1
|
Chen N, Xu L, Bi Z, Wu J. Hypoxia-inducible factor-1α contributes to the proliferation of cholesteatoma keratinocytes through regulating endothelin converting enzyme 1 expression. Laryngoscope Investig Otolaryngol 2024; 9:e1233. [PMID: 38525120 PMCID: PMC10960243 DOI: 10.1002/lio2.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024] Open
Abstract
Objective Cholesteatoma is a hyperproliferative, pseudoneoplastic lesion of the middle ear characterized by aggressive growth and bone destruction. Hypoxia-inducible factor-1α (HIF-1α, also known as HIF1A) is a key transcription factor that enters the nucleus and upregulates many genes involved in cancer progression in the oxygen-free environment. This study is designed to explore the role and mechanism of HIF1A in the progression of cholesteatoma. Methods HIF1A and endothelin converting enzyme 1 (ECE1) levels were determined using real-time quantitative polymerase chain reaction. The protein levels of HIF1A, Cyclin D1, proliferating cell nuclear antigen, and ECE1 were measured using western blot. Cell viability, proliferation, and cell cycle progression were analyzed using cell counting kit-8, Colony formation, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays. Binding between HIF-1α and ECE1 promoter was predicted by Jaspar and verified using Chromatin immunoprecipitation and dual-luciferase reporter assays. Results HIF1A and ECE1 were highly expressed in cholesteatoma patients and keratinocytes. Moreover, HIF1A knockdown might suppress the cell viability, proliferation, and cycle progression of cholesteatoma keratinocytes. Furthermore, HIF1A upregulated the transcription of ECE1 through binding to its promoter region. Conclusion HIF1A might expedite cholesteatoma keratinocyte proliferation partly by increasing ECE1 expression, providing a possible therapeutic target for the cholesteatoma treatment.
Collapse
Affiliation(s)
- Nie Chen
- Department of OtolaryngologyChangzhou No. 2 People's Hospital affiliated to Nanjing Medical UniversityChangzhouChina
| | - Lei Xu
- Department of OtolaryngologyChangzhou No. 2 People's Hospital affiliated to Nanjing Medical UniversityChangzhouChina
| | - Zhi Bi
- Department of OtolaryngologyChangzhou No. 2 People's Hospital affiliated to Nanjing Medical UniversityChangzhouChina
| | - Jian Wu
- Department of OtolaryngologyChangzhou No. 2 People's Hospital affiliated to Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
2
|
Reheman A, Wu Q, Xu J, He J, Qi M, Li K, Cao G, Feng X. Transcriptomic analysis of the hypoxia-inducible factor 1α impact on the gene expression profile of chicken fibroblasts under hypoxia. Poult Sci 2024; 103:103410. [PMID: 38277890 PMCID: PMC10840346 DOI: 10.1016/j.psj.2023.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional regulator that mediates cellular adaptive responses to hypoxia. Hypoxia-inducible factor 1α (HIF-1α) is involved in the development of ascites syndrome (AS) in broiler chickens. Therefore, studying the effect of HIF-1α on the cellular transcriptome under hypoxic conditions will help to better understand the mechanism of HIF-1α in the development of AS in broilers. In this study, we analyzed the gene expression profile of the chicken fibroblast cell line (DF-1) under hypoxic conditions by RNA-seq. Additionally, we constructed the HIF-1α knockdown DF-1 cell line by using the RNAi method and analyzed the gene expression profile under hypoxic conditions. The results showed that exposure to hypoxia for 48 h had a significant impact on the expression of genes in the DF-1 cell line, which related to cell proliferation, stress response, and apoptosis. In addition, after HIF-1α knockdown more differential expression genes appeared than in wild-type cells, and the expression of most hypoxia-related genes was either down-regulated or remained unchanged. Pathway analysis results showed that differentially expressed genes were mainly enriched in pathways related to cell proliferation, apoptosis, and oxidative phosphorylation. Our study obtained transcriptomic data from chicken fibroblasts at different hypoxic times and identified the potential regulatory network associated with HIF-1α. This data provides valuable support for understanding the transcriptional regulatory mechanism of HIF-1α in the development of AS in broilers.
Collapse
Affiliation(s)
- Aikebaier Reheman
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Qijun Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianing Xu
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Jiang He
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Kai Li
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China.
| |
Collapse
|
3
|
Minchenko OH, Sliusar MY, Khita OO, Viletska YM, Luzina OY, Danilovskyi SV, Minchenko DO. Endoplasmic reticulum stress-dependent regulation of the expression of serine hydroxymethyltransferase 2 in glioblastoma cells. Endocr Regul 2024; 58:144-152. [PMID: 38861539 DOI: 10.2478/enr-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha Y Luzina
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Serhiy V Danilovskyi
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Minchenko OH, Sliusar MY, Khita OO, Minchenko DO, Viletska YM, Halkin OV, Levadna LO, Cherednychenko AA, Khikhlo YP. Inhibition of signaling protein ERN1 increases the sensitivity of serine synthesis gene expressions to glucose and glutamine deprivations in U87MG glioblastoma cells. Endocr Regul 2024; 58:91-100. [PMID: 38656254 DOI: 10.2478/enr-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleh V Halkin
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla O Levadna
- Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - Anastasiia A Cherednychenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Minchenko OH, Abramchuk AI, Khita OO, Sliusar MY, Viletska YM, Minchenko DO. Endoplasmic reticulum stress-dependent regulation of carboxypeptidase E expression in glioblastoma cells. Endocr Regul 2024; 58:206-214. [PMID: 39352777 DOI: 10.2478/enr-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Objective. Carboxypeptidase E (CPE) plays an important role in the biosynthesis of neurotransmitters and peptide hormones including insulin. It also promotes cell proliferation, survival, and invasion of tumor cells. The endoplasmic reticulum stress, hypoxia, and nutrient supply are significant factors of malignant tumor growth including glioblastoma. There are data indicating that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) suppressed glioblastoma cell proliferation and increased invasiveness of these cells. The present study aims to investigate the regulation of the CPE gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in the regulation of this gene expression and function in tumorigenesis. Methods. Human glioblastoma cells U87MG (transfected by an empty vector; control) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine; for glucose and glutamine deprivations, the cells were cultured in DMEM medium without glucose or glutamine for 16 h, respectively. The expression level of the CPE gene was studied by quantitative RT-PCR and normalized to ACTB. Results. It was found that inhibition of endoribonuclease and protein kinase activities of ERN1 led to a strong up-regulation of CPE gene expression in glioblastoma cells. The expression of this gene also increased in glioblastoma cells after silencing ERN1. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease only. The expression of the CPE gene was resistant to hypoxia in control U87MG cells, but increased in cells with ERN1 knockdown. The expression of this gene was up-regulated under glutamine deprivation in control glioblastoma cells, but decreased upon ERN1 knockdown. However, glucose deprivation decreased the expression of CPE gene in both types of used cells, but ERN1 inhibition enhanced this effect. Conclusion. The results of the present study demonstrate that inhibition of ERN1 strongly up-regulated the expression of pro-oncogenic CPE gene through protein kinase activity of ERN1 and that increased CPE gene expression possibly participates in ERN1 knockdown-mediated invasiveness of glioblastoma cells.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia I Abramchuk
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Sen T, Ju W, Nair V, Ladd P, Menon R, Otto EA, Pyle L, Vigers T, Nelson RG, Arnott C, Neal B, Hansen MK, Kretzler M, Bjornstad P, Heerspink HJL. Sodium glucose co-transporter 2 inhibition increases epidermal growth factor expression and improves outcomes in patients with type 2 diabetes. Kidney Int 2023; 104:828-839. [PMID: 37543256 DOI: 10.1016/j.kint.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Underlying molecular mechanisms of the kidney protective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors are not fully elucidated. Therefore, we studied the association between urinary epidermal growth factor (uEGF), a mitogenic factor involved in kidney repair, and kidney outcomes in patients with type 2 diabetes (T2D). The underlying molecular mechanisms of the SGLT2 inhibitor canagliflozin on EGF using single-cell RNA sequencing from kidney tissue were examined. Urinary EGF-to-creatinine ratio (uEGF/Cr) was measured in 3521 CANagliflozin cardioVascular Assessment Study (CANVAS) participants at baseline and week 52. Associations of uEGF/Cr with kidney outcome were assessed using multivariable-adjusted Cox regression models. Single-cell RNA sequencing was performed using protocol kidney biopsy tissue from ten young patients with T2D on SGLT2i, six patients with T2D on standard care only, and six healthy controls (HCs). In CANVAS, each doubling in baseline uEGF/Cr was associated with a 12% (95% confidence interval 1-22) decreased risk of kidney outcome. uEGF/Cr decreased after 52 weeks with placebo and remained stable with canagliflozin (between-group difference +7.3% (2.0-12.8). In young persons with T2D, EGF mRNA was primarily expressed in the thick ascending loop of Henle. Expression in biopsies from T2D without SGLT2i was significantly lower compared to HCs, whereas treatment with SGLT2i increased EGF levels closer to the healthy state. In young persons with T2D without SGLT2i, endothelin-1 emerged as a key regulator of the EGF co-expression network. SGLT2i treatment was associated with a shift towards normal EGF expression. Thus, decreased uEGF represents increased risk of kidney disease progression in patients with T2D. Canagliflozin increased kidney tissue expression of EGF and was associated with a downstream signaling cascade linked to tubular repair and reversal of tubular injury.
Collapse
Affiliation(s)
- Taha Sen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patricia Ladd
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura Pyle
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA; Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tim Vigers
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA; Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Clare Arnott
- The George Institute for Global Health, University New South Wales (UNSW), Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Bruce Neal
- The George Institute for Global Health, University New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Michael K Hansen
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA; Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands; The George Institute for Global Health, University New South Wales (UNSW), Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Zhang XH, Song YC, Qiu F, Wang ZC, Li N, Zhao FB. Hypoxic glioma cell-secreted exosomal circ101491 promotes the progression of glioma by regulating miR-125b-5p/EDN1. Brain Res Bull 2023; 195:55-65. [PMID: 36796652 DOI: 10.1016/j.brainresbull.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Hypoxia and exosomes play important roles in the occurrence and development of glioma. While circRNAs are involved in biological processes of various tumors, the mechanism underlying exosome-dependent regulatory effects of circRNAs on the progression of glioma under hypoxia is unclear. Results suggested that circ101491 was overexpressed in tumor tissues and plasma exosomes of glioma patients, while the overexpression of circ101491 was closely related to the differentiation degree and TNM staging of the patients. Moreover, circ101491 overexpression promoted viability, invasion and migration of glioma cells both in vivo and in vitro; the above regulatory effects can be reversed by inhibition of circ101491 expression. Mechanistic studies revealed that circ101491 upregulated EDN1 expression through sponging miR-125b-5p, thus facilitating glioma progression. In summary, hypoxia could promote circ101491 overexpression in glioma cell-derived exosomes, and circ101491/miR-125b-5p/EDN1 regulatory axis might be implicated in the malignant progression of glioma.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Yi-Cun Song
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Feng Qiu
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zheng-Cai Wang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Fang-Bo Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| |
Collapse
|
8
|
White BE, Liu Y, Hakonarson H, Buono RJ. RNA Sequencing in Hypoxia-Adapted T98G Glioblastoma Cells Provides Supportive Evidence for IRE1 as a Potential Therapeutic Target. Genes (Basel) 2023; 14:genes14040841. [PMID: 37107600 PMCID: PMC10138146 DOI: 10.3390/genes14040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with a median survival time of 14.6 months after diagnosis. GBM cells have altered metabolism and exhibit the Warburg effect, preferentially producing lactate under aerobic conditions. After standard-of-care treatment for GBM, there is an almost 100% recurrence rate. Hypoxia-adapted, treatment-resistant GBM stem-like cells are thought to drive this high recurrence rate. We used human T98G GBM cells as a model to identify differential gene expression induced by hypoxia and to search for potential therapeutic targets of hypoxia adapted GBM cells. RNA sequencing (RNAseq) and bioinformatics were used to identify differentially expressed genes (DEGs) and cellular pathways affected by hypoxia. We also examined expression of lactate dehydrogenase (LDH) genes using qRT-PCR and zymography as LDH dysregulation is a feature of many cancers. We found 2630 DEGs significantly altered by hypoxia (p < 0.05), 1241 upregulated in hypoxia and 1389 upregulated in normoxia. Hypoxia DEGs were highest in pathways related to glycolysis, hypoxia response, cell adhesion and notably the endoplasmic reticulum, including the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein response (UPR). These results, paired with numerous published preclinical data, provide additional evidence that inhibition of the IRE1-mediated UPR may have therapeutic potential in treating GBM. We propose a possible drug repurposing strategy to simultaneously target IRE1 and the spleen tyrosine kinase (SYK) in patients with GBM.
Collapse
|
9
|
Minchenko DO, Khita OO, Viletska YM, Sliusar MY, Rudnytska OV, Kozynkevych HE, Bezrodnyi BH, Khikhlo YP, Minchenko OH. Cortisol controls endoplasmic reticulum stress and hypoxia dependent regulation of insulin receptor and related genes expression in HEK293 cells. Endocr Regul 2023; 58:1-10. [PMID: 38345493 DOI: 10.2478/enr-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Objective. Glucocorticoids are important stress-responsive regulators of insulin-dependent metabolic processes realized through specific changes in genome function. The aim of this study was to investigate the impact of cortisol on insulin receptor and related genes expression in HEK293 cells upon induction the endoplasmic reticulum (ER) stress by tunicamycin and hypoxia. Methods. The human embryonic kidney cell line HEK293 was used. Cells were exposed to cortisol (10 µM) as well as inducers of hypoxia (dimethyloxalylglycine, DMOG; 0.5 mM) and ER stress (tunicamycin; 0.2 µg/ml) for 4 h. The RNA from these cells was extracted and reverse transcribed. The expression level of INSR, IRS2, and INSIG2 and some ER stress responsive genes encoding XBP1n, non-spliced variant, XBP1s, alternatively spliced variant of XBP1, and DNAJB9 proteins, was measured by quantitative polymerase chain reaction and normalized to ACTB. Results. We showed that exposure of HEK293 cells to cortisol elicited up-regulation in the expression of INSR and DNAJB9 genes and down-regulation of XBP1s, XBP1n, IRS2, and INSIG2 mRNA levels. At the same time, induction of hypoxia by DMOG led to an up-regulation of the expression level of most studied mRNAs: XBP1s and XBP1n, IRS2 and INSIG2, but did not change significantly INSR and DNAJB9 gene expression. We also showed that combined impact of cortisol and hypoxia introduced the up-regulation of INSR and suppressed XBP1n mRNA expression levels. Furthermore, the exposure of HEK293 cells to tunicamycin affected the expression of IRS2 gene and increased the level of XBP1n mRNA. At the same time, the combined treatment of these cells with cortisol and inductor of ER stress had much stronger impact on the expression of all the tested genes: strongly increased the mRNA level of ER stress dependent factors XBP1s and DNAJB9 as well as INSR and INSIG2, but down-regulated IRS2 and XBP1n. Conclusion. Taken together, the present study indicates that cortisol may interact with ER stress and hypoxia in the regulation of ER stress dependent XBP1 and DNAJB9 mRNA expression as well as INSR and its signaling and that this corticosteroid hormone modified the impact of hypoxia and especially tunicamycin on the expression of most studied genes in HEK293 cells. These data demonstrate molecular mechanisms of glucocorticoids interaction with ER stress and insulin signaling at the cellular level.
Collapse
Affiliation(s)
- Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Halyna E Kozynkevych
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Borys H Bezrodnyi
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| |
Collapse
|
10
|
Sliusar MY, Minchenko DO, Khita OO, Tsymbal DO, Viletska YM, Luzina OY, Danilovskyi SV, Ratushna OO, Minchenko OH. Hypoxia controls the expression of genes responsible for serine synthesis in U87MG cells on ERN1-dependent manner. Endocr Regul 2023; 57:252-261. [PMID: 37823569 DOI: 10.2478/enr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Objective. Serine synthesis as well as endoplasmic reticulum stress and hypoxia are important factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of ERN1 (endoplasmic reticulum to nucleus signaling) significantly suppressed the glioblastoma cell proliferation and modified the hypoxia regulation. The present study is aimed to investigate the impact of hypoxia on the expression of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine aminotransferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) in U87MG glioblastoma cells in relation to knockdown of ERN1 with the intent to reveal the role of ERN1 signaling pathway on the endoplasmic reticulum stress-dependent regulation of expression of these genes. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed to hypoxia introduced by dimethyloxalylglycine for 4 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH, PSAT1, PDPH, SHMT1, and ATF4 genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that hypoxia up-regulated the expression level of PHGDH, PSAT1, and ATF4 genes in control U87MG cells, but PSPH and SHMT1 genes expression was down-regulated. The expression of PHGDH, PSAT1, and ATF4 genes in glioblastoma cells with knockdown of ERN1 signaling protein was more sensitive to hypoxia, especially PSAT1 gene. At the same time, the expression of PSPH gene in ERN1 knockdown cells was resistant to hypoxia. The expression of SHMT1 gene, encoding the enzyme responsible for conversion of serine to glycine, showed similar negative sensitivity to hypoxia in both control and ERN1 knockdown glioblastoma cells. Conclusion. The results of the present study demonstrate that the expression of genes responsible for serine synthesis is sensitive to hypoxia in gene-specific manner and that ERN1 knockdown significantly modifies the impact of hypoxia on the expression of PHGDH, PSAT1, PSPH, and ATF4 genes in glioblastoma cells and reflects the ERN1-mediated reprograming of hypoxic regulation at gene expression level.
Collapse
Affiliation(s)
- Myroslava Y Sliusar
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Tsymbal
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha Y Luzina
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Serhij V Danilovskyi
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana O Ratushna
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleksandr H Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
11
|
Palmo T, Abbasi BA, Chanana N, Sharma K, Faruq M, Thinlas T, Abdin MZ, Pasha Q. The EDN1 Missense Variant rs5370 G > T Regulates Adaptation and Maladaptation under Hypobaric Hypoxia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11174. [PMID: 36141455 PMCID: PMC9517604 DOI: 10.3390/ijerph191811174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Endothelin 1 (EDN1) encodes a potent endogenous vasoconstrictor, ET1, to maintain vascular homeostasis and redistribution of tissue blood flow during exercise. One of the EDN1 missense polymorphisms, rs5370 G/T, has strongly been associated with cardiopulmonary diseases. This study investigated the impact of rs5370 polymorphism in high-altitude pulmonary oedema (HAPE) disorder or maladaptation and adaptation physiology in a well-characterized case-control study of high-altitude and low-altitude populations comprising 310 samples each of HAPE-patients, HAPE-free controls and native highlanders. The rs5370 polymorphism was genotyped, and the gene expression and plasma level of EDN1 were evaluated. The functional relevance of each allele was investigated in the human embryonic kidney 293 cell line after exposure to hypoxia and computationally. The T allele was significantly more prevalent in HAPE-p compared to HAPE-f and HLs. The EDN1 gene expression and ET1 bio-level were significantly elevated in HAPE-p compared to controls. Compared to the G allele, the T allele was significantly associated with elevated levels of ET-1 in all three study groups and cells exposed to hypoxia. The in silico studies further confirmed the stabilizing effect of the T allele on the structural integrity and function of ET1 protein. The ET1 rs5370 T allele is associated with an increased concentration of ET-1 in vivo and in vitro, establishing it as a potent marker in the adaptation/maladaptation physiology under the high-altitude environment. This could also be pertinent in endurance exercises at high altitudes.
Collapse
Affiliation(s)
- Tsering Palmo
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Bilal Ahmed Abbasi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Neha Chanana
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kavita Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Tashi Thinlas
- Sonam Norboo Memorial Hospital, Leh 194101, Ladakh, India
| | - Malik Z. Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Institute of Hypoxia Research, New Delhi 110067, India
| |
Collapse
|
12
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
13
|
Kotula-Balak M, Duliban M, Gurgul A, Krakowska I, Grzmil P, Bilinska B, Wolski JK. Transcriptome analysis of human Leydig cell tumours reveals potential mechanisms underlying its development. Andrologia 2021; 53:e14222. [PMID: 34494678 DOI: 10.1111/and.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 11/27/2022] Open
Abstract
Leydig cell tumours are the most common sex cord-stromal tumours. In the last years, apparent increased incidence is noted while aetiology of the tumour is still unknown. Therefore, here, we focused on the genetics of Leydig cell tumours using the next-generation sequencing. Leydig cell micronodules were revealed in patients with azoospermia who were qualified for testicular biopsy. Complete gene set of Leydig cell tumours was compared with transcriptome of healthy Leydig cells obtained from donors. Bioinformatic analysis of the obtained sequencing data revealed alterations in expression of 219 transcripts. We showed, for the first time, that a significant proportion of differentially expressed genes is directly involved in regulation of apoptotic process, which downregulation might be important to Leydig cell tumour development. Additionally, we found a significant upregulation of heat shock protein genes that might be a unique feature of Leydig cell tumours when compared to other tumour types. Our study offers fundamental transcriptomic data for future studies on human Leydig cell tumour that are crucial to determine its causes. Moreover, presented here the in-depth analysis and discussion of alterations observed in tumour transcriptome may be important for the diagnosis and therapy of this pathology.
Collapse
Affiliation(s)
- Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Artur Gurgul
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Izabela Krakowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Pawel Grzmil
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | | |
Collapse
|
14
|
Wang J, Xiang Y, Jiang S, Li H, Caviezel F, Katawatin S, Duangjinda M. Involvement of the VEGF signaling pathway in immunosuppression and hypoxia stress: analysis of mRNA expression in lymphocytes mediating panting in Jersey cattle under heat stress. BMC Vet Res 2021; 17:209. [PMID: 34098948 PMCID: PMC8186226 DOI: 10.1186/s12917-021-02912-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Extreme panting under heat stress threatens dairy cattle milk production. Previous research has revealed that the gas exchange-mediated respiratory drive in critically ill dairy cattle with low O2 saturation induces panting. Vascular endothelial growth factor (VEGF) signaling may play important roles in immunosuppression and oxidative stress during severe respiratory stress responses in heat-stressed cattle. The objectives of this study were to transcriptomically analyze mRNA expression mediating heat-induced respiratory stress-associated panting, evaluate gas exchange, screen hub genes, and verify the expression of proteins encoded by differentially expressed genes in lymphocyte pathways. RESULTS Jersey cattle were naturally heat-exposed. Physiological data were collected for response evaluation, and blood was collected for gas exchange and gene expression assays at 06:00, 10:00 and 14:00 continuously for 1 week. Lymphocytes were isolated from whole-blood samples for mRNA-seq and expression analysis of key pathway genes/proteins. The cattle respiration rates differed with time, averaging 51 bpm at 06:00, 76 bpm at 10:00, and 121 bpm at 14:00 (p < 0.05). Gas exchange analysis showed that both pH and pCO2 differed with time: they were 7.41 and 41 mmHg at 06:00, 7.45 and 37.5 mmHg at 10:00, and 7.49 and 33 mmHg at 14:00, respectively (p < 0.01). Sixteen heat-related differentially expressed genes (DEGs; 13 upregulated and 3 downregulated) were screened between 212 DEGs and 1370 heat stress-affected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) hub gene functional analysis annotated eleven genes to signal transduction, six genes to the immune response, and five genes to the endocrine response, including both prostaglandin-endoperoxide synthase 2 (PTGS2) and VEGF. Gene Ontology (GO) functional enrichment analysis revealed that oxygen regulation was associated with the phosphorus metabolic process, response to oxygen levels, response to decreased oxygen levels, response to hypoxia and cytokine activity terms. The main signaling pathways were the VEGF, hypoxia inducible factor-1(HIF-1), cytokine-cytokine receptor interaction and TNF pathways. Four genes involved Integrin beta 3 (ITBG3), PTGS2, VEGF, and myosin light chain 9 (MYL9) among the 16 genes related to immunosuppression, oxidative stress, and endocrine dysfunction were identified as participants in the VEGF signaling pathway and oxygenation. CONCLUSION These findings help elucidate the underlying immune and oxygen regulation mechanisms associated with the VEGF signaling pathway in heat-stressed dairy cattle.
Collapse
Affiliation(s)
- Jian Wang
- Faculty of Veterinary Medicine, Southwest University, Chongqing, 400700, China.
| | - Yang Xiang
- Faculty of Veterinary Medicine, Southwest University, Chongqing, 400700, China
| | - Shisong Jiang
- Department of Oncology, Oxford University, Oxford, OX3 7DQ, UK
| | - Hongchang Li
- Faculty of Veterinary Medicine, Southwest University, Chongqing, 400700, China
| | - Flurin Caviezel
- Department of Oncology, Oxford University, Oxford, OX3 7DQ, UK
| | - Suporn Katawatin
- Department of Animal Science, Khon Kaen University, Kaen, 40002, Thailand
| | - Monchai Duangjinda
- Department of Animal Science, Khon Kaen University, Kaen, 40002, Thailand
| |
Collapse
|
15
|
Expression of IDE and PITRM1 genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocr Regul 2021; 54:183-195. [PMID: 32857715 DOI: 10.2478/enr-2020-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The aim of the present investigation was to study the expression of genes encoding polyfunctional proteins insulinase (insulin degrading enzyme, IDE) and pitrilysin metallopeptidase 1 (PITRM1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of metabolism through ERN1 signaling as well as hypoxia, glucose and glutamine deprivations. METHODS The expression level of IDE and PITRM1 genes was studied in control and ERN1 knockdown U87 glioma cells under glucose and glutamine deprivations as well as hypoxia by quantitative polymerase chain reaction. RESULTS It was found that the expression level of IDE and PITRM1 genes was down-regulated in ERN1 knockdown (without ERN1 protein kinase and endoribonuclease activity) glioma cells in comparison with the control glioma cells, being more significant for PITRM1 gene. We also found up-regulation of microRNA MIR7-2 and MIRLET7A2, which have specific binding sites in 3'-untranslated region of IDE and PITRM1 mRNAs, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Only inhibition of ERN1 endoribonuclease did not change significantly the expression of IDE and PITRM1 genes in glioma cells. The expression of IDE and PITRM1 genes is preferentially regulated by ERN1 protein kinase. We also showed that hypoxia down-regulated the expression of IDE and PITRM1 genes and that knockdown of ERN1 signaling enzyme function modified the response of these gene expressions to hypoxia. Glucose deprivation increased the expression level of IDE and PITRM1 genes, but ERN1 knockdown enhanced only the effect of glucose deprivation on PITRM1 gene expression. Glutamine deprivation did not affect the expression of IDE gene in both types of glioma cells, but up-regulated PITRM1 gene and this up-regulation was stronger in ERN1 knockdown cells. CONCLUSIONS Results of this investigation demonstrate that ERN1 knockdown significantly decreases the expression of IDE and PITRM1 genes by ERN1 protein kinase mediated mechanism. The expression of both studied genes was sensitive to hypoxia as well as glucose deprivation and dependent on ERN1 signaling in gene-specific manner. It is possible that the level of these genes expression under hypoxia and glucose deprivation is a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the control of the cell metabolism.
Collapse
|
16
|
ERN1 knockdown modifies the effect of glucose deprivation on homeobox gene expressions in U87 glioma cells. Endocr Regul 2021; 54:196-206. [PMID: 32857719 DOI: 10.2478/enr-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of the present investigation was to study the expression of genes encoding homeobox proteins ZEB2 (zinc finger E-box binding homeobox 2), TGIF1 (TGFB induced factor homeobox 1), SPAG4 (sperm associated antigen 4), LHX1 (LIM homeobox 1), LHX2, LHX6, NKX3-1 (NK3 homeobox 1), and PRRX1 (paired related homeobox 1) in U87 glioma cells in response to glucose deprivation in control glioma cells and cells with knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), the major pathway of the endoplasmic reticulum stress signaling, for evaluation of it possible significance in the control of glioma growth through ERN1 signaling and chemoresistance. METHODS The expression level of homeobox family genes was studied in control (transfected by vector) and ERN1 knockdown U87 glioma cells under glucose deprivation condition by real-time quantitative polymerase chain reaction. RESULTS It was shown that the expression level of ZEB2, TGIF1, PRRX1, and LHX6 genes was up-regulated in control glioma cells treated by glucose deprivation. At the same time, the expression level of three other genes (NKX3-1, LHX1, and LHX2) was down-regulated. Furthermore, ERN1 knockdown of glioma cells significantly modified the effect glucose deprivation condition on the expression almost all studied genes. Thus, treatment of glioma cells without ERN1 enzymatic activity by glucose deprivation condition lead to down-regulation of the expression level of ZEB2 and SPAG4 as well as to more significant up-regulation of PRRX1 and TGIF1 genes. Moreover, the expression of LHX6 and NKX3-1 genes lost their sensitivity to glucose deprivation but LHX1 and LHX2 genes did not change it significantly. CONCLUSIONS The results of this investigation demonstrate that ERN1 knockdown significantly modifies the sensitivity of most studied homeobox gene expressions to glucose deprivation condition and that these changes are a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to glioma cell growth and possibly to their chemoresistance.
Collapse
|
17
|
ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocr Regul 2021; 55:72-82. [PMID: 34020533 DOI: 10.2478/enr-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Collapse
|
18
|
Wang T, Guo Y, Liu S, Zhang C, Cui T, Ding K, Wang P, Wang X, Wang Z. KLF4, a Key Regulator of a Transitive Triplet, Acts on the TGF-β Signaling Pathway and Contributes to High-Altitude Adaptation of Tibetan Pigs. Front Genet 2021; 12:628192. [PMID: 33936161 PMCID: PMC8082500 DOI: 10.3389/fgene.2021.628192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tibetan pigs are native mammalian species on the Tibetan Plateau that have evolved distinct physiological traits that allow them to tolerate high-altitude hypoxic environments. However, the genetic mechanism underlying this adaptation remains elusive. Here, based on multitissue transcriptional data from high-altitude Tibetan pigs and low-altitude Rongchang pigs, we performed a weighted correlation network analysis (WGCNA) and identified key modules related to these tissues. Complex network analysis and bioinformatics analysis were integrated to identify key genes and three-node network motifs. We found that among the six tissues (muscle, liver, heart, spleen, kidneys, and lungs), lung tissue may be the key organs for Tibetan pigs to adapt to hypoxic environment. In the lung tissue of Tibetan pigs, we identified KLF4, BCL6B, EGR1, EPAS1, SMAD6, SMAD7, KDR, ATOH8, and CCN1 genes as potential regulators of hypoxia adaption. We found that KLF4 and EGR1 genes might simultaneously regulate the BCL6B gene, forming a KLF4-EGR1-BCL6B complex. This complex, dominated by KLF4, may enhance the hypoxia tolerance of Tibetan pigs by mediating the TGF-β signaling pathway. The complex may also affect the PI3K-Akt signaling pathway, which plays an important role in angiogenesis caused by hypoxia. Therefore, we postulate that the KLF4-EGR1-BCL6B complex may be beneficial for Tibetan pigs to survive better in the hypoxia environments. Although further molecular experiments and independent large-scale studies are needed to verify our findings, these findings may provide new details of the regulatory architecture of hypoxia-adaptive genes and are valuable for understanding the genetic mechanism of hypoxic adaptation in mammals.
Collapse
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Kun Ding
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Peng Wang
- HeiLongJiang Provincial Husbandry Department, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Tana W, Noryung T, Burton GJ, van Patot MT, Ri-Li G. Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor in the High-Altitude Tibetan Placenta. Reprod Sci 2021; 28:659-664. [DOI: 10.1007/s43032-020-00443-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022]
|
20
|
Glucose deprivation affects the expression of genes encoding cAMP-activated protein kinase and related proteins in U87 glioma cells in ERN1 dependent manner. Endocr Regul 2020; 54:244-254. [PMID: 33885249 DOI: 10.2478/enr-2020-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective. The aim of this investigation was to study the expression of genes encoding cAMP-activated protein kinase catalytic and regulatory A subunits (PRKACA and PRKAR1A) and related proteins such as cAMP-dependent protein kinase inhibitors A and G (PKIA and PKIG), catalytic subunit A of protein phosphatase 3 (PPP3CA), A-kinase anchoring protein 12 (AKAP12), and praja ring finger ubiquitin ligase 2 (PJA2) in U87 glioma cells in response to glucose deprivation in both control U87 glioma cells and cells with ERN1 (endoplasmic reticulum to nucleus signaling 1) knockdown, the major pathway of the endoplasmic reticulum stress signaling, for evaluation of possible significance of glucose deprivation in ERN1 dependent regulation of glioma growth.Methods. The expression level of PRKA related genes was studied in control (transfected by vector) and ERN1 knockdown U87 glioma cells under glucose deprivation by real-time quantitative polymerase chain reaction.Results. It was shown that the expression level of PRKACA and PKIA genes was down-regulated in control glioma cells treated by glucose deprivation, but PJA2 gene was up-regulated. At the same time, the expression of four other genes (PRKAR1A, PKIG, AKAP12, and PPP3CA) was resistant to this experimental condition. Furthermore, ERN1 knockdown of glioma cells significantly modified the effect glucose deprivation on the expression almost all studied genes. Thus, treatment of glioma cells with inhibited ERN1 enzymatic activity by glucose deprivation lead to a more significant down-regulation of the expression level of PKIA and to suppression PRKAR1A gene expressions. Moreover, the ERN1 knockdown introduced up-regulation of PKIG and AKAP12 gene expressions in glioma cells treated by glucose deprivation and eliminated the sensitivity of PJA2 gene to this experimental condition.Conclusions. Results of this investigation demonstrated that ERN1 knockdown significantly modified the sensitivity of most studied PRKA related gene expressions to glucose deprivation and that these changes are a result of complex interactions of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the suppression of glioma cell proliferation and their possibly chemoresistance.
Collapse
|
21
|
ERN1 dependent regulation of TMED10, MYL9, SPOCK1, CUL4A and CUL4B genes expression at glucose and glutamine deprivations in U87 glioma cells. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|