1
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
2
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: mechanisms to clinical impact. Matrix Biol 2024:S0945-053X(24)00110-0. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
5
|
Captur G, Doykov I, Chung SC, Field E, Barnes A, Zhang E, Heenan I, Norrish G, Moon JC, Elliott PM, Heywood WE, Mills K, Kaski JP. Novel Multiplexed Plasma Biomarker Panel Has Diagnostic and Prognostic Potential in Children With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004448. [PMID: 38847081 PMCID: PMC11188636 DOI: 10.1161/circgen.123.004448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM. METHODS Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels. RESULTS Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044). CONCLUSIONS In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health & Ageing, UCL, London, United Kingdom (G.C.)
- UCL Institute of Cardiovascular Science, UCL, London, United Kingdom (G.C., J.C.M., P.M.E.)
- The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, UCL, London, United Kingdom (G.C.)
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Sheng-Chia Chung
- UCL Institute of Health Informatics Research, Division of Infection and Immunity, London, United Kingdom (S.-C.C.)
| | - Ella Field
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Annabelle Barnes
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Enpei Zhang
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
- UCL Medical School, University College London, London, United Kingdom (E.Z.)
| | - Imogen Heenan
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Gabrielle Norrish
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - James C. Moon
- Barts Heart Centre, the Cardiovascular Magnetic Resonance Unit, London, United Kingdom (J.C.M.)
| | - Perry M. Elliott
- Barts Heart Centre, the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, London, United Kingdom (P.M.E.)
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| |
Collapse
|
6
|
Julovi SM, Trinh K, Robertson H, Xu C, Minhas N, Viswanathan S, Patrick E, Horowitz JD, Meijles DN, Rogers NM. Thrombospondin-1 Drives Cardiac Remodeling in Chronic Kidney Disease. JACC Basic Transl Sci 2024; 9:607-627. [PMID: 38984053 PMCID: PMC11228122 DOI: 10.1016/j.jacbts.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 07/11/2024]
Abstract
Patients with chronic kidney disease (CKD) face a high risk of cardiovascular disease. Previous studies reported that endogenous thrombospondin 1 (TSP1) involves right ventricular remodeling and dysfunction. Here we show that a murine model of CKD increased myocardial TSP1 expression and produced left ventricular hypertrophy, fibrosis, and dysfunction. TSP1 knockout mice were protected from these features. In vitro, indoxyl sulfate is driving deleterious changes in cardiomyocyte through the TSP1. In patients with CKD, TSP1 and aryl hydrocarbon receptor were both differentially expressed in the myocardium. Our findings summon large clinical studies to confirm the translational role of TSP1 in patients with CKD.
Collapse
Affiliation(s)
- Sohel M Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, University of Sydney, New South Wales, Australia
| | - Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Nikita Minhas
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Seethalakshmi Viswanathan
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Precision Data Science Centre, University of Sydney, New South Wales, Australia
- School of Mathematics, University of Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong Special Administrative Region, China
| | - John D Horowitz
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
- Cardiovascular Pathophysiology and Therapeutics Research Group, Basil Hetzel Institute, Woodville, South Australia, Australia
- Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Renal and Transplantation Unit, Westmead Hospital, New South Wales, Australia
| |
Collapse
|
7
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Pan H, Lu X, Ye D, Feng Y, Wan J, Ye J. The molecular mechanism of thrombospondin family members in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1337586. [PMID: 38516004 PMCID: PMC10954798 DOI: 10.3389/fcvm.2024.1337586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.
Collapse
Affiliation(s)
- Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
9
|
Zhao R, Dong J, Liu C, Li M, Tan R, Fei C, Chen Y, Yang X, Shi J, Xu J, Wang L, Li P, Zhang Z. Thrombospondin-1 promotes mechanical stress-mediated ligamentum flavum hypertrophy through the TGFβ1/Smad3 signaling pathway. Matrix Biol 2024; 127:8-22. [PMID: 38281553 DOI: 10.1016/j.matbio.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor β1 (TGFβ1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFβ1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.
Collapse
Affiliation(s)
- Run Zhao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiale Dong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chunlei Liu
- Division of Spine Surgery, Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong 511518, China
| | - Mingheng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruiqian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chengshuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinxing Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiawei Shi
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, Guangdong 510630, China.
| | - Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23:ijms23158068. [PMID: 35897642 PMCID: PMC9329908 DOI: 10.3390/ijms23158068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration. There are three major classes of cells in the human optic nerve head (ONH): lamina cribrosa (LC) cells, glial cells, and scleral fibroblasts. These cells provide support for the LC which is essential to maintain healthy retinal ganglion cell (RGC) axons. All these cells demonstrate responses to glaucomatous conditions through extracellular matrix remodeling. Therefore, investigations into alternative therapies that alter the characteristic remodeling response of the ONH to enhance the survival of RGC axons are prevalent. Understanding major remodeling pathways in the ONH may be key to developing targeted therapies that reduce deleterious remodeling.
Collapse
Affiliation(s)
- Ryan G. Strickland
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-325-8620
| |
Collapse
|
11
|
Khomtchouk BB, Lee YS, Khan ML, Sun P, Mero D, Davidson MH. Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery. Expert Opin Drug Discov 2022; 17:443-460. [PMID: 35258387 PMCID: PMC9050939 DOI: 10.1080/17460441.2022.2047645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently, cardiovascular disease (CVD) drug discovery has focused primarily on addressing the inflammation and immunopathology aspects inherent to various CVD phenotypes such as cardiac fibrosis and coronary artery disease. However, recent findings suggest new biological pathways for cytoskeletal and extracellular matrix (ECM) regulation across diverse CVDs, such as the roles of matricellular proteins (e.g. tenascin-C) in regulating the cellular microenvironment. The success of anti-inflammatory drugs like colchicine, which targets microtubule polymerization, further suggests that the cardiac cytoskeleton and ECM provide prospective therapeutic opportunities. AREAS COVERED Potential therapeutic targets include proteins such as gelsolin and calponin 2, which play pivotal roles in plaque development. This review focuses on the dynamic role that the cytoskeleton and ECM play in CVD pathophysiology, highlighting how novel target discovery in cytoskeletal and ECM-related genes may enable therapeutics development to alter the regulation of cellular architecture in plaque formation and rupture, cardiac contractility, and other molecular mechanisms. EXPERT OPINION Further research into the cardiac cytoskeleton and its associated ECM proteins is an area ripe for novel target discovery. Furthermore, the structural connection between the cytoskeleton and the ECM provides an opportunity to evaluate both entities as sources of potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bohdan B. Khomtchouk
- University of Chicago, Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology, Chicago, IL USA
| | - Yoon Seo Lee
- The College of the University of Chicago, Chicago, IL USA
| | - Maha L. Khan
- The College of the University of Chicago, Chicago, IL USA
| | - Patrick Sun
- The College of the University of Chicago, Chicago, IL USA
| | | | - Michael H. Davidson
- University of Chicago, Department of Medicine, Section of Cardiology, Chicago, IL USA
| |
Collapse
|
12
|
The role of immune cells in pulmonary hypertension: Focusing on macrophages. Hum Immunol 2021; 83:153-163. [PMID: 34844784 DOI: 10.1016/j.humimm.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
Pulmonary hypertension (PH) is a life-threatening pathological state with elevated pulmonary arterial pressure, resulting in right ventricular failure and heart functional failure. Analyses of human samples and rodent models of pH support the infiltration of various immune cells, including neutrophils, mast cells, dendritic cells, B-cells, T-cells, and natural killer cells, to the lungs and pulmonary perivascular regions and their involvement in the PH development. There is evidence that macrophages are presented in the pulmonary lesions of pH patients as first-line myeloid leucocytes. Macrophage accumulation and presence, both M1 and M2 phenotypes, is a distinctive hallmark of pH which plays a pivotal role in pulmonary artery remodeling through various cellular and molecular interactions and mechanisms, including CCL2 and CX3CL1 chemokines, adventitial fibroblasts, glucocorticoid-regulated kinase 1 (SGK1), crosstalk with other immune cells, leukotriene B4 (LTB4), bone morphogenetic protein receptor 2 (BMPR2), macrophage migration inhibitory factor (MIF), and thrombospondin-1 (TSP-1). In this paper, we reviewed the molecular mechanisms and the role of immune cells and responses are involved in PH development. We also summarized the polarization of macrophages in response to different stimuli and their pathological role and their infiltration in the lung of pH patients and animal models.
Collapse
|
13
|
Halper J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:105-126. [PMID: 34807416 DOI: 10.1007/978-3-030-80614-9_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Pacurari M, Mitra A, Turner T. Idiopathic Pulmonary Comorbidities and Mechanisms. Int J Inflam 2021; 2021:3963659. [PMID: 34691383 PMCID: PMC8528608 DOI: 10.1155/2021/3963659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with an unknown etiology mainly characterized by a progressive decline of lung function due to the scarring of the tissue deep in the lungs. The overall survival after diagnosis remains low between 3 and 5 years. IPF is a heterogeneous disease and much progress has been made in the past decade in understanding the disease mechanisms that contributed to the development of two new drugs, pirfenidone and nintedanib, which improved the therapeutic management of the disease. The understanding of the cofactors and comorbidities of IPF also contributed to improved management of the disease outcome. In the present review, we evaluate scientific evidence which indicates IPF as a risk factor for other diseases based on the complexity of molecular and cellular mechanisms involved in the disease development and of comorbidities. We conclude from the existing literature that while much progress has been made in understating the mechanisms involved in IPF development, further studies are still necessary to fully understand IPF pathogenesis which will contribute to the identification of novel therapeutic targets for IPF management as well as other diseases for which IPF is a major risk factor.
Collapse
Affiliation(s)
- Maricica Pacurari
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| | - Amal Mitra
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS 39217, USA
| | - Timothy Turner
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
16
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
17
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
18
|
MARSH SPENCER, RAUDAT MADELINE, LEFEBER BETHANY, HERNDON LAURABETH, HERBERT HOWARD, MCCALLUM LAURA, SIMIONESCU AGNETA. DYNAMIC BIOREACTOR MODEL TO MIMIC EARLY CARDIAC FIBROSIS IN DIABETES. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In clinical diabetic cardiomyopathy, hyperglycemia and dyslipidemia induce tissue injury, activation of cardiac fibroblasts and interstitial and perivascular fibrosis. Myofibroblasts repair the injured tissue by increasing collagen deposition in the cardiac interstitium and suppressing the activity of matrix metalloproteinases. The goal of this study was to find an ideal model to mimic the effect of high glucose concentration on human cardiac fibroblast activation. The profibrotic role of the transforming growth factor-[Formula: see text] (TGF-[Formula: see text]) and the protective modulation of nitric oxide were examined in two-dimensional and three-dimensional cell culture models, as well as tissue engineering models, that involved the use of cardiac fibroblasts cultured within myocardial matrix scaffolds mounted in a bioreactor that delivered biochemical and mechanical stimuli. Results showed that high glucose levels were potent pro-fibrotic stimuli. In addition, high glucose levels in concert with TGF-[Formula: see text] constituted very strong signals that induced human cardiac fibroblast activation. Cardiac fibroblasts cultured within decellularized myocardial scaffolds and exposed to biochemical and mechanical stimuli represented an adequate model for this pathology. In conclusion, the bioreactor platform was instrumental in establishing an in vitro model of early fibrosis; this platform could be used to test the effects of various agents targeted to mitigate the fibrotic processes.
Collapse
Affiliation(s)
- SPENCER MARSH
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| | - MADELINE RAUDAT
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| | - BETHANY LEFEBER
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| | - LAURA BETH HERNDON
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| | - HOWARD HERBERT
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| | - LAURA MCCALLUM
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| | - AGNETA SIMIONESCU
- Department of Bioengineering, Clemson University, 507 Rhodes Research Center, Clemson, SC 29634, USA
| |
Collapse
|
19
|
Shan SW, Do CW, Lam TC, Li HL, Stamer WD, To CH. Thrombospondin-1 mediates Rho-kinase inhibitor-induced increase in outflow-facility. J Cell Physiol 2021; 236:8226-8238. [PMID: 34180057 PMCID: PMC9292191 DOI: 10.1002/jcp.30492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Rho‐kinase (ROCK) inhibitors, a novel class of anti‐glaucoma agents, act by increasing the aqueous humor outflow through the conventional trabecular meshwork pathway. However, the downstream signaling consequences of the ROCK inhibitor are not completely understood. Our data show that Y39983, a selective ROCK inhibitor, could induce filamentous actin remodeling, reduced cell motility (as measured by cell migration), and transepithelial resistance in primary human TM (hTM) cells. After 2 days Y39983 treatment of hTM cells, a proteomic study identified 20 proteins whose expression was significantly altered. Pathway analysis of those proteins revealed the involvement of the p53 pathway, integrin signaling pathway, and cytoskeletal pathway regulation by Rho GTPase. Thrombospondin‐1 (TSP1), a matricellular protein that is increased in glaucoma patients, was downregulated fivefold following Y39983 treatment. More importantly, both TSP1 antagonist leucine–serine–lysine–leucine (LSKL) and small interfering RNA (siRNA) reduced TSP1 gene and protein expressions as well as hTM cell migration. In the presence of Y39983, no further inhibition of cell migration resulted after LSKL and TSP1 siRNA knockdown. Likewise, LSKL triggered a dose‐dependent increase in outflow facility in ex vivo mouse eyes, to a similar extent as Y39983 (83.8% increase by Y39983 vs. 71.2% increase by LSKL at 50 µM). There were no additive effects with simultaneous treatment with LSKL and Y39983, supporting the notion that the effects of ROCK inhibition were mediated by TSP1.
Collapse
Affiliation(s)
- Sze-Wan Shan
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-Wai Do
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, Hong Kong, China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Hoi-Lam Li
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Chi-Ho To
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, Hong Kong, China
| |
Collapse
|
20
|
Kakoki M, Ramanathan PV, Hagaman JR, Grant R, Wilder JC, Taylor JM, Charles Jennette J, Smithies O, Maeda-Smithies N. Cyanocobalamin prevents cardiomyopathy in type 1 diabetes by modulating oxidative stress and DNMT-SOCS1/3-IGF-1 signaling. Commun Biol 2021; 4:775. [PMID: 34163008 PMCID: PMC8222371 DOI: 10.1038/s42003-021-02291-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with long-standing diabetes have a high risk for cardiac complications that is exacerbated by increased reactive oxygen species (ROS) production. We found that feeding cyanocobalamin (B12), a scavenger of superoxide, not only prevented but reversed signs of cardiomyopathy in type 1 diabetic Elmo1H/H Ins2Akita/+ mice. ROS reductions in plasma and hearts were comparable to those in mice treated with other antioxidants, N-acetyl-L-cysteine or tempol, but B12 produced better cardioprotective effects. Diabetes markedly decreased plasma insulin-like growth factor (IGF)-1 levels, while B12, but not N-acetyl-L-cysteine nor tempol, restored them. B12 activated hepatic IGF-1 production via normalization of S-adenosylmethionine levels, DNA methyltransferase (DNMT)-1/3a/3b mRNA, and DNA methylation of promoters for suppressor of cytokine signaling (SOCS)-1/3. Reductions of cardiac IGF-1 mRNA and phosphorylated IGF-1 receptors were also restored. Thus, B12 is a promising option for preventing diabetic cardiomyopathy via ROS reduction and IGF-1 retrieval through DNMT-SOCS1/3 signaling.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Purushotham V Ramanathan
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John R Hagaman
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruriko Grant
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer C Wilder
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Wilson SE. TGF beta -1, -2 and -3 in the modulation of fibrosis in the cornea and other organs. Exp Eye Res 2021; 207:108594. [PMID: 33894227 DOI: 10.1016/j.exer.2021.108594] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
The TGF beta-1, -2 and -3 isoforms are transcribed from different genes but bind to the same receptors and signal through the same canonical and non-canonical signal transduction pathways. There are numerous regulatory mechanisms controlling the action of each isoform that include the organ-specific cells producing latent TGF beta growth factors, multiple effectors that activate the isoforms, ECM-associated SLRPs and basement membrane components that modulate the activity and localization of the isoforms, other interactive cytokine-growth factor receptor systems, such as PDGF and CTGF, TGF beta receptor expression on target cells, including myofibroblast precursors, receptor binding competition, positive and negative signal transduction effectors, and transcription and translational regulatory mechanisms. While there has long been the view that TGF beta-1and TGF beta-2 are pro-fibrotic, while TGF beta-3 is anti-fibrotic, this review suggests that view is too simplistic, at least in adult tissues, since TGF beta-3 shares far more similarities in its modulation of fibrotic gene expression with TGF beta-1 and TGF beta-2, than it does differences, and often the differences are subtle. Rather, TGF beta-3 should be seen as a fibro-modulatory partner to the other two isoforms that modulates a nuanced and better controlled response to injury. The complex interplay between the three isoforms and numerous interactive proteins, in the context of the cellular milieu, controls regenerative non-fibrotic vs. fibrotic healing in a response to injury in a particular organ, as well as the resolution of fibrosis, when that occurs.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
22
|
Thrombospondin-1 CD47 Signalling: From Mechanisms to Medicine. Int J Mol Sci 2021; 22:ijms22084062. [PMID: 33920030 PMCID: PMC8071034 DOI: 10.3390/ijms22084062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances provide evidence that the cellular signalling pathway comprising the ligand-receptor duo of thrombospondin-1 (TSP1) and CD47 is involved in mediating a range of diseases affecting renal, vascular, and metabolic function, as well as cancer. In several instances, research has barely progressed past pre-clinical animal models of disease and early phase 1 clinical trials, while for cancers, anti-CD47 therapy has emerged from phase 2 clinical trials in humans as a crucial adjuvant therapeutic agent. This has important implications for interventions that seek to capitalize on targeting this pathway in diseases where TSP1 and/or CD47 play a role. Despite substantial progress made in our understanding of this pathway in malignant and cardiovascular disease, knowledge and translational gaps remain regarding the role of this pathway in kidney and metabolic diseases, limiting identification of putative drug targets and development of effective treatments. This review considers recent advances reported in the field of TSP1-CD47 signalling, focusing on several aspects including enzymatic production, receptor function, interacting partners, localization of signalling, matrix-cellular and cell-to-cell cross talk. The potential impact that these newly described mechanisms have on health, with a particular focus on renal and metabolic disease, is also discussed.
Collapse
|
23
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
24
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
25
|
Suto MJ, Gupta V, Mathew B, Zhang W, Pallero MA, Murphy-Ullrich JE. Identification of Inhibitors of Thrombospondin 1 Activation of TGF-β. ACS Med Chem Lett 2020; 11:1130-1136. [PMID: 32550992 DOI: 10.1021/acsmedchemlett.9b00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
TGF-β has been a target of interest for the treatment of fibrotic diseases and certain cancers. Approaches to target TGF-β include antagonists of the active ligand or TGF-β receptor kinase activity. These approaches have failed in clinical trials due to a lack of effectiveness and a limited therapeutic window. In this context, newer and more selective approaches to target TGF-β are needed. We previously reported that the matricellular protein, thrombospondin 1, activates the latent TGF-β complex and that antagonism of this pathway using tri/tetrapeptides in various animal models reduces fibrosis. The tripeptide, SRI-31277 (1), is effective in vivo but has a short plasma half life (0.2 h). Herein we describe the design and synthesis SRI-31277 analogs, specifically smaller peptides that retain potency and have improved bioavailability. We identified SRI-35241 (36) with a single chiral center, which blocks TGF-β activation (pIC50 = 8.12 nM) and has a plasma half life of 1.8 h (iv).
Collapse
Affiliation(s)
- Mark J. Suto
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Vandana Gupta
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Wei Zhang
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Manuel A. Pallero
- Department of Pathology, University of Alabama at Birmingham, VH G001A, 1720 Second Avenue South, Birmingham, Alabama 35294, United States
| | - Joanne E. Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, VH G001A, 1720 Second Avenue South, Birmingham, Alabama 35294, United States
| |
Collapse
|
26
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
28
|
Bao Q, Zhang B, Suo Y, Liu C, Yang Q, Zhang K, Yuan M, Yuan M, Zhang Y, Li G. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. eLife 2020; 9:e49923. [PMID: 31934850 PMCID: PMC6992386 DOI: 10.7554/elife.49923] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Bangying Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ya Suo
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Chen Liu
- Department of Clinical LaboratoryPeking University People's HospitalBeijingChina
| | - Qian Yang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Kai Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ming Yuan
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Meng Yuan
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Guangping Li
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
29
|
Xu L, Zhang Y, Chen J, Xu Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J Diabetes Res 2020; 2020:8043135. [PMID: 32626782 PMCID: PMC7306092 DOI: 10.1155/2020/8043135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Fibrosis accompanies most common pathophysiological features of diabetes complications in different organs. It is characterized by an excessive accumulation of extracellular matrix (ECM) components, the response to which contributes to inevitable organ injury. The extracellular protein thrombospondin-1 (TSP-1), a kind of extracellular glycoprotein, is upregulated by the increased activity of some transcription factors and results in fibrosis by activating multiple pathways in diabetes. The results of studies from our team and other colleagues indicate that TSP-1 is associated with the pathological process leading to diabetic complications and is considered to be the most important factor in fibrosis. This review summarizes the molecular mechanism of increased TSP-1 induced by hyperglycemia and the role of TSP-1 in fibrosis during the development of diabetes complications.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| |
Collapse
|
30
|
Captur G, Heywood WE, Coats C, Rosmini S, Patel V, Lopes LR, Collis R, Patel N, Syrris P, Bassett P, O'Brien B, Moon JC, Elliott PM, Mills K. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol Cell Proteomics 2020; 19:114-127. [PMID: 31243064 PMCID: PMC6944230 DOI: 10.1074/mcp.ra119.001586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by pathological left ventricular hypertrophy (LVH). It is the commonest inherited cardiac condition and a significant number of high risk cases still go undetected until a sudden cardiac death (SCD) event. Plasma biomarkers do not currently feature in the assessment of HCM disease progression, which is tracked by serial imaging, or in SCD risk stratification, which is based on imaging parameters and patient/family history. There is a need for new HCM plasma biomarkers to refine disease monitoring and improve patient risk stratification. To identify new plasma biomarkers for patients with HCM, we performed exploratory myocardial and plasma proteomics screens and subsequently developed a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay to validate the 26 peptide biomarkers that were identified. The association of discovered biomarkers with clinical phenotypes was prospectively tested in plasma from 110 HCM patients with LVH (LVH+ HCM), 97 controls, and 16 HCM sarcomere gene mutation carriers before the development of LVH (subclinical HCM). Six peptides (aldolase fructose-bisphosphate A, complement C3, glutathione S-transferase omega 1, Ras suppressor protein 1, talin 1, and thrombospondin 1) were increased significantly in the plasma of LVH+ HCM compared with controls and correlated with imaging markers of phenotype severity: LV wall thickness, mass, and percentage myocardial scar on cardiovascular magnetic resonance imaging. Using supervised machine learning (ML), this six-biomarker panel differentiated between LVH+ HCM and controls, with an area under the curve of ≥ 0.87. Five of these peptides were also significantly increased in subclinical HCM compared with controls. In LVH+ HCM, the six-marker panel correlated with the presence of nonsustained ventricular tachycardia and the estimated five-year risk of sudden cardiac death. Using quantitative proteomic approaches, we have discovered six potentially useful circulating plasma biomarkers related to myocardial substrate changes in HCM, which correlate with the estimated sudden cardiac death risk.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 1-19 Torrington Place, Fitzrovia, London WC1E 7HB, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Caroline Coats
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stefania Rosmini
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Vimal Patel
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luis R Lopes
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Bassett
- Biostatistics Joint Research Office, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital and Barts Heart Center, West Smithfield, London, EC1A 7BE, UK; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - James C Moon
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Perry M Elliott
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
31
|
Min-DeBartolo J, Schlerman F, Akare S, Wang J, McMahon J, Zhan Y, Syed J, He W, Zhang B, Martinez RV. Thrombospondin-I is a critical modulator in non-alcoholic steatohepatitis (NASH). PLoS One 2019; 14:e0226854. [PMID: 31891606 PMCID: PMC6938381 DOI: 10.1371/journal.pone.0226854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease characterized by dysregulated lipid metabolism and chronic inflammation ultimately resulting in fibrosis. Untreated, NAFLD may progress to non-alcoholic steatohepatitis (NASH), cirrhosis and death. However, currently there are no FDA approved therapies that treat NAFLD/NASH. Thrombospondin-I (TSP-1) is a large glycoprotein in the extracellular matrix that regulates numerous cellular pathways including transforming growth factor beta 1 (TGF-β1) activation, angiogenesis, inflammation and cellular adhesion. Increased expression of TSP-1 has been reported in various liver diseases; however, its role in NAFLD/NASH is not well understood. We first examined TSP-1 modulation in hepatic stellate cell activation, a critical initiating step in hepatic fibrosis. Knockdown or inhibition of TSP-1 attenuated HSC activation measured by alpha smooth muscle actin (α-SMA) and Collagen I expression. To investigate the impact of TSP-1 modulation in context of NAFLD/NASH, we examined the effect of TSP-1 deficiency in the choline deficient L-amino acid defined high fat diet (CDAHFD) model of NASH in mice by assessing total body and liver weight, serum liver enzyme levels, serum lipid levels, liver steatosis, liver fibrosis and liver gene expression in wild type (WT) and TSP-1 null mice. CDAHFD fed mice, regardless of genotype, developed phenotypes of NASH, including significant increase in liver weight and liver enzymes, steatosis and fibrosis. However, in comparison to WT, CDAHFD-fed TSP-1 deficient mice were protected against numerous NASH phenotypes. TSP-1 null mice exhibited a decrease in serum lipid levels, inflammation markers and hepatic fibrosis. RNA-seq based transcriptomic profiles from the liver of CDAHFD fed mice determined that both WT and TSP-1 null mice exhibited similar gene expression signatures following CDAHFD, similar to biophysical and histological assessment comparison. Comparison of transcriptomic profiles based on genotype suggested that peroxisome proliferator activated receptor alpha (PPARα) pathway and amino acid metabolism pathways are differentially expressed in TSP-1 null mice. Activation of PPARα pathway was supported by observed decrease in serum lipid levels. Our findings provide important insights into the role of TSP-1 in context of NAFLD/NASH and TSP-1 may be a target of interest to develop anti-fibrotic therapeutics for NAFLD/NASH.
Collapse
Affiliation(s)
- Jessica Min-DeBartolo
- BioMedicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (JM-D); (RM)
| | - Franklin Schlerman
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Sandeep Akare
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Ju Wang
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - James McMahon
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Yutian Zhan
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Jameel Syed
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Wen He
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Baohong Zhang
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Robert V. Martinez
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- * E-mail: (JM-D); (RM)
| |
Collapse
|
32
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
33
|
Murphy-Ullrich JE. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J Histochem Cytochem 2019; 67:683-699. [PMID: 31116066 PMCID: PMC6713974 DOI: 10.1369/0022155419851103] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Thrombospondin 1 (TSP1) is a matricellular extracellular matrix protein that has diverse roles in regulating cellular processes important for the pathogenesis of fibrotic diseases. We will present evidence for the importance of TSP1 control of latent transforming growth factor beta activation in renal fibrosis with an emphasis on diabetic nephropathy. Other functions of TSP1 that affect renal fibrosis, including regulation of inflammation and capillary density, will be addressed. Emerging roles for TSP1 N-terminal domain regulation of collagen matrix assembly, direct effects of TSP1-collagen binding, and intracellular functions of TSP1 in mediating endoplasmic reticulum stress responses in extracellular matrix remodeling and fibrosis, which could potentially affect renal fibrogenesis, will also be discussed. Finally, we will address possible strategies for targeting TSP1 functions to treat fibrotic renal disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
34
|
Jiang N, Zhang Z, Shao X, Jing R, Wang C, Fang W, Mou S, Ni Z. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-β1/Smad3 signaling pathway. J Cell Physiol 2019; 235:364-379. [PMID: 31236971 DOI: 10.1002/jcp.28976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) is a profibrotic cytokine which induces mesothelial cell mesothelial-to-mesenchymal transition (MMT) and peritoneal fibrosis in patients receiving treatment of peritoneal dialysis. Because thrombospondin-1 (TSP-1) is able to activate latent TGF-β1 in vivo, we investigated whether blockade of TSP-1 could modulate mesothelial cell MMT and ameliorate peritoneal fibrosis. METHODS Human pleural mesothelial cells (Met-5A cells) were treated with TSP-1 and addition of TGF-β1 neutralizing antibody to assess the effect of TSP-1 on MMT. Furthermore, TSP-1 blocking peptide Leu-Ser-Lys-Leu (LSKL) was applied to Met-5A cells treated with 4.25% d-glucose to determine its function in high glucose-induced MMT. Consequently, a uremic dialysate injection rat model was set up to confirm the results in vivo. RESULTS Exposure of Met-5A cells to TSP-1 increased TGF-β1 secretion, expression and bioactivity, triggered Smad3 phosphorylation, upregulated the expression of mesenchymal molecules including fibronectin, collagen type III, α-smooth muscle actin, Snail, and decreased calretinin expression. The effect was partially attenuated by TGF-β1 neutralizing antibody. TSP-1 expression in Met-5A cells was increased by 4.25% d-glucose, followed by increased secretion and bioactivity of TGF-β1, the onset of Smad3 phosphorylation and induction of MMT. LSKL significantly attenuated high glucose-mediated mesothelial cell MMT and ameliorated peritoneal fibrosis in uremic rats receiving dextrose dialysate injection. CONCLUSIONS Taken together, these data demonstrated that TSP-1 contributes to mesothelial cell MMT by activating TGF-β1/Smad3 signaling pathway and blockade of TSP-1 attenuates high glucose-mediated mesothelial cell MMT and peritoneal fibrosis.
Collapse
Affiliation(s)
- Na Jiang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Jing
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlin Wang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
36
|
Chen X, Yang Y, Chang T, Xu B, Wei H. Comparative Transcriptome Analysis of Unusual Localized Skin Laxity in Sika Deer ( Cervus nippon). DNA Cell Biol 2019; 38:670-677. [PMID: 31188027 DOI: 10.1089/dna.2019.4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cutis laxa represents a heterogeneous group of rare, inherited, or acquired connective tissue disorders with the common feature of loose and redundant skin with decreased elasticity. The skin of affected deer showed abnormal collagen fiber morphology. To identify the differentially expressed genes of the unusual localized skin laxity in sika deer, we performed transcriptome analysis in the affected and control sika deer. The transcriptome analysis showed 700 genes with significant differential expression in the affected skin as compared with normal skin. Pathway analysis revealed an enrichment of genes involved in tumor necrosis factor signaling, the extracellular matrix-receptor interaction, platelet activation, and Huntington's disease. A gene network was constructed, and the hub nodes such as PTGS2, THBS1, COL1A1, FOS, and NOS3 were found through PPI network analysis, which may contributed to the unusual localized skin laxity in sika deer. Abnormal expression patterns of genes during the development of the affected sika deer were successfully uncovered in the present study, which provides a reference for revealing the related mechanism underlying cutis laxa in sika deer and human beings.
Collapse
Affiliation(s)
- Xiumin Chen
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yifeng Yang
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| | - Tong Chang
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Baozeng Xu
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| | - Haijun Wei
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| |
Collapse
|
37
|
Yun SM, Kim SH, Kim EH. The Molecular Mechanism of Transforming Growth Factor-β Signaling for Intestinal Fibrosis: A Mini-Review. Front Pharmacol 2019; 10:162. [PMID: 30873033 PMCID: PMC6400889 DOI: 10.3389/fphar.2019.00162] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease is known as the most chronic inflammatory disorder in colon, which subsequently progresses to intestinal obstruction and fistula formation. Many studies to date for the treatment of IBD have been focused on inflammation. However, most of the anti-inflammatory agents do not have anti-fibrotic effects and could not relieve intestinal stricture in IBD patients. Because preventing or reversing intestinal fibrosis in IBD is a major therapeutic target, we analyzed the papers focusing on TGF-β signaling in intestinal fibrosis. TGF-β is a good candidate to treat the intestinal fibrosis in IBD which involves TGF-β signaling pathway, EMT, EndMT, ECM, and other regulators. Understanding the mechanism involved in TGF-β signaling will contribute to the treatment and diagnosis of intestinal fibrosis occurring in IBD as well as the understanding of the molecular mechanisms underlying the pathogenesis.
Collapse
Affiliation(s)
- Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Seok-Ho Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
38
|
Kucukdurmaz F, Efe E, Kurutas EB, Olmez C, Temizer M, Resim S. Losartan treatment significantly attenuates the fibrotic changes in the corpus cavernosum of castrated rats. Rev Int Androl 2018; 18:14-20. [PMID: 30245178 DOI: 10.1016/j.androl.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/22/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION AND OBJECTIVES The aim of this study is to evaluate the effects of castration and subsequent losartan administration on the fibrosis-related parameters in the corpora cavernosa of castrated rats. MATERIAL AND METHODS Twenty-four male rats were divided into four equal groups. Group 1:sham surgery plus vehicle (0.9% NaCl) (control:con), group 2:sham surgery plus losartan (con+los), group 3: castration plus vehicle (castration:cast) and group 4:castration plus losartan (cast+los). After four weeks of oral losartan treatment, corporal levels of transforming growth factor-beta (TGF-β), thrombospondin-1 (TSP-1), alpha-actin, beta-actin and fibronectin were investigated by ELISA kits. Changes in the collagen and smooth muscle content were evaluated by histological analysis with Masson trichrome staining. RESULTS Initial and post-treatment body weights of rats were similar among groups. Castration significantly increased the expression of TGF-β, TSP-1 and fibronectin and resulted in a significant decrease in alpha-actin levels in the corpora cavernosa. Administration of losartan reduced the levels of TGF-β, TSP-1 and fibronectin in castrated rats. Alpha actin levels also increased after losartan treatment. Beta-actin levels were not significantly different among 4 groups. The levels of all markers were similar in group 1 and 2. Rate of fibrosis was significantly higher in castrated rats and treatment with losartan reduced this rate. CONCLUSION Castration increased the expression of fibrosis-related markers in the corpora cavernosa of rats. Administration of losartan significantly attenuated those changes and exerted an antifibrotic effect.
Collapse
Affiliation(s)
- Faruk Kucukdurmaz
- Sutcu Imam University, Department of Urology, Kahramanmaras, Turkey.
| | - Erkan Efe
- Sutcu Imam University, Department of Urology, Kahramanmaras, Turkey
| | | | - Caner Olmez
- Sutcu Imam University, Department of Urology, Kahramanmaras, Turkey
| | | | - Sefa Resim
- Sutcu Imam University, Department of Urology, Kahramanmaras, Turkey
| |
Collapse
|
39
|
Murphy-Ullrich JE, Suto MJ. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol 2018; 68-69:28-43. [PMID: 29288716 PMCID: PMC6015530 DOI: 10.1016/j.matbio.2017.12.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) is a central player in fibrotic disease. Clinical trials with global inhibitors of TGF-β have been disappointing, suggesting that a more targeted approach is warranted. Conversion of the latent precursor to the biologically active form of TGF-β represents a novel approach to selectively modulating TGF-β in disease, as mechanisms employed to activate latent TGF-β are typically cell, tissue, and/or disease specific. In this review, we will discuss the role of the matricellular protein, thrombospondin 1 (TSP-1), in regulation of latent TGF-β activation and the use of an antagonist of TSP-1 mediated TGF-β activation in a number of diverse fibrotic diseases. In particular, we will discuss the TSP-1/TGF-β pathway in fibrotic complications of diabetes, liver fibrosis, and in multiple myeloma. We will also discuss emerging evidence for a role for TSP-1 in arterial remodeling, biomechanical modulation of TGF-β activity, and in immune dysfunction. As TSP-1 expression is upregulated by factors induced in fibrotic disease, targeting the TSP-1/TGF-β pathway potentially represents a more selective approach to controlling TGF-β activity in disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | - Mark J Suto
- Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, United States
| |
Collapse
|
40
|
Tiram G, Ferber S, Ofek P, Eldar-Boock A, Ben-Shushan D, Yeini E, Krivitsky A, Blatt R, Almog N, Henkin J, Amsalem O, Yavin E, Cohen G, Lazarovici P, Lee JS, Ruppin E, Milyavsky M, Grossman R, Ram Z, Calderón M, Haag R, Satchi-Fainaro R. Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma. FASEB J 2018; 32:fj201701568R. [PMID: 29856660 DOI: 10.1096/fj.201701568r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma is an aggressive and invasive brain malignancy with high mortality rates despite current treatment modalities. In this study, we show that a 7-gene signature, previously found to govern the switch of glioblastomas from dormancy to aggressive tumor growth, correlates with improved overall survival of patients with glioblastoma. Using glioblastoma dormancy models, we validated the role of 2 genes from the signature, thrombospondin-1 ( TSP-1) and epidermal growth factor receptor ( EGFR), as regulators of glioblastoma dormancy and explored their therapeutic potential. EGFR up-regulation was reversed using EGFR small interfering RNA polyplex, antibody, or small-molecule inhibitor. The diminished function of TSP-1 was augmented via a peptidomimetic. The combination of EGFR inhibition and TSP-1 restoration led to enhanced therapeutic efficacy in vitro, in 3-dimensional patient-derived spheroids, and in a subcutaneous human glioblastoma model in vivo. Systemic administration of the combination therapy to mice bearing intracranial murine glioblastoma resulted in marginal therapeutic outcomes, probably due to brain delivery challenges, p53 mutation status, and the aggressive nature of the selected cell line. Nevertheless, this study provides a proof of concept for exploiting regulators of tumor dormancy for glioblastoma therapy. This therapeutic strategy can be exploited for future investigations using a variety of therapeutic entities that manipulate the expression of dormancy-associated genes in glioblastoma as well as in other cancer types.-Tiram, G., Ferber, S., Ofek, P., Eldar-Boock, A., Ben-Shushan, D., Yeini, E., Krivitsky, A., Blatt, R., Almog, N., Henkin, J., Amsalem, O., Yavin, E., Cohen, G., Lazarovici, P., Lee, J. S., Ruppin, E., Milyavsky, M., Grossman, R., Ram, Z., Calderón, M., Haag, R., Satchi-Fainaro, R. Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roni Blatt
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nava Almog
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Orit Amsalem
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eylon Yavin
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Cohen
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joo Sang Lee
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Eytan Ruppin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
- Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
42
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
43
|
Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2017; 75-76:300-313. [PMID: 29138119 DOI: 10.1016/j.matbio.2017.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Edward F Plow
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
44
|
Ali M, Mali V, Haddox S, AbdelGhany SM, El-Deek SEM, Abulfadl A, Matrougui K, Belmadani S. Essential Role of IL-12 in Angiogenesis in Type 2 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2590-2601. [PMID: 28837799 DOI: 10.1016/j.ajpath.2017.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Recently, IL-12 emerged as a critical player in type 2 diabetes complications. We previously reported that ischemia-induced angiogenesis is compromised in type 2 diabetic mice. In this study, we determined that IL-12 disruption rescued angiogenesis and arteriogenesis in type 2 diabetic mice. To induce type 2 diabetes, wild-type (WT), p40IL-12-/- (p40-/-), and p35IL-12-/- (p35-/-) mice were fed a high-fat diet (HFD) for 12 weeks. Body weight, glucose test tolerance, and insulin test tolerance were assessed. After 12 weeks of an HFD, the femoral artery was ligated and blood flow recovery was measured every week for 4 weeks. WT, p40-/-, and p35-/- mice fed an HFD become obese after 12 weeks and exhibit glucose intolerance and insulin resistance. Blood flow recovery was fully restored in 2 to 3 weeks after femoral artery ligation in all groups of mice fed a normal diet. However, after 12 weeks of an HFD, blood flow recovery was compromised in WT mice, whereas it was fully recovered in p40-/- and p35-/- mice. The mechanism of blood flow recovery involves an increase in capillary/arteriole density, endothelial nitric oxide synthase/Akt/vascular endothelial growth factor receptor 2 signaling, and a reduction in oxidative stress and inflammation. The disruption of IL-12 promotes angiogenesis and increases blood flow recovery in obese type 2 diabetic mice by an endothelial nitric oxide synthase/Akt/vascular endothelial growth factor receptor 2/oxidative stress-inflammation-dependent mechanism.
Collapse
Affiliation(s)
- Maha Ali
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, Virginia; Department of Medical Biochemistry, Assiut University, Assiut, Egypt
| | - Vishal Mali
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, Virginia
| | - Samuel Haddox
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, Virginia
| | - Soad M AbdelGhany
- Department of Medical Biochemistry, Assiut University, Assiut, Egypt
| | - Sahar E M El-Deek
- Department of Medical Biochemistry, Assiut University, Assiut, Egypt
| | - Atif Abulfadl
- Department of Medical Biochemistry, Assiut University, Assiut, Egypt
| | - Khalid Matrougui
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, Virginia
| | - Souad Belmadani
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
45
|
Kim CW, Pokutta-Paskaleva A, Kumar S, Timmins LH, Morris AD, Kang DW, Dalal S, Chadid T, Kuo KM, Raykin J, Li H, Yanagisawa H, Gleason RL, Jo H, Brewster LP. Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1. Circulation 2017; 136:1217-1232. [PMID: 28778947 DOI: 10.1161/circulationaha.116.026361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Arterial stiffness and wall shear stress are powerful determinants of cardiovascular health, and arterial stiffness is associated with increased cardiovascular mortality. Low and oscillatory wall shear stress, termed disturbed flow (d-flow), promotes atherosclerotic arterial remodeling, but the relationship between d-flow and arterial stiffness is not well understood. The objective of this study was to define the role of d-flow on arterial stiffening and discover the relevant signaling pathways by which d-flow stiffens arteries. METHODS D-flow was induced in the carotid arteries of young and old mice of both sexes. Arterial stiffness was quantified ex vivo with cylindrical biaxial mechanical testing and in vivo from duplex ultrasound and compared with unmanipulated carotid arteries from 80-week-old mice. Gene expression and pathway analysis was performed on endothelial cell-enriched RNA and validated by immunohistochemistry. In vitro testing of signaling pathways was performed under oscillatory and laminar wall shear stress conditions. Human arteries from regions of d-flow and stable flow were tested ex vivo to validate critical results from the animal model. RESULTS D-flow induced arterial stiffening through collagen deposition after partial carotid ligation, and the degree of stiffening was similar to that of unmanipulated carotid arteries from 80-week-old mice. Intimal gene pathway analyses identified transforming growth factor-β pathways as having a prominent role in this stiffened arterial response, but this was attributable to thrombospondin-1 (TSP-1) stimulation of profibrotic genes and not changes to transforming growth factor-β. In vitro and in vivo testing under d-flow conditions identified a possible role for TSP-1 activation of transforming growth factor-β in the upregulation of these genes. TSP-1 knockout animals had significantly less arterial stiffening in response to d-flow than wild-type carotid arteries. Human arteries exposed to d-flow had similar increases TSP-1 and collagen gene expression as seen in our model. CONCLUSIONS TSP-1 has a critical role in shear-mediated arterial stiffening that is mediated in part through TSP-1's activation of the profibrotic signaling pathways of transforming growth factor-β. Molecular targets in this pathway may lead to novel therapies to limit arterial stiffening and the progression of disease in arteries exposed to d-flow.
Collapse
Affiliation(s)
- Chan Woo Kim
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Anastassia Pokutta-Paskaleva
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Sandeep Kumar
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Lucas H Timmins
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Andrew D Morris
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Dong-Won Kang
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Sidd Dalal
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Tatiana Chadid
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Katie M Kuo
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Julia Raykin
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Haiyan Li
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Hiromi Yanagisawa
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Rudolph L Gleason
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Hanjoong Jo
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.).
| | - Luke P Brewster
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.).
| |
Collapse
|
46
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
47
|
Chang C, Zhao Q, Gonzalez JP, Kim JH, Alzahrani K, Del Re D, Fraidenraich D. Hematopoietic Id Deletion Triggers Endomyocardial Fibrotic and Vascular Defects in the Adult Heart. Sci Rep 2017; 7:3079. [PMID: 28596553 PMCID: PMC5465087 DOI: 10.1038/s41598-017-03160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Inhibitor of DNA binding (Id) proteins play important roles in regulating cardiac development via paracrine signaling. Id1/Id3 knockout mice die at mid-gestation with multiple cardiac defects. Single Id knockout studies have not reported cardiomyopathies. To bypass embryonic lethality we used Tie2CRE-mediated recombination to conditionally delete Id1 against global Id3 ablation (Id cDKOs), which develops adult-onset dilated cardiomyopathy. We confirm upregulation of thrombospondin-1 (TSP1) in Id cDKO hearts. Colocalization studies reveal increased TSP1 expression in the vicinity of endothelial cells and near regions of endocardial fibrosis/disruption. Downstream fibrotic molecules were upregulated. Endocardial capillary density was reduced with evidence of vascular distention. Treatment of Id cDKO cardiac explants with LSKL, a peptide antagonist of TSP1 activation of TGFβ, reversed the increased expression of fibrotic molecules. We conducted bone marrow transplant experiments in which we transferred bone marrow cells from Id cDKO mice into lethally irradiated WT mice. The majority of WT recipients of Id cDKO bone marrow cells phenocopied Id cDKO cardiac fibrosis 4 months post-transplantation. Injection of LSKL into adult Id cDKO mice led to downregulation of fibrotic molecules. The results prompt caution when bone marrow transfers from individuals potentially carrying mutations in the Id axis are applied in clinical settings.
Collapse
Affiliation(s)
- Corey Chang
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America
| | - Qingshi Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America
| | - J Patrick Gonzalez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America
| | - Jung H Kim
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America
| | - Kamal Alzahrani
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America
| | - Dominic Del Re
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue/Medical Science Building G-624, Newark, NJ, 07103-2501, United States of America.
| |
Collapse
|
48
|
Imoto K, Okada M, Yamawaki H. Expression profile of matricellular proteins in hypertrophied right ventricle of monocrotaline-induced pulmonary hypertensive rats. J Vet Med Sci 2017; 79:1096-1102. [PMID: 28496027 PMCID: PMC5487790 DOI: 10.1292/jvms.17-0053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matricellular proteins, a non-structural extracellular matrix (ECM) component, bind to
and modulate various molecules including growth factor, cytokine, protease, other ECM
components and cell membrane receptors. While most matricellular proteins are hardly
expressed in normal adult tissue, they are re-expressed in heart tissue during cardiac
diseases. The present study aimed to clarify the mRNA expression profile of matricellular
proteins [secreted protein acidic and rich in cysteine: SPARC, hevin, thrombospondin
(TSP)-1, -2 and -4, CCN1 and 5, tenascin (Tn) C and N, periostin and osteopontin (OPN)] in
hypertrophied right ventricle (RV) of monocrotaline (MCT)-induced pulmonary hypertensive
rats. Male Wistar rats were intraperitoneally treated with MCT or saline. Two or three
weeks after MCT treatment, echocardiography was performed, and mRNA expression of
matricellular proteins was measured by real-time polymerase chain reaction. MCT (2 weeks)
induced pulmonary hypertension, RV dysfunction and hypertrophy, which were all worsened 3
weeks after MCT treatment. Expression of mRNA for SPARC, hevin, TnC, TSP-1, -2 and -4,
CCN1 and 5, periostin and OPN but not TnN was significantly upregulated in RV of MCT (2
weeks)-treated rats. Expression of mRNA for TSP-4, CCN1 and 5 and periostin was
continuously increased in RV of MCT (3 weeks)-treated rats. The present study for the
first time revealed the mRNA expression profile for matricellular proteins in RV of
MCT-treated rats for 2 or 3 weeks, which will be helpful to clarify the relationship for
matricellular proteins and pathogenesis of MCT-induced RV hypertrophy.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| |
Collapse
|
49
|
Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017; 127:1600-1612. [PMID: 28459429 DOI: 10.1172/jci87491] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.
Collapse
|
50
|
Li Y, Turpin CP, Wang S. Role of thrombospondin 1 in liver diseases. Hepatol Res 2017; 47:186-193. [PMID: 27492250 PMCID: PMC5292098 DOI: 10.1111/hepr.12787] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Thrombospondin 1 (TSP1) is a matricellular glycoprotein that can be secreted by many cell types. Through binding to extracellular proteins and/or cell surface receptors, TSP1 modulates a variety of cellular functions. Since its discovery in 1971, TSP1 has been found to play important roles in multiple biological processes including angiogenesis, apoptosis, latent transforming growth factor-β activation, and immune regulation. Thrombospondin 1 is also involved in regulating many organ functions. However, the role of TSP1 in liver diseases has not been extensively addressed. In this review, we summarize the findings about the possible role that TSP1 plays in chronic liver diseases focusing on non-alcoholic fatty liver diseases, liver fibrosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanzhang Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Medical College of Henan University, Kaifeng, Henan 475004, China
| | - Courtney P Turpin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|