic-Bedoya
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Doignon
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Garcin
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Lydie Humbert
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Dominique Rainteau
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Thierry Tordjmann
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| |
Collapse
|
35
|
Lütt F, Ehlers L, Nizze H, Jaster R. Different characteristics of chronic dibutyltin dichloride-induced pancreatitis and cholangitis in mouse and rat. Hepatobiliary Pancreat Dis Int 2020; 19:169-174. [PMID: 31919037 DOI: 10.1016/j.hbpd.2019.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Current animal models of chronic pancreatitis (CP) often provide only limited pathophysiological insights since they incompletely reflect the human disease. CP induced by injection of dibutyltin dichloride (DBTC-pancreatitis) shares with human CP the important feature of extended fibrosis and would be an even more attractive model if it could be transferred from rats to mice, as recently suggested in the context of combined ethanol and DBTC application. This study aimed to evaluate the effects of DBTC in pancreas and liver of C57BL/6 mice, a strain commonly used to engineer genetic mouse models. METHODS C57BL/6 mice and Lewis rats were exposed to variable doses of DBTC. After an investigation period of up to 4 weeks, laboratory findings and histopathological changes of pancreas and liver were evaluated. RESULTS Chronic DBTC-pancreatitis in rats was characterized by acinar cell damage, ductal changes, fibrosis, and inflammatory cell infiltrates. Mice treated with DBTC at 6-8 mg/kg body weight, the standard doses in rats, showed transient increases of lipase activities but no morphological signs of chronic DBTC-pancreatitis 4 weeks after injection of the drug. Increased doses of 10-12 mg/kg DBTC were intolerable due to their high toxicity. In contrast, mice and rats presented with a similar histopathology of the liver that can be characterized as a chronic-proliferative DBTC-cholangitis with predominating damage and proliferation of the small bile ducts as well as secondary portal inflammatory cell infiltrates and a beginning portal fibrosis. CONCLUSIONS The DBTC-model cannot be transferred from rats to C57BL/6 mice with respect to chronic DBTC-pancreatitis, but might be of interest to study DBTC-cholangitis in both species.
Collapse
Affiliation(s)
- Friederike Lütt
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Horst Nizze
- Institute of Pathology, Rostock University Medical Center, Strempelstraße 14, 18057 Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany.
| |
Collapse
|
36
|
Liwinski T, Zenouzi R, John C, Ehlken H, Rühlemann MC, Bang C, Groth S, Lieb W, Kantowski M, Andersen N, Schachschal G, Karlsen TH, Hov JR, Rösch T, Lohse AW, Heeren J, Franke A, Schramm C. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut 2020; 69:665-672. [PMID: 31243055 DOI: 10.1136/gutjnl-2019-318416] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with primary sclerosing cholangitis (PSC) display an altered colonic microbiome compared with healthy controls. However, little is known on the bile duct microbiome and its interplay with bile acid metabolism in PSC. METHODS Patients with PSC (n=43) and controls without sclerosing cholangitis (n=22) requiring endoscopic retrograde cholangiography were included prospectively. Leading indications in controls were sporadic choledocholithiasis and papillary adenoma. A total of 260 biospecimens were collected from the oral cavity, duodenal fluid and mucosa and ductal bile. Microbiomes of the upper alimentary tract and ductal bile were profiled by sequencing the 16S-rRNA-encoding gene (V1-V2). Bile fluid bile acid composition was measured by high-performance liquid chromatography mass spectrometry and validated in an external cohort (n=20). RESULTS The bile fluid harboured a diverse microbiome that was distinct from the oral cavity, the duodenal fluid and duodenal mucosa communities. The upper alimentary tract microbiome differed between PSC patients and controls. However, the strongest differences between PSC patients and controls were observed in the ductal bile fluid, including reduced biodiversity (Shannon entropy, p=0.0127) and increase of pathogen Enterococcus faecalis (FDR=4.18×10-5) in PSC. Enterococcus abundance in ductal bile was strongly correlated with concentration of the noxious secondary bile acid taurolithocholic acid (r=0.60, p=0.0021). CONCLUSION PSC is characterised by an altered microbiome of the upper alimentary tract and bile ducts. Biliary dysbiosis is linked with increased concentrations of the proinflammatory and potentially cancerogenic agent taurolithocholic acid.
Collapse
Affiliation(s)
- Timur Liwinski
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roman Zenouzi
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara John
- Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanno Ehlken
- Department of Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte C Rühlemann
- Christian-Albrechts-Universität zu Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Corinna Bang
- Institute for Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Stefan Groth
- Department of Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marcus Kantowski
- Department of Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Andersen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Schachschal
- Department of Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tom H Karlsen
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Johannes R Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Rösch
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Inflammation: Cause or consequence of chronic cholestatic liver injury. Food Chem Toxicol 2020; 137:111133. [PMID: 31972189 DOI: 10.1016/j.fct.2020.111133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Cholestasis is a result of obstruction of the biliary tracts. It is a common cause of liver pathology after exposure to toxic xenobiotics and during numerous other liver diseases. Accumulation of bile acids in the liver is thought to be a major driver of liver injury during cholestasis and can lead to eventual liver fibrosis and cirrhosis. As such, current therapy in the field of chronic liver diseases with prominent cholestasis relies heavily on increasing choleresis to limit accumulation of bile acids. Many of these same diseases also present with autoimmunity before the onset of cholestasis though, indicating the inflammation may be an initiating component of the pathology. Moreover, cytotoxic inflammatory mediators accumulate during cholestasis and can propagate liver injury. Anti-inflammatory biologics and small molecules have largely failed clinical trials in these diseases though and as such, targeting inflammation as a means to address cholestatic liver injury remains debatable. The purpose of this review is to understand the different roles that inflammation can play during cholestatic liver injury and attempt to define how new therapeutic targets that limit or control inflammation may be beneficial for patients with chronic cholestatic liver disease.
Collapse
|
38
|
Fan S, Liu C, Jiang Y, Gao Y, Chen Y, Fu K, Yao X, Huang M, Bi H. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112103. [PMID: 31336134 DOI: 10.1016/j.jep.2019.112103] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis is a clinical syndrome caused by toxic bile acid retention that will lead to serious liver diseases. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are the only two FDA-approved drugs for its treatment. Thus, there is a clear need to develop new therapeutic approaches for cholestasis. Here, anti-cholestasis effects of the lignans from a traditional Chinese herbal medicine, Schisandra sphenanthera, were investigated as well as the involved mechanisms. MATERIALS AND METHODS Adult male C57BL/6J mice were randomly divided into 9 groups including the control group, LCA group, LCA with specific lignan treatment of Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), Schisantherin A (StnA) and Schisantherin B (StnB), respectively. Mice were treated with each drug (qd) for 7 days, while the administration of lithocholic acid (LCA) (bid) was launched from the 4th day. Twelve hours after the last LCA injection, mice were sacrificed and samples were collected. Serum biochemical measurement and histological analysis were conducted. Metabolomics analysis of serum, liver, intestine and feces were performed to study the metabolic profile of bile acids. RT-qPCR and Western blot analysis were conducted to determine the hepatic expression of genes and proteins related to bile acid homeostasis. Dual-luciferase reporter gene assay was performed to investigate the transactivation effect of lignans on human pregnane X receptor (hPXR). RT-qPCR analysis was used to detect induction effects of lignans on hPXR-targeted genes in HepG2 cells. RESULTS Lignans including SinA, SinB, SinC, SolA, SolB, StnA, StnB were found to significantly protect against LCA-induced intrahepatic cholestasis, as evidenced by significant decrease in liver necrosis, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activity. More importantly, serum total bile acids (TBA) and total bilirubin (Tbili) were also significantly reduced. Metabolomics analysis revealed these lignans accelerated the metabolism of bile acids and increased the bile acid efflux from liver into the intestine or feces. Gene analysis revealed these lignans induced the hepatic expressions of PXR-target genes such as Cyp3a11 and Ugt1a1. Luciferase reporter gene assays illustrated that these bioactive lignans can activate hPXR. Additionally, they can all upregulate hPXR-regulate genes such as CYP3A4, UGT1A1 and OATP2. CONCLUSION These results clearly demonstrated the lignans from Schisandra sphenanthera exert hepatoprotective effects against LCA-induced cholestasis by activation of PXR. These lignans may provide an effective approach for the prevention and treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Shicheng Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Conghui Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinpeng Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Klindt C, Reich M, Hellwig B, Stindt J, Rahnenführer J, Hengstler JG, Köhrer K, Schoonjans K, Häussinger D, Keitel V. The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells 2019; 8:cells8111467. [PMID: 31752395 PMCID: PMC6912679 DOI: 10.3390/cells8111467] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
TGR5 (Gpbar1) is a G protein-coupled receptor responsive to bile acids (BAs), which is expressed in different non-parenchymal cells of the liver, including biliary epithelial cells, liver-resident macrophages, sinusoidal endothelial cells (LSECs), and activated hepatic stellate cells (HSCs). Mice with targeted deletion of TGR5 are more susceptible towards cholestatic liver injury induced by cholic acid-feeding and bile duct ligation, resulting in a reduced proliferative response and increased liver injury. Conjugated lithocholic acid (LCA) represents the most potent TGR5 BA ligand and LCA-feeding has been used as a model to rapidly induce severe cholestatic liver injury in mice. Thus, TGR5 knockout (KO) mice and wildtype (WT) littermates were fed a diet supplemented with 1% LCA for 84 h. Liver injury and gene expression changes induced by the LCA diet revealed an enrichment of pathways associated with inflammation, proliferation, and matrix remodeling. Knockout of TGR5 in mice caused upregulation of endothelin-1 (ET-1) expression in the livers. Analysis of TGR5-dependent ET-1 signaling in isolated LSECs and HSCs demonstrated that TGR5 activation reduces ET-1 expression and secretion from LSECs and triggers internalization of the ET-1 receptor in HSCs, dampening ET-1 responsiveness. Thus, we identified two independent mechanisms by which TGR5 inhibits ET-1 signaling and modulates portal pressure.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Birte Hellwig
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, 44139 Dortmund, Germany;
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
- Correspondence:
| |
Collapse
|
40
|
Abstract
Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahepatically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
41
|
Messner CJ, Mauch L, Suter-Dick L. Bile salts regulate CYP7A1 expression and elicit a fibrotic response and abnormal lipid production in 3D liver microtissues. Toxicol In Vitro 2019; 60:261-271. [PMID: 31195089 DOI: 10.1016/j.tiv.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Disrupted regulation and accumulation of bile salts (BS) in the liver can contribute towards progressive liver damage and fibrosis. Here, we investigated the role of BS in the progression of cholestatic injury and liver fibrosis using 3D scaffold-free multicellular human liver microtissues (MTs) comprising the cell lines HepaRG, THP-1 and hTERT-HSCs. This in vitro model has been shown to recapitulate cellular events leading to fibrosis including hepatocellular injury, inflammation and activation of HSCs, ultimately leading to increased deposition of extracellular matrix (ECM). In order to better differentiate the contribution of individual cells during cholestasis, the effects of BS were evaluated either on each of the three cell types individually or on the multicellular MTs. Our data corroborate the toxic effects of BS on HepaRG cells and indicate that BS exposure elicited a slight increase in cytokines without causing stellate cell activation. Contrarily, using the MTs, we could demonstrate that low concentrations of BS led to cellular damage and triggered a fibrotic response. This indicates that cellular interplay is required to achieve BS-triggered activation of HSC. Moreover, BS were capable of down-regulating CYP7A1 expression in MTs and elicited abnormal lipid production (accumulation) concordant with clinical cases where chronic cholestasis results in hypercholesterolemia.
Collapse
Affiliation(s)
- Catherine Jane Messner
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland.
| | - Linda Mauch
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
42
|
Baiocchi L, Zhou T, Liangpunsakul S, Lenci I, Santopaolo F, Meng F, Kennedy L, Glaser S, Francis H, Alpini G. Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe? Int J Mol Sci 2019; 20:ijms20081869. [PMID: 31014010 PMCID: PMC6514722 DOI: 10.3390/ijms20081869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Bile acids are a family of amphipathic compounds predominantly known for their role in solubilizing and absorbing hydrophobic compounds (including liposoluble vitamins) in the intestine. Bile acids also are key signaling molecules and inflammatory agents that activate transcriptional factors and cell signaling pathways that regulate lipid, glucose, and energy metabolism in various human disorders, including chronic liver diseases. However, in the last decade increased awareness has been founded on the physiological and chemical heterogeneity of this category of compounds and their possible beneficial or injurious effects on the biliary tree. In this review, we provide an update on the current understanding of the molecular mechanism involving bile acid and biliary epithelium. The last achievements of the research in this field are summarized, focusing on the molecular aspects and the elements with relevance regarding human liver diseases.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Francesco Santopaolo
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Brock WJ, Beaudoin JJ, Slizgi JR, Su M, Jia W, Roth SE, Brouwer KLR. Bile Acids as Potential Biomarkers to Assess Liver Impairment in Polycystic Kidney Disease. Int J Toxicol 2019; 37:144-154. [PMID: 29587557 DOI: 10.1177/1091581818760746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycystic kidney disease is characterized by the progressive development of kidney cysts and declining renal function with frequent development of cysts in other organs including the liver. The polycystic kidney (PCK) rat is a rodent model of polycystic liver disease that has been used to study hepatorenal disease progression and evaluate pharmacotherapeutic interventions. Biomarkers that describe the cyst progression, liver impairment, and/or hepatic cyst burden could provide clinical utility for this disease. In the present study, hepatic cyst volume was measured by magnetic resonance imaging in PCK rats at 12, 16, and 20 weeks. After 20 weeks, Sprague Dawley (n = 4) and PCK (n = 4) rats were sacrificed and 42 bile acids were analyzed in the liver, bile, serum, and urine by liquid chromatography coupled to tandem mass spectrometry. Bile acid profiling revealed significant increases in total bile acids (molar sum of all measured bile acids) in the liver (13-fold), serum (6-fold), and urine (3-fold) in PCK rats, including those speciated bile acids usually associated with hepatotoxicity. Total serum bile acids correlated with markers of liver impairment (liver weight, total liver bile acids, total hepatotoxic liver bile acids, and cyst volume [ r > 0.75; P < 0.05]). Based on these data, serum bile acids may be useful biomarkers of liver impairment in polycystic hepatorenal disease.
Collapse
Affiliation(s)
- William J Brock
- 1 Brock Scientific Consulting, LLC, Montgomery Village, MD, USA
| | - James J Beaudoin
- 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Slizgi
- 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mingming Su
- 3 Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Wei Jia
- 3 Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Kim L R Brouwer
- 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Elßner C, Goeppert B, Longerich T, Scherr AL, Stindt J, Nanduri LK, Rupp C, Kather JN, Schmitt N, Kautz N, Breuhahn K, Ismail L, Heide D, Hetzer J, García-Beccaria M, Hövelmeyer N, Waisman A, Urbanik T, Mueller S, Gdynia G, Banales JM, Roessler S, Schirmacher P, Jäger D, Schölch S, Keitel V, Heikenwalder M, Schulze-Bergkamen H, Köhler BC. Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice. Gastroenterology 2019; 156:1190-1205.e14. [PMID: 30445013 DOI: 10.1053/j.gastro.2018.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Cholangiocyte proliferation and ductular reaction contribute to the onset and progression of liver diseases. Little is known about the role of the transcription factor nuclear factor-κB (NF-κB) in this process. We investigated the activities of the RELB proto-oncogene NF-κB subunit in human cholangiocytes and in mouse models of liver disease characterized by a ductular reaction. METHODS We obtained liver tissue samples from patients with primary sclerosing cholangitis, primary biliary cholangitis, hepatitis B or C virus infection, autoimmune hepatitis, alcoholic liver disease, or without these diseases (controls) from a tissue bank in Germany. Tissues were analyzed by immunohistochemistry for levels of RELB and lymphotoxin β (LTB). We studied mice with liver parenchymal cell (LPC)-specific disruption of the cylindromatosis (CYLD) lysine 63 deubiquitinase gene (Cyld), with or without disruption of Relb (CyldΔLPC mice and Cyld/RelbΔLPC mice) and compared them with C57BL/6 mice (controls). Mice were fed 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or standard chow diets to induce biliary injury or were given injections of CCl4 to induce non-cholestatic liver fibrosis. Liver tissues were analyzed by histology, immunohistochemistry, immunoblots, in situ hybridization, and quantitative real-time polymerase chain reaction. Cholangiocytes were isolated from normal human liver, incubated with LTB receptor agonist, and transfected with small interfering RNAs to knock down RELB. RESULTS In liver tissues from patients with primary sclerosing cholangitis, primary biliary cholangitis, chronic infection with hepatitis B or C virus, autoimmune hepatitis, or alcoholic liver disease, we detected increased nuclear translocation of RELB and increased levels of LTB in cholangiocytes that formed reactive bile ducts compared with control liver tissues. Human cholangiocytes, but not those with RELB knockdown, proliferated with exposure to LTB. The phenotype of CyldΔLPC mice, which included ductular reaction, oval cell activation, and biliary fibrosis, was completely lost from Cyld/RelbΔLPC mice. Compared with livers from control mice, livers from CyldΔLPC mice (but not Cyld/RelbΔLPC mice) had increased levels of mRNAs encoding cytokines (LTB; CD40; and tumor necrosis factor superfamily [TNFSF] members TNFSF11 [RANKL], TNFSF13B [BAFF], and TNFSF14 [LIGHT]) produced by reactive cholangiocytes. However, these strains of mice developed similar levels of liver fibrosis in response to CCl4 exposure. CyldΔLPC mice and Cyld/RelbΔLPC mice had improved liver function on the DDC diet compared with control mice fed the DDC diet. CONCLUSION Reactive bile ducts in patients with chronic liver diseases have increased levels of LTB and nuclear translocation of RELB. RELB is required for the ductular reaction and development of biliary fibrosis in CyldΔLPC mice. Deletion of RELB and CYLD from LPCs protects mice from DDC-induced cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Christin Elßner
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lahiri Kanth Nanduri
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Christian Rupp
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Jakob Nikolas Kather
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Kautz
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Ismail
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Toni Urbanik
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Department of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Georg Gdynia
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV-EHU) CIBERehd, IKERBASQUE, San Sebastian, Spain
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Schölch
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Bruno Christian Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Abstract
Cholestasis can be induced by obstruction of bile ducts or intrahepatic toxicity of drugs and chemicals. However, the mode of cell death during cholestasis, i.e., apoptosis or necrosis, has been controversial. There are fundamental reasons for the controversies, both of which are discussed here, namely the design of experiments and the use of parameters with limited specificity for a certain mode of cell death. Based on the assumption that cholestatic liver injury is caused by accumulation of bile acids, rodent (mainly rat) hepatocytes have been exposed to hydrophobic, glycine-conjugated bile acids, which resulted in apoptotic cell death. The problems with this experimental design are that in rodents bile acids are predominantly taurine conjugated and rodent hepatocytes are never exposed to these levels of glycine-conjugated bile acids. In contrast, taurine-conjugated bile acids trigger inflammatory gene activation in rodent hepatocytes and a necro-inflammatory injury in vivo. On the other hand, human hepatocytes are more resistant to glycine-conjugated bile acids and die by necrosis when exposed to high biliary levels of these bile acids. In this chapter, we describe multiple assays including the caspase activity assay, which is specific for apoptosis, and the general cell death assays alanine aminotransferase or lactate dehydrogenase activities in cell culture medium or plasma. An increase in these enzyme activities without caspase activity indicates necrotic cell death. Thus, both the experimental design and the selection of cell death parameters are critical for the relevance of the experiments for the human pathophysiology.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
46
|
Beaudoin JJ, Bezençon J, Cao Y, Mizuno K, Roth SE, Brock WJ, Brouwer KLR. Altered Hepatobiliary Disposition of Tolvaptan and Selected Tolvaptan Metabolites in a Rodent Model of Polycystic Kidney Disease. Drug Metab Dispos 2018; 47:155-163. [PMID: 30504136 DOI: 10.1124/dmd.118.083907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Tolvaptan, a vasopressin V2-receptor antagonist, has demonstrated efficacy in slowing kidney function decline in patients with autosomal dominant polycystic kidney disease (ADPKD). In the pivotal clinical trial, the incidence of elevated liver enzymes was higher in patients receiving tolvaptan compared with placebo. Adjudication by a panel of expert hepatologists concluded a causal link of tolvaptan to liver injury in patients with ADPKD. An ex situ isolated perfused liver (IPL) study of tolvaptan disposition was undertaken in a rodent model of ADPKD, the polycystic kidney (PCK) rat (n = 5), and compared with wild-type (WT) Sprague-Dawley rats (n = 6). Livers were perfused with tolvaptan, followed by a tolvaptan-free washout phase. Total recovery (mean ± S.D. percentage of dose; PCK vs. WT) of tolvaptan and two metabolites, DM-4103 and DM-4107, quantified by liquid chromatography-tandem mass spectroscopy, was 58.14% ± 24.72% vs. 43.40% ± 18.11% in liver, 20.10% ± 9.15% vs. 21.17% ± 12.51% in outflow perfusate, and 0.08% ± 0.01% vs. 0.39% ± 0.32% in bile. DM-4103 recovery (mean ± S.D. percentage of dose) was decreased in PCK vs. WT bile (<0.01% ± <0.01% vs. 0.02% ± 0.01%; P = 0.0037), and DM-4107 recovery was increased in PCK vs. WT outflow perfusate (1.60% ± 0.57% vs. 0.43% ± 0.29%; P = 0.0017). A pharmacokinetic compartmental model assuming first-order processes was developed to describe the rate vs. time profiles of tolvaptan and DM-4103 + DM-4107 in rat IPLs. The model-derived estimate of tolvaptan's biliary clearance was significantly decreased in PCK compared with WT IPLs. The model predicted greater hepatocellular concentrations of tolvaptan and DM-4103 + DM-4107 in PCK compared with WT IPLs. Increased hepatocellular exposure to tolvaptan and metabolites may contribute to the hepatotoxicity in patients with ADPKD treated with tolvaptan.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Jacqueline Bezençon
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Katsuhiko Mizuno
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Sharin E Roth
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - William J Brock
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| |
Collapse
|
47
|
Preventive effect of artemisinin extract against cholestasis induced via lithocholic acid exposure. Biosci Rep 2018; 38:BSR20181011. [PMID: 30217945 PMCID: PMC6246771 DOI: 10.1042/bsr20181011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Obstructive cholestasis characterized by biliary pressure increase leading to leakage of bile back that causes liver injury. The present study aims to evaluate the effects of artemisinin in obstructive cholestasis in mice. The present study was carried out on 40 adult healthy mice that were divided into 4 groups, 10 mice each; the negative control group didn’t receive any medication. The normal group was fed normally with 100 mg/kg of artemisinin extract orally. The cholestatic group fed on 1% lithocholic acid (LCA) mixed into control diet and cholestatic group co-treated with 100 mg/kg of artemisinin extract orally. Mice were treated for 1 month then killed at end of the experiment. A significant increase in alanine aminotransferase, aspartate aminotransferase, and total and direct bilirubin was detected in mice exposed to LCA toxicity. That increase was significantly reduced to normal values in mice co-treated with artemisinin. LCA toxicity causes multiple areas of necrosis of irregular distribution. However, artemisinin co-treatment showed normal hepatic architecture. Moreover, LCA causes down-regulation of hepatic mRNA expressions of a set of genes that are responsible for ATP binding cassette and anions permeability as ATP-binding cassette sub-family G member 8, organic anion-transporting polypeptide, and multidrug resistance-associated protein 2 genes that were ameliorated by artemisinin administration. Similarly, LCA toxicity significantly down-regulated hepatic mRNA expression of constitutive androstane receptor, OATP4, and farnesoid x receptor genes. However, artemisinin treatment showed a reasonable prevention. In conclusion, the current study strikingly revealed that artemisinin treatment can prevent severe hepatotoxicity and cholestasis that led via LCA exposure.
Collapse
|
48
|
Yang R, Zhao Q, Hu DD, Xiao XR, Huang JF, Li F. Metabolomic analysis of cholestatic liver damage in mice. Food Chem Toxicol 2018; 120:253-260. [DOI: 10.1016/j.fct.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
|
49
|
Li S, Yoo WG, Song JH, Kim TI, Hong SJ. Bile acids drive chemotaxis of Clonorchis sinensis juveniles to the bile duct. PLoS Negl Trop Dis 2018; 12:e0006818. [PMID: 30273341 PMCID: PMC6181427 DOI: 10.1371/journal.pntd.0006818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022] Open
Abstract
Clonorchiasis is a neglected tropical disease caused by Chinese liver fluke, Clonorchis sinensis infection. C. sinensis is a biological carcinogen causing cholangiocarcinoma in humans. In the mammalian host, C. sinensis newly excysted juveniles (CsNEJs) migrate from the duodenum into the bile duct. Bile drives the chemotactic behavior of CsNEJs. Little is known about which components of bile induce the chemotaxis. We designed a chemotaxis assay panel and measured the chemotactic behavior of CsNEJs in response to bile or bile acids. The CsNEJs migrated toward 0.1–1% bile but away from 5–10% bile. The CsNEJs showed strong chemoattraction to cholic acid ≥25 mM, but chemorepulsion to lithocholic acid ≥0.25 mM. To the CsNEJs, mixture of cholic acid and lithocholic acid was chemoattractive at a ratio greater than 25:1 but chemorepulsive at one smaller than that. Regarding migration in the mammalian hosts, high concentration of lithocholic acid in the gallbladder bile may repel CsNEJs from entering it. However, bile in the hepatic bile duct has a chemoattractive strength of cholic acid but a trace amount of lithocholic acid. Collectively, our results explain why the CsNEJs migrate principally to the hepatic bile ducts, bypassing the gallbladder. We previously reported that Clonorchis sinensis newly excysted juveniles (CsNEJs) were chemotactically attracted to bile. However, there is still a paucity of information regarding which components and what concentration of bile induce the chemotactic behavior. Here, we show, among various bile components tested, two have opposing chemotactic influences on the CsNEJs; cholic acid was characterized as a chemoattractant and lithocholic acid as a chemorepellent. Chemorepulsive migration was dependent on the concentration of lithocholic acid. Notably, the ratio (25:1) of cholic acid and lithocholic acid plays a critical role in defining chemotactic preferences of CsNEJs. We suspect that this bile acid ratio directs the parasites in the mammalian host, i.e. the high concentration of lithocholic acid in the gallbladder bile may repel CsNEJs from entering it. Bile in the hepatic bile duct has a chemoattractive level of cholic acid but a trace amount of lithocholic acid. These findings may explain why the CsNEJs preferentially migrate to the common and hepatic bile ducts rather than the gallbladder. Deeper understanding on the parasitism of the liver fluke is likely to have major implications for the studies on other parasites.
Collapse
Affiliation(s)
- Shunyu Li
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae Im Kim
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Division of Planning and Management, Nakdong-gang National Institute of Biological Resources, Sangju-si, Gyeongbuk, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
50
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|