1
|
Bojkiewicz E, Toczylowski K, Lewandowski D, Martonik D, Flisiak R, Sulik A. The Role of Chitinase 3-Like-1 (YKL-40) and Proinflammatory Biomarkers in the Pathogenesis of Pediatric Tick-Borne Encephalitis in a Polish Cohort. J Inflamm Res 2024; 17:10239-10254. [PMID: 39654857 PMCID: PMC11626975 DOI: 10.2147/jir.s480556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
Background Chitinase 3-like-1 (CHI3L1), also known as YKL-40, is a potential biomarker for neuroinflammatory conditions. It is upregulated in Alzheimer's disease, multiple sclerosis, and traumatic brain injury. However, its involvement in pediatric tick-borne encephalitis (TBE) has not been addressed yet. This study aimed to evaluate CHI3L1 and its relationship with other inflammatory cytokines, blood-brain barrier (BBB) integrity, immune response, and disease severity in pediatric patients with TBE. Patients and Methods A total of 22 pediatric TBE patients hospitalized in Bialystok, Poland were included in this study. Participants were categorized as having meningoencephalitis (n=6) or meningitis (n=16). The integrity of the brain-blood barrier (BBB) was assessed using the albumin quotient (albQ). Biomarker indices were calculated to account for variations in BBB permeability. The concentrations of CHI3L1, CCL2, chemerin, CXCL2, IFN-γ, IL-1-β, IL-4, IL-6, IL-13, and TNF-α in both serum and CSF, were measured using the Luminex Multiplex Assay od admission and two weeks later when symptoms resolved. Results CSF and serum concentrations of CHI3L1 did not differ between the encephalitis and meningitis cases. After adjusting for BBB permeability, the CHI3L1 index was 2.4-fold lower in patients with encephalitis than in those with meningitis (P=0.008). There was a post-treatment reduction of CHI3L1, IL-6, and TNF-α CSF concentrations. We also found and improvement in BBB permeability in younger children but in older albQ remained abnormal. Correlation analysis revealed associations between CHI3L1 levels and pro-inflammatory markers, notably chemerin, IL-6, and TNF-α, across both clinical groups. Conclusion Our findings suggest that CHI3L1 CSF levels reflect the inflammatory activity in pediatric TBE and may help to differentiate between meningoencephalitis and meningitis. The observed interactions between CHI3L1 and other cytokines underscore its potential involvement in inflammatory response to the virus. The prolonged disruption in BBB integrity in older children might reflect age-dependent differences in the severity of TBE. These insights advance our understanding of TBE pathogenesis in children and support further investigation of CHI3L1 as a biomarker for TBE diagnosis and management.
Collapse
Affiliation(s)
- Ewa Bojkiewicz
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Dawid Lewandowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Prančlová V, Hönig V, Zemanová M, Růžek D, Palus M. Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection. Int J Mol Sci 2024; 25:7892. [PMID: 39063134 PMCID: PMC11276942 DOI: 10.3390/ijms25147892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.
Collapse
Affiliation(s)
- Veronika Prančlová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| | - Marta Zemanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| |
Collapse
|
3
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
4
|
Zidovec-Lepej S, Bodulić K, Bogdanic M, Gorenec L, Savic V, Grgic I, Sabadi D, Santini M, Radmanic Matotek L, Kucinar J, Barbic L, Zmak L, Ferenc T, Stevanovic V, Antolasic L, Milasincic L, Hruskar Z, Vujica Ferenc M, Vilibic-Cavlek T. Proinflammatory Chemokine Levels in Cerebrospinal Fluid of Patients with Neuroinvasive Flavivirus Infections. Microorganisms 2024; 12:657. [PMID: 38674602 PMCID: PMC11052399 DOI: 10.3390/microorganisms12040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) are the most important neuroinvasive arboviruses detected in Europe. In this study, we analyzed cerebrospinal fluid (CSF) concentrations of 12 proinflammatory chemokines (CCL2, CCL3, CCL4, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, and CXCL11) in 77 patients with neuroinvasive diseases (NIDs). Flavivirus infection was confirmed in 62 patients (TBEV and WNV in 31 patients each), while in 15 patients the etiology of NID was not determined (NDE). Similar patterns of high-level expression of chemokines regulating monocyte/macrophage responses (CCL2), neutrophil recruitment (CXCL1 and CXCL8), and interferon-inducible chemoattractants for leukocytes (CXCL10 and CXCL11) have been observed in WNV and TBEV groups. None of the tested chemokines significantly differed between patients with TBEV or WNV. Concentrations of CCL17, CCL20, CXCL5, CXCL10, and CXCL11 were significantly lower in both WNV and TBEV groups compared to NID NDE patients. The logistic regression model showed that CSF concentrations of CXCL11, CXCL5, and CXCL10 could potentially be used for the classification of patients into the WNV or TBEV group versus groups with other NIDs. This study identified, for the first time, similar patterns of CSF chemokine expression in WNV and TBEV infections, suggesting common immunopathogenic mechanisms in neuroinvasive flavivirus infections that should be further evaluated.
Collapse
Affiliation(s)
- Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ivana Grgic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Dario Sabadi
- Department of Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Santini
- Department for Infections in Immunocompromised Patients, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Leona Radmanic Matotek
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Jasmina Kucinar
- Department of Serology and Immunology, Istria County Institute of Public Health, 52100 Pula, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.)
| | - Ljiljana Zmak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Microbiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Thomas Ferenc
- Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.)
| | - Ljiljana Antolasic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Ljiljana Milasincic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Mateja Vujica Ferenc
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Erhart DK, Klose V, Schäper T, Tumani H, Senel M. CXCL13 in Cerebrospinal Fluid: Clinical Value in a Large Cross-Sectional Study. Int J Mol Sci 2023; 25:425. [PMID: 38203597 PMCID: PMC10779058 DOI: 10.3390/ijms25010425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
C-X-C-motif chemokine ligand 13 (CXCL13) in cerebrospinal fluid (CSF) is increasingly used in clinical routines, although its diagnostic specificity and divergent cut-off values have been defined so far mainly for neuroborreliosis. Our aim was to evaluate the value of CSF-CXCL13 as a diagnostic and treatment response marker and its role as an activity marker in a larger disease spectrum, including neuroborreliosis and other neuroinflammatory and malignant CNS-disorders. Patients who received a diagnostic lumbar puncture (LP) (n = 1234) between July 2009 and January 2023 were included in our retrospective cross-sectional study. The diagnostic performance of CSF-CXCL13 for acute neuroborreliosis was highest at a cut-off of 428.92 pg/mL (sensitivity: 92.1%; specificity: 96.5%). In addition, CXCL13 levels in CSF were significantly elevated in multiple sclerosis with clinical (p = 0.001) and radiographic disease activity (p < 0.001). The clinical utility of CSF-CXCL13 appears to be multifaceted. CSF-CXCL13 is significantly elevated in patients with neuroborreliosis and shows a rapid and sharp decline with antibiotic therapy, but it is not specific for this disease and is also highly elevated in less common subacute neuroinfectious diseases, such as neurosyphilis and cryptococcal meningitis or in primary/secondary B-cell lymphoma.
Collapse
Affiliation(s)
- Deborah Katharina Erhart
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (D.K.E.); (T.S.); (M.S.)
| | - Veronika Klose
- German Center for Neurodegenerative Diseases (DZNE)—Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany;
| | - Tatjana Schäper
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (D.K.E.); (T.S.); (M.S.)
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (D.K.E.); (T.S.); (M.S.)
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (D.K.E.); (T.S.); (M.S.)
| |
Collapse
|
6
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
7
|
Tang J, Fu M, Xu C, Xue B, Zhou A, Chen S, Zhao H, Zhou Y, Chen J, Yang Q, Chen X. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol Sin 2023; 38:767-777. [PMID: 37328107 PMCID: PMC10590693 DOI: 10.1016/j.virs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR-/-) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Smíšková D, Džupová O, Moravcová L, Pícha D. Cerebrospinal fluid CXCL13 in non-borrelial central nervous system infections: contribution of CXCL13 to the differential diagnosis. Infect Dis (Lond) 2023; 55:551-558. [PMID: 37317698 DOI: 10.1080/23744235.2023.2222178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The chemokine CXCL13 in cerebrospinal fluid (CSF) is used as a diagnostic marker of Lyme neuroborreliosis (LNB). However, the elevated levels in other non-borrelial CNS infections and the lack of a clearly defined cut-off value are limitations of the test. METHODS In our prospective study, we evaluated CSF CXCL13 levels in patients with LNB (47 patients), tick-borne encephalitis (TBE; 46 patients), enteroviral CNS infections (EV; 45 patients), herpetic CNS infections (HV; 23 patients), neurosyphilis (NS; 11 patients) and controls (46 patients). The correlation of CXCL13 with CSF mononuclears was determined in all groups. RESULTS Median CXCL13 was significantly higher in LNB group; however, the cut-off value of 162 pg/mL was also exceeded in 22% of TBE patients, 2% EV patients, 44% HV patients and in 55% patients with NS. Sensitivity and specificity were 0.83 and 0.78, respectively, with a Youden index of 0.62. CXCL13 was significantly correlated with CSF mononuclears (p = .0024), but the type of infectious agent had a greater influence on CXCL13 levels. CONCLUSIONS Increased CXCL13 levels are useful for LNB diagnostics, but other non-purulent CNS infections causes should be considered if intrathecal synthesis of borrelia specific antibodies is not confirmed or clinical manifestations are atypical.
Collapse
Affiliation(s)
- Dita Smíšková
- Department of Infectious Diseases, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Olga Džupová
- Department of Infectious Diseases, Third Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Lenka Moravcová
- Department of Infectious Diseases, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Dušan Pícha
- Department of Infectious Diseases, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| |
Collapse
|
9
|
Bogovič P, Kastrin A, Lotrič-Furlan S, Ogrinc K, Avšič Županc T, Korva M, Knap N, Resman Rus K, Strle K, Strle F. Comparison of laboratory and immune characteristics of the initial and second phase of tick-borne encephalitis. Emerg Microbes Infect 2022; 11:1647-1656. [PMID: 35657098 PMCID: PMC9225760 DOI: 10.1080/22221751.2022.2086070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tick-borne encephalitis (TBE) usually has a biphasic course which begins with unspecific febrile illness, followed by central nervous system involvement. Because TBE is not yet suspected during the initial phase, knowledge of early TBE pathogenesis is incomplete. Herein we evaluated laboratory and immune findings in the initial and second (meningoencephalitic) phase of TBE in 88 well-defined adult patients. Comparison of nine laboratory blood parameters in both phases of TBE revealed that laboratory abnormalities, consisting of low leukocyte and platelet counts and increased liver enzymes levels, were predominately associated with the initial phase of TBE and resolved thereafter. Assessment of 29 immune mediators in serum during the initial phase, and in serum and cerebrospinal fluid (CSF) during the second phase of TBE revealed highly distinct clustering patterns among the three groups. In the initial phase of TBE, the primary finding in serum was a rather heterogeneous immune response involving innate (CXCL11), B cell (CXCL13, BAFF), and T cell mediators (IL-27 and IL-4). During the second phase of TBE, growth factors associated with angiogenesis (GRO-α and VEGF-A) were the predominant characteristic in serum, whereas innate and Th1 mediators were the defining feature of immune responses in CSF. These findings imply that distinct immune processes play a role in the pathophysiology of different phases of TBE and in different compartments.
Collapse
Affiliation(s)
- Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Ogrinc
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Strle
- Laboratory of Microbial Pathogenesis and Immunology, Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Chiffi G, Grandgirard D, Stöckli S, Valente LG, Adamantidis A, Leib SL. Tick-borne encephalitis affects sleep–wake behavior and locomotion in infant rats. Cell Biosci 2022; 12:121. [PMID: 35918749 PMCID: PMC9344439 DOI: 10.1186/s13578-022-00859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/21/2022] [Indexed: 08/30/2023] Open
Abstract
Background/Aims Tick-borne encephalitis (TBE) is a disease affecting the central nervous system. Over the last decade, the incidence of TBE has steadily increased in Europe and Asia despite the availably of effective vaccines. Up to 50% of patients after TBE suffer from post-encephalitic syndrome that may develop into long-lasting morbidity. Altered sleep–wake functions have been reported by patients after TBE. The mechanisms causing these disorders in TBE are largely unknown to date. As a first step toward a better understanding of the pathology of TBEV-inducing sleep dysfunctions, we assessed parameters of sleep structure in an established infant rat model of TBE. Methods 13-day old Wistar rats were infected with 1 × 106 FFU Langat virus (LGTV). On day 4, 9, and 21 post infection, Rotarod (balance and motor coordination) and open field tests (general locomotor activity) were performed and brains from representative animals were collected in each subgroup. On day 28 the animals were implanted with a telemetric EEG/EMG system. Sleep recording was continuously performed for 24 consecutive hours starting at day 38 post infection and visually scored for Wake, NREM, and REM in 4 s epochs. Results As a novelty of this study, infected animals showed a significant larger percentage of time spend awake during the dark phase and less NREM and REM compared to the control animals (p < 0.01 for all comparisons). Furthermore, it was seen, that during the dark phase the wake bout length in infected animals was prolonged (p = 0.043) and the fragmentation index decreased (p = 0.0085) in comparison to the control animals. LGTV-infected animals additionally showed a reduced rotarod performance ability at day 4 (p = 0.0011) and day 9 (p = 0.0055) and day 21 (p = 0.0037). A lower locomotor activity was also seen at day 4 (p = 0.0196) and day 9 (p = 0.0473). Conclusion Our data show that experimental TBE in infant rats affects sleep–wake behavior, leads to decreased spontaneous locomotor activity, and impaired moto-coordinative function. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00859-7.
Collapse
|
11
|
Zidovec-Lepej S, Vilibic-Cavlek T, Ilic M, Gorenec L, Grgic I, Bogdanic M, Radmanic L, Ferenc T, Sabadi D, Savic V, Hruskar Z, Svitek L, Stevanovic V, Peric L, Lisnjic D, Lakoseljac D, Roncevic D, Barbic L. Quantification of Antiviral Cytokines in Serum, Cerebrospinal Fluid and Urine of Patients with Tick-Borne Encephalitis in Croatia. Vaccines (Basel) 2022; 10:1825. [PMID: 36366333 PMCID: PMC9698853 DOI: 10.3390/vaccines10111825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis virus (TBEV) is one of the most significant arboviruses affecting the human central nervous system (CNS) in Europe. Data on cytokine response in TBEV infection are limited. METHODS We analyzed the cytokine response in serum, cerebrospinal fluid (CSF) and urine samples of patients with TBE. The control group consisted of patients with 'febrile headache' who had normal CSF cytology. The panel included 12 cytokines: TNF-α, IL-6, Th1 (IL-2, IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17A, IL-17F), Th22 (IL-22) cytokines and IL-10. RESULTS TBE patients were more likely to have increased levels of IL-6 and IFN-γ in CSF compared to controls (85.7% vs. 58.8% and 85.7% vs. 47.1%, respectively). However, concentrations of IL-6 (the most abundant cytokine in the CSF of both groups), IL-10 and IL-9 were lower in TBEV patients compared with controls, but the difference was statistically significant for IL-9 only (p = 0.001). By analyzing the cytokine levels in different clinical samples, all measured cytokines were detected in the serum, with the highest concentrations found for IFN-γ, TNF-α, IL-10, IL-17F and IL-22. Higher concentrations of cytokines in the CSF compared with serum were observed for IL-5, IL-6 and IL-22. All cytokines except IL-13 were detectable in urine but in a small proportion of patients, except for IL-22, which was detectable in 95.8% of patients. CONCLUSIONS Cytokine composition in different clinical samples of TBE patients reveals a different network of early innate immune response cytokines, Th1, Th2, Th9, Th22, Th17 and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health,10000 Zagreb, Croatia
- Department of Microbiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Ivana Grgic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health,10000 Zagreb, Croatia
| | - Leona Radmanic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Thomas Ferenc
- Clinical Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Dario Sabadi
- Clinic for Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vladimir Savic
- Laboratory for Virology and Serology, Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health,10000 Zagreb, Croatia
| | - Luka Svitek
- Clinic for Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ljiljana Peric
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dubravka Lisnjic
- Clinic for Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Danijela Lakoseljac
- Primorje-Gorski Kotar County Teaching Institute of Public Health, 51000 Rijeka, Croatia
| | - Dobrica Roncevic
- Primorje-Gorski Kotar County Teaching Institute of Public Health, 51000 Rijeka, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Soltani Khaboushan A, Pahlevan-Fallahy MT, Shobeiri P, Teixeira AL, Rezaei N. Cytokines and chemokines profile in encephalitis patients: A meta-analysis. PLoS One 2022; 17:e0273920. [PMID: 36048783 PMCID: PMC9436077 DOI: 10.1371/journal.pone.0273920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Encephalitis is caused by autoimmune or infectious agents marked by brain inflammation. Investigations have reported altered concentrations of the cytokines in encephalitis. This study was conducted to determine the relationship between encephalitis and alterations of cytokine levels in cerebrospinal fluid (CSF) and serum. METHODS We found possibly suitable studies by searching PubMed, Embase, Scopus, and Web of Science, systematically from inception to August 2021. 23 articles were included in the meta-analysis. To investigate sources of heterogeneity, subgroup analysis and sensitivity analysis were conducted. The protocol of the study has been registered in PROSPERO with a registration ID of CRD42021289298. RESULTS A total of 23 met our eligibility criteria to be included in the meta-analysis. A total of 12 cytokines were included in the meta-analysis of CSF concentration. Moreover, 5 cytokines were also included in the serum/plasma concentration meta-analysis. According to the analyses, patients with encephalitis had higher CSF amounts of IL-6, IL-8, IL-10, CXCL10, and TNF-α than healthy controls. The alteration in the concentration of IL-2, IL-4, IL-17, CCL2, CXCL9, CXCL13, and IFN-γ was not significant. In addition, the serum/plasma levels of the TNF-α were increased in encephalitis patients, but serum/plasma concentration of the IL-6, IL-10, CXCL10, and CXCL13 remained unchanged. CONCLUSIONS This meta-analysis provides evidence for higher CSF concentrations of IL-6, IL-8, IL-10, CXCL10, and TNF-α in encephalitis patients compared to controls. The diagnostic and prognostic value of these cytokines and chemokines should be investigated in future studies.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad-Taha Pahlevan-Fallahy
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Nima Rezaei
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Fortova A, Hönig V, Palus M, Salat J, Pychova M, Krbkova L, Vyhlidalova T, Kriha MF, Chrdle A, Ruzek D. Serum and cerebrospinal fluid phosphorylated neurofilament heavy subunit as a marker of neuroaxonal damage in tick-borne encephalitis. J Gen Virol 2022; 103. [PMID: 35506983 DOI: 10.1099/jgv.0.001743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extensive axonal and neuronal loss is the main cause of severe manifestations and poor outcomes in tick-borne encephalitis (TBE). Phosphorylated neurofilament heavy subunit (pNF-H) is an essential component of axons, and its detection in cerebrospinal fluid (CSF) or serum can indicate the degree of neuroaxonal damage. We examined the use of pNF-H as a biomarker of neuroaxonal injury in TBE. In 89 patients with acute TBE, we measured CSF levels of pNF-H and 3 other markers of brain injury (glial fibrillary acidic protein, S100B and ubiquitin C-terminal hydrolase L1) and compared the results to those for patients with meningitis of other aetiology and controls. Serum pNF-H levels were measured in 80 patients and compared with findings for 90 healthy blood donors. TBE patients had significantly (P<0.001) higher CSF pNF-H levels than controls as early as hospital admission. Serum pNF-H concentrations were significantly higher in samples from TBE patients collected at hospital discharge (P<0.0001) than in controls. TBE patients with the highest peak values of serum pNF-H, exceeding 10 000 pg ml-1, had a very severe disease course, with coma or tetraplegia. Patients requiring intensive care had significantly higher serum pNF-H levels than other TBE patients (P<0.01). Elevated serum pNF-H values were also observed in patients with incomplete recovery (P<0.05). Peak serum pNF-H levels correlated positively with the duration of hospitalization (P=0.005). Measurement of pNF-H levels in TBE patients might be useful for assessing disease severity and determining prognosis.
Collapse
Affiliation(s)
- Andrea Fortova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia
| | - Vaclav Hönig
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Martin Palus
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czechia
| | - Lenka Krbkova
- Department of Children's Infectious Disease, Faculty of Medicine and University Hospital, Masaryk University, CZ-61300 Brno, Czechia
| | - Tereza Vyhlidalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Michal F Kriha
- Department of Infectious Diseases, Hospital Ceske Budejovice, CZ-37001 Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czechia
| | - Ales Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, CZ-37001 Ceske Budejovice, Czechia.,Royal Liverpool University Hospital, Prescot St, Liverpool L7 8XP, UK
| | - Daniel Ruzek
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czechia
| |
Collapse
|
14
|
Conde JN, Sanchez-Vicente S, Saladino N, Gorbunova EE, Schutt WR, Mladinich MC, Himmler GE, Benach J, Kim HK, Mackow ER. Powassan Viruses Spread Cell to Cell during Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes. J Virol 2022; 96:e0168221. [PMID: 34643436 PMCID: PMC8754205 DOI: 10.1128/jvi.01682-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-β (IFN-β) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-β secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University New York, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
15
|
Xu J, Sun Z, Li W, Liu L, Gao F, Pan D. Epidemiological characteristics and cerebrospinal fluid cytokine profiles of enterovirus encephalitis in children in Hangzhou, China. J Med Virol 2021; 94:2645-2652. [PMID: 34862630 DOI: 10.1002/jmv.27504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/19/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022]
Abstract
Enteroviruses (EVs) are common causes of viral encephalitis in children. To better understand the epidemiological and pathological characteristics of EV encephalitis, we enrolled suspected encephalitis patients younger than 15 years old in Hangzhou, China, from October 2016 to September 2019 for cerebrospinal fluid (CSF) collection and analyses. A total of 7735 CSF samples were collected, among which 330 (4.27%) were positive for the EV genome. The positivity rate was significantly higher in boys than girls (χ2 = 5.68, p = 0.02). The monthly case numbers peaked from June to August (80.30%). Among the different age groups, the 0-2 months age group showed the highest number of cases (28.48% of all cases). The 6-7 years (10.82%) and 9-10 years (9.29%) age groups showed the highest EV-positivity rates among suspected encephalitis cases. Sixty-two EV-positive and 53 control CSF samples were collected for Bio-Plex Pro human cytokine assays that simultaneously tested 48 cytokines. Principle component analyses showed significant separation between EV-positive and control samples, but insignificant separation between children and newborns. The levels of 28 cytokines and chemokines were significantly elevated in the EV-positive group including many proinflammatory and a few anti-inflammatory cytokines, as well as chemokines belonging to the CC and CXC subfamilies. Only one cytokine, stem cell growth factor-β, showed a decrease in the EV-positive group. Thus, this study revealed age, sex, and seasonal preferences for EV encephalitis incidences in children and identified many cytokines dysregulated during EV encephalitis.
Collapse
Affiliation(s)
- Jialu Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Lifang Liu
- Department of Dermatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Gudowska-Sawczuk M, Mroczko B. Selected Biomarkers of Tick-Borne Encephalitis: A Review. Int J Mol Sci 2021; 22:10615. [PMID: 34638953 PMCID: PMC8509006 DOI: 10.3390/ijms221910615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is an acute disease caused by the tick-borne encephalitis virus. Due to the viral nature of the condition, there is no effective causal treatment for full-blown disease. Current and nonspecific TBE treatments only relieve symptoms. Unfortunately, the first phase of TBE is characterized by flu-like symptoms, making diagnosis difficult during this period. The second phase is referred to as the neurological phase as it involves structures in the central nervous system-most commonly the meninges and, in more severe cases, the brain and the spinal cord. Therefore, it is important that early markers of TBE that will guide clinical decision-making and the choice of treatment are established. In this review, we performed an extensive search of literature reports relevant to biomarkers associated with TBE using the MEDLINE/PubMed database. We observed that apart from routinely determined specific immunoglobulins, free light chains may also be useful in the evaluation of intrathecal synthesis in the central nervous system (CNS) during TBEV infection. Moreover, selected metalloproteinases, chemokines, or cytokines appear to play an important role in the pathogenesis of TBE as a consequence of inflammatory reactions and recruitment of white blood cells into the CNS. Furthermore, we reported promising findings on tau protein or Toll-like receptors. It was also observed that some people may be predisposed to TBE. Therefore, to understand the role of selected tick-borne encephalitis biomarkers, we categorized these factors and discussed their potential application in the diagnosis, prognosis, monitoring, or management of TBE.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
17
|
Pavletič M, Korva M, Knap N, Bogovič P, Lusa L, Strle K, Nahtigal Klevišar M, Vovko T, Tomažič J, Lotrič-Furlan S, Strle F, Avšič-Županc T. Upregulated Intrathecal Expression of VEGF-A and Long Lasting Global Upregulation of Proinflammatory Immune Mediators in Vaccine Breakthrough Tick-Borne Encephalitis. Front Cell Infect Microbiol 2021; 11:696337. [PMID: 34277474 PMCID: PMC8281926 DOI: 10.3389/fcimb.2021.696337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Although anti-TBE vaccines are highly effective, vaccine breakthrough (VBT) cases have been reported. With increasing evidence for immune system involvement in TBE pathogenesis, we characterized the immune mediators reflecting innate and adaptive T and B cell responses in neurological and convalescent phase in VBT TBE patients. At the beginning of the neurological phase, VBT patients have significantly higher serum levels of several innate and adaptive inflammatory cytokines compared to healthy donors, reflecting a global inflammatory state. The majority of cytokines, particularly those associated with innate and Th1 responses, are highly concentrated in CSF and positively correlate with intrathecal immune cell counts, demonstrating the localization of Th1 and proinflammatory responses in CNS, the site of disease in TBE. Interestingly, compared to unvaccinated TBE patients, VBT TBE patients have significantly higher CSF levels of VEGF-A and IFN-β and higher systemic levels of neutrophil chemoattractants IL-8/CXCL8 and GROα/CXCL1 on admission. Moreover, serum levels of IL-8/CXCL8 and GROα/CXCL1 remain elevated for two months after the onset of neurological symptoms, indicating a prolonged systemic immune activation in VBT patients. These findings provide the first insights into the type of immune responses and their dynamics during TBE in VBT patients. An observed systemic upregulation of neutrophil derived inflammation in acute and convalescent phase of TBE together with highly expressed VEGF-A could contribute to BBB disruption that facilitates the entry of immune cells and supports the intrathecal localization of Th1 responses observed in VBT patients.
Collapse
Affiliation(s)
- Miša Pavletič
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Misa Korva
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Klemen Strle
- Division of Infectious Diseases, Microbial Pathogenesis and Immunology Laboratory, Wadsworth Center, New York State (NYS) Department of Health, Albany, NY, United States
| | | | - Tomaž Vovko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Janez Tomažič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Comparison of Clinical, Laboratory and Immune Characteristics of the Monophasic and Biphasic Course of Tick-Borne Encephalitis. Microorganisms 2021; 9:microorganisms9040796. [PMID: 33920166 PMCID: PMC8070281 DOI: 10.3390/microorganisms9040796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
The biphasic course of tick-borne encephalitis (TBE) is well described, but information on the monophasic course is limited. We assessed and compared the clinical presentation, laboratory findings, and immune responses in 705 adult TBE patients: 283 with monophasic and 422 with biphasic course. Patients with the monophasic course were significantly (p ≤ 0.002) older (57 vs. 50 years), more often vaccinated against TBE (7.4% vs. 0.9%), more often had comorbidities (52% vs. 37%), and were more often treated in the intensive care unit (12.4% vs. 5.2%). Multivariate logistic regression found strong association between the monophasic TBE course and previous TBE vaccination (OR = 18.45), presence of underlying illness (OR = 1.85), duration of neurologic involvement before cerebrospinal fluid (CSF) examination (OR = 1.39), and patients’ age (OR = 1.02). Furthermore, patients with monophasic TBE had higher CSF levels of immune mediators associated with innate and adaptive (Th1 and B-cell) immune responses, and they had more pronounced disruption of the blood–brain barrier. However, the long-term outcome 2–7 years after TBE was comparable. In summary, the monophasic course is a frequent and distinct presentation of TBE that is associated with more difficult disease course and higher levels of inflammatory mediators in CSF than the biphasic course; however, the long-term outcome is similar.
Collapse
|
19
|
CXCR7, CXCR4, and Their Ligand Expression Profile in Traumatic Brain Injury. World Neurosurg 2020; 147:e16-e24. [PMID: 33189916 DOI: 10.1016/j.wneu.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a health problem worldwide, and therapeutic strategies to enhance brain tissue repair to lessen neurologic sequels are imperative. We aimed to analyze the impact of the inflammatory process in TBI through CXCR4 and CXCR7 chemokine receptors and their ligands' CXCL11 and CXCL12 expression profile in search for potential new druggable targets. METHODS Twelve pericontusional tissues from severe TBI patients submitted to surgical treatment, and 20 control brain tissues from normal autopsy were analyzed for expression profile by real-time quantitative-polymerase chain reaction. CXCR7 and CXCR4 protein expressions were analyzed by immunohistochemistry. The findings were correlated with the clinical evolution. RESULTS Increased gene expression of both receptors and their ligands was observed in TBI compared with controls, presenting high sensitivity and specificity to differentiate TBI from normal control (area under the curve ranging from 0.85 to 0.98, P < 0.001). In particular, CXCR7 expression highly correlated with CXCR4 and both ligands' expressions in TBI. Higher immunoreactions for CXCR7 and CXCR4 were identified in neurons and endothelial cells of TBI samples compared with controls. The patients presenting upregulated chemokine expression levels showed a trend toward favorable clinical evolution at up to 6 months of follow-up. CONCLUSIONS The neuroprotective trend of CXCR4, CXCR7, CXCL11, and CXCL12 in TBI observed in this initial analysis warrants further studies with more patients, analyzing the involved signaling pathways for the development of new therapeutic strategies for TBI.
Collapse
|
20
|
Nazerai L, Schøller AS, Bassi MR, Buus S, Stryhn A, Christensen JP, Thomsen AR. Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Front Immunol 2020; 11:1977. [PMID: 32973802 PMCID: PMC7461798 DOI: 10.3389/fimmu.2020.01977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, came into the spotlight in 2016 when it was found to be associated with an increased rate of microcephalic newborns in Brazil. The virus has further been recognized to cause neurologic complications in children and adults in the form of myelitis, encephalitis, acute disseminated encephalomyelitis (ADEM) and Guillain Barre Syndrome in a fraction of infected individuals. With the ultimate goal of identifying correlates of protection to guide the design of an effective vaccine, the study of the immune response to ZIKV infection has become the focus of research worldwide. Both innate and adaptive immune responses seem to be essential for controlling the infection. Induction of sufficient levels of neutralizing antibodies has been strongly correlated with protection against reinfection in various models, while the role of CD8 T cells as antiviral effectors in the CNS has been controversial. In an attempt to improve our understanding regarding the role of ZIKV-induced CD8 T cells in protective immunity inside the CNS, we have expanded on previous studies in intracranially infected mice. In a recent study, we have demonstrated that, peripheral ZIKV infection in adult C57BL/6 mice induces a robust CD8 T cell response that peaks within a week. In the present study, we used B cell deficient as well as wild-type mice to show that there is a race between CXCR3-dependent recruitment of the effector CD8 T cells and local ZIKV replication, and that CD8 T cells are capable of local viral control if they arrive in the brain early after viral invasion, in appropriate numbers and differentiation state. Our data highlight the benefits of considering this subset when designing vaccines against Zika virus.
Collapse
Affiliation(s)
- Loulieta Nazerai
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie Skak Schøller
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Masouris I, Klein M, Ködel U. The potential for CXCL13 in CSF as a differential diagnostic tool in central nervous system infection. Expert Rev Anti Infect Ther 2020; 18:875-885. [PMID: 32479125 DOI: 10.1080/14787210.2020.1770596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Central nervous system (CNS) infections can be life-threatening and are often associated with disabling sequelae. One important factor in most CNS infections is a timely pathogen-specific treatment. The diagnostic methods available, however, do not always reach a satisfying sensitivity and specificity. In these cases, there is need for additional diagnostic biomarkers. Chemokines represent potential candidates as biomarkers, since they are an important pillar of the host immune response. The aim of this review is to discuss the diagnostic potential of cerebrospinal fluid (CSF) CXCL13 in patients with CNS infections. Areas covered: Data were obtained from a literature search in PubMed up to October 2019. This review focusses on articles on the potential of CXCL13 as a diagnostic tool. The majority of identified studies aimed to characterize its role in two diseases, namely Lyme neuroborreliosis and neurosyphilis. Expert opinion: CSF CXCL13 has a significant potential as a diagnostic and monitoring add-on marker in Lyme neuroborreliosis. Differences in study design, control groups and clinical parameters between studies, however, affect sensitivity, specificity and cutoff values, underlining the need of further studies to address these issues and pave the way for a generalized clinical practice.
Collapse
Affiliation(s)
- Ilias Masouris
- Department of Neurology, University Hospital, Ludwig Maximilian University , Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig Maximilian University , Munich, Germany
| | - Uwe Ködel
- Department of Neurology, University Hospital, Ludwig Maximilian University , Munich, Germany
| |
Collapse
|
22
|
Fares M, Cochet-Bernoin M, Gonzalez G, Montero-Menei CN, Blanchet O, Benchoua A, Boissart C, Lecollinet S, Richardson J, Haddad N, Coulpier M. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation 2020; 17:76. [PMID: 32127025 PMCID: PMC7053149 DOI: 10.1186/s12974-020-01756-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis virus (TBEV) is a member of the Flaviviridae family, Flavivirus genus, which includes several important human pathogens. It is responsible for neurological symptoms that may cause permanent disability or death, and, from a medical point of view, is the major arbovirus in Central/Northern Europe and North-Eastern Asia. TBEV tropism is critical for neuropathogenesis, yet little is known about the molecular mechanisms that govern the susceptibility of human brain cells to the virus. In this study, we sought to establish and characterize a new in vitro model of TBEV infection in the human brain and to decipher cell type-specific innate immunity and its relation to TBEV tropism and neuropathogenesis. METHOD Human neuronal/glial cells were differentiated from neural progenitor cells and infected with the TBEV-Hypr strain. Kinetics of infection, cellular tropism, and cellular responses, including innate immune responses, were characterized by measuring viral genome and viral titer, performing immunofluorescence, enumerating the different cellular types, and determining their rate of infection and by performing PCR array and qRT-PCR. The specific response of neurons and astrocytes was analyzed using the same approaches after enrichment of the neuronal/glial cultures for each cellular subtype. RESULTS We showed that infection of human neuronal/glial cells mimicked three major hallmarks of TBEV infection in the human brain, namely, preferential neuronal tropism, neuronal death, and astrogliosis. We further showed that these cells conserved their capacity to mount an antiviral response against TBEV. TBEV-infected neuronal/glial cells, therefore, represented a highly relevant pathological model. By enriching the cultures for either neurons or astrocytes, we further demonstrated qualitative and quantitative differential innate immune responses in the two cell types that correlated with their particular susceptibility to TBEV. CONCLUSION Our results thus reveal that cell type-specific innate immunity is likely to contribute to shaping TBEV tropism for human brain cells. They describe a new in vitro model for in-depth study of TBEV-induced neuropathogenesis and improve our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells.
Collapse
Affiliation(s)
- Mazigh Fares
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Marielle Cochet-Bernoin
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Gaëlle Gonzalez
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Claudia N Montero-Menei
- CRCINA, UMR 1232, INSERM, Université de Nantes, Université d'Angers, F-49933, Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, CHU Angers, BB-0033-00038, Angers, France
| | | | | | - Sylvie Lecollinet
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Jennifer Richardson
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Nadia Haddad
- UMR BIPAR 956, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Coulpier
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
23
|
Pilz G, Sakic I, Wipfler P, Kraus J, Haschke-Becher E, Hitzl W, Trinka E, Harrer A. Chemokine CXCL13 in serum, CSF and blood-CSF barrier function: evidence of compartment restriction. Fluids Barriers CNS 2020; 17:7. [PMID: 32089130 PMCID: PMC7038591 DOI: 10.1186/s12987-020-0170-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background and purpose Elevation of the chemokine CXCL13 in CSF frequently occurs during active and acute CNS inflammatory processes and presumably is associated with B cell-related immune activation. Elevation levels, however, vary a lot and “leaking” of CXCL13 from blood across dysfunctional brain barriers is a possible source. The aim was to clarify the relation between CXCL13 concentrations in CSF, CXCL13 concentrations in serum and blood–CSF barrier (BCSFB) function for a correct interpretation of the intrathecal origin of CXCL13. Methods We retrospectively analyzed CXCL13 of banked CSF/serum samples (n = 69) selected from patient records and categorized the CSF CXCL13 elevations as CXCL13 negative (< 30 pg/ml), low (30–100 pg/ml), medium (101–250 pg/ml), or high (> 250 pg/ml). CXCL13 concentrations in CSF and serum and the corresponding CSF/serum CXCL13 quotients (Qcxcl13) were compared to CSF/serum albumin quotients (QAlb) as a measure for BCSFB function. The CXCL13 negative category included two subgroups with normal and dysfunctional BCSFB. Results Serum CXCL13 concentrations were similar across categories with median levels around 100 pg/ml but differed between individuals (29 to > 505 pg/ml). Despite clear evidence in serum, CXCL13 was detectable only at trace amounts (medians 3.5 and 7.5 pg/ml) in CSF of the two CXCL13 negative subgroups irrespective of a normal or pathological QAlb. Moreover, we found no association between CSF and serum CXCL13 levels or between QAlb and CSF CXCL13 levels in any of the CSF CXCL13-delineated categories. CXCL13 apparently does not “leak” from blood into CSF. This implies an intrathecal origin also for low CSF CXCL13 levels and a caveat for analyzing the Qcxcl13, because higher serum than CSF concentrations arithmetically depress the Qcxcl13 resulting in misleadingly low CSF/serum quotients. Conclusion We demonstrated that CXCL13 does not cross from blood into CSF, not even during severe BCSFB dysfunction. CSF CXCL13 elevations therefore most likely always are CNS-derived, which highlights their relevance as indicator of inflammatory CNS processes. We recommend data should not be corrected for BCSFB permeability (QAlb) and not to calculate CSF/serum quotients for CXCL13 as these may introduce error.
Collapse
Affiliation(s)
- Georg Pilz
- Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Str 79, Salzburg, 5020, Austria
| | - Irma Sakic
- Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Str 79, Salzburg, 5020, Austria
| | - Peter Wipfler
- Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Str 79, Salzburg, 5020, Austria
| | - Jörg Kraus
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.,Departent of Neurology, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | | - Wolfgang Hitzl
- Research Office, Biostatistics, Paracelsus Medical University, Salzburg, Austria.,Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria.,Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Str 79, Salzburg, 5020, Austria
| | - Andrea Harrer
- Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Str 79, Salzburg, 5020, Austria.
| |
Collapse
|
24
|
Toczylowski K, Grygorczuk S, Osada J, Wojtkowska M, Bojkiewicz E, Wozinska-Klepadlo M, Potocka P, Sulik A. Evaluation of cerebrospinal fluid CXCL13 concentrations and lymphocyte subsets in tick-borne encephalitis. Int J Infect Dis 2020; 93:40-47. [PMID: 31978584 DOI: 10.1016/j.ijid.2020.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Recent studies suggest that the clinical presentation of tick-borne encephalitis (TBE) is determined by the host immune responses to the tick-borne encephalitis virus (TBEV). The aim of the study was to characterize immune responses in TBE to give a better insight into the immunopathogenesis of this disease. METHODS Anti-TBEV antibody levels, cerebrospinal fluid (CSF) and blood lymphoid populations, and concentrations of CXCL13 (a potent B-cell and T-cell chemoattractant), were analyzed in 35 patients with TBE (20 adults and 15 children). RESULTS When compared with the blood, the CSF lymphoid population was significantly enriched in CD4+ T-cells and relatively depleted in natural killer (NK) cells and B lymphocytes. In comparison with TBE meningitis, patients suffering from TBE meningoencephalitis (n = 11, 31%) had a 3.5-fold higher median CSF CXCL13 concentration, 1.8-fold higher CSF/serum ratio of anti-TBEV IgG antibodies, and 1.8-fold higher median CSF cell count. CSF CXCL13 levels did not change significantly in children with TBE meningitis receiving supportive treatment, but decreased in children with TBE meningoencephalitis who received intravenous steroids. CONCLUSIONS CD4+ cells are abundant in the CSF of patients with TBE. CXCL13 may be involved in the neuropathology of TBE by attracting different subsets of lymphocytes to the CSF.
Collapse
Affiliation(s)
- Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland.
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Żurawia 14, 15-540 Bialystok, Poland.
| | - Joanna Osada
- Department of Hematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland.
| | - Malgorzata Wojtkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland.
| | - Ewa Bojkiewicz
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland.
| | - Marta Wozinska-Klepadlo
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland.
| | - Paulina Potocka
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland.
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland.
| |
Collapse
|
25
|
Appelgren D, Enocsson H, Skogman BH, Nordberg M, Perander L, Nyman D, Nyberg C, Knopf J, Muñoz LE, Sjöwall C, Sjöwall J. Neutrophil Extracellular Traps (NETs) in the Cerebrospinal Fluid Samples from Children and Adults with Central Nervous System Infections. Cells 2019; 9:cells9010043. [PMID: 31877982 PMCID: PMC7016761 DOI: 10.3390/cells9010043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Neutrophils operate as part of the innate defence in the skin and may eliminate the Borrelia spirochaete via phagocytosis, oxidative bursts, and hydrolytic enzymes. However, their importance in Lyme neuroborreliosis (LNB) is unclear. Neutrophil extracellular trap (NET) formation, which is associated with the production of reactive oxygen species, involves the extrusion of the neutrophil DNA to form traps that incapacitate bacteria and immobilise viruses. Meanwhile, NET formation has recently been studied in pneumococcal meningitis, the role of NETs in other central nervous system (CNS) infections has previously not been studied. Here, cerebrospinal fluid (CSF) samples from clinically well-characterised children (N = 111) and adults (N = 64) with LNB and other CNS infections were analysed for NETs (DNA/myeloperoxidase complexes) and elastase activity. NETs were detected more frequently in the children than the adults (p = 0.01). NET presence was associated with higher CSF levels of CXCL1 (p < 0.001), CXCL6 (p = 0.007), CXCL8 (p = 0.003), CXCL10 (p < 0.001), MMP-9 (p = 0.002), TNF (p = 0.02), IL-6 (p < 0.001), and IL-17A (p = 0.03). NETs were associated with fever (p = 0.002) and correlated with polynuclear pleocytosis (rs = 0.53, p < 0.0001). We show that neutrophil activation and active NET formation occur in the CSF samples of children and adults with CNS infections, mainly caused by Borrelia and neurotropic viruses. The role of NETs in the early phase of viral/bacterial CNS infections warrants further investigation.
Collapse
Affiliation(s)
- Daniel Appelgren
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Helena Enocsson
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden; (H.E.); (C.S.)
| | - Barbro H. Skogman
- Center for Clinical Research Dalarna-Uppsala University, Region Dalarna and Faculty of Medicine and Health Sciences, Örebro University, SE-702 81 Örebro, Sweden;
| | - Marika Nordberg
- Åland Central Hospital, Department of Infectious Diseases, AX-22 100 Mariehamn, Åland, Finland; (M.N.); (L.P.); (C.N.)
| | - Linda Perander
- Åland Central Hospital, Department of Infectious Diseases, AX-22 100 Mariehamn, Åland, Finland; (M.N.); (L.P.); (C.N.)
| | - Dag Nyman
- Bimelix AB, AX-22 100 Mariehamn, Åland, Finland;
| | - Clara Nyberg
- Åland Central Hospital, Department of Infectious Diseases, AX-22 100 Mariehamn, Åland, Finland; (M.N.); (L.P.); (C.N.)
| | - Jasmin Knopf
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), DE-91 054 Erlangen, Germany; (J.K.); (L.E.M.)
| | - Luis E. Muñoz
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), DE-91 054 Erlangen, Germany; (J.K.); (L.E.M.)
| | - Christopher Sjöwall
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden; (H.E.); (C.S.)
| | - Johanna Sjöwall
- Clinic of Infectious Diseases, Linköping University Hospital, SE-581 85 Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
- Correspondence:
| |
Collapse
|
26
|
Pokorna Formanova P, Palus M, Salat J, Hönig V, Stefanik M, Svoboda P, Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J Neuroinflammation 2019; 16:205. [PMID: 31699097 PMCID: PMC6839073 DOI: 10.1186/s12974-019-1596-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a severe neuropathological disorder caused by tick-borne encephalitis virus (TBEV). Brain TBEV infection is characterized by extensive pathological neuroinflammation. The mechanism by which TBEV causes CNS destruction remains unclear, but growing evidence suggests that it involves both direct neuronal damage by the virus infection and indirect damage caused by the immune response. Here, we aimed to examine the TBEV-infection-induced innate immune response in mice and in human neural cells. We also compared cytokine/chemokine communication between naïve and infected neuronal cells and astrocytes. Methods We used a multiplexed Luminex system to measure multiple cytokines/chemokines and growth factors in mouse serum samples and brain tissue, and in human neuroblastoma cells (SK-N-SH) and primary cortical astrocytes (HBCA), which were infected with the highly pathogenic TBEV strain Hypr. We also investigated changes in cytokine/chemokine production in naïve HBCA cells treated with virus-free supernatants from TBEV-infected SK-N-SH cells and in naïve SK-N-SH cells treated with virus-free supernatants from TBEV-infected HBCA cells. Additionally, a plaque assay was performed to assess how cytokine/chemokine treatment influenced viral growth following TBEV infection. Results TBEV-infected mice exhibited time-dependent increases in serum and brain tissue concentrations of multiple cytokines/chemokines (mainly CXCL10/IP-10, and also CXCL1, G-CSF, IL-6, and others). TBEV-infected SK-N-SH cells exhibited increased production of IL-8 and RANTES and downregulated MCP-1 and HGF. TBEV infection of HBCA cells activated production of a broad spectrum of pro-inflammatory cytokines, chemokines, and growth factors (mainly IL-6, IL-8, CXCL10, RANTES, and G-CSF) and downregulated the expression of VEGF. Treatment of SK-N-SH with supernatants from infected HBCA induced expression of a variety of chemokines and pro-inflammatory cytokines, reduced SK-N-SH mortality after TBEV infection, and decreased virus growth in these cells. Treatment of HBCA with supernatants from infected SK-N-SH had little effect on cytokine/chemokine/growth factor expression but reduced TBEV growth in these cells after infection. Conclusions Our results indicated that both neurons and astrocytes are potential sources of pro-inflammatory cytokines in TBEV-infected brain tissue. Infected/activated astrocytes produce cytokines/chemokines that stimulate the innate neuronal immune response, limiting virus replication, and increasing survival of infected neurons.
Collapse
Affiliation(s)
- Petra Pokorna Formanova
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Martin Palus
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
| | - Jiri Salat
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Vaclav Hönig
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
| | - Michal Stefanik
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Pavel Svoboda
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Daniel Ruzek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic. .,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
27
|
Bogovič P, Lusa L, Korva M, Lotrič-Furlan S, Resman-Rus K, Pavletič M, Avšič-Županc T, Strle K, Strle F. Inflammatory Immune Responses in Patients with Tick-Borne Encephalitis: Dynamics and Association with the Outcome of the Disease. Microorganisms 2019; 7:microorganisms7110514. [PMID: 31683598 PMCID: PMC6920956 DOI: 10.3390/microorganisms7110514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Information on the association of inflammatory immune responses and disease outcome after tick-borne encephalitis (TBE) is limited. In the present study, we assessed the levels of 24 cytokines/chemokines associated with innate and adaptive immune responses in matched serum and cerebrospinal fluid (CSF) samples of 81 patients at first visit, and in serum at follow-up time points. Serum levels of several cytokines/chemokines obtained during the meningoencephalitic phase of TBE differed compared to the levels at a follow-up visit 2 months later; several significant differences were also found in cytokine/chemokine levels in serum at 2 months compared to the last time point, 2–7 years after acute illness. Cytokines/chemokines levels in CSF or serum obtained at the time of acute illness or serum levels obtained 2 months after the onset of TBE did not have predictive value for an unfavorable outcome 2–7 years later. In contrast, serum levels of mediators associated with Th17 responses were lower in patients with unfavorable outcome whereas those associated with other adaptive or innate immune responses were higher at the last visit in those with an unfavorable outcome. These findings provide new insights into the immunopathogenesis of TBE and implicate inflammatory immune responses with post-encephalitic syndrome years after the initial infection.
Collapse
Affiliation(s)
- Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
- Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia.
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia.
| | - Katarina Resman-Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Miša Pavletič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Klemen Strle
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Masachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Liba Z, Nohejlova H, Capek V, Krsek P, Sediva A, Kayserova J. Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS One 2019; 14:e0219987. [PMID: 31356620 PMCID: PMC6663008 DOI: 10.1371/journal.pone.0219987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The recognition of active inflammation in the central nervous system (CNS) in the absence of infectious agents is challenging. The present study aimed to determine the diagnostic relevance of five selected chemo/cytokines in the recognition of CNS inflammation and in the context of traditional cerebrospinal fluid (CSF) biomarkers (white blood cell [WBC] counts, oligoclonal bands, protein levels, CSF/serum albumin ratios) and clinical diagnoses. METHODS C-C and C-X-C motif ligands (CCL2, CXCL8, 10 and 13) and interleukin (IL) 6 levels in the CSF and serum from 37 control and 87 symptomatic children with ten different (mostly noninfectious) inflammatory CNS disorders (16 of which had follow-up samples after recovery) were determined using Luminex multiple bead technology and software. Nonparametric tests were used; p < 0.05 was considered statistically significant. Receiver operating characteristic curves were constructed to analyze controls and 1) all symptomatic samples or 2) symptomatic samples without CSF pleocytosis. RESULTS Compared with the control CSF samples, levels of all investigated chemo/cytokines were increased in symptomatic CSF samples, and only IL-6 remained elevated in recovery samples (p ≤ 0.001). CSF CXCL-13 levels (> 10.9 pg/mL) were the best individual discriminatory criterion to differentiate neuroinflammation (specificity/sensitivity: 97/72% and 97/61% for samples without pleocytosis), followed by CSF WBC counts (specificity/sensitivity: 97/62%). The clinical utility of the remaining CSF chemo/cytokine levels was determined in descending order of sensitivities corresponding to thresholds that ensured 97% specificity for neuroinflammation in samples without pleocytosis (pg/mL; sensitivity %): IL-6 (3.8; 34), CXCL8 (32; 26), CXCL10 (317; 24) and CCL2 (387; 10). Different diagnosis-related patterns of CSF chemo/cytokines were observed. CONCLUSIONS The increased CSF level of CXCL13 was the marker with the greatest predictive utility for the general recognition of neuroinflammation among all of the individually investigated biomarkers. The potential clinical utility of chemo/cytokines in the differential diagnosis of neuroinflammatory diseases was identified.
Collapse
Affiliation(s)
- Zuzana Liba
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- * E-mail:
| | - Hana Nohejlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Vaclav Capek
- Bioinformatics Centre, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
30
|
Inflammatory Immune Responses in the Pathogenesis of Tick-Borne Encephalitis. J Clin Med 2019; 8:jcm8050731. [PMID: 31121969 PMCID: PMC6571551 DOI: 10.3390/jcm8050731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 01/26/2023] Open
Abstract
Clinical manifestations of tick-borne encephalitis (TBE) are thought to result from the host immune responses to infection, but knowledge of such responses is incomplete. We performed a detailed clinical evaluation and characterization of innate and adaptive inflammatory immune responses in matched serum and cerebrospinal fluid (CSF) samples from 81 adult patients with TBE. Immune responses were then correlated with laboratory and clinical findings. The inflammatory immune responses were generally site-specific. Cytokines and chemokines associated with innate and Th1 adaptive immune responses were significantly higher in CSF, while mediators associated with Th17 and B-cell responses were generally higher in serum. Furthermore, mediators associated with innate and Th1 adaptive immune responses were positively associated with disease severity, whereas Th17 and B cell immune responses were not. During the meningoencephalitic phase of TBE, innate and Th1 adaptive inflammatory mediators were highly concentrated in CSF, the site of the disease. The consequence of this robust immune response was more severe acute illness. In contrast, inflammatory mediators associated with B cell and particularly Th17 responses were concentrated in serum. These findings provide new insights into the immunopathogenesis of TBE and implicate innate and Th1 adaptive responses in severity and clinical presentation of acute illness.
Collapse
|
31
|
Niu F, Liao K, Hu G, Sil S, Callen S, Guo ML, Yang L, Buch S. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol 2019; 218:700-721. [PMID: 30626719 PMCID: PMC6363463 DOI: 10.1083/jcb.201712011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cocaine is known to facilitate the transmigration of inflammatory leukocytes into the brain, an important mechanism underlying neuroinflammation. Pericytes are well-recognized as important constituents of the blood-brain barrier (BBB), playing a key role in maintaining barrier integrity. In the present study, we demonstrate for the first time that exposure of human brain vascular pericytes to cocaine results in enhanced secretion of CXCL10, leading, in turn, to increased monocyte transmigration across the BBB both in vitro and in vivo. This process involved translocation of σ-1 receptor (σ-1R) and interaction of σ-1R with c-Src kinase, leading to activation of the Src-PDGFR-β-NF-κB pathway. These findings imply a novel role for pericytes as a source of CXCL10 in the pericyte-monocyte cross talk in cocaine-mediated neuroinflammation, underpinning their role as active components of the innate immune responses.
Collapse
Affiliation(s)
- Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
32
|
Pilz G, Wipfler P, Otto F, Hitzl W, Afazel S, Haschke-Becher E, Trinka E, Harrer A. Cerebrospinal fluid CXLC13 indicates disease course in neuroinfection: an observational study. J Neuroinflammation 2019; 16:13. [PMID: 30660201 PMCID: PMC6339696 DOI: 10.1186/s12974-019-1405-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The chemokine CXCL13 is an intensively investigated biomarker in Lyme neuroborreliosis (LNB). Its role in other neuroinfections is increasingly recognized but less clear. OBJECTIVE To determine the significance of CXCL13 in established central nervous system (CNS) infections other than LNB by matching cerebrospinal fluid (CSF) CXCL13 elevations with severity of the disease course. METHODS We investigated 26 patients with bacterial (n = 10) and viral (n = 16; tick-borne encephalitis, n = 6; varicella zoster infection, n = 10) neuroinfections of whom CSF CXCL13 levels were available twice, from lumbar punctures (LP) performed at admission and follow-up. As outcome classification, we dichotomized disease courses into "uncomplicated" (meningitis, monoradiculitis) and "complicated" (signs of CNS parenchymal involvement such as encephalitis, myelitis, abscesses, or vasculitis). CXCL13 elevations above 250 pg/ml were classified as highly elevated. RESULTS Eight of 26 patients (31%) with both bacterial (n = 4) and viral (n = 4) neuroinfections had a complicated disease course. All of them but only 3/18 patients (17%) with an uncomplicated disease course had CSF CXCL13 elevations > 250 pg/ml at the follow-up LP (p < 0.001). At admission, 4/8 patients (50%) with a complicated disease course and 3/18 patients (17%) with an uncomplicated disease course showed CXCL13 elevations > 250 pg/ml. All four patients with a complicated disease course but only one with an uncomplicated disease course had sustained CXCL13 elevations at follow-up. Patient groups did not differ with regard to age, time since symptom onset, LP intervals, type of infections, and anti-pathogen treatments. CONCLUSION Our study revealed pronounced CXCL13 elevations in CSF of patients with severe disease courses of bacterial and viral neuroinfections. This observation indicates a role of CXCL13 in the CNS immune defense and points at an additional diagnostic value as biomarker for unresolved immune processes leading to or associated with complications.
Collapse
Affiliation(s)
- Georg Pilz
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria.
| | - Peter Wipfler
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Hitzl
- Research Office, Biostatistics, Paracelsus Medical University, Salzburg, Austria.,Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Shahrzad Afazel
- Department of Laboratory Medicine, Landeskrankenhaus, Paracelsus Medical University, Salzburg, Austria
| | - Elisabeth Haschke-Becher
- Department of Laboratory Medicine, Landeskrankenhaus, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
33
|
Yu SP, Ong KC, Perera D, Wong KT. Neuronal transcriptomic responses to Japanese encephalitis virus infection with a special focus on chemokine CXCL11 and pattern recognition receptors RIG-1 and MDA5. Virology 2019; 527:107-115. [PMID: 30481615 DOI: 10.1016/j.virol.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 01/30/2023]
Abstract
Japanese encephalitis virus (JEV) causes central nervous system neuronal injury and inflammation. A clear understanding of neuronal responses to JEV infection remains elusive. Using the Affymetrix array to investigate the transcriptome of infected SK-N-MC cells, 1316 and 2737 dysregulated genes (≥ 2/-2 fold change, P < 0.05) were found at 48 hours post-infection (hpi) and 60 hpi, respectively. The genes were mainly involved in anti-microbial responses, cell signalling, cellular function and maintenance, and cell death and survival. Among the most highly upregulated genes (≥ 10 folds, P < 0.05) were chemokines CCL5, CXCL11, IL8 and CXCL10. The upregulation and expression of CXCL11 were confirmed by qRT-PCR and immunofluorescence. Pathogen recognition receptors retinoic acid-inducible gene-1 (RIG-1) and melanoma differentiation-associated protein 5 (MDA5) were also upregulated. Our results strongly suggest that neuronal cells play a significant role in immunity against JEV. CXCL11, RIG-1 and MDA5 and other cytokines may be important in neuropathogenesis.
Collapse
Affiliation(s)
- Shu Pin Yu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, University Malaysia Sarawak, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Zheng Z, Yang J, Jiang X, Liu Y, Zhang X, Li M, Zhang M, Fu M, Hu K, Wang H, Luo MH, Gong P, Hu Q. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:53-68. [PMID: 29760190 DOI: 10.4049/jimmunol.1701507] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention.
Collapse
Affiliation(s)
- Zifeng Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyu Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuan Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China; and
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
35
|
Grygorczuk S, Świerzbińska R, Kondrusik M, Dunaj J, Czupryna P, Moniuszko A, Siemieniako A, Pancewicz S. The intrathecal expression and pathogenetic role of Th17 cytokines and CXCR2-binding chemokines in tick-borne encephalitis. J Neuroinflammation 2018; 15:115. [PMID: 29678185 PMCID: PMC5909263 DOI: 10.1186/s12974-018-1138-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is a clinically variable but potentially severe Flavivirus infection, with the outcome strongly dependent on secondary immunopathology. Neutrophils are present in cerebrospinal fluid (CSF) of TBE patients, but their pathogenetic role remains unknown. In animal models, neutrophils contributed both to the Flavivirus entry into central nervous system (CNS) and to the control of the encephalitis, which we attempted to evaluate in human TBE. METHODS We analyzed records of 240 patients with TBE presenting as meningitis (n = 110), meningoencephalitis (n = 114) or meningoencephalomyelitis (n = 16) assessing CSF neutrophil count on admission and at follow-up 2 weeks later, and their associations with other laboratory and clinical parameters. We measured serum and CSF concentrations of Th17-type cytokines (interleukin-17A, IL-17F, IL-22) and chemokines attracting neutrophils (IL-8, CXCL1, CXCL2) in patients with TBE (n = 36 for IL-8, n = 15 for other), with non-TBE aseptic meningitis (n = 6) and in non-meningitis controls (n = 7), using commercial ELISA assays. The results were analyzed with non-parametric tests with p < 0.05 considered as significant. RESULTS On admission, neutrophils were universally present in CSF constituting 25% (median) of total pleocytosis, but on follow-up, they were absent in most of patients (58%) and scarce (< 10%) in 36%. CSF neutrophil count did not correlate with lymphocyte count and blood-brain barrier integrity, did not differ between meningitis and meningoencephalitis, but was higher in meningoencephalomyelitis patients. Prolonged presence of neutrophils in follow-up CSF was associated with encephalitis and neurologic sequelae. All the studied cytokines were expressed intrathecally, with IL-8 having the highest CSF concentration index. Additionally, IL-17A concentration was significantly increased in serum. IL-17F and CXCL1 CSF concentrations correlated with neutrophil count and CXCL1 concentration was higher in patients with encephalitis. CONCLUSIONS The neutrophil CNS infiltrate does not correlate directly with TBE severity, but is associated with clinical features like myelitis, possibly being involved in its pathogenesis. Th17 cytokine response is present in TBE, especially intrathecally, and contributes to the CNS neutrophilic inflammation. IL-8 and CXCL1 may be chemokines directly responsible for the neutrophil migration.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland.
| | - Renata Świerzbińska
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Maciej Kondrusik
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Dunaj
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Piotr Czupryna
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Anna Moniuszko
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | | | - Sławomir Pancewicz
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
36
|
Intrathecal expression of IL-5 and humoral response in patients with tick-borne encephalitis. Ticks Tick Borne Dis 2018; 9:896-911. [PMID: 29602685 DOI: 10.1016/j.ttbdis.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 01/31/2023]
Abstract
AIM The aim of the study was to assess the role of an early specific humoral response in human infection with a tick-borne encephalitis virus (TBEV) and the role of IL-5 as its potential mediator and marker. MATERIALS AND METHODS The retrospective study involved a cohort of 199 patients diagnosed with TBE, in whom anti-TBEV IgM and IgG antibody titers were analyzed on admission and compared with clinical presentation and basic laboratory parameters. The prospective study included 50 TBE patients in whom IL-5 serum and CSF concentration was measured with ELISA on admission in the TBE neurologic phase and in selected patients before discharge, at follow-up or in samples obtained before the neurologic phase onset. RESULTS The serum anti-TBEV IgM correlated with good clinical outcome and the CSF anti-TBEV IgM with more pronounced CSF inflammation on admission, but also with its more complete resolution on follow-up. The serum anti-TBEV IgG correlated with milder presentation and better outcome. Concentration of IL-5 was increased in CSF but not in the serum of TBE patients. IL-5 concentration index on admission favored its intrathecal synthesis. IL-5 did not correlate significantly with clinical presentation and specific IgM and IgG titers. CONCLUSIONS Specific anti-TBEV IgM systemic and intrathecal response and IgG systemic response are protective, together favoring milder presentation, better outcome and resolution of central nervous system (CNS) inflammation. IL-5 is expressed intrathecally in TBE, but its pathogenetic role remains unclear.
Collapse
|
37
|
Koper OM, Kamińska J, Grygorczuk S, Zajkowska J, Kemona H. CXCL9 concentrations in cerebrospinal fluid and serum of patients with tick-borne encephalitis. Arch Med Sci 2018; 14:313-320. [PMID: 29593804 PMCID: PMC5868655 DOI: 10.5114/aoms.2016.58667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The aim of our current study was to evaluate cerebrospinal fluid (CSF) and serum CXCL9 concentrations and diagnostic usefulness of this molecule in tick-borne encephalitis (TBE). The study included TBE patients in the acute phase (TBE I) and after 2 weeks of follow-up (TBE II). The control group consisted of patients investigated for suspected central nervous system (CNS) infection, but with normal CSF findings. MATERIAL AND METHODS Concentrations of CXCL9 were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Cerebrospinal fluid and serum concentrations of CXCL9 in patients with TBE were significantly higher than in controls (p < 0.001). This alteration was also observed in the case of the CXCL9 index (ICXCL9; CSF CXCL9 concentration divided by serum CXCL9 concentration) (p < 0.001); moreover, ICXCL9 significantly decreased after 2 weeks (p < 0.001). This is the first study to evaluate the CSF and serum levels of CXCL9 in subjects with TBE. CONCLUSIONS CXCL9 is a ligand for CXCR3, which was found on all Th1 memory lymphocytes present in the peripheral blood; therefore the elevated concentrations of CXCL9 in TBE patients as compared to the controls might indicate that this chemokine perhaps takes part in the trafficking of Th1 cells into the CNS. The results presented here support the hypothesis that CXCL9 may play a role in TBE. However, further studies are required to determine whether this protein might be used as a potential tool for the diagnosis and monitoring of inflammation in TBE.
Collapse
Affiliation(s)
- Olga M. Koper
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Halina Kemona
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
38
|
Chemokines CXCL10, CXCL11, and CXCL13 in acute disseminated encephalomyelitis, non-polio enterovirus aseptic meningitis, and neuroborreliosis: CXCL10 as initial discriminator in diagnostic algorithm? Neurol Sci 2017; 39:471-479. [PMID: 29288471 DOI: 10.1007/s10072-017-3227-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Abstract
We investigated potential diagnostic usefulness of serum and cerebrospinal fluid (CSF) concentrations of chemokines CXCL10, CXCL11, and CXCL13 in pediatric patients with acute disseminated encephalomyelitis (ADEM) (n = 23), non-polio enterovirus aseptic meningitis (NPEV AM) (n = 20), and neuroborreliosis (NB) (n = 21) and children with acute infectious diseases with neurological symptoms but with excluded neuroinfection/neuroinflammation (controls, n = 20). CSF levels of CXCL10 and CXCL11 were higher in patients with NPEV AM than those in other children, and CXCL10 levels showed a high discriminative potential (area under the receiver operating characteristic curve, ROC, 0.982) with high specificity and sensitivity (both 95%). CSF levels of CXCL13 were higher in NB patients than those in other children; however, discriminative potential (area under ROC curve 0.814) and diagnostic properties were moderate (sensitivity 67%, specificity 97%). Data suggest usefulness of chemokine quantification as a diagnostic aid in children with suspected ADEM, NPEV AM, or NB.
Collapse
|
39
|
Ignatieva EV, Igoshin AV, Yudin NS. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol Biol 2017; 17:259. [PMID: 29297316 PMCID: PMC5751789 DOI: 10.1186/s12862-017-1107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. RESULTS Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. CONCLUSIONS A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Alexander V Igoshin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
40
|
Chowdhury P, Khan SA. Significance of CCL2, CCL5 and CCR2 polymorphisms for adverse prognosis of Japanese encephalitis from an endemic population of India. Sci Rep 2017; 7:13716. [PMID: 29057937 PMCID: PMC5651904 DOI: 10.1038/s41598-017-14091-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis (JE) is a major contributor for viral encephalitis in Asia. Vaccination programme has limited success for largely populated JE endemic countries like India and disease exposure is unavoidable. Involvement of chemokines and its co-receptors for adverse prognosis of JE have been documented both in vitro and in vivo. Identification of the genetic predisposing factor for JE infection in humans is crucial but not yet established. Therefore, we investigated the association of single nucleotide polymorphisms (SNPs) in chemokines (CCL2 and CCL5) and its co-receptors (CCR2 and CCR5) with their protein level for JE. The study enrolled 87 symptomatic JE cases (mild: severe = 24:63) and 94 asymptomatic controls. Our study demonstrated that CCL2 (rs1024611G), CCL5 (rs2280788G) and CCR2 (rs1799864A) significantly associated with JE (Odds ratio = 1.63, 2.95 and 2.62, respectively and P = 0.045, P = 0.05 and P = 0.0006, respectively). The study revealed that rs1024611G allele was associated with elevated level of CCL2. CCL5 elevation associated with JE mortality having a Cox proportional hazard of 1.004 (P = 0.033). In conclusion, SNPs of chemokine viz. CCL2 (rs1024611G) and its receptor CCR2 (rs1799864A) significantly associated with JE which may serve as possible genetic predisposing factor and CCL5 protein level may act as marker for disease survival.
Collapse
Affiliation(s)
- Purvita Chowdhury
- Arbovirology division, Regional Medical Research Centre, NE Region, ICMR, Dibrugarh, 786001, Assam, India
| | - Siraj Ahmed Khan
- Arbovirology division, Regional Medical Research Centre, NE Region, ICMR, Dibrugarh, 786001, Assam, India.
| |
Collapse
|
41
|
Palus M, Vancova M, Sirmarova J, Elsterova J, Perner J, Ruzek D. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity. Virology 2017; 507:110-122. [DOI: 10.1016/j.virol.2017.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/11/2022]
|
42
|
Biomarkers in Cerebrospinal Fluid of Children With Tick-borne Encephalitis: Association With Long-term Outcome. Pediatr Infect Dis J 2016; 35:961-6. [PMID: 27187756 DOI: 10.1097/inf.0000000000001210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is a major cause of meningoencephalitis in children in endemic areas, and long-term residual problems are not uncommon. Currently, no predictive markers in the acute phase are available that identify children at risk of incomplete recovery. We measured cytokines, chemokines and markers of neuronal damage in cerebrospinal fluid (CSF) in children with TBE and central nervous system (CNS) involvement. METHODS CSF from 37 children with TBE with CNS involvement was analyzed. Concentrations of 16 cytokines, chemokines and 5 markers of neuronal damage were assessed in CSF, using a multiplex assay, and correlated with clinical findings in the acute phase (n = 37), and with long-term outcome (n=22). RESULTS Significantly higher levels of CSF interferon (IFN)-γ, interleukin (IL)-4, IL-6 and IL-8 were detected in the acute phase from children who later developed sequelae. Although most of the studied markers of neuronal damage displayed no significant differences between children with sequelae and those with good outcome, neuron-specific enolase correlated inversely. The grade of CSF pleocytosis correlated positively with the levels of IFN-γ, IL-4 and IL-6; however, pleocytosis alone did not predict sequelae. Increasing age correlated positively with IL-4, IL-6 and IL-8 values. CONCLUSIONS The mechanism underlying the CNS pathology causing sequelae in TBE appears related to the grade of inflammation in CNS, rather than to direct neuronal destruction. High concentration of IFN-γ, IL-4, IL-6 and IL-8 in CSF might indicate a risk for incomplete recovery in childhood TBE.
Collapse
|
43
|
Zhang X, Zheng Z, Liu X, Shu B, Mao P, Bai B, Hu Q, Luo M, Ma X, Cui Z, Wang H. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. J Neuroinflammation 2016; 13:209. [PMID: 27576490 PMCID: PMC5004318 DOI: 10.1186/s12974-016-0665-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. Methods BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. Results In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. Conclusions Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0665-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Xijuan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Bo Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Panyong Mao
- Beijing 302 Hospital, Beijing, 100039, China
| | - Bingke Bai
- Beijing 302 Hospital, Beijing, 100039, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Minhua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai, China
| | - Xiaohe Ma
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China. .,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.
| |
Collapse
|
44
|
Zeng YL, Lin YQ, Zhang NN, Zou CN, Zhang HL, Peng F, Liu ZJ, Zheng WH, Yan JH, Liu L. CXCL13 chemokine as a promising biomarker to diagnose neurosyphilis in HIV-negative patients. SPRINGERPLUS 2016; 5:743. [PMID: 27376011 PMCID: PMC4909691 DOI: 10.1186/s40064-016-2462-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/29/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chemokine ligand 13 (CXCL13) is believed to play a role in the recruitment of B cells in the central nervous system during neuroinflammation. Neurosyphilis is a group of clinical syndromes of the central nervous system caused by Treponema pallidum (T. pallidum) infection. The relationship between CXCL13 and neurosyphilis still needs further study. In our study, CSF and serum CXCL13 concentrations were detected among 40 neurosyphilis patients, 31 syphilis/non-neurosyphilis patients, 26 non-syphilis/other central nervous system diseases patients. Serum CXCL13 concentrations were detected in 49 healthy persons. All enrolled persons were HIV-negative. Receiver operating characteristic (ROC) analysis was performed to determine the threshold value that could distinguish neurosyphilis from syphilis. RESULTS We found that the CSF CXCL13 concentrations and CXCL13 quotient (QCXCL13) were significantly increased in neurosyphilis patients compared to syphilis/non-neurosyphilis (χ(2) = 21.802, P < 0.001) and non-syphilis patients (χ(2) = 7.677, P = 0.002). ROC curve analyses revealed that CSF CXCL13 concentrations and QCXCL13 could serve as valuable biomarkers for differentiating neurosyphilis from non-neurosyphilis/syphilis. CONCLUSIONS The CSF CXCL13 and QCXCL13 could serve as valuable biomarkers for differentiating neurosyphilis from non-neurosyphilis/syphilis in HIV-negative patients.
Collapse
Affiliation(s)
- Yan-Li Zeng
- />Center of Clinical Laboratory, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Yi-Qiang Lin
- />Center of Clinical Laboratory, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Ning-Ning Zhang
- />Center of Clinical Laboratory, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Chao-Ning Zou
- />Department of Neurology, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Hui-Lin Zhang
- />Center of Clinical Laboratory, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Feng Peng
- />Department of Neurology, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Zhao-Ji Liu
- />Department of Neurology, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Wei-Hong Zheng
- />Department of Neurology, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| | - Jiang-Hua Yan
- />Cancer Research Center, Medical College Xiamen University, Xiamen, Fujian Province 361102 China
| | - Li–Li Liu
- />Center of Clinical Laboratory, Zhongshan Hospital, Medical College Xiamen University, Xiamen, 361004 China
| |
Collapse
|
45
|
Palus M, Formanová P, Salát J, Žampachová E, Elsterová J, Růžek D. Analysis of serum levels of cytokines, chemokines, growth factors, and monoamine neurotransmitters in patients with tick-borne encephalitis: identification of novel inflammatory markers with implications for pathogenesis. J Med Virol 2015; 87:885-92. [PMID: 25675945 DOI: 10.1002/jmv.24140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a leading human neuroinfection in Europe and northeastern Asia. However, the pathophysiology of TBE is not understood completely. This study sought to determine the specific serum mediators that are associated with acute TBE. The levels of 30 cytokines, chemokines, and growth factors were measured in serum samples from 87 patients with clinically and serologically confirmed acute TBE and from 32 control subjects using the Cytokine Human Magnetic 30-Plex Panel for the Luminex platform. Serum levels of the monoamine neurotransmitters serotonin, dopamine, and noradrenaline were measured via enzyme-linked immunosorbent assay. TBE virus infection elicited increased levels of the pro-inflammatory cytokines interleukin (IL)-6, IL-8, and IL-12. TBE patients had higher IL-12:IL-4 and IL-12:IL-10 ratios than control patients, reflecting the global pro-inflammatory cytokine balance. Serum levels of the monoamine neurotransmitters serotonin, dopamine, and noradrenaline were significantly lower in TBE patients than in the control group. Most interestingly, increased levels of hepatocyte growth factor and vascular endothelial growth factor were observed in TBE patients; these proteins may be novel and mechanistically important inflammatory biomarkers of TBE.
Collapse
Affiliation(s)
- Martin Palus
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic; Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
46
|
Grygorczuk S, Parczewski M, Moniuszko A, Świerzbińska R, Kondrusik M, Zajkowska J, Czupryna P, Dunaj J, Boroń-Kaczmarska A, Pancewicz S. Increased concentration of interferon lambda-3, interferon beta and interleukin-10 in the cerebrospinal fluid of patients with tick-borne encephalitis. Cytokine 2015; 71:125-31. [PMID: 25461389 DOI: 10.1016/j.cyto.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/16/2022]
Abstract
Tick-borne encephalitis (TBE) has a wide clinical spectrum, from asymptomatic to severe encephalitis, and host-dependent factors determining the outcome remain elusive. We have measured concentrations of pro-inflammatory/Th1 interferon-γ (IFNγ), immunomodulatory/Th2 interleukin-10 (IL-10), anti-viral type I (IFNβ) and type III (IFNλ3) interferons in cerebrospinal fluid (csf) and serum of 18 TBE patients, simultaneously genotyped for polymorphisms associated with the expression of genes IFNL3 (coding IFNλ3), IL10, CD209 and CCR5. IL-10, IFNβ and IFNλ3 were up-regulated in csf, with IFNλ3 level higher in patients with the milder clinical presentation (meningitis) than in meningoencephalitis. There was an increased serum IFNβ and a tendency for increased serum IL-10 in meningitis patients. Genotype in rs12979860 locus upstream of IFNL3 was associated with IFNλ3 expression and in rs287886 (CD209) - IL-10 expression. IL-10, IFNβ and IFNλ3 are expressed and play a protective role in TBE and their expression in TBE patients is associated with genetic polymorphisms.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Miłosz Parczewski
- Pomeranian Medical University, Department of the Infectious Diseases and Hepatology, ul. Arkońska 4, 71-455 Szczecin, Poland
| | - Anna Moniuszko
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Renata Świerzbińska
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Maciej Kondrusik
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Joanna Zajkowska
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Piotr Czupryna
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Justyna Dunaj
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Anna Boroń-Kaczmarska
- Pomeranian Medical University, Department of the Infectious Diseases and Hepatology, ul. Arkońska 4, 71-455 Szczecin, Poland
| | - Sławomir Pancewicz
- Medical University in Białystok, Department of the Infectious Diseases and Neuroinfections, ul. Żurawia 14, 15-540 Białystok, Poland
| |
Collapse
|
47
|
Michlmayr D, Lim JK. Chemokine receptors as important regulators of pathogenesis during arboviral encephalitis. Front Cell Neurosci 2014; 8:264. [PMID: 25324719 PMCID: PMC4179766 DOI: 10.3389/fncel.2014.00264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/17/2014] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) is a highly complex network comprising long-lived neurons and glial cells. Accordingly, numerous mechanisms have evolved to tightly regulate the initiation of inflammatory responses within the brain. Under neuroinflammatory conditions, as in the case of viral encephalitides, the infiltration of leukocytes is often required for efficient viral clearance and recovery. The orchestration of leukocyte migration into the inflamed CNS is largely coordinated by a large family of chemotactic cytokines and their receptors. In this review, we will summarize our current understanding of how chemokines promote protection or pathogenesis during arbovirus induced encephalitis, focusing on neurotropic flaviviruses and alphaviruses. Furthermore, we will highlight the latest developments in chemokine and chemokine receptor based drugs that could have potential as therapeutics and have been shown to play a pivotal role in shaping the outcome of disease.
Collapse
Affiliation(s)
- Daniela Michlmayr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
48
|
Palus M, Bílý T, Elsterová J, Langhansová H, Salát J, Vancová M, Růžek D. Infection and injury of human astrocytes by tick-borne encephalitis virus. J Gen Virol 2014; 95:2411-2426. [PMID: 25000960 DOI: 10.1099/vir.0.068411-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tick-borne encephalitis (TBE), a disease caused by tick-borne encephalitis virus (TBEV), represents the most important flaviviral neural infection in Europe and north-eastern Asia. In the central nervous system (CNS), neurons are the primary target for TBEV infection; however, infection of non-neuronal CNS cells, such as astrocytes, is not well understood. In this study, we investigated the interaction between TBEV and primary human astrocytes. We report for the first time, to the best of our knowledge, that primary human astrocytes are sensitive to TBEV infection, although the infection did not affect their viability. The infection induced a marked increase in the expression of glial fibrillary acidic protein, a marker of astrocyte activation. In addition, expression of matrix metalloproteinase 9 and several key pro-inflammatory cytokines/chemokines (e.g. tumour necrosis factor α, interferon α, interleukin (IL)-1β, IL-6, IL-8, interferon γ-induced protein 10, macrophage inflammatory protein, but not monocyte chemotactic protein 1) was upregulated. Moreover, we present a detailed description of morphological changes in TBEV-infected cells, as investigated using three-dimensional electron tomography. Several novel ultrastructural changes were observed, including the formation of unique tubule-like structures of 17.9 ±0.15 nm diameter with associated viral particles and/or virus-induced vesicles and located in the rough endoplasmic reticulum of the TBEV-infected cells. This is the first demonstration that TBEV infection activates primary human astrocytes. The infected astrocytes might be a potential source of pro-inflammatory cytokines in the TBEV-infected brain, and might contribute to the TBEV-induced neurotoxicity and blood-brain barrier breakdown that occurs during TBE. The neuropathological significance of our observations is also discussed.
Collapse
Affiliation(s)
- Martin Palus
- Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Tomáš Bílý
- Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Jana Elsterová
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Marie Vancová
- Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| |
Collapse
|
49
|
Temporal expression profile of CXC chemokines in serum of patients with spinal cord injury. Neurochem Int 2013; 63:363-7. [PMID: 23927862 DOI: 10.1016/j.neuint.2013.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/01/2013] [Accepted: 07/23/2013] [Indexed: 12/14/2022]
Abstract
Chemokines, a subclass of cytokine superfamily have both pro-inflammatory and migratory role and serve as chemoattractant of immune cells during the inflammatory responses ensuing spinal cord injury (SCI). The chemokines, especially CXCL-1, CXCL-9, CXCL-10 and CXCL-12 contribute significant part in the inflammatory secondary damage of SCI. Inhibiting chemokine's activity and thereby the secondary damage cascades has been suggested as a chemokine-targeted therapeutic approach to SCI. To optimize the inhibition of secondary injury through targeted chemokine therapy, accurate knowledge about the temporal profile of these cytokines following SCI is required. Hence, the present study was planned to determine the serum levels of CXCL-1, CXCL-9, CXCL-10 and CXCL-12 at 3-6h, 7 and 28days and 3m after SCI in male and female SCI patients (n=78) and compare with age- and sex-matched patients with non-spinal cord injuries (NSCI, n=70) and healthy volunteers (n=100). ANOVA with Tukey post hoc analysis was used to determine the differences between the groups. The data from the present study show that the serum level of CXCL-1, CXCL-9 and CXCL-10 peaked on day 7 post-SCI and then declined to the control level. In contrast, significantly elevated level of CXCL-12 persisted for 28 days post SCI. In addition, post-SCI expression of CXCL-12 was found to be sex-dependent. Male SCI patients expressed significantly higher CXCL-12 when compared to control and SCI female. We did not observe any change in chemokines level of NSCI. Further, the age of the patients did not influence chemokines expression after SCI. These observations along with SCI-induced CSF-chemokine level should contribute to the identification of selective and temporal chemokine targeted therapy after SCI.
Collapse
|
50
|
Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation 2013; 10:77. [PMID: 23805778 PMCID: PMC3700758 DOI: 10.1186/1742-2094-10-77] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022] Open
Abstract
Background The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown. Methods TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection. Results An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain. Conclusions Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.
Collapse
Affiliation(s)
- Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|