1
|
Wang LJ, Pang YB, Li WQ, He QY, Zhang XE, Liu E, Guo J. Global research trends on melasma: a bibliometric and visualized study from 2014 to 2023. Front Pharmacol 2024; 15:1421499. [PMID: 39119611 PMCID: PMC11306164 DOI: 10.3389/fphar.2024.1421499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Melasma, a prevalent pigmentary disorder, is characterized by its complex etiology, propensity for recurrence, and resistance to treatment. However, there is currently no research on melasma through bibliometrics and visualisation. This study analyses the hotspots and trends in the field based on 2,709 publications from the Web of Science Core Collection (WOSCC). We carried out bibliometric analyses using Citespace software for different countries/regions, institutions, authors, and keywords. References were also analysed using VoSviewer. The results indicate that overall, there has been an increase in publications related to melasma since 2014. According to the analysis of the collaborative network diagram, the United States, Egyptian Knowledge Bank, and Benjakul Soottawat are the most contributing countries, institutions, and authors, respectively. Reference and keyword analyses have identified the pathogenesis and treatment of melasma as a prevalent topic in recent years. And how to find new treatment options and more effective therapeutic drugs is a future research trend. This is the first bibliometric and visual analysis of melasma-related literature to explore research hotspots and trends.
Collapse
Affiliation(s)
- Li-Jun Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao-Bin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Quan Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Ying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Er Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E. Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Hamadjida A, Mbomo REA, Minko SE, Ntchapda F, Kilekoung Mingoas JP, Nnanga N. Antioxidant and anti-inflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxan-induced diabetic rats. Metabol Open 2024; 21:100278. [PMID: 38455229 PMCID: PMC10918424 DOI: 10.1016/j.metop.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes mellitus (DM) is one of the leading worldwide public health problems. It is characterized by hyperglycemia which induces oxidative stress and inflammation, both involved in the pathogenesis of diabetes. We previously showed that Boswellia dalzielii (BD) and Hibiscus sabdariffa (HS) extracts reduced hyperglycemia and hyperlipidemia in alloxan-induced diabetic rats. In the present study, we evaluated the antioxidant and anti-inflammatory activities of both plants in alloxan-induced diabetic rats. Two sets of experiments were conducted in male Wistar rats subjected to a single intraperitoneal injection of alloxan monohydrate (150 mg/kg, b. w.). Then, diabetic rats were daily administered with either BD (1st set of experiments) or HS (2nd set of experiments) at 100, 200, and 400 mg/kg orally for 21 consecutive days. Glibenclamide (10 mg/kg) was also administered as a reference drug. At the end of the study, the animals were anesthetized, and blood samples were collected from each animal. Then, oxidative stress and inflammatory biomarkers in the serum were determined. We found that treatment with BD and HS significantly reduced malondialdehyde (MDA) and enhanced the levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). These extracts also significantly decreased the inflammatory markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β). From the results obtained, it can therefore be concluded that BD and HS have the potential to being developed as natural sources of antioxidant and anti-inflammatory agents that can be used for the prevention or treatment of DM.
Collapse
Affiliation(s)
- Adjia Hamadjida
- Department of Life Science, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
- Pharmacological Research Laboratory of Medicinal Plants, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
| | | | - Stéphane Essono Minko
- Department of Life Science, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
- Research Unit of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Fidèle Ntchapda
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Nga Nnanga
- Department of Galenic Pharmacy and Pharmaceutical Legislation, Faculty of Medicine and Biomedical Science, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
3
|
Shinde S, Balasubramaniam AK, Mulay V, Saste G, Girme A, Hingorani L. Recent Advancements in Extraction Techniques of Ashwagandha ( Withania somnifera) with Insights on Phytochemicals, Structural Significance, Pharmacology, and Current Trends in Food Applications. ACS OMEGA 2023; 8:40982-41003. [PMID: 37970011 PMCID: PMC10633886 DOI: 10.1021/acsomega.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023]
Abstract
Ashwagandha, also known as Withania somnifera (WS), is an ayurvedic botanical plant with numerous applications in dietary supplements and traditional medicines worldwide. Due to the restorative qualities of its roots, WS has potent therapeutic value in traditional Indian (Ayurvedic, Unani, Siddha) and modern medicine recognized as the "Indian ginseng". The presence of phytochemical bioactive compounds such as withanolides, withanosides, alkaloids, flavonoids, and phenolic compounds has an important role in the therapeutic and nutritional properties of WS. Thus, the choice of WS plant part and extraction solvents, with conventional and modern techniques, plays a role in establishing WS as a potential nutraceutical product. WS has recently made its way into food supplements and products, such as baked goods, juices, beverages, sweets, and dairy items. The review aims to cover the key perspectives about WS in terms of plant description, phytochemistry, structural significance, and earlier reported extraction methodologies along with the analytical and pharmacological landscape in the area. It also attempts to iterate the key limitations and further insights into extraction techniques and bioactive standardization with the regulatory framework. It presents a key to the future development of prospective applications in foods such as food supplements or functional foods.
Collapse
Affiliation(s)
- Sunil Shinde
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | | | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| |
Collapse
|
4
|
Balkrishna A, Sinha S, Srivastava J, Varshney A. Withania somnifera (L.) Dunal whole-plant extract demonstrates acceptable non-clinical safety in rat 28-day subacute toxicity evaluation under GLP-compliance. Sci Rep 2022; 12:11047. [PMID: 35773300 PMCID: PMC9246939 DOI: 10.1038/s41598-022-14944-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Withania somnifera (L.) Dunal (Ashwagandha) is widely used in Ayurveda, Unani and Siddha systems of medicines due to its therapeutic application in numerous ailments. Traditionally, the medications prepared from the plant employ only its roots and based on the currently available scientific literature, their efficacy and safety is well established. Apart from the roots, the aerial parts also contain bioactive components and correspondingly certain marketed preparations also employ the leaves of the plant. Accordingly, Ministry of Ayush, Government of India has lately issued an advisory emphasizing the need for extensive efficacy and safety profiling of leaf-based products. Consequently, we have conducted the present GLP-driven study, in which the non-clinical safety of a hydromethanolic extract of the whole plant of Withania somnifera (WSWPE) has been assessed according to OECD guideline 407. In this study Sprague Dawley rats of either sex were orally administered with WSWPE for 28-consecutive days at the doses of 100, 300 and 1000 mg/kg/day. The study also included a satellite group of animals that received WSWPE for 28-days followed by a 14-days recovery period. Withania somnifera Whole Plant Extract was found to be safe up to the dose level of 1000 mg/kg/day as no toxicologically relevant findings could be detected.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, NH-58, Haridwar, Uttarakhand, 249405, India
- Patanjali UK Trust, Glasgow, UK
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India.
- Department of Allied and Applied Sciences, University of Patanjali, NH-58, Haridwar, Uttarakhand, 249405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Afewerky HK, Li H, Zhang T, Li X, Mahaman YAR, Duan L, Qin P, Zheng J, Pei L, Lu Y. Sodium-calcium exchanger isoform-3 targeted Withania somnifera (L.) Dunal therapeutic intervention ameliorates cognition in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2022; 12:1537. [PMID: 35087161 PMCID: PMC8795410 DOI: 10.1038/s41598-022-05568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The third isoform of the Na+-Ca2+ exchanger (NCX3) is crucial for a physiological fine-tuning of the Ca2+ fluxes in excitable tissues. In this view, the NCX3 accounts for the aberrant Ca2+ influx seen during neuronal excitotoxicity, such as in Alzheimer's disease (AD). However, little is known about NCX3 regulation and functional properties. Withania somnifera (L.) Dunal (W. somnifera), a traditional indigenous plant widely recognized for having numerous medicinal values, was undertaken to determine its potential therapeutic benefit against aggregated Aβ1-42-induced NCX3 dysregulation and the thereof cognition impairment in 5xFAD mice. The undertaken sourced dried roots of authenticated W. somnifera physicochemical compositional tests satisfied standards of pharmacognostic quality, and further phytochemical analysis of the roots methanol extract revealed the roots constitute several antioxidants. Following an intra-gastric gavage administration of synthesized W. somnifera roots methanolic extract from postnatal day 30 (P30) to P75, in vivo cognitional studies and then neurochemical examinations of the NCX3 expression level, Aβ plaque deposition, and antioxidant activities in the AD-associated brain regions of 4-month-old 5xFAD mice suggests that the oxidative stress normalizing effects of W. somnifera constituents, operating on the NCX3, may have a therapeutic role in the improvement of cognition in AD.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara, Eritrea.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| | - Hao Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongmei Zhang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengwei Qin
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiequn Zheng
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B, Devkota HP, Kırkın C, Özçelik B, Victoriano M, Martorell M, Rasul Suleria HA, Alshehri MM, Chandran D, Kumar M, Cruz-Martins N, Cho WC. Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications. J FOOD QUALITY 2021; 2021:1-14. [DOI: 10.1155/2021/8985179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Anna Stępień
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Celale Kırkın
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Bioactive Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra 4585-116, Portugal
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
7
|
Salman TM, Iyanda MA, Alli-Oluwafuyi AM, Sulaiman SO, Alagbonsi AI. Telfairia occidentalis stimulates hepatic glycolysis and pyruvate production via insulin-dependent and insulin-independent mechanisms. Metabol Open 2021; 10:100092. [PMID: 33997754 PMCID: PMC8095178 DOI: 10.1016/j.metop.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/02/2022] Open
Abstract
Background Telfairia occidentalis (TO), a plant consumed for its nutritional and medicinal values, exhibits hypoglycaemic effect. However, the metabolic fate of the glucose following TO-induced insulin secretion and consequent hypoglycaemia is not clear. Objective This study determined the effect of ethyl acetate and n-hexane fractions of TO leaf extracts on some biochemical parameters in the glucose metabolic pathway to explain the possible fate of blood glucose following TO-induced hypoglycaemia. Methods Eighteen male Wistar rats (180-200 g) divided into control, n-hexane TO fraction- and ethyl acetate TO fraction-treated groups (n = 6/group) were used. The control animals received normal saline while the treated groups received TO at 100 mg/kg for seven days. After 24 h following the last dose, the animals were anaesthetised using ketamine; blood samples were collected and livers harvested to determine some biochemical parameters. Results Ethyl acetate TO fraction significantly increased plasma insulin, liver glucokinase activity and plasma pyruvate concentration, but significantly decreased plasma glucose and liver glycogen, without significant changes in plasma lactate, glucose-6-phosphate, liver glucose-6-phosphatase and lactate dehydrogenase activities when compared with control. N-hexane TO fraction significantly reduced liver glucose-6-phosphatase activity and glycogen but significantly increased plasma pyruvate, without significant changes in plasma glucose, insulin, glucose-6-phosphate and lactate concentrations; and liver glucokinase and lactate dehydrogenase activities. Conclusion The present study showed that insulin-mediated TO-induced hypoglycaemia resulted in the stimulation of glycolysis and pyruvate production via insulin-dependent and insulin-independent mechanisms.
Collapse
Key Words
- ANOVA, Analysis of Variance
- ATP, Adenosine triphosphate
- EATO, Ethyl acetate TO fraction
- ELISA, Enzyme-linked immunosorbent assay
- G6P, Glucose-6-phosphate
- G6PD, Glucose-6-phosphate dehydrogenase
- G6Pase, Glucose-6-phosphatase
- GCK, Glucokinase
- GLUT, Glucose transporter
- GSIS, glucose-stimulated insulin secretion
- Glucoregulatory enzymes
- Glucose metabolites
- Glycogen
- HClO4, Perchloric acid
- HRP, Horseradish Peroxidase
- IMGU, Insulin-mediated glucose uptake
- Insulin
- KOH, Potassium hydroxide
- LDH, Lactate dehydrogenase
- MCT, Monocarboxylate transporters
- NAD, Nicotinamide adenine dinucleotide
- NHTO, N-hexane TO fraction
- Plasma glucose
- SEM, Standard error of mean
- TCA, Tricarboxylic acid cycle
- TO, Telfairia occidentalis
- Telfairia occidentalis
Collapse
Affiliation(s)
- Toyin Mohammed Salman
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mayowa Adewale Iyanda
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Sheu Oluwadare Sulaiman
- Physiology Department, Kampala International University - Western Campus, Ishaka-Bushenyi, Uganda.,Department of Morphology (Cell Biology), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Abdullateef Isiaka Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Rwanda
| |
Collapse
|
8
|
Nakitto AMS, Muyonga JH, Byaruhanga YB, Wagner AE. Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules 2021; 26:2044. [PMID: 33918509 PMCID: PMC8038283 DOI: 10.3390/molecules26072044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder of glucose homeostasis associated with a status of insulin resistance, impaired insulin signaling, β-cell dysfunction, impaired glucose and lipid metabolism, sub-clinical inflammation, and increased oxidative stress. Consuming fruits and vegetables rich in phytochemicals with potential antidiabetic effects may prevent T2DM and/or support a conservative T2DM treatment while being safer and more affordable for people from low-income countries. Solanum anguivi Lam. fruits (SALF) have been suggested to exhibit antidiabetic properties, potentially due to the presence of various phytochemicals, including saponins, phenolics, alkaloids, ascorbic acid, and flavonoids. For the saponin fraction, antidiabetic effects have already been reported. However, it remains unclear whether this is also true for the other phytochemicals present in SALF. This review article covers information on glucose homeostasis, T2DM pathogenesis, and also the potential antidiabetic effects of phytochemicals present in SALF, including their potential mechanisms of action.
Collapse
Affiliation(s)
- Aisha Musaazi Sebunya Nakitto
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062 Kampala, Uganda or (A.M.S.N.); (J.H.M.); (Y.B.B.)
- Institute of Nutritional Sciences, Justus-Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - John H. Muyonga
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062 Kampala, Uganda or (A.M.S.N.); (J.H.M.); (Y.B.B.)
| | - Yusuf Byenkya Byaruhanga
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062 Kampala, Uganda or (A.M.S.N.); (J.H.M.); (Y.B.B.)
| | - Anika E. Wagner
- Institute of Nutritional Sciences, Justus-Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
9
|
Hasheminasab FS, Sharififar F, Hashemi SM, Setayesh M. An Evidence-Based Research on Botanical Sources for Oral Mucositis Treatment in Traditional Persian Medicine. Curr Drug Discov Technol 2021; 18:225-234. [PMID: 32013832 DOI: 10.2174/1570163817666200203110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is one of the most prevalent diseases associated with heavy complications in treatment. Mucotoxic cancer therapies such as head and neck radiotherapy and some of the chemotherapy agents may lead to oral mucositis. In addition to its economic consequences, mucositis also affects patients' quality of life. In Traditional Persian Medicine (TPM) manuscripts, several medicaments have been suggested for the treatment of mucositis. OBJECTIVE Considering the public welcome for herbal medicine, the current evidence-based review study is conducted to investigate the herbal remedies which have been proposed for oral mucositis in TPM. METHODS At first, a comprehensive survey was done on Qanon fi al-Teb, which is the most important textbook of TPM; then the scientific name of the herbs was authenticated according to the botanical textbooks. At last, data banks including Scopus, Pubmed, Web of science and Science direct were investigated for possible relevant properties of each medicinal plant in the literature. RESULTS In total, 30 herbs are introduced in this study. According to the registered documents, 18 herbs are reported to have antioxidant, anti-inflammatory, antimicrobial, anti-nociceptive and wound healing properties of which the therapeutic effect of only a few herbs including Glycyrrhiza glabra, Malva sylvestris, Morus nigra, Punica granatum, and Solanum nigrum were directly evaluated against oral mucositis on the literature. CONCLUSION Despite the lack of human studies on mucositis for the other discussed herbs, their related pharmacological properties can be considered for new natural drug discovery supported by medieval and traditional experiments.
Collapse
Affiliation(s)
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mehdi Hashemi
- Clinical Immunology Research Center, Ali-ebne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Setayesh
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Mahjour M, Khoushabi A. An Herbal H2 Blocker in Melasma Treatment. Curr Drug Discov Technol 2020; 17:272-277. [PMID: 30666910 DOI: 10.2174/1570163816666190121145653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/24/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Melasma is a skin pigmentation disorder that remains resistant to available therapies. The exact cause of melasma is unknown. Histamine is an inflammatory factor. Its involvement in pigmentation is obscure. The aim of this study is to introduce an herbal antihistamine H2 receptor which is effective in these disorders. METHODS This is a review study by searching the electronic databases and also Persian Medicine books, from 2000 to 2018 by the keywords such as H2 antagonist, H2 blocker and melasma. RESULTS According to the researched studies, histamine can induce melanogenesis and melasma after a series of stages in the body. Also, Histamine, through receptors 2, triggers melasma. Therefore, it can be said that antihistamine H2 receptor can be effective in melasma. Considering chemical antihistamine, H2 receptors have side effects, such as digestive problems, H2 antagonists can be used in the treatment of diseases such as dyspepsia but they have multiple complications. On the other hand, there is an herbal H2 antagonist that can be useful for melasma due to having some special properties. CONCLUSION Herbal H2 blockers should be noted in melasma treatment along with the topical drugs.
Collapse
Affiliation(s)
- Marjan Mahjour
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Khoushabi
- Health Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 547] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|