1
|
Ben S, Zheng Q, Zhao Y, Xia J, Mu W, Yao M, Yan B, Jiang Q. Tear Fluid-Based Metabolomics Profiling in Chronic Dacryocystitis Patients. J Proteome Res 2025; 24:224-233. [PMID: 39670809 DOI: 10.1021/acs.jproteome.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Chronic dacryocystitis (CD) can result in severe complications and vision impairment due to ongoing microbial infections and persistent tearing. Tear fluid, which contains essential components vital for maintaining ocular surface health, has been investigated for its potential in the noninvasive identification of ocular biomarkers through metabolomics analysis. In this study, we employed UHPLC-MS/MS to analyze the tear metabolome of CD patients. UHPLC-MS/MS analysis of tear samples from CD patients revealed significant metabolic alterations. Compared with the control group, 298 metabolites were elevated, while 142 were decreased. KEGG pathway analysis suggested that these changes primarily affected arginine and proline metabolism, biosynthesis of amino acids, and phenylalanine biosynthesis in CD. Notably, 3-dehydroquinic acid, anthranilic acid, citric acid, and l-isoleucine emerged as potential biomarker candidates of CD with high diagnostic accuracy (AUC = 0.94). These findings suggest that tear fluid metabolism, particularly amino acid biosynthesis, plays a significant role in the pathogenesis of CD. Uncovering these metabolic products and pathways provides valuable insights into the mechanisms underlying CD and paves the way for the development of diagnostic tools and targeted therapies.
Collapse
Affiliation(s)
- Shuai Ben
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qun Zheng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
- Nanjing Aier Eye Hospital, Nanjing 210000, China
| | - Ya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiao Xia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wan Mu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
| | - Mudi Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
2
|
Qi D, Huang D, Ba M, Xuan S, Si H, Lu D, Pei X, Zhang W, Huang S, Li Z. Long-term high fructose intake reprograms the circadian transcriptome and disrupts homeostasis in mouse extra-orbital lacrimal glands. Exp Eye Res 2024; 246:110008. [PMID: 39025460 DOI: 10.1016/j.exer.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study aims to explore the effects of long-term high fructose intake (LHFI) on the structure, functionality, and physiological homeostasis of mouse extra-orbital lacrimal glands (ELGs), a critical component of ocular health. Our findings reveal significant reprogramming of the circadian transcriptome in ELGs following LHFI, alongside the activation of specific inflammatory pathways, as well as metabolic and neural pathways. Notably, LHFI resulted in increased inflammatory infiltration, enhanced lipid deposition, and reduced nerve fiber density in ELGs compared to controls. Functional assessments indicated a marked reduction in lacrimal secretion following cholinergic stimulation in LHFI-treated mice, suggesting impaired gland function. Overall, our results suggest that LHFI disrupts lacrimal gland homeostasis, potentially leading to dry eye disease by altering its structure and secretory function. These insights underscore the profound impact of dietary choices on ocular health and highlight the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Mengru Ba
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shuting Xuan
- Department of Ophthalmology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Wenxiao Zhang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
4
|
Yoon CH, Jang HJ, Ryu JS, Ko JH, Ahn KS, Oh SR, Oh JH, Chung JH, Oh JY. 1,5-Dicaffeoylquinic acid from Pseudognaphalium affine ameliorates dry eye disease via suppression of inflammation and protection of the ocular surface. Ocul Surf 2023; 29:469-479. [PMID: 37390940 DOI: 10.1016/j.jtos.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE Pseudognaphalium affine (P. affine), a medicinal plant, has long been used to treat various diseases due to its astringent and vulnerary effects. These therapeutic benefits are largely attributed to high contents of phytochemicals, such as flavonoids and polyphenols, that have anti-inflammatory and tissue-protective activities. Herein, we investigated the potential of dicaffeoylquinic acids (diCQAs), polyphenols from P. affine, as a novel treatment for dry eye disease (DED). METHODS We isolated 1,5-, 3,4-, 3,5- and 4,5-diCQAs from the P. affine methanol extract, and tested the effects of diCQA isomers in cultures of human corneal epithelial cells (CECs) under desiccating hyperosmolar stress and in two mouse models for DED: desiccating environmental stress-induced DED and the NOD.B10-H2b mouse model of ocular Sjögren's syndrome. RESULTS Initial screening showed that, among the diCQAs, 1,5-diCQA significantly inhibited apoptosis and enhanced viability in cultures of CECs under hyperosmolar stress. Moreover, 1,5-diCQA protected CECs by promoting proliferation and downregulating inflammatory activation. Subsequent studies with two mouse models of DED revealed that topical 1,5-diCQA administration dose-dependently decreased corneal epithelial defects and increased tear production while repressing inflammatory cytokines and T cell infiltration on the ocular surface and in the lacrimal gland. 1,5-diCQA was more effective in alleviating DED, as compared with two commercially-available dry eye treatments, 0.05% cyclosporine and 0.1% sodium hyaluronate eye drops. CONCLUSIONS Together, our results demonstrate that 1,5-diCQA isolated from P. affine ameliorates DED through protection of corneal epithelial cells and suppression of inflammation, thus suggesting a novel DED therapeutic strategy based on natural compounds.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyun-Jae Jang
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea; Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyung-Seop Ahn
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea; Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
5
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
6
|
Huang S, Si H, Liu J, Qi D, Pei X, Lu D, Zou S, Li Z. Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35731510 PMCID: PMC9233287 DOI: 10.1167/iovs.63.6.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose Sleep loss markedly affects the structure and function of the lacrimal gland and may cause ocular surface disease as a common public health problem. This study aims to investigate the circadian disturbance caused by sleep loss leading to dysfunction of extraorbital lacrimal glands (ELGs). Methods A mouse sleep deprivation (SD) model for sleep loss studies was built in C57BL/6J male mice. After four weeks, the ELGs were collected at three-hour intervals during a 24-hour period. The Jonckheere-Terpstra-Kendall algorithm was used to determine the composition, phase, and rhythmicity of transcriptomic profiles in ELGs. Furthermore, we compared the non-sleep-deprived and SD-treated mouse ELG (i) reactive oxygen species (ROS) by fluorescein staining, (ii) DNA damage by immunostaining for γ-H2Ax, and (iii) circadian migration of immune cells by immunostaining for CD4, CD8, γδ-TCR, CD64, and CX3CR1. Finally, we also evaluated (i) the locomotor activity and core body temperature rhythm of mice and (ii) the mass, cell size, and tear secretion of the ELGs. Results SD dramatically altered the composition and phase-associated functional enrichment of the circadian transcriptome, immune cell trafficking, metabolism, cell differentiation, and neural secretory activities of mouse ELGs. Additionally, SD caused the ROS accumulation and consequent DNA damage in the ELGs, and the ELG dysfunction caused by SD was irreversible. Conclusions SD damages the structure, function, and diurnal oscillations of ELGs. These results highlight comprehensive characterization of insufficient sleep–affected ELG circadian transcriptome that may provide a new therapeutic approach to counteract the effects of SD on ELG function.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Li L, Jasmer KJ, Camden JM, Woods LT, Martin AL, Yang Y, Layton M, Petris MJ, Baker OJ, Weisman GA, Petris CK. Early Dry Eye Disease Onset in a NOD.H-2h4 Mouse Model of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35727180 PMCID: PMC9233292 DOI: 10.1167/iovs.63.6.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ−/−,CD28−/− (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.
Collapse
Affiliation(s)
- Lili Li
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Visual Science and Optometry Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Adam L Martin
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Yong Yang
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Maria Layton
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States
| | - Olga J Baker
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, United States
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Carisa K Petris
- Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
8
|
Peck AB, Nguyen CQ, Ambrus JL. A MZB Cell Activation Profile Present in the Lacrimal Glands of Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mice Defined by Global RNA Transcriptomic Analyses. Int J Mol Sci 2022; 23:6106. [PMID: 35682784 PMCID: PMC9181468 DOI: 10.3390/ijms23116106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
The C57BL/6.NOD-Aec1Aec2 mouse has been extensively studied to define the underlying cellular and molecular basis for the onset and development of Sjögren's syndrome (SS), a human systemic autoimmune disease characterized clinically as the loss of normal lacrimal and salivary gland functions leading respectively to dry eye and dry mouth pathologies. While an overwhelming majority of SS studies in both humans and rodent models have long focused primarily on pathophysiological events and the potential role of T lymphocytes in these events, recent studies in our murine models have indicated that marginal zone B (MZB) lymphocytes are critical for both development and onset of SS disease. Although migration and function of MZB cells are difficult to study in vivo and in vitro, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to track early cellular and molecular events in these exocrine glands of C57BL/6.NOD-Aec1Aec2 mice. In the present report, genome-wide transcriptome analyses of lacrimal glands indicate that genes and gene-sets temporally upregulated during early onset of disease define the Notch2/NF-kβ14 and Type1 interferon signal transduction pathways, as well as identify chemokines, especially Cxcl13, and Rho-GTPases, including DOCK molecules, in the cellular migration of immune cells to the lacrimal glands. We discuss how the current results compare with our recently published salivary gland data obtained from similar studies carried out in our C57BL/6.NOD-Aec1Aec2 mice, pointing out both similarities and differences in the etiopathogeneses underlying the autoimmune response within the two glands. Overall, this study uses the power of transcriptomic analyses to identify temporal molecular bioprocesses activated during the preclinical covert pathogenic stage(s) of SS disease and how these findings may impact future intervention therapies as the disease within the two exocrine glands may not be identical.
Collapse
Affiliation(s)
- Ammon B. Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Julian L. Ambrus
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
9
|
Kakan SS, Edman MC, Yao A, Okamoto CT, Nguyen A, Hjelm BE, Hamm-Alvarez SF. Tear miRNAs Identified in a Murine Model of Sjögren's Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front Immunol 2022; 13:833254. [PMID: 35309364 PMCID: PMC8931289 DOI: 10.3389/fimmu.2022.833254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren's syndrome (SS), was analyzed to identify unique miRNAs. Methods Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age- and sex-matched male BALB/c mice served as healthy controls while age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as additional controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated in additional mouse cohorts as well as in tears of SS patients versus patients with another form of dry eye disease, meibomian gland disease (MGD) using qRT-PCR. The pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results In comparison to tears from both healthy (male BALB/c) and additional control (female NOD) mice, initial analy1sis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. When compared to tears from patients with MGD, miRNAs hsa-miR-203a-3p, hsa-miR-181a-5p and hsa-miR-181b-5p were also significantly increased in tears of SS patients. Conclusions A panel of differentially expressed miRNAs were identified in tears of male NOD mice, with some preliminary validation in SS patients, including some never previously linked to SS. These may have potential utility as indicators of ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Alexander Yao
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Annie Nguyen
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Song M, Tian J, Middleton B, Nguyen CQ, Kaufman DL. GABA Administration Ameliorates Sjogren’s Syndrome in Two Different Mouse Models. Biomedicines 2022; 10:biomedicines10010129. [PMID: 35052808 PMCID: PMC8773584 DOI: 10.3390/biomedicines10010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltrates in the salivary and lachrymal glands resulting in oral and ocular dryness. There are no clinically approved therapies to slow the progression of SS. Immune cells possess receptors for the neurotransmitter GABA (GABA-Rs) and their activation has immunoregulatory actions. We tested whether GABA administration has potential for amelioration of SS in NOD.B10-H2b and C57BL/6.NOD-Aec1Aec2 mice, two spontaneous SS models. Oral GABA treatment was initiated (1) after the development of sialadenitis but before the onset of overt symptoms, or (2) after the appearance of overt symptoms. When assessed weeks later, GABA-treated mice had greater saliva and tear production, as well as quicker times to salvia flow, in both SS mouse models. This was especially evident when GABA treatment was initiated after the onset of overt disease. This preservation of exocrine function was not accompanied by significant changes in the number or area of lymphocytic foci in the salivary or lachrymal glands of GABA-treated mice and we discuss the possible reasons for these observations. Given that GABA-treatment preserved saliva and tear production which are the most salient symptoms of SS and is safe for consumption, it may provide a new approach to help ameliorate SS.
Collapse
Affiliation(s)
- Min Song
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
| | - Cuong Q. Nguyen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
- Correspondence: ; Tel.: +1-310-794-9664
| |
Collapse
|
11
|
The link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocul Surf 2021; 24:40-50. [PMID: 34968766 DOI: 10.1016/j.jtos.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.
Collapse
|
12
|
Killian M, Colaone F, Haumont P, Nicco C, Cerles O, Chouzenoux S, Cathébras P, Rochereau N, Chanut B, Thomas M, Laroche N, Forest F, Grouard-Vogel G, Batteux F, Paul S. Therapeutic Potential of Anti-Interferon α Vaccination on SjS-Related Features in the MRL/lpr Autoimmune Mouse Model. Front Immunol 2021; 12:666134. [PMID: 34867938 PMCID: PMC8635808 DOI: 10.3389/fimmu.2021.666134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sjögren’s syndrome (SjS) is a frequent systemic autoimmune disease responsible for a major decrease in patients’ quality of life, potentially leading to life-threatening conditions while facing an unmet therapeutic need. Hence, we assessed the immunogenicity, efficacy, and tolerance of IFN-Kinoid (IFN-K), an anti-IFNα vaccination strategy, in a well-known mouse model of systemic autoimmunity with SjS-like features: MRL/MpJ-Faslpr/lpr (MRL/lpr) mice. Two cohorts (with ISA51 or SWE01 as adjuvants) of 26 female MRL/lpr were divided in parallel groups, “controls” (not treated, PBS and Keyhole Limpet Hemocyanin [KLH] groups) or “IFN-K” and followed up for 122 days. Eight-week-old mice received intra-muscular injections (days 0, 7, 28, 56 and 84) of PBS, KLH or IFN-K, emulsified in the appropriate adjuvant, and blood samples were serially collected. At sacrifice, surviving mice were euthanized and their organs were harvested for histopathological analysis (focus score in salivary/lacrimal glands) and IFN signature evaluation. SjS-like features were monitored. IFN-K induced a disease-modifying polyclonal anti-IFNα antibody response in all treated mice with high IFNα neutralization capacities, type 1 IFN signature’s reduction and disease features’ (ocular and oral sicca syndrome, neuropathy, focus score, glandular production of BAFF) improvement, as reflected by the decrease in Murine Sjögren’s Syndrome Disease Activity Index (MuSSDAI) modelled on EULAR Sjögren’s Syndrome Disease Activity Index (ESSDAI). No adverse effects were observed. We herein report on the strong efficacy of an innovative anti-IFNα vaccination strategy in a mouse model of SjS, paving the way for further clinical development (a phase IIb trial has just been completed in systemic lupus erythematosus with promising results).
Collapse
Affiliation(s)
- Martin Killian
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
- Internal Medicine Department, Saint-Etienne University Hospital, Saint-Etienne, France
| | | | | | - Carole Nicco
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Olivier Cerles
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Sandrine Chouzenoux
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Pascal Cathébras
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
- Internal Medicine Department, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Nicolas Rochereau
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
| | - Blandine Chanut
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
| | - Mireille Thomas
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1059-Sainbiose, Université de Lyon, Saint Priest en Jarez, France
| | - Norbert Laroche
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1059-Sainbiose, Université de Lyon, Saint Priest en Jarez, France
| | - Fabien Forest
- Department of Pathology, Saint-Etienne University Hospital, Saint-Etienne, France
| | | | - Frédéric Batteux
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
- *Correspondence: Stéphane Paul,
| |
Collapse
|
13
|
Jiao X, Pei X, Lu D, Qi D, Huang S, He S, Li Z. Microbial Reconstitution Improves Aging-Driven Lacrimal Gland Circadian Dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2091-2116. [PMID: 34428426 DOI: 10.1016/j.ajpath.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Lacrimal glands are highly susceptible to aging and exhibit age-related structural and functional alterations. However, the mechanisms by which aging affects the lacrimal glands are not well-established. The current study explores the crosstalk between the aging process, gut microbiota, and circadian rhythm in age-associated lacrimal gland dysfunction. C57BL/6J mice were divided into young, old, and fecal microbiota transplant (FMT)-treated old groups. The gut bacterial community diversity was analyzed by 16S rRNA sequencing. Exorbital lacrimal glands (ELGs) were collected at 3-hour intervals over a 24-hour circadian cycle, and total RNA was subjected to high-throughput sequencing. Rhythmic transcriptional data were analyzed using the Jonckheere-Terpstra-Kendall algorithm and bioinformatics analysis technology. Immunostaining was used to identify lymphocytic infiltration, lipid deposition, and nerve innervation in the ELGs. Compared with young mice, old mice underwent a significant gut microbial community shift. The rhythmically transcriptomic profile was significantly reprogrammed over a 24-hour cycle in the old ELG group. Intervention with serial FMT from young donors for 1 month rejuvinated the gut microbial community of the old mice. Most alterations in rhythmic transcriptomic profiling were improved. Furthermore, chronic inflammation, lipid deposition, and aberrant neural response of the aging lacrimal glands were significantly reduced. Thus, the study shows that reconstitution of age-associated gut dysbiosis with FMTs from young donors improves aging-driven lacrimal gland circadian dysfunction.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Siyu He
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
14
|
Inhibition of Aberrant α(1,2)-Fucosylation at Ocular Surface Ameliorates Dry Eye Disease. Int J Mol Sci 2021; 22:ijms22157863. [PMID: 34360627 PMCID: PMC8346094 DOI: 10.3390/ijms22157863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Fucosylation is involved in a wide range of biological processes from cellular adhesion to immune regulation. Although the upregulation of fucosylated glycans was reported in diseased corneas, its implication in ocular surface disorders remains largely unknown. In this study, we analyzed the expression of a fucosylated glycan on the ocular surface in two mouse models of dry eye disease (DED), the NOD.B10.H2b mouse model and the environmental desiccating stress model. We furthermore investigated the effects of aberrant fucosylation inhibition on the ocular surface and DED. Results demonstrated that the level of type 2 H antigen, an α(1,2)-fucosylated glycan, was highly increased in the cornea and conjunctiva both in NOD.B10.H2b mice and in BALB/c mice subjected to desiccating stress. Inhibition of α(1,2)-fucosylation by 2-deoxy-D-galactose (2-D-gal) reduced corneal epithelial defects and increased tear production in both DED models. Moreover, 2-D-gal treatment suppressed the levels of inflammatory cytokines in the ocular surface and the percentages of IFN-γ+CD4+ cells in draining lymph nodes, whereas it did not affect the number of conjunctival goblet cells, the MUC5AC level or the meibomian gland area. Together, the findings indicate that aberrant fucosylation underlies the pathogenesis of DED and may be a novel target for DED therapy.
Collapse
|
15
|
Jung YH, Ryu JS, Yoon CH, Kim MK. Age-Dependent Distinct Distributions of Dendritic Cells in Autoimmune Dry Eye Murine Model. Cells 2021; 10:1857. [PMID: 34440626 PMCID: PMC8392312 DOI: 10.3390/cells10081857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023] Open
Abstract
We investigated whether aging-dependent changes in dendritic cell (DC) distributions are distinct in autoimmune dry eye compared with an aging-related murine model. Corneal staining and tear secretion were evaluated in young and aged C57BL/6 (B6) and NOD.B10.H2b mice (NOD). In the corneolimbus, lacrimal gland (LG), and mesenteric lymph node (MLN), CD11b- and CD11b+ DCs, CD103+ DCs and MHC-IIhi B cells were compared between young and aged B6 and NOD mice. With increased corneal staining, tear secretion decreased in both aged B6 and NOD mice (p < 0.001). In both aged B6 and NOD mice, the percentages of corneolimbal CD11b+ DCs were higher (p < 0.05) than those in young mice. While, the percentages of lymph nodal CD103+ DCs were higher in aged B6 and NOD mice (p < 0.05), the percentages of corneolimbal CD103+ DCs were only higher in aged NOD mice (p < 0.05). In aged NOD mice, the proportions of lacrimal glandial and lymph nodal MHC-IIhi B cells were also higher than those in young mice (p < 0.05). It indicates that corneolimbal or lacrimal glandial distribution of CD103+ DCs or MHC-IIhi B cells may be distinct in aged autoimmune dry eye models compared to those in aged immune competent murine models.
Collapse
Affiliation(s)
- Young-Ho Jung
- Department of Ophthalmology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-H.J.); (C.-H.Y.)
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Jin-Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Chang-Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-H.J.); (C.-H.Y.)
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Mee-Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-H.J.); (C.-H.Y.)
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
- Transplantation Research Institute, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
16
|
Abstract
ABSTRACT Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. Salivary gland biopsy is still one of the most valuable and acceptable diagnostic tests for SS, which however, is an invasive test. Therefore, noninvasive diagnostic biomarkers with high specificity and sensitivity are required for the diagnosis and assessment of SS. Because ophthalmological testing constitutes to an important part for the diagnosis of SS. Tears harbor biomarkers with a high potential to be used for differential diagnosis and assessment of treatment in many systemic disorders, including SS. This review aims to summarize recent advances in the identification of tear biomarkers of SS, trying to identify reliable, sensitive, and specific biomarkers that can be used to guide treatment decisions.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Ophthalmology (C.S.), Mugla Sitki Kocman University School of Medicine, Mugla, Turkey ; and Department of Ophthalmology (M.D.), Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
17
|
Light cycle phase advance as a model for jet lag reprograms the circadian rhythms of murine extraorbital lacrimal glands. Ocul Surf 2021; 20:95-114. [PMID: 33582293 DOI: 10.1016/j.jtos.2021.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Jet lag causes a disruption in physiological rhythms in humans. This study aims to explore the extent to which jet lag affects the circadian rhythmicity in the lacrimal glands. METHODS C57BL/6J mice were subjected to a 12-h light/12-h dark (LD) cycle and an 8-h advanced LD schedule as a model for jet lag. On day 5 after the LD advance, the extraorbital lacrimal glands (ELGs) were collected at 3-h intervals during a 24-h cycle. Total mRNA was extracted from normal and advanced LD-treated ELGs and assayed using high-throughput RNA sequencing. The rhythmic transcripts were identified, analyzed, and visualized by bioinformatics techniques. Finally, (i) animal behavior; (ii) the mass, cell size, and secretion response of ELGs; and (iii) circadian migration of immune cells to ELGs were also assayed. RESULTS Jet lag treatment drastically altered the phase and composition of the rhythmic transcripts compared to that of normal ELGs. The key biological processes, signaling pathways, and protein-protein association networks were also dramatically altered in a spatiotemporal pattern. Furthermore, the circadian migration of neutrophils, T cells, B cells, and macrophages to the ELGs increased and shifted later by 6-h. Finally, the circadian rhythms of the ELGs with respect to mass, cell size, and secretion response were also impaired in jet lag-treated animals. CONCLUSIONS Jet lag impairs the circadian rhythm of the transcriptomic profile, structure, and secretion function of the lacrimal glands. This information provides novel insight into the negative effects of jet lag on ELGs.
Collapse
|
18
|
Ohno Y, Satoh K, Shitara A, Into T, Kashimata M. Arginase 1 is involved in lacrimal hyposecretion in male NOD mice, a model of Sjögren's syndrome, regardless of dacryoadenitis status. J Physiol 2020; 598:4907-4925. [PMID: 32780506 PMCID: PMC7693353 DOI: 10.1113/jp280090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/01/2020] [Indexed: 01/14/2023] Open
Abstract
Key points Few reports have explored the possibility of involvement of non‐inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non‐dacryoadenitis‐type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status.
Abstract Lacrimal fluid (tears) is important for preservation of the ocular surface, and thus lacrimal hyposecretion in Sjögren's syndrome (SS) leads to reduced quality of life. However, the cause(s) of lacrimal hyposecretion remains unknown, even though many studies have been conducted from the perspective of inflammation. Here, we hypothesized that a non‐inflammatory factor induces lacrimal hyposecretion in SS pathology, and to elucidate such a factor, we conducted transcriptome analysis of the lacrimal glands in male non‐obese diabetic (NOD) mice as an SS model. The NOD mice showed inflammatory cell infiltration and decreased pilocarpine‐induced tear secretion at and after 6 weeks of age compared to age‐matched BALB/c mice. RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated, whereas many genes relating to inflammation were upregulated, in the lacrimal glands of male NOD mice after onset of lacrimal hyposecretion and dacryoadenitis (lacrimal gland inflammation). Changes in the level of arginase 1 expression were confirmed by real‐time RT‐PCR and western blot analysis. Furthermore, non‐dacryoadenitis‐type NOD mice were used to investigate the relationships among arginase 1 expression, lacrimal hyposecretion and dacryoadenitis. Interestingly, these NOD mice retained the phenotype of dacryoadenitis with regard to tear secretion and arginase 1 expression level. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. In conclusion, a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. These results shed light on the pathophysiological role of arginase 1 in SS (dry eye). Few reports have explored the possibility of involvement of non‐inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non‐dacryoadenitis‐type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan.,Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
19
|
Kakan SS, Janga SR, Cooperman B, Craig DW, Edman MC, Okamoto CT, Hamm-Alvarez SF. Small RNA Deep Sequencing Identifies a Unique miRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren's Syndrome. Front Immunol 2020; 11:1475. [PMID: 32849505 PMCID: PMC7396589 DOI: 10.3389/fimmu.2020.01475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4–5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05—miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth R Janga
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Cooperman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - David W Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Choi SH, Oh JW, Ryu JS, Kim HM, Im SH, Kim KP, Kim MK. IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Invest Ophthalmol Vis Sci 2020; 61:42. [PMID: 32232342 PMCID: PMC7401425 DOI: 10.1167/iovs.61.3.42] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose While the association between the gut microbiome and the immune system has been studied in autoimmune disorders, little is known about ocular disease. Previously we reported that IRT5, a mixture of five probiotic strains, could suppress autoimmune dry eye. In this study, we investigated the mechanism by which IRT5 performs its immunomodulatory function in a mouse model of autoimmune dry eye. Methods NOD.B10.H2b mice were used as an autoimmune dry eye model. Either IRT5 or PBS was gavaged orally for 3 weeks, with or without 5 days of antibiotic pretreatment. The effects on clinical features, extraorbital lacrimal gland and spleen proteins, and fecal microbiota were analyzed. Results The ocular staining score was lower, and tear secretion was higher, in the IRT5-treated groups than in the PBS-treated groups. After IRT5 treatment, the downregulated lacrimal gland proteins were enriched in the biological processes of defense response and immune system process. The relative abundances of 33 operational taxonomic units were higher, and 53 were lower, in the feces of the IRT5-treated groups than in those of the PBS-treated groups. IRT5 administration without antibiotic pretreatment also showed immunomodulatory functions with increases in the Lactobacillus helveticus group and Lactobacillus hamsteri. Additional proteomic assays revealed a decrease of proteins related to antigen-presenting processes in the CD11b+ and CD11c+ cells of spleen in the IRT5-treated groups. Conclusions Changes in the gut microbiome after IRT5 treatment improved clinical manifestations in the autoimmune dry eye model via the downregulation of antigen-presenting processes in immune networks.
Collapse
|
21
|
Jiao X, Lu D, Pei X, Qi D, Huang S, Song Z, Gu J, Li Z. Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands. Ocul Surf 2020; 18:438-452. [PMID: 32360784 DOI: 10.1016/j.jtos.2020.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE People with diabetes are at high risk of lacrimal gland dysfunction, but the underlying mechanism is not well understood. In this study, we determined how type 1 diabetes mellitus (T1DM) influences circadian homeostasis of the murine extraorbital lacrimal glands (ELGs). METHODS A T1DM animal model was established by systemic streptozotocin injection in C57BL/6J mice. After 5 weeks, ELGs were collected at 3-h intervals over a 24-h circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing, and rhythmic transcriptional data were evaluated using the Jonckheere-Terpstra-Kendall algorithm, Kyoto Encyclopedia of Genes and Genomes pathway analysis, Phase Set Enrichment Analysis, and time series cluster analysis to determine the phase, rhythmicity, and unique signature of the transcripts over temporally coordinated expression. Additionally, mass, cell size, histology, and tear secretion of the ELGs were evaluated. RESULTS T1DM globally altered the composition of the ELG transcriptome. Specifically, T1DM significantly reprogrammed the circadian transcriptomic profiles of normal ELGs and reorganized core clock machinery. Unique temporal and clustering enrichment pathways were also rewired by T1DM. Finally, normal daily rhythms of mass, cell size, and tear secretion of mouse ELGs were significantly impaired by streptozotocin-induced diabetes. CONCLUSIONS T1DM significantly reprograms the diurnal oscillations of the lacrimal glands and impairs their structure and tear secretion. This information may reveal potential targets for improving lacrimal gland dysfunction in patients with diabetes.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jianqin Gu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
22
|
Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. Mol Ther 2020; 28:1628-1644. [PMID: 32380062 DOI: 10.1016/j.ymthe.2020.04.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that mesenchymal stem/stromal cell-derived extracellular vesicles (MSC-EVs) exhibit immunomodulatory effects by delivering therapeutic RNAs and proteins; however, the molecular mechanism underlying the EV-mediated immunomodulation is not fully understood. In this study, we found that EVs from early-passage MSCs had better immunomodulatory potency than did EVs from late-passage MSCs in T cell receptor (TCR)- or Toll-like receptor 4 (TLR4)-stimulated splenocytes and in mice with ocular Sjögren's syndrome. Moreover, MSC-EVs were more effective when produced from 3D culture of the cells than from the conventional 2D culture. Comparative molecular profiling using proteomics and microRNA sequencing revealed the enriched factors in MSC-EVs that were functionally effective in immunomodulation. Among them, manipulation of transforming growth factor β1 (TGF-β1), pentraxin 3 (PTX3), let-7b-5p, or miR-21-5p levels in MSCs significantly affected the immunosuppressive effects of their EVs. Furthermore, there was a strong correlation between the expression levels of TGF-β1, PTX3, let-7b-5p, or miR-21-5p in MSC-EVs and their suppressive function. Therefore, our comparative strategy identified TGF-β1, PTX3, let-7b-5p, or miR-21-5p as key molecules mediating the therapeutic effects of MSC-EVs in autoimmune disease. These findings would help understand the molecular mechanism underlying EV-mediated immunomodulation and provide functional biomarkers of EVs for the development of robust EV-based therapies.
Collapse
|
23
|
Lee HJ, Shin S, Yoon SG, Cheon EJ, Chung SH. The Effect of Chloroquine on the Development of Dry Eye in Sjögren Syndrome Animal Model. Invest Ophthalmol Vis Sci 2020; 60:3708-3716. [PMID: 31479110 DOI: 10.1167/iovs.19-27469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Sjögren syndrome (SS) is an autoimmune disease characterized by the inflammatory destruction of salivary and lacrimal glands (LG). Chloroquine (CQ) was known as an immunomodulatory drug and in the inhibition of autophagy. The purpose of the study is to investigate the effect of CQ on the development of dry eye in NOD-LtJ mice. Methods NOD-LtJ mice were observed, during which the occurrence of dry eye was confirmed by tear secretion, corneal staining, and the infiltration of foci into the LG from 13-week-old mice. Intraperitoneal (IP) administration of CQ was performed in 13-week-old mice for 4 weeks and maintained untreated for another 4 weeks. Additionally, CQ was injected IP in 19-week-old mice for 2 weeks from when the disease was fully developed. Results Interestingly, the expression of autophagy marker ATG5 and LC3B-II was observed in the LG from week 5. When CQ had been administered for 4 weeks from week 13 and then maintained untreated for 4 weeks, tear secretion, corneal staining score, foci formation in the LG, conjunctival goblet cells and proinflammatory cytokine expressions were significantly better than untreated mice. The infiltration of immune cells and the expression of autophagy markers in LG were decreased in the CQ group. These indices improved significantly as well when the 19-week-old mice with severe clinical phenotypes had been treated with CQ for 2 weeks. Conclusions This study demonstrated that autophagy was induced in the early stages of the SS model and that CQ treatment in the early stages could inhibit disease progression.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biochemical Engineering, Seoil University, Seoul, Korea
| | - Soojung Shin
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seul-Gi Yoon
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Jeong Cheon
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
24
|
Xiao S, Zhang Y. Establishment of long-term serum-free culture for lacrimal gland stem cells aiming at lacrimal gland repair. Stem Cell Res Ther 2020; 11:20. [PMID: 31915062 PMCID: PMC6951017 DOI: 10.1186/s13287-019-1541-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Aqueous-deficient dry eye disease (ADDED) resulting from dysfunction of the lacrimal gland (LG) is currently incurable. Although LG stem/progenitor cell-based therapy is considered to be a promising strategy for ADDED patients, the lack of a reliable serum-free culture method to obtain enough lacrimal gland stem cells (LGSCs) and the basic standard of LGSC transplantation are obstacles for further research. METHODS Adult mouse LGSCs were cultured in Matrigel-based 3D culture under serum-free culture condition, which contained EGF, FGF10, Wnt3A, and Y-27632. LGSCs were continuously passaged over 40 times every 7 days, and the morphology and cell numbers were recorded. LGSCs were induced to differentiate to ductal cells by reducing Matrigel rigidity, while fetal bovine serum was used for the induction of acinar cells. RT-PCR or qRT-PCR analysis, RNA-sequence analysis, H&E staining, and immunofluorescence were used for characterization and examining the differentiation of LGSCs. LGSCs were allotransplanted into diseased LGs to examine the ability of repairing the damage. The condition of eye orbits was recorded using a camera, the tear production was measured using phenol red-impregnated cotton threads, and the engraftments of LGSCs were examined by immunohistochemistry. RESULTS We established an efficient 3D serum-free culture for adult mouse LGSCs, in which LGSCs could be continuously passaged for long-term expansion. LGSCs cultured from both the healthy and ADDED mouse LGs expressed stem/progenitor cell markers Krt14, Krt5, P63, and nestin, had the potential to differentiate into acinar or ductal-like cells in vitro and could engraft into diseased LGs and relieve symptoms of ADDED after orthotopic injection of LGSCs. CONCLUSION We successfully established an efficient serum-free culture for adult mouse LGSCs aiming at LG repair for the first time. Our approach provides an excellent theoretical and technical reference for future clinical research for ADDED stem cell therapy.
Collapse
Affiliation(s)
- Sa Xiao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Ju Y, Janga SR, Klinngam W, MacKay JA, Hawley D, Zoukhri D, Edman MC, Hamm-Alvarez SF. NOD and NOR mice exhibit comparable development of lacrimal gland secretory dysfunction but NOD mice have more severe autoimmune dacryoadenitis. Exp Eye Res 2018; 176:243-251. [PMID: 30201519 PMCID: PMC6215720 DOI: 10.1016/j.exer.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The male Non-Obese Diabetic (NOD) mouse is an established model of autoimmune dacryoadenitis characteristic of Sjögren's Syndrome (SS), but development of diabetes may complicate studies. The Non-Obese Diabetes Resistant (NOR) mouse is a MHC-II matched diabetes-resistant alternative, but development of autoimmune dacryoadenitis is not well-characterized. We compare features of SS in male NOD and NOR mice at 12 and 20 weeks. Stimulated tear secretion was decreased in 12 week NOD relative to BALB/c mice (p < 0.05), while by 20 weeks both NOD and NOR showed decreased stimulated tear secretion relative to BALB/c mice (p < 0.001). Tear CTSS activity was elevated in NOD and NOR relative to BALB/c mice (p < 0.05) at 12 and 20 weeks. While NOD and NOR lacrimal glands (LG) showed increased LG lymphocytic infiltration at 12 and 20 weeks relative to BALB/c mouse LG (p < 0.05), the percentage in NOD was higher relative to NOR at each age (p < 0.05). Gene expression of CTSS, MHC II and IFN-γ in LG were significantly increased in NOD but not NOR relative to BALB/c at 12 and 20 weeks. Redistribution of the secretory effector, Rab3D in acinar cells was observed at both time points in NOD and NOR, but thinning of myoepithelial cells at 12 weeks in NOD and NOR mice was restored by 20 weeks in NOR mice. NOD and NOR mice share features of SS-like autoimmune dacryoadenitis, suggesting common disease etiology. Other findings suggest more pronounced lymphocytic infiltration in NOD mouse LG including increased pro-inflammatory factors that may be unique to this model.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
26
|
Janga SR, Shah M, Ju Y, Meng Z, Edman MC, Hamm-Alvarez SF. Longitudinal analysis of tear cathepsin S activity levels in male non-obese diabetic mice suggests its potential as an early stage biomarker of Sjögren's Syndrome. Biomarkers 2018; 24:91-102. [PMID: 30126300 DOI: 10.1080/1354750x.2018.1514656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. OBJECTIVE To evaluate longitudinal expression of tear and tissue CTSS activity relative to other disease indicators in Non-Obese Diabetic (NOD) mice. METHODS CTSS activity was measured in tears and lacrimal glands (LG) from male 1-6 month (M) NOD and 1 and 6 M BALB/c mice. Lymphocytic infiltration was quantified by histopathology, while disease-related proteins (Rab3D, CTSS, collagen 1) were quantified using q-PCR and immunofluorescence. RESULTS In NOD LG, lymphocytic infiltration was noted by 2 M and established by 3 M (p < 0.01). IFN-ɣ, TNF-α, and MHC II expression were increased by 2 M (p < 0.01). Tear CTSS activity was significantly elevated at 2 M (p < 0.001) to a maximum of 10.1-fold by 6 M (p < 0.001). CTSS activity in LG lysates was significantly elevated by 2 M (p < 0.001) to a maximum of 14-fold by 3 M (p < 0.001). CTSS and Rab3D immunofluorescence were significantly increased and decreased maximally in LG acini by 3 M and 2 M, respectively. Comparable changes were not detected between 1 and 6 M BALB/c mouse LG, although Collagen 1 was decreased by 6 M in LG of both strains. CONCLUSION Tear CTSS activity is elevated with other early disease indicators, suggesting potential as an early stage biomarker for SS.
Collapse
Affiliation(s)
- Srikanth R Janga
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Mihir Shah
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Yaping Ju
- b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| | - Zhen Meng
- b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| | - Maria C Edman
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Sarah F Hamm-Alvarez
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA.,b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| |
Collapse
|
27
|
Edman MC, Janga SR, Meng Z, Bechtold M, Chen AF, Kim C, Naman L, Sarma A, Teekappanavar N, Kim AY, Madrigal S, Singh S, Ortiz E, Christianakis S, Arkfeld DG, Mack WJ, Heur M, Stohl W, Hamm-Alvarez SF. Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjögren's Syndrome patients. Sci Rep 2018; 8:11044. [PMID: 30038391 PMCID: PMC6056496 DOI: 10.1038/s41598-018-29411-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. Here we tested whether protease inhibition and cystatin C (Cys C) levels are reduced in SS tears, which could lead to enhanced CTSS-driven degradation of tear proteins. CTSS activity against Cys C, LF and sIgA was tested in SS or healthy control tears. Tears from 156 female subjects (33, SS; 33, rheumatoid arthritis; 31, other autoimmune diseases; 35, non-autoimmune dry eye (DE); 24, healthy controls) were analyzed for CTSS activity and Cys C, LF, and sIgA levels. Cys C and LF showed enhanced degradation in SS tears supplemented with recombinant CTSS, but not supplemented healthy control tears. CTSS activity was significantly increased, while Cys C, LF and sIgA levels were significantly decreased, in SS tears compared to other groups. While tear CTSS activity remained the strongest discriminator of SS in autoimmune populations, combining LF and CTSS improved discrimination of SS beyond CTSS in DE patients. Reductions in Cys C and other endogenous proteases may enhance CTSS activity in SS tears. Tear CTSS activity is reconfirmed as a putative biomarker of SS in an independent patient cohort while combined LF and CTSS measurements may distinguish SS from DE patients.
Collapse
Affiliation(s)
- Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Srikanth R Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Mercy Bechtold
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander F Chen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chongiin Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luke Naman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arunava Sarma
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neha Teekappanavar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Y Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Madrigal
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simranjit Singh
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Ortiz
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stratos Christianakis
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel G Arkfeld
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Heur
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Rheumatology, Department of Medicine, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, USA
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017; 124:S4-S13. [PMID: 29055361 PMCID: PMC5657523 DOI: 10.1016/j.ophtha.2017.07.010] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical and laboratory studies performed over the past few decades have discovered that dry eye is a chronic inflammatory disease that can be initiated by numerous extrinsic or intrinsic factors that promote an unstable and hyperosmolar tear film. These changes in tear composition, in some cases combined with systemic factors, lead to an inflammatory cycle that causes ocular surface epithelial disease and neural stimulation. Acute desiccation activates stress signaling pathways in the ocular surface epithelium and resident immune cells. This triggers production of innate inflammatory mediators that stimulate the production of matrix metalloprotease, inflammatory cell recruitment, and dendritic cell maturation. These mediators, combined with exposure of autoantigens, can lead to an adaptive T cell-mediated response. Cornea barrier disruption develops by protease-mediated lysis of epithelial tight junctions, leading to accelerated cell death; desquamation; an irregular, poorly lubricated cornea surface; and exposure and sensitization of epithelial nociceptors. Conjunctival goblet cell dysfunction and death are promoted by the T helper 1 cytokine interferon gamma. These epithelial changes further destabilize the tear film, amplify inflammation, and create a vicious cycle. Cyclosporine and lifitegrast, the 2 US Food and Drug Administration-approved therapies, inhibit T-cell activation and cytokine production. Although these therapies represent a major advance in dry eye therapy, they are not effective in improving discomfort and corneal epithelial disease in all patients. Preclinical studies have identified other potential therapeutic targets, biomarkers, and strategies to bolster endogenous immunoregulatory pathways. These discoveries will, it is hoped, lead to further advances in diagnostic classification and treatment.
Collapse
Affiliation(s)
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
29
|
Kim KH, Kim DH, Jeong HJ, Ryu JS, Kim YJ, Oh JY, Kim MK, Wee WR. Effects of subconjunctival administration of anti-high mobility group box 1 on dry eye in a mouse model of Sjӧgren's syndrome. PLoS One 2017; 12:e0183678. [PMID: 28837629 PMCID: PMC5570279 DOI: 10.1371/journal.pone.0183678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose Extracellular high mobility group box 1 (HMGB1) acts as a damage associated molecular pattern molecule through the Toll-like receptor to promote autoreactive B cell activation, which may be involved in the pathogenesis of Sjӧgren’s syndrome. The aim of this study was to investigate the effect of subconjunctival administration of anti-HMGB1 on dry eye in a mouse model of Sjӧgren’s syndrome. Methods Ten weeks-old NOD.B10.H2b mice were subconjunctivally injected with 0.02 to 2 μg of anti-HMGB1 antibodies or PBS twice a week for two consecutive weeks. Tear volume and corneal staining scores were measured and compared between before- and after-treatment. Goblet cell density was counted in PAS stained forniceal conjunctiva and inflammatory foci score (>50 cells/focus) was measured in extraorbital glands. Flow cytometry was performed to evaluate the changes in BrdU+ cells, IL-17-, IL-10-, or IFNγ-secreting cells, functional B cells, and IL-22 secreting innate lymphoid cells (ILC3s) in cervical lymph nodes. The level of IL-22 in intraorbital glands was measured by ELISA. Results Injection of 2 μg or 0.02 μg anti-HMGB1 attenuated corneal epithelial erosions and increased tear secretion (p<0.05). Goblet cell density was increased in 0.2 μg and 2 μg anti-HMGB1-treated-mice with marginal significance. The inflammatory foci score, and the number of BrdU+ cells, IL-17-, IL-10-, IFNγ-secreting cells, and functional B cells did not significantly change following anti-HMGB1 treatment. Surprisingly, the percentage of ILC3s was significantly increased in the draining lymph nodes (p<0.05), and the expression of IL-22 was significantly increased in the intraorbital glands (p<0.05) after administration of 2 μg anti-HMGB1. Conclusion This study shows that subconjunctival administration of anti-HMGB1 attenuates clinical manifestations of dry eye. The improvement of dry eye may involve an increase of ILC3s, rather than modulation of B or plasma cells, as shown using a mouse model of Sjӧgren’s syndrome.
Collapse
Affiliation(s)
- Kyeong Hwan Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Haeundae Paik Hospital, Busan, Korea
- Department of Ophthalmology, Inje University College of Medicine, Busan, Korea
| | - Dong Hyun Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea
| | - Hyun Jeong Jeong
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Yu Jeong Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| | - Won Ryang Wee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Abstract
Glucocorticoid eye drops are one of the most widely used medications in ophthalmology. However, little is known about the effects of glucocorticoids on corneal epithelial cells that are directly exposed to topically-administered glucocorticoids. Here we investigated the effects of prednisolone, a synthetic glucocorticoid analogue frequently used in the clinic, on corneal epithelial cells. Results showed that prednisolone decreased survival of corneal epithelial cells by inhibiting proliferation and inducing apoptosis in a dose-dependent manner. The levels of mitochondrial reactive oxygen species (mtROS), cleaved caspase-3, and -9 were increased by prednisolone. The effects of prednisolone on apoptosis and mtROS were blocked 1) by the glucocorticoid receptor (GR) antagonist RU-38486, 2) in cells with GR siRNA knockdown, and 3) by treatment with N-acetylcysteine. Transcript levels of pro-inflammatory cytokines were increased in corneal epithelial cells upon hyperosmolar stress, but repressed by prednisolone. In NOD.B10.H2b mice, topical administration of 1% prednisolone increased apoptotic cells in the corneal epithelium. Together, data indicate that prednisolone induces apoptosis in corneal epithelial cells through GR and the intrinsic pathway involving mtROS, caspase-9, and -3. The pro-apoptotic effects of glucocorticoids along with their anti-inflammatory effects should be considered when glucocorticoid eye drops are used in patients with ocular surface disease.
Collapse
|
31
|
Shah M, Edman MC, Reddy Janga S, Yarber F, Meng Z, Klinngam W, Bushman J, Ma T, Liu S, Louie S, Mehta A, Ding C, MacKay JA, Hamm-Alvarez SF. Rapamycin Eye Drops Suppress Lacrimal Gland Inflammation In a Murine Model of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 2017; 58:372-385. [PMID: 28122086 PMCID: PMC5270623 DOI: 10.1167/iovs.16-19159] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose To evaluate the efficacy of topical rapamycin in treating autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. Methods We developed rapamycin in a poly(ethylene glycol)-distearoyl phosphatidylethanolamine (PEG-DSPE) micelle formulation to maintain solubility. Rapamycin or PEG-DSPE eye drops (vehicle) were administered in a well-established Sjögren's syndrome disease model, the male nonobese diabetic (NOD) mice, twice daily for 12 weeks starting at 8 weeks of age. Mouse tear fluid was collected and tear Cathepsin S, a putative tear biomarker for Sjögren's syndrome, was measured. Lacrimal glands were retrieved for histological evaluation, and quantitative real-time PCR of genes associated with Sjögren's syndrome pathogenesis. Tear secretion was measured using phenol red threads, and corneal fluorescein staining was used to assess corneal integrity. Results Lymphocytic infiltration of lacrimal glands from rapamycin-treated mice was significantly (P = 0.0001) reduced by 3.8-fold relative to vehicle-treated mice after 12 weeks of treatment. Rapamycin, but not vehicle, treatment increased tear secretion and decreased corneal fluorescein staining after 12 weeks. In rapamycin-treated mice, Cathepsin S activity was significantly reduced by 3.75-fold in tears (P < 0.0001) and 1.68-fold in lacrimal gland lysates (P = 0.003) relative to vehicle-treated mice. Rapamycin significantly altered the expression of several genes linked to Sjögren's syndrome pathogenesis, including major histocompatibility complex II, TNF-α, IFN-γ, and IL-12a, as well as Akt3, an effector of autophagy. Conclusions Our findings suggest that topical rapamycin reduces autoimmune-mediated lacrimal gland inflammation while improving ocular surface integrity and tear secretion, and thus has potential for treating Sjögren's syndrome–associated dry eye.
Collapse
Affiliation(s)
- Mihir Shah
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Frances Yarber
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Jonathan Bushman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Tao Ma
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Siyu Liu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Stan Louie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Arjun Mehta
- Anatomic and Clinical Pathology, Los Angeles County + University of Southern California Medical Center, Los Angeles, California, United States
| | - Chuanqing Ding
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
32
|
Comparison of Topical Application of TSG-6, Cyclosporine, and Prednisolone for Treating Dry Eye. Cornea 2016; 35:536-42. [DOI: 10.1097/ico.0000000000000756] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci 2016; 56:8392-402. [PMID: 26747770 DOI: 10.1167/iovs.15-17477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. METHODS The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. RESULTS The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. CONCLUSIONS We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration.
Collapse
Affiliation(s)
- Takeshi Umazume
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - William M Thomas
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sabrina Campbell
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Hema Aluri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Suharika Thotakura
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
34
|
Donate A, Voigt A, Nguyen CQ. The value of animal models to study immunopathology of primary human Sjögren's syndrome symptoms. Expert Rev Clin Immunol 2014; 10:469-81. [PMID: 24506531 PMCID: PMC5769146 DOI: 10.1586/1744666x.2014.883920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sjögren's syndrome (SjS) is a complex chronic autoimmune disease of multifactorial etiology that results in eventual loss of secretory function in the exocrine glands. The challenges towards finding a therapeutic prevention or treatment for SjS are due primarily to a lack of understanding in the pathophysiological and clinical progression of the disease. In order to circumnavigate this problem, there is a need for appropriate animal models that resemble the major phenotypes of human SjS and deliver a clear underlying biological or molecular mechanism capable of defining various aspects for the disease. Here, we present an overview of SjS mouse models that are providing insight into the autoimmune process of SjS and advance our focus on potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Amy Donate
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
- Center for Orphan Autoimmune Disorders, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, Florida 32610, USA
- Department of Oral Biology, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, Florida 32610, USA
| |
Collapse
|
35
|
Contreras-Ruiz L, Ghosh-Mitra A, Shatos MA, Dartt DA, Masli S. Modulation of conjunctival goblet cell function by inflammatory cytokines. Mediators Inflamm 2013; 2013:636812. [PMID: 24453426 PMCID: PMC3877636 DOI: 10.1155/2013/636812] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
Ocular surface inflammation associated with Sjögren's syndrome is characterized by a loss of secretory function and alteration in numbers of mucin secreting goblet cells. Such changes are a prominent feature of ocular surface inflammatory diseases and are attributed to inflammation; however, the exact effect of the inflammatory cytokines on conjunctival goblet cell function remains largely unknown. In this study, we developed a primary culture of mouse goblet cells from conjunctival tissue and evaluated the effects on their function by inflammatory cytokines detected in the conjunctiva of mouse model of Sjögren's syndrome (Thrombospondin-1 deficient mice). We found that apoptosis of goblet cells was primarily induced by TNF-α and IFN-γ. These two cytokines also inhibited mucin secretion by goblet cells in response to cholinergic stimulation, whereas IL-6 enhanced such secretion. No changes in secretory response were detected in the presence of IL-13 or IL-17. Goblet cells proliferated to varying degrees in response to all the tested cytokines with the greatest response to IL-13 followed by IL-6. Our results therefore reveal that inflammatory cytokines expressed in the conjunctiva during an ocular surface disease directly disrupt conjunctival goblet cell functions, compromising the protective function of tears, thereby contributing to ocular surface damage.
Collapse
Affiliation(s)
- L. Contreras-Ruiz
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | - A. Ghosh-Mitra
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - M. A. Shatos
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - D. A. Dartt
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - S. Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
36
|
Affiliation(s)
- Caroline J. Zeiss
- Section of Comparative Medicine; Yale University School of Medicine; 375 Congress Ave New Haven CT 06520 USA
| |
Collapse
|
37
|
Lee BH, Gauna AE, Pauley KM, Park YJ, Cha S. Animal models in autoimmune diseases: lessons learned from mouse models for Sjögren's syndrome. Clin Rev Allergy Immunol 2012; 42:35-44. [PMID: 22105703 DOI: 10.1007/s12016-011-8288-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The mouse model is the one of the most frequently used and well-established animal models, and is currently used in many research areas. To date, various mouse models have been utilized to elucidate underlying causes of multifactorial autoimmune conditions, including pathological immune components and specific signaling pathways. This review summarizes the more recent mouse models for Sjögren's syndrome, a systemic autoimmune disease characterized by lymphocytic infiltration in the exocrine glands, such as the salivary and lacrimal glands, and loss of secretory function, resulting in dry mouth and dry eyes in patients. Although every Sjögren's syndrome mouse model resembles the major symptoms or phenotypes of Sjögren's syndrome conditions in humans, the characteristics of each model are variable. Moreover, to date, there is no single mouse model that can completely replicate the human conditions. However, unique features of each mouse model provide insights into the roles of potential etiological and immunological factors in the development and progression of Sjögren's syndrome. Here, we will overview the Sjögren's syndrome mouse models. Lessons from these mouse models will aid us to understand underlying immune dysregulation in autoimmune diseases in general, and will guide us to direct future research towards appropriate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Byung Ha Lee
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, JHMHSC, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
38
|
Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bienkowska J, Papandile A, Kelly JA, Mavragani CP, Gatumu M, Skarstein K, Browning JL. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome. Arthritis Res Ther 2011; 13:R182. [PMID: 22044682 PMCID: PMC3334628 DOI: 10.1186/ar3507] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/09/2011] [Accepted: 11/01/2011] [Indexed: 12/18/2022] Open
Abstract
Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01). Conclusions Blockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome.
Collapse
Affiliation(s)
- Roy A Fava
- Immunology Research Department, Department of Veterans Affairs Medical Center, 215 North Main Street, White River Junction, VT 05009, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
LTBR-pathway in Sjogren's syndrome: CXCL13 levels and B-cell-enriched ectopic lymphoid aggregates in NOD mouse lacrimal glands are dependent on LTBR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:383-90. [PMID: 21153342 DOI: 10.1007/978-1-4419-6612-4_39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Nguyen CQ, Peck AB. Inflammation in dry eye diseases culminating in loss of ocular homeostasis. EXPERT REVIEW OF OPHTHALMOLOGY 2010. [DOI: 10.1586/eop.10.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
DeVoss JJ, LeClair NP, Hou Y, Grewal NK, Johannes KP, Lu W, Yang T, Meagher C, Fong L, Strauss EC, Anderson MS. An autoimmune response to odorant binding protein 1a is associated with dry eye in the Aire-deficient mouse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4236-46. [PMID: 20237294 PMCID: PMC2851482 DOI: 10.4049/jimmunol.0902434] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sjögren's Syndrome (SS) is a human autoimmune disease characterized by immune-mediated destruction of the lacrimal and salivary glands. In this study, we show that the Aire-deficient mouse represents a new tool to investigate autoimmune dacryoadenitis and keratoconjunctivitis sicca, features of SS. Previous work in the Aire-deficient mouse suggested a role for alpha-fodrin, a ubiquitous Ag, in the disease process. Using an unbiased biochemical approach, however, we have identified a novel lacrimal gland autoantigen, odorant binding protein 1a, targeted by the autoimmune response. This novel autoantigen is expressed in the thymus in an Aire-dependent manner. The results from our study suggest that defects in central tolerance may contribute to SS and provide a new and clinically relevant model to investigate the pathogenic mechanisms in lacrimal gland autoimmunity and associated ocular surface sequelae.
Collapse
Affiliation(s)
- Jason J DeVoss
- Diabetes Center, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Turpie B, Yoshimura T, Gulati A, Rios JD, Dartt DA, Masli S. Sjögren's syndrome-like ocular surface disease in thrombospondin-1 deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1136-47. [PMID: 19700744 DOI: 10.2353/ajpath.2009.081058] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thrombospondin-1 (TSP-1) is a major activator of latent transforming growth factor-beta in vitro as well as in vivo. Mice deficient in TSP-1, despite appearing normal at birth, develop a chronic form of ocular surface disease that is marked by increased apoptosis and deterioration in the lacrimal gland, associated dysfunction, and development of inflammatory infiltrates that result in abnormal tears. The increase in CD4(+) T cells in the inflammatory infiltrates of the lacrimal gland, and the presence of anti-Sjögren's syndrome antigen A and anti-Sjögren's syndrome antigen B antibodies in the serum resemble autoimmune Sjögren's syndrome. These mice develop an ocular surface disorder dry eye that includes disruption of the corneal epithelial layer, corneal edema, and a significant decline in conjuctival goblet cells. Externally, several mice develop dry crusty eyes that eventually close. The inflammatory CD4(+) T cells detected in the lacrimal gland, as well as those in the periphery of older TSP-1 null mice, secrete interleukin-17A, a cytokine associated with chronic inflammatory diseases. Antigen-presenting cells, derived from TSP-1 null, but not from wild-type mice, activate T cells to promote the Th17 response. Together, these results indicate that TSP-1 deficiency results in a spontaneous form of chronic dry eye and aberrant histopathology associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Bruce Turpie
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Nguyen CQ, Sharma A, She JX, McIndoe RA, Peck AB. Differential gene expressions in the lacrimal gland during development and onset of keratoconjunctivitis sicca in Sjögren's syndrome (SJS)-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Exp Eye Res 2008; 88:398-409. [PMID: 19103199 DOI: 10.1016/j.exer.2008.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 12/26/2022]
Abstract
Recently, we reported development of the C57BL/6.NOD-Aec1Aec2 mouse carrying two genetic intervals derived from the NOD mouse. These two genetic regions confer Sjögren's syndrome (SjS)-like disease in SjS-non-susceptible C57BL/6 mice. In an attempt to define the molecular bases underlying onset of dacryoadenitis and subsequently keratoconjunctivitis sicca (or xerophthalmia) in the C57BL/6.NOD-Aec1Aec2 mouse model, we have carried out a study utilizing microarray technology. Using oligonucleotide microarrays, gene expression profiles of lacrimal glands at 4, 8, 12, 16 and 20weeks of age were generated for C57BL/6.NOD-Aec1Aec2 male mice. Analyses using Linear Models for Microarray Analysis package and B-statistics, 552 genes were identified as being differentially expressed (adjusted p-value <0.01 and B <1.5) during the development of SjS-like disease. These 552 genes could be arranged into four clusters, with each cluster defining a unique pattern of temporal expression, while the individual genes within each cluster could be grouped according to related function. Using a pair-wise analysis, temporal changes in gene expressions provided profiles indicating that individual genes were differentially expressed at specific time points during development of SjS. In addition, multiple genes that have been reported to show, either in humans or mouse models, an association with autoimmunity and/or SjS, e.g., ApoE, Baff, Clu, Ctla4, Fas/Fasl, Irf5, Lyzs, Nfkb, Socs3, Stat4, Tap2, Tgfbeta1, Tnfa, and Vcam1 were also found to exhibit differential expressions, both quantitatively and temporally. Selecting a few families of genes, e.g., cystatins, cathepsins, metalloproteinases, lipocalins, complement, kallikreins, carbonic anhydrases and tumor necrosis factors, it was noted that only a limited number of family members showed differential expressions, suggesting a restricted glandular expression. Utilizing these genes, pathways of inter-reactive genes have been constructed for apoptosis and fatty acid homeostasis, leading to modeling of possible underlying events inducing disease. Thus, these different approaches to analyze microarray data permit identification of multiple sets of genes of interest whose expressions and expression profiles may correlate with molecular mechanisms, signaling pathways and/or immunological processes involved in the development and onset of SjS in this mouse model, thereby providing new insight into the underlying cause or regulation of this disease.
Collapse
Affiliation(s)
- Cuong Q Nguyen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|