1
|
Wang Y, Wang X, Bai B, Shaha A, He X, He Y, Ye Z, Shah VH, Kang N. Targeting Src SH3 domain-mediated glycolysis of HSC suppresses transcriptome, myofibroblastic activation, and colorectal liver metastasis. Hepatology 2024; 80:578-594. [PMID: 38271673 PMCID: PMC11266532 DOI: 10.1097/hep.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIMS Transforming growth factor-beta 1 (TGFβ1) induces HSC activation into metastasis-promoting cancer-associated fibroblasts (CAFs), but how the process is fueled remains incompletely understood. We studied metabolic reprogramming induced by TGFβ1 in HSCs. APPROACHES AND RESULTS Activation of cultured primary human HSCs was assessed by the expression of myofibroblast markers. Glucose transporter 1 (Glut1) of murine HSC was disrupted by Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination (Cre/LoxP). Plasma membrane (PM) Glut1 and glycolysis were studied by biotinylation assay and the Angilent Seahorse XFe96 Analyzer. S.c. HSC/tumor co-implantation and portal vein injection of MC38 colorectal cancer cells into HSC-specific Glut1 knockout mice were performed to determine in vivo relevance. Transcriptome was obtained by RNA sequencing of HSCs and spatialomics with MC38 liver metastases. TGFβ1-induced CAF activation of HSCs was accompanied by elevation of PM Glut1, glucose uptake, and glycolysis. Targeting Glut1 or Src by short hairpin RNA, pharmacologic inhibition, or a Src SH3 domain deletion mutant abrogated TGFβ1-stimulated PM accumulation of Glut1, glycolysis, and CAF activation. Mechanistically, binding of the Src SH3 domain to SH3 domain-binding protein 5 led to a Src/SH3 domain-binding protein 5/Rab11/Glut1 complex that activated Rab11-dependent Glut1 PM transport under TGFβ1 stimulation. Deleting the Src SH3 domain or targeting Glut1 of HSCs by short hairpin RNA or Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination suppressed CAF activation in mice and MC38 colorectal liver metastasis. Multi-omics revealed that Glut1 deficiency in HSCs/CAFs suppressed HSC expression of tumor-promoting factors and altered MC38 transcriptome, contributing to reduced MC38 liver metastases. CONCLUSION The Src SH3 domain-facilitated metabolic reprogramming induced by TGFβ1 represents a target to inhibit CAF activation and the pro-metastatic liver microenvironment.
Collapse
Affiliation(s)
- Yuanguo Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- The School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Bing Bai
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Xipu He
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- The School of Chemistry and Chemical Engineering, Nanning, Guangxi, China
| | - Yingzi He
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- The School of Environmental and Life Sciences, Nanning Normal University, Nanning, Guangxi, China
| | - Zhenqing Ye
- Department of Population Health Science, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| |
Collapse
|
2
|
Shaha A, Wang Y, Wang X, Wang D, Guinovart D, Liu B, Kang N. CMTM6 mediates the Warburg effect and promotes the liver metastasis of colorectal cancer. Exp Mol Med 2024; 56:2002-2015. [PMID: 39218981 PMCID: PMC11447025 DOI: 10.1038/s12276-024-01303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Liver metastasis of colorectal cancer (CRC) is a leading cause of death among cancer patients. The overexpression of glucose transporter 1 (Glut1) and enhanced glucose uptake that are associated with the Warburg effect are frequently observed in CRC liver metastases, but the underlying mechanisms remain poorly understood. CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) regulates the intracellular trafficking of programmed death-ligand-1 (PD-L1); therefore, we investigated whether CMTM6 regulates Glut1 trafficking and the Warburg effect in CRC cells. We found that knocking down of CMTM6 by shRNA induced the lysosomal degradation of Glut1, decreased glucose uptake and glycolysis in CRC cells, and suppressed subcutaneous CRC growth in nude mice and liver metastasis in C57BL/6 mice. Mechanistically, CMTM6 forms a complex with Glut1 and Rab11 in the endosomes of CRC cells, and this complex is required for the Rab11-dependent transport of Glut1 to the plasma membrane and for the protection of Glut1 from lysosomal degradation. Multiomics revealed global transcriptomic changes in CMTM6-knockdown CRC cells that affected the transcriptomes of adjacent cancer-associated fibroblasts from CRC liver metastases. As a result of these transcriptomic changes, CMTM6-knockdown CRC cells exhibited a defect in the G2-to-M phase transition, reduced secretion of 60 cytokines/chemokines, and inability to recruit cancer-associated fibroblasts to support an immunosuppressive CRC liver metastasis microenvironment. Analysis of TCGA data confirmed that CMTM6 expression was increased in CRC patients and that elevated CMTM6 expression was associated with worse patient survival. Together, our data suggest that CMTM6 plays multiple roles in regulating the Warburg effect, transcriptome, and liver metastasis of CRC.
Collapse
Affiliation(s)
- Aurpita Shaha
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
- The School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Dong Wang
- Transcription and Gene Regulation, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - David Guinovart
- Mathematical, Computational, and Statistical Modeling, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Transcription and Gene Regulation, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
3
|
Kučan D, Oršolić N, Odeh D, Ramić S, Jakopović B, Knežević J, Jazvinšćak Jembrek M. The Role of Hyperthermia in Potentiation of Anti-Angiogenic Effect of Cisplatin and Resveratrol in Mice Bearing Solid Form of Ehrlich Ascites Tumour. Int J Mol Sci 2023; 24:11073. [PMID: 37446252 DOI: 10.3390/ijms241311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further.
Collapse
Affiliation(s)
- Darko Kučan
- Division of Abdominal Surgery and Organ Transplantation, Department of Surgery, University Hospital Merkur, Zajčeva 19, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, 10000 Zagreb, Croatia
| | - Boris Jakopović
- Dr Myko San-Health from Mushrooms Co., Miramarska Cesta 109, 10000 Zagreb, Croatia
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
5
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
6
|
Chen Y, Li Q, Tu K, Wang Y, Wang X, Liu D, Chen C, Liu D, Yang R, Qiu W, Kang N. Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2. Hepatol Commun 2020; 4:268-283. [PMID: 32025610 PMCID: PMC6996408 DOI: 10.1002/hep4.1452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/03/2019] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor β (TGFβ) induces hepatic stellate cell (HSC) differentiation into tumor-promoting myofibroblast, although underlying mechanism remains incompletely understood. Focal adhesion kinase (FAK) is activated in response to TGFβ stimulation, so it transmits TGFβ stimulus to extracellular signal-regulated kinase and P38 mitogen-activated protein kinase signaling. However, it is unknown whether FAK can, in return, modulate TGFβ receptors. In this study, we tested whether FAK phosphorylated TGFβ receptor 2 (TGFβR2) and regulated TGFβR2 intracellular trafficking in HSCs. The FAKY397F mutant and PF-573,228 were used to inhibit the kinase activity of FAK, the TGFβR2 protein level was quantitated by immunoblotting, and HSC differentiation into myofibroblast was assessed by expression of HSC activation markers, alpha-smooth muscle actin, fibronectin, or connective tissue growth factor. We found that targeting FAK kinase activity suppressed the TGFβR2 protein level, TGFβ1-induced mothers against decapentaplegic homolog phosphorylation, and myofibroblastic activation of HSCs. At the molecular and cellular level, active FAK (phosphorylated FAK at tyrosine 397) bound to TGFβR2 and kept TGFβR2 at the peripheral plasma membrane of HSCs, and it induced TGFβR2 phosphorylation at tyrosine 336. In contrast, targeting FAK or mutating Y336 to F on TGFβR2 led to lysosomal sorting and degradation of TGFβR2. Using RNA sequencing, we identified that the transcripts of 764 TGFβ target genes were influenced by FAK inhibition, and that through FAK, TGFβ1 stimulated HSCs to produce a panel of tumor-promoting factors, including extracellular matrix remodeling proteins, growth factors and cytokines, and immune checkpoint molecule PD-L1. Functionally, targeting FAK inhibited tumor-promoting effects of HSCs in vitro and in a tumor implantation mouse model. Conclusion: FAK targets TGFβR2 to the plasma membrane and protects TGFβR2 from lysosome-mediated degradation, thereby promoting TGFβ-mediated HSC activation. FAK is a target for suppressing HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Yunru Chen
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Qing Li
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Kangsheng Tu
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Yuanguo Wang
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| | - Xianghu Wang
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| | - Dandan Liu
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| | - Chen Chen
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Donglian Liu
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanGuangdongP. R. China
| | - Rendong Yang
- Computational Cancer GenomicsHormel InstituteUniversity of MinnesotaAustinMN
| | - Wei Qiu
- Department of Surgery and Cancer BiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| | - Ningling Kang
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| |
Collapse
|
7
|
Wang Y, Tu K, Liu D, Guo L, Chen Y, Li Q, Maiers JL, Liu Z, Shah VH, Dou C, Tschumperlin D, Voneschen L, Yang R, Kang N. p300 Acetyltransferase Is a Cytoplasm-to-Nucleus Shuttle for SMAD2/3 and TAZ Nuclear Transport in Transforming Growth Factor β-Stimulated Hepatic Stellate Cells. Hepatology 2019; 70:1409-1423. [PMID: 31004519 PMCID: PMC6783326 DOI: 10.1002/hep.30668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Nuclear translocation of mothers against decapentaplegic homolog 2/3 (SMAD2/3), core transcription factors of transforming growth factor β (TGF-β) signaling, is critical for hepatic stellate cell (HSC) differentiation into metastasis-promoting myofibroblasts. SMAD2/3 have multiple coactivators, including WW domain-containing transcription regulator protein 1 (WWTR1 or TAZ) and p300 acetyltransferase. In the nucleus, TAZ binds to SMAD2/3 to prevent SMAD2/3 nuclear export. However, how TAZ and SMAD2/3 enter the nucleus remains poorly understood because neither contains a nuclear localization signal (NLS), an amino acid sequence tagging proteins for nuclear transport. p300 is an NLS-containing large scaffold protein, so we hypothesized that SMAD2/3 and TAZ may undergo nuclear import through complexing with p300. Coimmunoprecipitation, immunofluorescence, and nuclear fractionation assays revealed that TGF-β1 promoted binding of SMAD2/3 and TAZ to p300 and that p300 inactivation disrupted TGF-β1-mediated SMAD2/3 and TAZ nuclear accumulation. Deleting the p300 NLS blocked TGF-β1-induced SMAD2/3 and TAZ nuclear transport. Consistently, p300 inactivation suppressed TGF-β1-mediated HSC activation and transcription of genes encoding tumor-promoting factors, such as connective tissue growth factor, Tenascin C, Periostin, platelet-derived growth factor C, and fibroblast growth factor 2, as revealed by microarray analysis. Chromatin immunoprecipitation-real-time quantitative PCR showed that canonical p300-mediated acetylation of histones also facilitated transcription in response to TGF-β1 stimulation. Interestingly, although both TGF-β1-mediated and stiffness-mediated HSC activation require p300, comparison of gene expression data sets revealed that transcriptional targets of TGF-β1 were distinct from those of stiffness-p300 mechanosignaling. Lastly, in tumor/HSC coinjection and intrasplenic tumor injection models, targeting p300 of activated-HSC/myofibroblasts by C646, short hairpin RNA, or cre-mediated gene disruption reduced tumor and liver metastatic growth in mice. Conclusion: p300 facilitates TGF-β1-stimulated HSC activation by both noncanonical (cytoplasm-to-nucleus shuttle for SMAD2/3 and TAZ) and canonical (histone acetylation) mechanisms. p300 is an attractive target for inhibiting HSC activation and the prometastatic liver microenvironment.
Collapse
Affiliation(s)
- Yuanguo Wang
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
| | - Kangsheng Tu
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
- 1st Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Donglian Liu
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
- 6th Affiliated Hospital of Guangzhou Medical UniversityQingyuanGuangdongP. R. China
| | - Luyang Guo
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
| | - Yunru Chen
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
- 1st Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Qing Li
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
- 1st Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Jessica L. Maiers
- GI Research Unit and Cancer Cell Biology ProgramMayo ClinicRochesterMN
| | - Zhikui Liu
- 1st Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
- GI Research Unit and Cancer Cell Biology ProgramMayo ClinicRochesterMN
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology ProgramMayo ClinicRochesterMN
| | - Changwei Dou
- GI Research Unit and Cancer Cell Biology ProgramMayo ClinicRochesterMN
- Zhejiang Provincial People’s HospitalHangzhouZhejiangP. R. China
| | | | - Luke Voneschen
- Computational Cancer GenomicsHormel Institute, University of MinnesotaAustinMN
| | - Rendong Yang
- Computational Cancer GenomicsHormel Institute, University of MinnesotaAustinMN
| | - Ningling Kang
- Tumor Microenvironment and MetastasisHormel Institute, University of MinnesotaAustinMN
| |
Collapse
|
8
|
Tsay MD, Hsieh MJ, Wang SS, Wang WC, Chou YY, Shih CH, Yang SF, Chou YE. Impact of endothelial nitric oxide synthase polymorphisms on urothelial cell carcinoma development. Urol Oncol 2019; 37:293.e1-293.e9. [PMID: 30611644 DOI: 10.1016/j.urolonc.2018.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/03/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Urothelial cell carcinoma (UCC), a major malignancy of the genitourinary tract, is induced through carcinogenic etiological factors. Endothelial nitric oxide synthase (eNOS) is one of the major isoforms of nitric oxide synthase and is involved in various pathophysiologic and physiologic processes. In this study, eNOS single-nucleotide polymorphisms were investigated to evaluate UCC susceptibility and clinicopathological characteristics. MATERIALS AND METHODS Two single-nucleotide polymorphisms of eNOS in 431 patients with UCC and 862 controls without cancer were analyzed using real-time polymerase chain reaction. RESULTS The results showed that 272 men with UCC having eNOS 894 G > T rs1799983 "GT + TT" variants had a high risk of developing a large tumor (T1-T4, P = 0.038). Furthermore, a correlation was observed between the expressions of eNOS and invasive tumor, metastasis and poor survival in urothelial carcinoma in The Cancer Genome Atlas data set. CONCLUSION Our results indicated that male patients with UCC carrying eNOS 894 G > T rs1799983 "GT + TT" genetic variants have a high risk of developing a large tumor, and eNOS polymorphisms may serve as a marker or therapeutic target in UCC treatment.
Collapse
Affiliation(s)
- Ming-Dow Tsay
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Family medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chen Wang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Yi Chou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Ho Shih
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proc Natl Acad Sci U S A 2018; 115:11298-11303. [PMID: 30322928 DOI: 10.1073/pnas.1812704115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune targeted therapy of nitric oxide (NO) synthases are being considered as a potential frontline therapeutic to treat patients diagnosed with locally advanced and metastatic prostate cancer. However, the role of NO in castration-resistant prostate cancer (CRPC) is controversial because NO can increase in nitrosative stress while simultaneously possessing antiinflammatory properties. Accordingly, we tested the hypothesis that increased NO will lead to tumor suppression of CRPC through tumor microenvironment. S-nitrosoglutathione (GSNO), an NO donor, decreased the tumor burden in murine model of CRPC by targeting tumors in a cell nonautonomous manner. GSNO inhibited both the abundance of antiinflammatory (M2) macrophages and expression of pERK, indicating that tumor-associated macrophages activity is influenced by NO. Additionally, GSNO decreased IL-34, indicating suppression of tumor-associated macrophage differentiation. Cytokine profiling of CRPC tumor grafts exposed to GSNO revealed a significant decrease in expression of G-CSF and M-CSF compared with grafts not exposed to GSNO. We verified the durability of NO on CRPC tumor suppression by using secondary xenograft murine models. This study validates the significance of NO on inhibition of CRPC tumors through tumor microenvironment (TME). These findings may facilitate the development of previously unidentified NO-based therapy for CRPC.
Collapse
|
10
|
Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, Tschumperlin D, Zou H, Huang WC, Urrutia R, Shah VH, Kang N. P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology 2018; 154:2209-2221.e14. [PMID: 29454793 PMCID: PMC6039101 DOI: 10.1053/j.gastro.2018.02.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) contribute to desmoplasia and stiffness of liver metastases by differentiating into matrix-producing myofibroblasts. We investigated whether stiffness due to the presence of tumors increases activation of HSCs into myofibroblasts and their tumor-promoting effects, as well as the role of E1A binding protein p300, a histone acetyltransferase that regulates transcription, in these processes. METHODS HSCs were isolated from liver tissues of patients, mice in which the p300 gene was flanked by 2 loxP sites (p300F/F mice), and p300+/+ mice (controls). The HSCs were placed on polyacrylamide gels with precisely defined stiffness, and their activation (differentiation into myofibroblasts) was assessed by immunofluorescence and immunoblot analyses for alpha-smooth muscle actin. In HSCs from mice, the p300 gene was disrupted by cre recombinase. In human HSCs, levels of p300 were knocked down with small hairpin RNAs or a mutant form of p300 that is not phosphorylated by AKT (p300S1834A) was overexpressed. Human HSCs were also cultured with inhibitors of p300 (C646), PI3K signaling to AKT (LY294002), or RHOA (C3 transferase) and effects on stiffness-induced activation were measured. RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to identify HSC genes that changed expression levels in response to stiffness. We measured effects of HSC-conditioned media on proliferation of HT29 colon cancer cells and growth of tumors following subcutaneous injection of these cells into mice. MC38 colon cancer cells were injected into portal veins of p300F/Fcre and control mice, and liver metastases were measured. p300F/Fcre and control mice were given intraperitoneal injections of CCl4 to induce liver fibrosis. Liver tissues were collected and analyzed by immunofluorescence, immunoblot, and histology. RESULTS Substrate stiffness was sufficient to activate HSCs, leading to nuclear accumulation of p300. Disrupting p300 level or activity blocked stiffness-induced activation of HSCs. In HSCs, substrate stiffness activated AKT signaling via RHOA to induce phosphorylation of p300 at serine 1834; this caused p300 to translocate to the nucleus, where it up-regulated transcription of genes that increase activation of HSCs and metastasis, including CXCL12. MC38 cells, injected into portal veins, formed fewer metastases in livers of p300F/Fcre mice than control mice. Expression of p300 was increased in livers of mice following injection of CCl4; HSC activation and collagen deposition were reduced in livers of p300F/Fcre mice compared with control mice. CONCLUSIONS In studies of mice, we found liver stiffness to activate HSC differentiation into myofibroblasts, which required nuclear accumulation of p300. p300 increases HSC expression of genes that promote metastasis.
Collapse
Affiliation(s)
- Changwei Dou
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Department of Hepatobiliary Surgery, Zhejiang provincial People's Hospital, Hangzhou, China
| | - Zhikui Liu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Hongbin Zhang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Chen Chen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Usman Yaqoob
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jialing Wen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taiwan, R.O.C
| | - Raul Urrutia
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,To whom correspondence should be addressed: Ningling Kang, Ph.D., Hormel Institute, 801 16th Ave NE Austin MN 55912. Fax: (507) 437-9606. Phone: (507) 437-9680. . Vijay Shah, M.D., Mayo Clinic, 200 1st ST SW Rochester MN 55915. Fax: (507) 255-6318. Phone: (507) 255-6028.
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
11
|
Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a β1-integrin-FAK-YAP1/TAZ signaling pathway. NPJ Precis Oncol 2018; 2:2. [PMID: 29872721 PMCID: PMC5871906 DOI: 10.1038/s41698-017-0045-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/06/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022] Open
Abstract
Extracellular matrix (ECM)-induced β1-integrin-FAK signaling promotes cell attachment, survival, and migration of cancer cells in a distant organ so as to enable cancer metastasis. However, mechanisms governing activation of the β1-integrin-FAK signaling remain incompletely understood. Here, we report that vasodilator-stimulated phosphoprotein (VASP), an actin binding protein, is required for ECM–mediated β1-integrin-FAK-YAP1/TAZ signaling in gastrointestinal (GI) cancer cells and their liver metastasis. In patient-derived samples, VASP is upregulated in 53 of 63 colorectal cancers and 43 of 53 pancreatic ductal adenocarcinomas and high VASP levels correlate with liver metastasis and reduced patient survival. In a Matrigel-based 3-dimensional (3D) culture model, short hairpin RNA (shRNA)–mediated VASP knockdown in colorectal cancer cells (KM12L4, HCT116, and HT29) and pancreatic cancer cells (L3.6 and MIA PaCa-1) suppresses the growth of 3D cancer spheroids. Mechanistic studies reveal that VASP knockdown suppresses FAK phosphorylation and YAP1/TAZ protein levels, but not Akt or Erk-related pathways and that YAP1/TAZ proteins are enhanced by the β1-integrin-FAK signaling. Additionally, VASP regulates the β1-integrin-FAK-YAP1/TAZ signaling by at least two mechanisms: (1) promoting ECM-mediated β1-integrin activation and (2) regulating YAP1/TAZ dephosphorylation at downstream of RhoA to enhance the stability of YAP1/TAZ proteins. In agreement with these, preclinical studies with two experimental liver metastasis mouse models demonstrate that VASP knockdown suppresses GI cancer liver metastasis, β1-integrin activation, and YAP1/TAZ levels of metastatic cancer cells. Together, our data support VASP as a treatment target for liver metastasis of colorectal and pancreatic cancers. A protein involved in cytoskeleton regulation and cell motility control offers a new drug target for cancer spreading to the liver. Ningling Kang Ph.D. from the Hormel Institute in Austin, Minnesota, USA, and colleagues showed that levels of this actin-binding protein, known as vasodilator-stimulated phosphoprotein (VASP), are elevated in most patients with advanced colon and pancreatic cancers and that higher VASP expression levels are linked to liver metastasis and poorer patients’ outcomes. To explore the reasons why, the researchers studied three-dimensional tumor spheroids and mouse metastasis models of these cancers, and identified the signaling pathway by which VASP promotes the survival of cancer cells in distant organs, such as the liver. What’s more, they showed that knocking down VASP of cancer cells in metastasis mouse models suppressed cancer metastatic growth in the liver, suggesting that the same might be true in patients as well.
Collapse
|
12
|
Cañas A, López-Sánchez LM, Peñarando J, Valverde A, Conde F, Hernández V, Fuentes E, López-Pedrera C, de la Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Altered S-nitrosothiol homeostasis provides a survival advantage to breast cancer cells in HER2 tumors and reduces their sensitivity to trastuzumab. Biochim Biophys Acta Mol Basis Dis 2016; 1862:601-610. [PMID: 26854735 DOI: 10.1016/j.bbadis.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/23/2023]
Abstract
The monoclonal antibody trastuzumab against HER2/neu, which is overexpressed in 15-20% of breast cancers, has clinical efficacy but many patients do not respond to initial treatment or develop resistance during treatment. Nitric oxide (NO) regulates cell signaling by targeting specific cysteine residues in proteins, forming S-nitrosothiols (SNO) in a process known as S-nitrosylation. We previously reported that molecular characteristics in breast cancer may dictate the tumor response to impaired SNO homeostasis. In the present study, we explored the role of SNO homeostasis in HER2 breast tumors. The antiproliferative action of trastuzumab in HER2-overexpressing BT-474 and SKBR-3 cells was suppressed when S-nitrosoglutathione reductase (GSNOR/ADH5) activity, which plays a key role in SNO homeostasis, was specifically inhibited with the pyrrole derivative compound N6022. Moreover, GSNOR inhibition restored the activation of survival signaling pathways involved in the resistance to anti-HER2 therapies (AKT, Src and c-Abl kinases and TrkA/NRTK1, TrkB/NRTK2, EphA1 and EphA3 receptors) and reduced the apoptotic effect of trastuzumab. Accordingly, GSNOR inhibition augmented the S-nitrosylation of apoptosis-related proteins, including Apaf-1, pSer73/63 c-Jun, calcineurin subunit α and HSF1. In agreement with in vitro data, immunohistochemical analyses of 51 breast tumors showed that HER2 expression was associated with lower expression of GSNOR protein. Moreover, gene expression analysis confirmed that high ADH5/GSNOR gene expression was associated with high patient survival rates in HER2 tumors. In conclusion, our data provide evidence of molecular mechanisms contributing to the progression of HER2+ breast cancers and could facilitate the development of therapeutic options to counteract resistance to anti-HER2 therapies.
Collapse
Affiliation(s)
- Amanda Cañas
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura M López-Sánchez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jon Peñarando
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Araceli Valverde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Francisco Conde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vanessa Hernández
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Fuentes
- Pathology Department, IMIBIC, Reina Sofía Hospital, University of Córdoba, Spain.
| | - Chary López-Pedrera
- Research Unit, IMIBIC, Reina Sofía Hospital, University of Córdoba, Córdoba, Spain.
| | - Juan R de la Haba-Rodríguez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Enrique Aranda
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Rodríguez-Ariza
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Vasudevan D, Thomas DD. Insights into the diverse effects of nitric oxide on tumor biology. VITAMINS AND HORMONES 2015; 96:265-98. [PMID: 25189391 DOI: 10.1016/b978-0-12-800254-4.00011-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among its many roles in cellular biology, nitric oxide (·NO) has long been associated with cancers both as a protumorigenic and as an antitumorigenic agent. The dual nature of this signaling molecule in varied settings is attributable to its temporal and concentration-dependent effects that produce different phenotypes. The steady-state ·NO concentration within the cell is a balance between its rate of enzymatic synthesis from the three nitric oxide synthase (NOS) isoforms and consumption via numerous metabolic pathways and demonstrates strong dependence on the tissue oxygen concentration. NOS expression and ·NO production are often deregulated and associated with numerous types of cancers with dissimilar prognostic outcomes. ·NO influences several facets of tumor initiation and progression including DNA damage, chronic inflammation, angiogenesis, epithelial-mesenchymal transition, and metastasis, to name a few. The role of ·NO as an epigenetic modulator has also recently emerged and has potentially important mechanistic implications in regulating transcription of oncogenes and tumor-suppressor genes. ·NO-derived cellular adducts such as dinitrosyliron complexes and the formation of higher nitrogen oxides further alter its cellular behavior. Among anticancer strategies, the use of NOS as a prognostic biomarker and modulation of ·NO production for therapeutic benefit have gained importance over the past decade. Numerous ·NO-releasing drugs and NOS inhibitors have been evaluated in preclinical and clinical settings to arrest tumor growth. Taken together, ·NO affects various arms of cancer signaling networks. An overview of this complex interplay is provided in this chapter.
Collapse
Affiliation(s)
- Divya Vasudevan
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Tu K, Li J, Verma VK, Liu C, Billadeau DD, Lamprecht G, Xiang X, Guo L, Dhanasekaran R, Roberts LR, Shah VH, Kang N. Vasodilator-stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11-dependent plasma membrane targeting of transforming growth factor beta receptors. Hepatology 2015; 61:361-74. [PMID: 24917558 PMCID: PMC4262723 DOI: 10.1002/hep.27251] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Liver microenvironment is a critical determinant for development and progression of liver metastasis. Under transforming growth factor beta (TGF-β) stimulation, hepatic stellate cells (HSCs), which are liver-specific pericytes, transdifferentiate into tumor-associated myofibroblasts that promote tumor implantation (TI) and growth in the liver. However, the regulation of this HSC activation process remains poorly understood. In this study, we tested whether vasodilator-stimulated phosphoprotein (VASP) of HSCs regulated the TGF-β-mediated HSC activation process and tumor growth. In both an experimental liver metastasis mouse model and cancer patients, colorectal cancer cells reaching liver sinusoids induced up-regulation of VASP and alpha-smooth muscle actin (α-SMA) in adjacent HSCs. VASP knockdown in HSCs inhibited TGF-β-mediated myofibroblastic activation of HSCs, TI, and growth in mice. Mechanistically, VASP formed protein complexes with TGF-β receptor II (TβRII) and Rab11, a Ras-like small GTPase and key regulator of recycling endosomes. VASP knockdown impaired Rab11 activity and Rab11-dependent targeting of TβRII to the plasma membrane, thereby desensitizing HSCs to TGF-β1 stimulation. CONCLUSIONS Our study demonstrates a requirement of VASP for TGF-β-mediated HSC activation in the tumor microenvironment by regulating Rab11-dependent recycling of TβRII to the plasma membrane. VASP and its effector, Rab11, in the tumor microenvironment thus present therapeutic targets for reducing TI and metastatic growth in the liver.
Collapse
Affiliation(s)
- Kangsheng Tu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Hepatobillary Surgery, the 1 Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
| | - Jiachu Li
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Department of Oncology, the 1 Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Vikas K Verma
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chunsheng Liu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, University of Rostock, Rostock, 18057, Germany
| | - Xiaoyu Xiang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Luyang Guo
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | | | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
15
|
Kang N, Shah VH, Urrutia R. Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis? Mol Cancer Res 2014; 13:604-12. [PMID: 25548101 DOI: 10.1158/1541-7786.mcr-14-0542] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment (TME), are a key source of the extracellular matrix (ECM) that constitutes the desmoplastic stroma. Through remodeling of the reactive tumor stroma and paracrine actions, CAFs regulate cancer initiation, progression, and metastasis, as well as tumor resistance to therapies. The CAFs found in stroma-rich primary hepatocellular carcinomas (HCC) and liver metastases of primary cancers of other organs predominantly originate from hepatic stellate cells (HSTC), which are pericytes associated with hepatic sinusoids. During tumor invasion, HSTCs transdifferentiate into myofibroblasts in response to paracrine signals emanating from either tumor cells or a heterogeneous cell population within the hepatic tumor microenvironment. Mechanistically, HSTC-to-myofibroblast transdifferentiation, also known as, HSTC activation, requires cell surface receptor activation, intracellular signal transduction, gene transcription, and epigenetic signals, which combined ultimately modulate distinct gene expression profiles that give rise to and maintain a new phenotype. The current review defines a paradigm that explains how HSTCs are activated into CAFs to promote liver metastasis. Furthermore, a focus on the most relevant intracellular signaling networks and epigenetic mechanisms that control HSTC activation is provided. Finally, we discuss the feasibility of targeting CAF/activated HSTCs, in isolation or in conjunction with targeting cancer cells, which constitutes a promising and viable therapeutic approach for the treatment of primary stroma-rich liver cancers and liver metastasis.
Collapse
Affiliation(s)
- Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Vijay H Shah
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raul Urrutia
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
16
|
Oxidative stress and cell damage in a model of precancerous lesions and advanced hepatocellular carcinoma in rats. Toxicol Rep 2014; 2:333-340. [PMID: 28962366 PMCID: PMC5598147 DOI: 10.1016/j.toxrep.2014.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer deaths throughout the world. This study was aimed to analyze oxidative stress and cell damage in a multistage model of liver carcinogenesis induced by diethylnitrosamine (DEN) in rats. Male Wistar rats weighing 145–150 g were divided into three groups: control, precancerous lesions (PL) (which received 100 mg DEN once a week every 6 weeks up to 28 weeks), and advanced HCC (50 mg DEN once/twice per week up to 19 weeks). Lipid peroxidation (TBARS), superoxide dismutase (SOD) activity, and expression of transforming growth factor-1 beta (TGF)-1β, endothelial and inducible nitric oxide syntahese (eNOS, iNOS), NADPH quinone oxireductase (NQO)-1, nuclear factor erythroid 2-related factor (NrF)2, kelch-like ECH-associated protein (Keap)1 and heat shock protein (HSP)70 were measured. TBARS concentration was augmented in the PL and advanced HCC groups. SOD activity, TGF-1β and Nrf2 expression were higher in animals with precancerous lesions. In advanced HCC, expression of NQO1 and iNOS increased while there was a decrease in HPS70 expression. Data obtained provide evidence for the differential activation of proteins involved in oxidative stress and cell damage during progression of carcinogenesis in an animal model of HCC.
Collapse
Key Words
- 2-AAF, 2-acetylaminofluorene
- ALT, alanine aminotransferase
- AP, alkaline phosphatase
- AST, aspartate aminotransferase
- DEN, diethylnitrosamine
- Diethylnitrosamine
- EDTA, ethylenediamine tetraacetic acid
- GGT, gamma-glutamyl transferase
- HCC, hepatocellular carcinoma
- HSC, hepatic stellate cells
- HSP70, heat shock 70-kDa protein
- Heat shock protein
- Hepatocarcinoma
- Keap1, kelch-like ECH-associated protein 1
- MDA, malonaldehyde
- NO, nitric oxide
- NQO1, NADPH quinone oxireductase-1
- Nitric oxide synthase
- Nrf2, nuclear factor erythroid 2-related factor 2
- Nuclear factor erythroid 2-related factor 2
- Oxidative stress
- PVDF, polyvinylidene fluoride
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid reactant substances
- TGF-1β, transforming growth fator-1 beta
- TTBS, Tris-buffered containing 0.05% Tween 20
- UV, ultra violet
- eNOS, endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
Collapse
|
17
|
Yongsanguanchai N, Pongrakhananon V, Mutirangura A, Rojanasakul Y, Chanvorachote P. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 2014; 308:C89-100. [PMID: 25411331 DOI: 10.1152/ajpcell.00187.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Even though tremendous advances have been made in the treatment of cancers during the past decades, the success rate among patients with cancer is still dismal, largely because of problems associated with chemo/radioresistance and relapse. Emerging evidence has indicated that cancer stem cells (CSCs) are behind the resistance and recurrence problems, but our understanding of their regulation is limited. Rapid reversible changes of CSC-like cells within tumors may result from the effect of biological mediators found in the tumor microenvironment. Here we show how nitric oxide (NO), a key cellular modulator whose level is elevated in many tumors, affects CSC-like phenotypes of human non-small cell lung carcinoma H292 and H460 cells. Exposure of NO gradually altered the cell morphology toward mesenchymal stem-like shape. NO exposure promoted CSC-like phenotype, indicated by increased expression of known CSC markers, CD133 and ALDH1A1, in the exposed cells. These effects of NO on stemness were reversible after cessation of the NO treatment for 7 days. Furthermore, such effect was reproducible using another NO donor, S-nitroso-N-acetylpenicillamine. Importantly, inhibition of NO by the known NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5 tetramethylimidazoline-1-oxy-3-oxide strongly inhibited CSC-like aggressive cellular behavior and marker expression. Last, we unveiled the underlying mechanism of NO action through the activation of caveolin-1 (Cav-1), which is upregulated by NO and is responsible for the aggressive behavior of the cells, including anoikis resistance, anchorage-independent cell growth, and increased cell migration and invasion. These findings indicate a novel role of NO in CSC regulation and its importance in aggressive cancer behaviors through Cav-1 upregulation.
Collapse
Affiliation(s)
- Nuttida Yongsanguanchai
- Pharmaceutical Technology (International) Program, Chulalongkorn University, Bangkok, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yon Rojanasakul
- School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand;
| |
Collapse
|
18
|
Liu C, Li J, Xiang X, Guo L, Tu K, Liu Q, Shah VH, Kang N. PDGF receptor-α promotes TGF-β signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-β receptors. Am J Physiol Gastrointest Liver Physiol 2014; 307:G749-59. [PMID: 25169976 PMCID: PMC4187064 DOI: 10.1152/ajpgi.00138.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) signaling are required for hepatic stellate cell (HSC) activation under pathological conditions such as liver metastatic tumor growth. These two signaling pathways are functionally divergent; PDGF signaling promotes proliferation and migration of HSCs, and TGF-β induces transdifferentiation of quiescent HSCs into myofibroblasts. Although PDGF signaling is implicated in TGF-β-mediated epithelial mesenchymal transition of tumor cells, the role of PDGF receptors in TGF-β activation of HSCs has not been investigated. Here we report that PDGF receptor-α (PDGFR-α) is required for TGF-β signaling of cultured human HSCs although HSCs express both PDGF-α and -β receptors. PDGFR-α knockdown inhibits TGF-β-induced phosphorylation and nuclear accumulation of SMAD2 with no influence on AKT or ERK phosphorylation associated with noncanonical TGF-β signaling. PDGFR-α knockdown suppresses TGF-β receptor I (TβRI) but increases TβRII gene transcription. At the protein level, PDGFR-α is recruited to TβRI/TβRII complexes by TGF-β stimulation. PDGFR-α knockdown blocks TGF-β-mediated internalization of TβRII and induces accumulation of TβRII at the plasma membrane, thereby inhibiting TGF-β phosphorylation of SMAD2. Functionally, knockdown of PDGFR-α reduces paracrine effects of HSCs on colorectal cancer cell proliferation and migration in vitro. In mice and patients, colorectal cancer cell invasion of the liver induces upregulation of PDGFR-α of HSCs. In summary, our finding that PDGFR-α knockdown inhibits SMAD-dependent TGF-β signaling by repressing TβRI transcriptionally and blocking endocytosis of TGF-β receptors highlights a convergence of PDGF and TGF-β signaling for HSC activation and PDGFR-α as a therapeutic target for liver metastasis and other settings of HSC activation.
Collapse
Affiliation(s)
- Chunsheng Liu
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota;
| | - Jiachu Li
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota; ,2Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota; ,3Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China;
| | - Xiaoyu Xiang
- 2Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota;
| | - Luyang Guo
- 2Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota;
| | - Kangsheng Tu
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota; ,4Department of Hepatobillary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Liu
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota;
| | - Vijay H. Shah
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota;
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota; Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota;
| |
Collapse
|
19
|
Chen T, Liu L, Xu HX, Wang WQ, Wu CT, Yao WT, Yu XJ. Significance of caveolin-1 regulators in pancreatic cancer. Asian Pac J Cancer Prev 2014; 14:4501-7. [PMID: 24083692 DOI: 10.7314/apjcp.2013.14.8.4501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved in many biological processes that include substance uptake and transmembrane signaling. Many of these processes and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pancreas and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
20
|
Iino I, Kikuchi H, Miyazaki S, Hiramatsu Y, Ohta M, Kamiya K, Kusama Y, Baba S, Setou M, Konno H. Effect of miR-122 and its target gene cationic amino acid transporter 1 on colorectal liver metastasis. Cancer Sci 2013; 104:624-30. [PMID: 23373973 PMCID: PMC7657140 DOI: 10.1111/cas.12122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 12/22/2022] Open
Abstract
Control of liver metastasis is an important issue in the treatment of colorectal cancer (CRC). MicroRNAs have been shown to be involved in the development of many cancers, but little is known about their role in the process of colorectal liver metastasis. We compared miRNA expression between primary colorectal tumors and liver metastasis to identify those involved in the process of metastasis. Cancer cells were isolated from formalin-fixed paraffin-embedded primary CRC samples and their corresponding metastatic liver tumors in six patients using laser capture microdissection, and miRNA expression was analyzed using TaqMan miRNA arrays. The most abundant miRNA in liver metastasis compared with primary tumors was miR-122. Immunohistochemical analysis revealed that the expression levels of cationic amino acid transporter 1 (CAT1), a negative target gene of miR-122, were lower in liver metastases than primary tumors (P < 0.001). Expression levels of CAT1 in 132 primary tumors were negatively correlated with the existence of synchronous liver metastasis (P = 0.0333) and tumor stage (P < 0.0001). In an analysis of 121 colon cancer patients without synchronous liver metastasis, patients with CAT1-low colon cancer had significantly shorter liver metastasis-free survival (P = 0.0258) but not overall survival or disease-free survival. Overexpression of miR-122 and concomitant suppression of CAT1 in the primary tumor appears to play important roles in the development of colorectal liver metastasis. Expression of CAT1 in the primary CRC has the potential to be a novel biomarker to predict the risk of postoperative liver metastasis of CRC patients.
Collapse
Affiliation(s)
- Ichirota Iino
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N. IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 2013; 123:1138-56. [PMID: 23454766 PMCID: PMC3582119 DOI: 10.1172/jci63836] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/06/2012] [Indexed: 01/11/2023] Open
Abstract
In the tumor microenvironment, TGF-β induces transdifferentiation of quiescent pericytes and related stromal cells into myofibroblasts that promote tumor growth and metastasis. The mechanisms governing myofibroblastic activation remain poorly understood, and its role in the tumor microenvironment has not been explored. Here, we demonstrate that IQ motif containing GTPase activating protein 1 (IQGAP1) binds to TGF-β receptor II (TβRII) and suppresses TβRII-mediated signaling in pericytes to prevent myofibroblastic differentiation in the tumor microenvironment. We found that TGF-β1 recruited IQGAP1 to TβRII in hepatic stellate cells (HSCs), the resident liver pericytes. Iqgap1 knockdown inhibited the targeting of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor 1 (SMURF1) to the plasma membrane and TβRII ubiquitination and degradation. Thus, Iqgap1 knockdown stabilized TβRII and potentiated TGF-β1 transdifferentiation of pericytes into myofibroblasts in vitro. Iqgap1 deficiency in HSCs promoted myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of paracrine signaling molecules. Additionally, we found that IQGAP1 expression was downregulated in myofibroblasts associated with human colorectal liver metastases. Taken together, our studies demonstrate that IQGAP1 in the tumor microenvironment suppresses TβRII and TGF-β dependent myofibroblastic differentiation to constrain tumor growth.
Collapse
Affiliation(s)
- Chunsheng Liu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel D. Billadeau
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Haitham Abdelhakim
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Leof
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kozo Kaibuchi
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Carmelo Bernabeu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - George S. Bloom
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Liu Yang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lisa Boardman
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Rao N, Evans S, Stewart D, Spencer KH, Sheikh F, Hui EE, Christman KL. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices. Biomed Microdevices 2013; 15:161-9. [PMID: 22983793 PMCID: PMC3537877 DOI: 10.1007/s10544-012-9709-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myoblasts are precursor muscle cells that lie nascent to mature skeletal muscle. Once muscle is damaged, these cells migrate, fuse, and regenerate the muscle tissue. It is known that skeletal muscle can partially regenerate in vivo after muscle tissue damage. However, this regeneration does not always occur, especially in more severe injuries. Cellular therapy using tissue-engineering approaches has been shown to improve organ repair and function. To exploit potential benefits of using cell therapy as an avenue for skeletal muscle repair, it is important to understand the cellular dynamics underlying skeletal myocyte formation and growth. Cardiac fibroblasts have been shown to have a major influence on cardiomyocyte function, repair, and overall spatial distribution. However, little is known regarding fibroblasts' role on skeletal myocyte function. In this study, we utilized a reconfigurable co-culture device to understand the contact and paracrine effects of fibroblasts on skeletal myocyte alignment and differentiation using murine myoblast and fibroblast cell lines. We demonstrate that myotube alignment is increased by direct contact with fibroblasts, while myotube differentiation is reduced both in the gap and contact configurations with fibroblasts after 6 days of co-culture. Furthermore, neutralizing antibodies to FGF-2 can block these effects of fibroblasts on myotube differentiation and alignment. Finally, bi-directional signaling is critical to the observed myoblast-fibroblast interactions, since conditioned media could not reproduce the same effects observed in the gap configuration. These findings could have direct implications on cell therapies for repairing skeletal muscle, which have only utilized skeletal myoblasts or stem cell populations alone.
Collapse
Affiliation(s)
- Nikhil Rao
- Department of Bioengineering, University of California, San Diego. 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Barbieri A, Palma G, Rosati A, Giudice A, Falco A, Petrillo A, Petrillo M, Bimonte S, Di Benedetto M, Esposito G, Stiuso P, Abbruzzese A, Caraglia M, Arra C. Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth. J Cell Mol Med 2012; 16:920-6. [PMID: 21722303 PMCID: PMC3822860 DOI: 10.1111/j.1582-4934.2011.01375.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence suggests that chronic stress can be a cofactor for the initiation and progression of cancer. Here we evaluated the role of endothelial nitric oxide synthase (eNOS) in stress-promoted tumour growth of murine B16F10 melanoma cell line in C57BL/6 mice. Animals subjected to restraint stress showed increased levels adrenocorticotropic hormone, enlarged adrenal glands, reduced thymus weight and a 3.61-fold increase in tumour growth in respect to no-stressed animals. Tumour growth was significantly reduced in mice treated with the β-antagonist propranolol. Tumour samples obtained from stressed mice displayed high levels of vascular endothelial growth factor (VEGF) protein in immunohistochemistry. Because VEGF can induce eNOS increase, and nitric oxide is a relevant factor in angiogenesis, we assessed the levels of eNOS protein by Western blot analysis. We found a significant increase in eNOS levels in tumour samples from stressed mice, indicating an involvement of this enzyme in stress-induced tumour growth. Accordingly, chronic stress did not promote tumour growth in eNOS−/− mice. These results disclose for the first time a pivotal role for eNOS in chronic stress-induced initiation and promotion of tumour growth.
Collapse
Affiliation(s)
- Antonio Barbieri
- Animal Facility, National Institute of Tumours G. Pascale, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
UNLABELLED Hepatic stellate cells (HSCs) were recently postulated as a component of the prometastatic liver microenvironment, because they can transdifferentiate into highly proliferative and motile myofibroblasts that are implicated in the desmoplastic reaction and metastatic growth. This review focuses on bidirectional interactions between tumor cells and HSCs in the liver microenvironment and discusses mechanisms whereby tumor-derived factors activate HSCs, and in turn, activated HSCs promote metastatic growth. Bidirectional interactions between tumors and HSCs may function as an "amplification loop" to further enhance metastatic growth in the liver. The activation of HSCs is a complex process regulated by multiple factors such as transforming growth factor-β and platelet-derived growth factor signaling pathways, which may present as therapeutic targets in the prevention and treatment of liver metastases. CONCLUSION HSCs may present a new therapeutic target in the treatment of liver metastases. Targeting HSCs and/or myofibroblasts with transforming growth factor-β or platelet-derived growth factor antagonists in coordination with chemotherapy, radiotherapy, or surgery may prove to be effective at reducing liver metastases and increasing the survival benefit of patients by targeting both tumor cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ningling Kang
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Vijay Shah
- Gastroenterology Research Unit, Mayo Clinic, Rochester MN
| |
Collapse
|
25
|
Liu Y, Qiang M, Wei Y, He R. A novel molecular mechanism for nitrated {alpha}-synuclein-induced cell death. J Mol Cell Biol 2011; 3:239-49. [PMID: 21733982 DOI: 10.1093/jmcb/mjr011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although previous studies have demonstrated the involvement of nitrated α-synuclein in neurodegenerative disorders (synucleinopathies), the effects of nitrated α-synuclein and the molecular mechanisms underlying its toxicity are still unclear. In the present study, nitrated α-synuclein with four 3-nitrotyrosines (Tyr(39), Tyr(125), Tyr(133), and Tyr(136)) was obtained non-enzymatically by incubation with nitrite. The nitrated protein existed as a mixture of monomers, dimers, and polymers in solution. The nitrated α-synuclein could induce cell death in a time- and concentration-dependent manner when SH-SY5Y cells (a human neuroblastoma cell line) were incubated with the dimers and polymers. Treatment with anti-integrin α5β1 antibody partially rescued the SH-SY5Y cells from the cell death. Dot blotting and immunoprecipitation revealed that the nitrated protein bound to integrin on the cell membranes. Level of nitric oxide (NO) and calcium-independent inducible NO synthase (iNOS) activity increased during the initial stages of the treatment. The expression of phosphorylated focal adhesion kinase (FAK) decreased in the cells. Subsequently, an increase in caspase 3 activity was observed in SH-SY5Y cells. Our results demonstrate that activation of iNOS and inhibition of FAK may both be responsible for the cell death induced by nitrated α-synuclein. These data suggest that the cytotoxicity of nitrated α-synuclein is mediated via an integrin-iNOS/-FAK signaling pathway, and that the nitration of α-synuclein plays a role in neuronal degeneration.
Collapse
Affiliation(s)
- Yanying Liu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
26
|
Burnier JV, Wang N, Michel RP, Hassanain M, Li S, Lu Y, Metrakos P, Antecka E, Burnier MN, Ponton A, Gallinger S, Brodt P. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 2011; 30:3766-83. [PMID: 21478904 DOI: 10.1038/onc.2011.89] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The liver is a major site of metastasis for human malignancies, yet the factors that regulate tumor cell survival and growth in this organ remain elusive. Previously, we reported that M-27(IGF-IR) murine lung carcinoma cells with ectopic insulin-like growth factor-1 (IGF-I) receptor overexpression acquired a site-specific, liver-metastasizing potential. Gene expression profiling and subsequent RNA and protein analyses revealed that this was associated with major changes to the expression of extracellular matrix (ECM) protein-encoding genes including type III, IV and XVIII collagen genes, and these changes were also observed in the respective tumors in vivo. Because type IV collagen was the most prominently altered ECM protein in this model, we further analyzed its functional relevance to liver metastasis. M-27 cells stably overexpressing type IV collagen α1 and α2 chains were generated and their growth and metastatic properties investigated. We found that these cells acquired a site-selective growth advantage in the liver and this was associated with cell rescue from anoikis in a collagen IV/α2 integrin/FAK-dependent manner and increased responsiveness to IGF-I. Conversely, collagen IV or focal adhesion kinase (FAK) silencing by small-interfering RNA in highly metastatic tumor cells enhanced anoikis and decreased liver metastases formation. Moreover, analysis of human surgical specimens revealed uniformly high collagen IV expression in 65/65 hepatic metastases analyzed, regardless of tissue of origin, whereas it was variable and generally low in 50/50 primary colorectal carcinoma specimens examined. The results suggest that collagen IV-conveyed signals are essential cues for liver metastasis in diverse tumor types and identify mediators of collagen IV signaling as potential therapeutic targets in the management of hepatic metastases.
Collapse
Affiliation(s)
- J V Burnier
- Department of Medicine, McGill University and the McGill University Health Center-Royal Victoria Hospital, Montreal Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Routray C, Liu C, Yaqoob U, Billadeau DD, Bloch KD, Kaibuchi K, Shah VH, Kang N. Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. Am J Physiol Cell Physiol 2011; 301:C66-74. [PMID: 21451103 DOI: 10.1152/ajpcell.00038.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.
Collapse
Affiliation(s)
- Chittaranjan Routray
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang SF, Yang JY, Huang CH, Wang SN, Lu CP, Tsai CJ, Chai CY, Yeh YT. Increased caveolin-1 expression associated with prolonged overall survival rate in hepatocellular carcinoma. Pathology 2010; 42:438-45. [PMID: 20632820 DOI: 10.3109/00313025.2010.494293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Recent study indicates that the binding of caveolin-1 (CAV1), the essential constituent of caveolae, to endothelial nitric oxide synthase (eNOS) prevents nitric oxide (NO) production in cirrhotic human liver. However, their interplay in hepatocellular carcinoma (HCC) remains undetermined. METHODS Paraffin-embedded sections from 73 HCC patients were included in this study. The expression patterns of CAV1 and eNOS determined by immunohistochemistry were correlated with the clinicopathological characteristics and overall survival. RESULTS Although CAV1 expression did not correlate with any clinicopathological characteristic, increased CAV1 expression was associated with prolonged overall survival (p = 0.021), even when using the multivariate Cox's regression model (OR = 0.25, 95%CI = 0.08-0.72, p = 0.011). eNOS expression was correlated with an increased histological grade (p = 0.002) and intriguingly, the patients had a decreased overall survival when their lesions presented with high eNOS but low CAV1 expression concomitantly (p = 0.003). Meanwhile, the increased CAV1/eNOS merged level determined by immunofluorescence was significantly associated with a decreased histological grade and better overall survival (p = 0.023 and 0.001, respectively). CONCLUSIONS Our results suggest CAV1 may play a tumour-suppressive role and can serve as a predictive biomarker in HCC. The impacts of CAV1 on hepatocarcinogenesis may occur partly through its modulation of eNOS.
Collapse
Affiliation(s)
- Sheau-Fang Yang
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shergill U, Das A, Langer D, Adluri R, Maulik N, Shah VH. Inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1279-87. [PMID: 20421635 DOI: 10.1152/ajpregu.00836.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis occurs through a convergence of diverse signaling mechanisms with prominent pathways that include autocrine effects of endothelial nitric oxide (NO) synthase (eNOS)-derived NO and vascular endothelial growth factor (VEGF). However, the redundant and distinct roles of NO and VEGF in angiogenesis remain incompletely defined. Here, we use the partial hepatectomy model in mice genetically deficient in eNOS to ascertain the influence of eNOS-derived NO on the angiogenesis that accompanies liver regeneration. While sinusoidal endothelial cell (SEC) eNOS promotes angiogenesis in vitro, surprisingly the absence of eNOS did not influence the angiogenesis that occurs after partial hepatectomy in vivo. While this observation could not be attributed to induction of alternate NOS isoforms, it was associated with induction of VEGF signaling as evidenced by enhanced levels of VEGF ligand in regenerating livers from mice genetically deficient in eNOS. However, surprisingly, mice that were genetically heterozygous for deficiency in the VEGF receptor, fetal liver kinase-1, also maintained unimpaired capacity for liver regeneration. In summary, inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration, indicating signaling redundancies that allow liver regeneration to continue in the absence of this canonical vascular pathway.
Collapse
Affiliation(s)
- U Shergill
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kang N, Yaqoob U, Geng Z, Bloch K, Liu C, Gomez T, Billadeau D, Shah V. Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1888-900. [PMID: 20802179 DOI: 10.2353/ajpath.2010.100187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cells within the tumor microenvironment influence tumor growth through multiple mechanisms. Pericytes such as hepatic stellate cells are an important cell within the tumor microenvironment; their transformation into highly motile myofibroblasts leads to angiogenesis, stromal cell recruitment, matrix deposition, and ensuing tumor growth. Thus, a better understanding of mechanisms that regulate motility of pericytes is required. Focal adhesions (FAs) form a physical link between the extracellular environment and the actin cytoskeleton, a requisite step for cell motility. FAs contain a collection of proteins including the Ena/VASP family member, vasodilator-stimulated phosphoprotein (VASP); however, a role for VASP in FA development has been elusive. Using a comprehensive siRNA knockdown approach and a variety of VASP mutants coupled with complementary cell imaging methodologies, we demonstrate a requirement of VASP for optimal development of FAs and cell spreading in LX2 liver myofibroblasts, which express high levels of endogenous VASP. Rac1, a binding partner of VASP, acts in tandem with VASP to regulate FAs. In vivo, perturbation of Ena/VASP function in tumor myofibroblast precursor cells significantly reduces pericyte recruitment to tumor vasculature, myofibroblastic transformation, tumor angiogenesis, and tumor growth, providing in vivo pathobiologic relevance to these findings. Taken together, our results identify Ena/VASP as a significant modifier of tumor growth through regulation of FA dynamics and ensuing pericyte/myofibroblast function within the tumor microenvironment.
Collapse
|
31
|
Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 2010; 85:593-8. [PMID: 20540157 DOI: 10.1002/ajh.21745] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite promising results in preclinical and clinical studies, the therapeutic efficacy of antiangiogenic therapies has been restricted by a narrow focus on inhibiting the growth of endothelial cells. Other cell types in the tumor stroma are also critical to the progression of cancer, including mural cells. Mural cells are vascular support cells that range in phenotype from pericytes to vascular smooth muscle cells. Although the role of pericytes and pericyte-like cells in the pathophysiology of cancer is still unclear, evidence indicates that aberrations in pericyte-endothelial cell signaling networks could contribute to tumor angiogenesis and metastasis. The purpose of this review is to evaluate critically recent evidence on the role of pericytes in tumor biology and discuss potential therapeutic targets for anticancer intervention.
Collapse
Affiliation(s)
- Ahmad Raza
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
32
|
Jagavelu K, Routray C, Shergill U, O'Hara SP, Faubion W, Shah VH. Endothelial cell toll-like receptor 4 regulates fibrosis-associated angiogenesis in the liver. Hepatology 2010; 52:590-601. [PMID: 20564354 PMCID: PMC2916032 DOI: 10.1002/hep.23739] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Angiogenesis defines the growth of new blood vessels from preexisting vascular endothelial networks and corresponds to the wound healing process that is typified by the process of liver fibrosis. Liver fibrosis is also associated with increased endotoxin within the gut lumen and its associated portal circulation. However, the interrelationship of gut endotoxin and its receptor, toll-like receptor 4 (TLR4), with liver fibrosis and associated angiogenesis remains incompletely defined. Here, using complementary genetic, molecular, and pharmacological approaches, we provide evidence that the pattern recognition receptor that recognizes endotoxin, TLR4, which is expressed on liver endothelial cells (LECs), regulates angiogenic responses both in vitro and in vivo. Mechanistic studies have revealed a key role for a cognate TLR4 effector protein, myeloid differentiation protein 88 (MyD88), in this process, which culminates in extracellular protease production that regulates the invasive capacity of LECs, a key step in angiogenesis. Furthermore, TLR4-dependent angiogenesis in vivo corresponds to fibrosis in complementary liver models of fibrosis. CONCLUSION These studies provide evidence that the TLR4 pathway in LECs regulates angiogenesis through its MyD88 effector protein by regulating extracellular protease production and that this process is linked to the development of liver fibrosis.
Collapse
Affiliation(s)
- Kumaravelu Jagavelu
- GI Research Unit and Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
33
|
Andl CD, McCowan KM, Allison GL, Rustgi AK. Cathepsin B is the driving force of esophageal cell invasion in a fibroblast-dependent manner. Neoplasia 2010; 12:485-98. [PMID: 20563251 PMCID: PMC2887089 DOI: 10.1593/neo.10216] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 12/24/2022]
Abstract
Esophageal cancer, which frequently exhibits coordinated loss of E-cadherin (Ecad) and transforming growth factor beta (TGFbeta) receptor II (TbetaRII), has a high mortality rate. In a three-dimensional organotypic culture model system, esophageal keratinocytes expressing dominant-negative mutant versions of both Ecad and TbetaRII (ECdnT) invade into the underlying matrix embedded with fibroblasts. We also find that cathepsin B induction is necessary for fibroblast-mediated invasion. Furthermore, the ECdnT cells in this physiological context activate fibroblasts through the secretion of TGFbeta1, which, in turn, is activated by cathepsin B. These results suggest that the interplay between the epithelial compartment and the surrounding microenvironment is crucial to invasion into the extracellular matrix.
Collapse
Affiliation(s)
- Claudia D Andl
- Departments of Surgery and Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
34
|
Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis 2010; 31:334-41. [PMID: 20028726 DOI: 10.1093/carcin/bgp322] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE), firstly described in 1992, is a single-transmembrane and multiligand member of the immunoglobulin protein family. RAGE engagement produces activation of multiple intracellular signaling mechanisms involved in several inflammation-associated clinical entities, such as diabetes, cancer, renal and heart failures, as well as neurodegenerative diseases. Although RAGE expression has been extensively reported in many cancer types, it is now emerging as a relevant element that can continuously fuel an inflammatory milieu at the tumor microenvironment, thus changing our perception of its contribution to cancer biology. In this review, we will discuss the role of multiligand/RAGE axis, particularly at the multicellular cross talk established in the inflammatory tumor microenvironment. A better understanding of its contribution may provide new targets for tumor management and risk assessment.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Ave San Miguel 3605, Talca, Chile.
| | | | | |
Collapse
|
35
|
Cabadak H, Küçükibrahimoğlu E, Aydın B, Kan B, Zafer Gören M. Muscarinic receptor-mediated nitric oxide release in a K562 erythroleukaemia cell line. ACTA ACUST UNITED AC 2009; 29:109-15. [DOI: 10.1111/j.1474-8673.2009.00431.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|