1
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
2
|
Kang X, Li C, Liu S, Baldwin RL, Liu GE, Li CJ. Genome-Wide Acetylation Modification of H3K27ac in Bovine Rumen Cell Following Butyrate Exposure. Biomolecules 2023; 13:1137. [PMID: 37509173 PMCID: PMC10377523 DOI: 10.3390/biom13071137] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Hou J, Xiang J, Li D, Liu X, Pan W. Gut microbial response to host metabolic phenotypes. Front Nutr 2022; 9:1019430. [PMID: 36419554 PMCID: PMC9676441 DOI: 10.3389/fnut.2022.1019430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
A large number of studies have proved that biological metabolic phenotypes exist objectively and are gradually recognized by humans. Gut microbes affect the host's metabolic phenotype. They directly or indirectly participate in host metabolism, physiology and immunity through changes in population structure, metabolite differences, signal transduction and gene expression. Obtaining comprehensive information and specific identification factors associated with gut microbiota and host metabolic phenotypes has become the focus of research in the field of gut microbes, and it has become possible to find new and effective ways to prevent or treat host metabolic diseases. In the future, precise treatment of gut microbes will become one of the new therapeutic strategies. This article reviews the content of gut microbes and carbohydrate, amino acid, lipid and nucleic acid metabolic phenotypes, including metabolic intermediates, mechanisms of action, latest research findings and treatment strategies, which will help to understand the relationship between gut microbes and host metabolic phenotypes and the current research status.
Collapse
Affiliation(s)
- Jinliang Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinhua Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | |
Collapse
|
4
|
Yuan S, Cai Z, Luan X, Wang H, Zhong Y, Deng L, Feng J. Gut microbiota: A new therapeutic target for diabetic cardiomyopathy. Front Pharmacol 2022; 13:963672. [PMID: 36091756 PMCID: PMC9461091 DOI: 10.3389/fphar.2022.963672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy seriously affects quality of life and even threatens life safety of patients. The pathogenesis of diabetic cardiomyopathy is complex and multifactorial, and it is widely accepted that its mechanisms include oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Some studies have shown that gut microbiota plays an important role in cardiovascular diseases. Gut microbiota and its metabolites can affect the development of diabetic cardiomyopathy by regulating oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Here, the mechanisms of gut microbiota and its metabolites resulting in diabetic cardiomyopathy are reviewed. Gut microbiota may be a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Wang
- Department of Cardiology, Gulin People’s Hospital, Luzhou, Sichuan, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated, Hospital of Southwest Medical University, Luzhou, Sichaun, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Jian Feng,
| |
Collapse
|
5
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
6
|
Zhang W, Zhang J, Liu T, Xing J, Zhang H, Wang D, Tang D. Bidirectional effects of intestinal microbiota and antibiotics: a new strategy for colorectal cancer treatment and prevention. J Cancer Res Clin Oncol 2022; 148:2387-2404. [PMID: 35661254 DOI: 10.1007/s00432-022-04081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence and mortality rates are increasing every year. The intestinal microbiota has been called the "neglected organ" and there is growing evidence that the intestinal microbiota and its metabolites can be used in combination with immunotherapy, radiotherapy and chemotherapy to greatly enhance the treatment of colorectal cancer and to address some of the side effects and adverse effects of these therapies. Antibiotics have great potential to eliminate harmful microbiota, control infection, and reduce colorectal cancer side effects. However, the use of antibiotics has been a highly controversial issue, and numerous retrospective studies have shown that the use of antibiotics affects the effectiveness of treatment (especially immunotherapy). Understanding the bi-directional role of the gut microbiota and antibiotics will further enhance our research into the diagnosis and treatment of cancer. METHODS We searched the "PubMed" database and selected the following keywords "intestinal microbiota, antibiotics, treatment, prevention, colorectal cancer". In this review, we discuss the role of the intestinal microbiota in immunotherapy, radiotherapy, chemotherapy, diagnosis, and prevention of CRC. We also conclude that the intestinal microbiota and antibiotics work together to promote the treatment of CRC through a bidirectional effect. RESULTS We found that the intestinal microbiota plays a key role in promoting immunotherapy, chemotherapy, radiotherapy, diagnosis and prevention of CRC. In addition, gut microbiota and antibiotic interactions could be a new strategy for CRC treatment. CONCLUSION The bi-directional role of the intestinal microbiota and antibiotics plays a key role in the prevention, diagnosis, and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
7
|
Watanabe DHM, Doelman J, Steele MA, Guan LL, Seymour DJ, Metcalf JA, Penner GB. Effect of Feeding Calcium Gluconate Embedded in a Hydrogenated Fat Matrix on Feed Intake, Gastrointestinal Fermentation and Morphology, Intestinal Brush Boarder Enzyme Activity and Blood Metabolites in Growing Lambs. J Anim Sci 2022; 100:6598089. [PMID: 35652468 DOI: 10.1093/jas/skac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Gluconate salts have been identified as a butyrate precursor when fed to non-ruminant species and may increase the butyrate concentration in the large intestine supporting gastrointestinal health and development. The objective of this study was to evaluate the dose response of hydrogenated fat-embedded calcium gluconate (HFCG) on performance and gastrointestinal tract (GIT) development in growing lambs. Thirty-two wether lambs were used in a randomized complete block design and assigned to 1 of 4 treatments differing in the inclusion of HFCG: 0.0% (CON), 0.075% (LOW), 0.30% (MED), and 0.60% of the diet (HIGH). Lambs were allocated into individual pens and fed ad libitum with feed delivered twice daily. Feed intake was recorded daily, and body weight (BW) was assessed at the beginning and the end of the 29-d period. Blood was sampled on d 21, prior to feeding and 6 h post-feeding to evaluate changes in β-hydroxybutyrate, glucose, and insulin concentrations. Total fecal collection was conducted during d 25 to 28 to assess apparent total tract digestibility. On d 29, lambs were slaughtered, and the entire GIT was separated by region to enable sampling of tissue and digesta. Data were analyzed to assess linear, quadratic, and cubic effects of HFCG dose. Final BW, average daily gain, and dry matter intake decreased linearly (P ≤ 0.02) with increasing HFCG. Increasing inclusion of HFCG linearly decreased (P = 0.01) the thickness of the stratum corneum in ruminal papillae but did not affect other strata (P ≥ 0.34). Omasal digesta weight linearly decreased (P = 0.01) as the concentration of HFCG increased and abomasal digesta weight was cubically affected (P = 0.03) the increasing dose of HFCG. Short-chain fatty acid concentration in the cecum was cubically affected (P < 0.01) with increasing dose of HFCG where low dose had the greatest concentration. Moreover, increasing the dietary supply of HFCG linearly increased the proportion of acetate (P = 0.04) in the cecum and linearly decreased the proportion of propionate in the digesta of both the cecum (P < 0.01) and colon (P = 0.01). Colon crypt depth was quadratically (P = 0.03) affected with the increasing dose of HFCG, where lambs fed MED had greatest crypt depth. We conclude that feeding HFCG to growing lambs did not increase butyrate concentration in the large intestine and consequently does not increase the absorptive surface area of the whole tract, the size of the GIT, or the functionality of the intestine.
Collapse
Affiliation(s)
- Daniel H M Watanabe
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Doelman
- Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - Michael A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Le L Guan
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dave J Seymour
- Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - John A Metcalf
- Trouw Nutrition North America, 7504 McLean Rd E., Puslinch, ON
| | - Gregory B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Loor JJ. Nutrigenomics in livestock: potential role in physiological regulation and practical applications. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Karoor V, Strassheim D, Sullivan T, Verin A, Umapathy NS, Dempsey EC, Frank DN, Stenmark KR, Gerasimovskaya E. The Short-Chain Fatty Acid Butyrate Attenuates Pulmonary Vascular Remodeling and Inflammation in Hypoxia-Induced Pulmonary Hypertension. Int J Mol Sci 2021; 22:9916. [PMID: 34576081 PMCID: PMC8467617 DOI: 10.3390/ijms22189916] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiovascular disorder in which local vascular inflammation leads to increased pulmonary vascular remodeling and ultimately to right heart failure. The HDAC inhibitor butyrate, a product of microbial fermentation, is protective in inflammatory intestinal diseases, but little is known regarding its effect on extraintestinal diseases, such as PH. In this study, we tested the hypothesis that butyrate is protective in a Sprague-Dawley (SD) rat model of hypoxic PH. Treatment with butyrate (220 mg/kg intake) prevented hypoxia-induced right ventricular hypertrophy (RVH), hypoxia-induced increases in right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, and permeability. A reversal effect of butyrate (2200 mg/kg intake) was observed on elevated RVH. Butyrate treatment also increased the acetylation of histone H3, 25-34 kDa, and 34-50 kDa proteins in the total lung lysates of butyrate-treated animals. In addition, butyrate decreased hypoxia-induced accumulation of alveolar (mostly CD68+) and interstitial (CD68+ and CD163+) lung macrophages. Analysis of cytokine profiles in lung tissue lysates showed a hypoxia-induced upregulation of TIMP-1, CINC-1, and Fractalkine and downregulation of soluble ICAM (sICAM). The expression of Fractalkine and VEGFα, but not CINC-1, TIMP-1, and sICAM was downregulated by butyrate. In rat microvascular endothelial cells (RMVEC), butyrate (1 mM, 2 and 24 h) exhibited a protective effect against TNFα- and LPS-induced barrier disruption. Butyrate (1 mM, 24 h) also upregulated tight junctional proteins (occludin, cingulin, claudin-1) and increased the acetylation of histone H3 but not α-tubulin. These findings provide evidence of the protective effect of butyrate on hypoxic PH and suggest its potential use as a complementary treatment for PH and other cardiovascular diseases.
Collapse
Affiliation(s)
- Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (N.S.U.)
| | - Nagavedi S. Umapathy
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (N.S.U.)
- Center for Blood Disorders, Augusta University, Augusta, GA 30912, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Center, Aurora, CO 80045, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Denver, CO 80204, USA;
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
10
|
Ashaolu TJ, Ashaolu JO. Prebiotics in vitro digestion by gut microbes, products' chemistry, and clinical relevance. Appl Microbiol Biotechnol 2020; 105:13-19. [PMID: 33201272 DOI: 10.1007/s00253-020-11021-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023]
Abstract
Several investigations have elucidated the chemistry of prebiotics based on their fermentation by the colonic microbes, which release metabolites that are often implicated in host's gut and whole body health. The present study aims at providing a preview of prebiotics and their interactions with the colonic microbiota for a slow fermentation in vitro. The metabolites produced, mainly short chain fatty acids (SCFA), their chemistry, interactions with prebiotic structural mechanisms, and beneficial impacts on the host were also reported. The present review further considers the clinical relevance of the SCFAs produced. It was deduced that the physicochemical properties of prebiotics would influence their colonic fermentation rate, microbial choice, and growth as well as SCFA type and ratios. This will in turn be of utmost clinical significance. KEY POINTS: • Prebiotics affect the composition of gut microorganisms. • The chemistry of short chain fatty acids are described. • Microbial and clinical applications of SCFAs were provided.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam. .,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Gao J, Xu Q, Wang M, Ouyang J, Tian W, Feng D, Liang Y, Jiang B, Loor JJ. Ruminal epithelial cell proliferation and short-chain fatty acid transporters in vitro are associated with abundance of period circadian regulator 2 (PER2). J Dairy Sci 2020; 103:12091-12103. [PMID: 33010914 DOI: 10.3168/jds.2020-18767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
The major circadian clock gene PER2 is closely related to cell proliferation and lipid metabolism in various nonruminant cell types. Objectives of the study were to evaluate circadian clock-related mRNA abundance in cultured goat ruminal epithelial cells (REC), and to determine effects of PER2 on cell proliferation and mRNA abundance of short-chain fatty acid (SCFA) transporters, genes associated with lipid metabolism, cell proliferation, and apoptosis. Ruminal epithelial cells were isolated from weaned Boer goats (n = 3; 2 mo old; ∼10 kg of body weight) by serial trypsin digestion and cultured at 37°C for 24 h. Abundance of CLOCK and PER2 proteins in cells was determined by immunofluorescence. The role of PER2 was assessed through the use of a knockout model with short interfering RNA, and sodium butyrate (15 mM) was used to assess the effect of upregulating PER2. Both CLOCK and PER2 were expressed in REC in vitro. Sodium butyrate stimulation increased mRNA and protein abundance of PER2 and PER3. Furthermore, PER2 gene silencing enhanced cell proliferation and reduced cellular apoptosis in isolated REC. In contrast, PER2 overexpression in response to sodium butyrate led to lower cellular proliferation and ratio of cells in the S phase along with greater ratio of cells in the G2/M phase. Those responses were accompanied by downregulated mRNA abundance of CCND1, CCNB1, CDK1, and CDK2. Among the SCFA transporters, PER2 silencing upregulated mRNA abundance of MCT1 and MCT4. However, it downregulated mRNA abundance of PPARA and PPARG. Overexpression of PER2 resulted in lower mRNA abundance of MCT1 and MCT4, and greater PPARA abundance. Overall, data suggest that CLOCK and PER2 might play a role in the control of cell proliferation, SCFA, and lipid metabolism. Further studies should be conducted to evaluate potential mechanistic relationships between circadian clock and SCFA absorption in vivo.
Collapse
Affiliation(s)
- Jian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Qiaoyun Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Wen Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Dan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Beibei Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
12
|
Implication of Gut Microbiota in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5394096. [PMID: 33062141 PMCID: PMC7533754 DOI: 10.1155/2020/5394096] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence has identified the association between gut microbiota and various diseases, including cardiovascular diseases (CVDs). Altered intestinal flora composition has been described in detail in CVDs, such as hypertension, atherosclerosis, myocardial infarction, heart failure, and arrhythmia. In contrast, the importance of fermentation metabolites, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and secondary bile acid (BA), has also been implicated in CVD development, prevention, treatment, and prognosis. The potential mechanisms are conventionally thought to involve immune regulation, host energy metabolism, and oxidative stress. However, numerous types of programmed cell death, including apoptosis, autophagy, pyroptosis, ferroptosis, and clockophagy, also serve as a key link in microbiome-host cross talk. In this review, we introduced and summarized the results from recent studies dealing with the relationship between gut microbiota and cardiac disorders, highlighting the role of programmed cell death. We hope to shed light on microbiota-targeted therapeutic strategies in CVD management.
Collapse
|
13
|
Ashaolu TJ, Ashaolu JO, Adeyeye SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol 2020; 130:677-687. [PMID: 32892434 DOI: 10.1111/jam.14843] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short-chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β-glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro-organisms to multiply, and SCFAs concentrations and compositions.
Collapse
Affiliation(s)
- T J Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - S A O Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
A Novel Non-Digestible, Carrot-Derived Polysaccharide (cRG-I) Selectively Modulates the Human Gut Microbiota while Promoting Gut Barrier Integrity: An Integrated in Vitro Approach. Nutrients 2020; 12:nu12071917. [PMID: 32610452 PMCID: PMC7400138 DOI: 10.3390/nu12071917] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Modulation of the gut microbiome as a means to improve human health has recently gained increasing interest. In this study, it was investigated whether cRG-I, a carrot-derived pectic polysaccharide, enriched in rhamnogalacturonan-I (RG-I) classifies as a potential prebiotic ingredient using novel in vitro models. First, digestion methods involving α-amylase/brush border enzymes demonstrated the non-digestibility of cRG-I by host-derived enzymes versus digestible (starch/maltose) and non-digestible controls (inulin). Then, a recently developed short-term (48 h) colonic incubation strategy was applied and revealed that cRG-I fermentation increased levels of health-promoting short-chain fatty acids (SCFA; mainly acetate and propionate) and lactate comparable but not identical to the reference prebiotic inulin. Upon upgrading this fermentation model by inclusion of a simulated mucosal environment while applying quantitative 16S-targeted Illumina sequencing, cRG-I was additionally shown to specifically stimulate operational taxonomic units (OTUs) related to health-associated species such as Bifidobacterium longum, Bifidobacterium adolescentis, Bacteroides dorei, Bacteroides ovatus, Roseburia hominis, Faecalibacterium prausnitzii, and Eubacterium hallii. Finally, in a novel model to assess host–microbe interactions (Caco-2/peripheral blood mononuclear cells (PBMC) co-culture) fermented cRG-I increased barrier integrity while decreasing markers for inflammation. In conclusion, by using novel in vitro models, cRG-I was identified as a promising prebiotic candidate to proceed to clinical studies.
Collapse
|
15
|
Lin S, Fang L, Kang X, Liu S, Liu M, Connor EE, Baldwin RL, Liu G, Li CJ. Establishment and transcriptomic analyses of a cattle rumen epithelial primary cells (REPC) culture by bulk and single-cell RNA sequencing to elucidate interactions of butyrate and rumen development. Heliyon 2020; 6:e04112. [PMID: 32551379 PMCID: PMC7287249 DOI: 10.1016/j.heliyon.2020.e04112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022] Open
Abstract
As a critical and high-value tool to study the development of rumen, we established a stable rumen epithelial primary cell (REPC) culture from a two-week-old Holstein bull calf rumen epithelial tissue. The transcriptomic profiling of the REPC and the direct effects of butyrate on gene expression were assessed. Correlated gene networks elucidated the putative roles and mechanisms of butyrate action in rumen epithelial development. The top networks perturbed by butyrate were associated with epithelial tissue development. Additionally, two critical upstream regulators, E2F1 and TGFB1, were identified to play critical roles in the differentiation, development, and growth of epithelial cells. Significant expression changes of upstream regulators and transcription factors provided further evidence in support that butyrate plays a specific and central role in regulating genomic and epigenomic activities influencing rumen development. This work is the essential component to obtain a complete global landscape of regulatory elements in cattle and to explore the dynamics of chromatin states in rumen epithelial cells induced by butyrate at early developmental stages.
Collapse
Affiliation(s)
- Shudai Lin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642, China
| | - Lingzhao Fang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Erin E Connor
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - George Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
16
|
Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020; 12:nu12041107. [PMID: 32316181 PMCID: PMC7230973 DOI: 10.3390/nu12041107] [Citation(s) in RCA: 483] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The relationship between diet and the diversity and function of the intestinal microbiome and its importance for human health is currently the subject of many studies. The type and proportion of microorganisms found in the intestines can determine the energy balance of the host. Intestinal microorganisms perform many important functions, one of which is participation in metabolic processes, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids). These acids represent the main carbon flow from the diet to the host microbiome. Maintaining intestinal balance is necessary to maintain the host’s normal health and prevent many diseases. The results of many studies confirm the beneficial effect of probiotic microorganisms on the balance of the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is to summarize what is known on the effects of probiotics on the production of short-chain fatty acids by gut microbes. In addition, the mechanism of formation and properties of these metabolites is discussed and verified test results confirming the effectiveness of probiotics in human nutrition by modulating SCFAs production by intestinal microbiome is presented.
Collapse
|
17
|
Fang L, Liu S, Liu M, Kang X, Lin S, Li B, Connor EE, Baldwin RL, Tenesa A, Ma L, Liu GE, Li CJ. Functional annotation of the cattle genome through systematic discovery and characterization of chromatin states and butyrate-induced variations. BMC Biol 2019; 17:68. [PMID: 31419979 PMCID: PMC6698049 DOI: 10.1186/s12915-019-0687-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The functional annotation of genomes, including chromatin accessibility and modifications, is important for understanding and effectively utilizing the increased amount of genome sequences reported. However, while such annotation has been well explored in a diverse set of tissues and cell types in human and model organisms, relatively little data are available for livestock genomes, hindering our understanding of complex trait variation, domestication, and adaptive evolution. Here, we present the first complete global landscape of regulatory elements in cattle and explore the dynamics of chromatin states in rumen epithelial cells induced by the rumen developmental regulator-butyrate. RESULTS We established the first global map of regulatory elements (15 chromatin states) and defined their coordinated activities in cattle, through genome-wide profiling for six histone modifications, RNA polymerase II, CTCF-binding sites, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial primary cells (REPC), rumen tissues, and Madin-Darby bovine kidney epithelial cells (MDBK). We demonstrated that each chromatin state exhibited specific enrichment for sequence ontology, transcription, methylation, trait-associated variants, gene expression-associated variants, selection signatures, and evolutionarily conserved elements, implying distinct biological functions. After butyrate treatments, we observed that the weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states, occurred concomitantly with significant alterations in gene expression and DNA methylation, which was significantly associated with heifer conception rate and stature economic traits. CONCLUSION Our results demonstrate the crucial role of functional genome annotation for understanding genome regulation, complex trait variation, and adaptive evolution in livestock. Using butyrate to induce the dynamics of the epigenomic landscape, we were able to establish the correlation among nutritional elements, chromatin states, gene activities, and phenotypic outcomes.
Collapse
Affiliation(s)
- Lingzhao Fang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Agriculture, Ningxia University, Yinchuan, 750021 China
| | - Shudai Lin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642 China
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Albert Tenesa
- The Roslin Institute, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
18
|
Cellular Effects of Butyrate on Vascular Smooth Muscle Cells are Mediated through Disparate Actions on Dual Targets, Histone Deacetylase (HDAC) Activity and PI3K/Akt Signaling Network. Int J Mol Sci 2019; 20:ijms20122902. [PMID: 31197106 PMCID: PMC6628026 DOI: 10.3390/ijms20122902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular remodeling is a characteristic feature of cardiovascular diseases. Altered cellular processes of vascular smooth muscle cells (VSMCs) is a crucial component in vascular remodeling. Histone deacetylase inhibitor (HDACI), butyrate, arrests VSMC proliferation and promotes cell growth. The objective of the study is to determine the mechanism of butyrate-induced VSMC growth. Using proliferating VSMCs exposed to 5 mM butyrate, immunoblotting studies are performed to determine whether PI3K/Akt pathway that regulates different cellular effects is a target of butyrate-induced VSMC growth. Butyrate inhibits phosphorylation-dependent activation of PI3K, PDK1, and Akt, eliciting differential effects on downstream targets of Akt. Along with previously reported Ser9 phosphorylation-mediated GSK3 inactivation leading to stability, increased expression and accumulation of cyclin D1, and epigenetic histone modifications, inactivation of Akt by butyrate results in: transcriptional activation of FOXO1 and FOXO3 promoting G1 arrest through p21Cip1/Waf1 and p15INK4B upregulation; inactivation of mTOR inhibiting activation of its targets p70S6K and 4E-BP1 impeding protein synthesis; inhibition of caspase 3 cleavage and downregulation of PARP preventing apoptosis. Our findings imply butyrate abrogates Akt activation, causing differential effects on Akt targets promoting convergence of cross-talk between their complimentary actions leading to VSMC growth by arresting proliferation and inhibiting apoptosis through its effect on dual targets, HDAC activity and PI3K/Akt pathway network.
Collapse
|
19
|
Banerjee A, Mahata B, Dhir A, Mandal TK, Biswas K. Elevated histone H3 acetylation and loss of the Sp1-HDAC1 complex de-repress the GM2-synthase gene in renal cell carcinoma. J Biol Chem 2019; 294:1005-1018. [PMID: 30463940 PMCID: PMC6341395 DOI: 10.1074/jbc.ra118.004485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/16/2018] [Indexed: 11/06/2022] Open
Abstract
GM2-synthase produces sialic acid-containing glycosphingolipids called gangliosides, and its mRNA overexpression and the gangliosides it generates are linked to tumor progression, migration, and suppression of tumor-specific host immune responses. However, the mechanism underlying GM2-synthase de-repression in renal cell carcinoma (RCC) is poorly understood. Here, we demonstrate that higher GM2-synthase mRNA expression levels in various cancer cells and in human RCC tumors correlate with higher histone acetylation levels (H3K9, H3K14, or both) at region +38/+187 relative to the transcription start site (TSS) of the GM2-synthase gene than in normal kidney epithelial (NKE) cells or healthy adjacent tissues. An increase in GM2-synthase mRNA expression in cells treated with a histone deacetylase (HDAC) inhibitor was accompanied by increased histone acetylation levels at this promoter region. DNA methylation around the TSS was absent in both RCC cell lines and NKE cells. Of note, both the transcription factor Sp1 and corepressor HDAC1 associated with the +38/+187 region when the GM2-synthase gene was repressed in NKE and tumor-adjacent tissues, indicating plausible site-specific repressive roles of HDAC1 and Sp1 in GM2-synthase mRNA expression. Site-directed mutagenesis of the Sp1-binding site within the +38/+187 region relieved repressed luciferase activity of this region by limiting HDAC1 recruitment. Moreover, Sp1 or HDAC1 knock down increased GM2-synthase transcription, and butyrate-mediated activation of GM2-synthase mRNA expression in SK-RC-45 cells was accompanied by Sp1 and HDAC1 loss from the +38/+187 region. Taken together, we have identified an epigenetic mechanism for the de-repression of the GM2-synthase gene in RCC.
Collapse
Affiliation(s)
- Avisek Banerjee
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Barun Mahata
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Arjun Dhir
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Tapan Kumar Mandal
- Department of Urology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal 700 014 India
| | - Kaushik Biswas
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| |
Collapse
|
20
|
Mannully S, L.N. R, Pulicherla K. Perspectives on progressive strategies and recent trends in the production of recombinant human factor VIII. Int J Biol Macromol 2018; 119:496-504. [DOI: 10.1016/j.ijbiomac.2018.07.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
|
21
|
Longo PL, Dabdoub S, Kumar P, Artese HPC, Dib SA, Romito GA, Mayer MPA. Glycaemic status affects the subgingival microbiome of diabetic patients. J Clin Periodontol 2018; 45:932-940. [PMID: 29742293 DOI: 10.1111/jcpe.12908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
AIM Periodontitis is correlated with type 2 diabetes mellitus (T2DM), but little is known about glycaemic status effect on subgingival microbiota associated with periodontitis. This study evaluated if periodontal microbiome of T2DM patients is affected by glycaemic status. MATERIALS AND METHODS Twenty-one T2DM non-smoking patients with chronic periodontitis and body mass index ≤40 kg/m2 were allocated into two groups according to systemic glycaemic status: inadequate (DMI- HbA1c ≥ 8%) and adequate (DMA- HbA1c <7.8%). Subgingival biofilm was collected from sites with moderate (PD = 4-6 mm) and severe disease (PD ≥ 7 mm) in two quadrants. The V5-V6 hypervariable region of the 16SrRNA was sequenced using the GS-FLX-454 Titanium platform. Sequences were compared with HOMD database using QIIME and PhyloToAST pipelines. Statistical comparisons were made using two-sample t-tests. RESULTS DMA microbiome presented higher diversity than DMI. Inadequate glycaemic control favoured fermenting species, especially those associated with propionate/succinate production, whereas those forming butyrate/pyruvate was decreased in DMI. Higher abundances of anginosus group and Streptococcus agalactiae in DMI may indicate that subgingival sites can be reservoir of potentially invasive pathogens. Altered subgingival microbiome in DMI may represent an additional challenge in the periodontal treatment of these patients and in the prevention of more invasive infections. CONCLUSION Glycaemic status in T2DM patients seems to modulate subgingival biofilm composition.
Collapse
Affiliation(s)
- Priscila L Longo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shareef Dabdoub
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Purnima Kumar
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Hilana P C Artese
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sergio A Dib
- Department of Endocrinology, School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Giuseppe A Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Soomro J, Lu Z, Gui H, Zhang B, Shen Z. Synchronous and Time-Dependent Expression of Cyclins, Cyclin-Dependant Kinases, and Apoptotic Genes in the Rumen Epithelia of Butyrate-Infused Goats. Front Physiol 2018; 9:496. [PMID: 29875672 PMCID: PMC5974050 DOI: 10.3389/fphys.2018.00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
In our previous study, we demonstrated that butyrate induced ruminal epithelial growth through cyclin D1 upregulation. Here, we investigated the influence of butyrate on the expression of genes associated with cell cycle and apoptosis in rumen epithelium. Goats (n = 24) were given an intra ruminal infusion of sodium butyrate at 0.3 (group B, n = 12) or 0 (group A, n = 12) g/kg of body weight (BW) per day before morning feeding for 28 days and were slaughtered (4 goat/group) at 5,7 and 9 h after butyrate infusion. Rumen fluid was analyzed for short chain fatty acids (SCFAs) concentration. Ruminal tissues were analyzed for morpho-histrometry and the expressions of genes associated with cell cycle and apoptosis. The results revealed that the ruminal butyrate concentration increased (P < 0.05) in B compared to group A. Morphometric analysis showed increased (P < 0.05) papillae size associated with higher number of cell layers in epithelial strata in B compared to A. Butyrate-induced papillae enlargement was coupled with enhanced mRNA expression levels (P < 0.05) of cyclin D1, CDK2, CDK4, and CDK6 (G0/G1 phase regulators) at 5 h, cyclin E1 (G1/S phase regulator) at 7 h and cyclin A and CDK1 (S phase regulators) at 9 h post-infusion compared to A group. In addition, the mRNA expression levels of apoptotic genes, i.e., caspase 3, caspase 9 and Bax at 5 h post-infusion were upregulated (P < 0.05) in group B compared to group A. The present study demonstrated that butyrate improved ruminal epithelial growth through concurrent and time-dependent changes in the expressions of genes involved in cell proliferation and apoptosis. It seems that the rate of proliferation was higher than the apoptosis which was reflected in epithelial growth.
Collapse
Affiliation(s)
- Jamila Soomro
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Veterinary Physiology and Biochemistry, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Zhongyan Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongbing Gui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zanming Shen
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Baldwin RL, Li RW, Jia Y, Li CJ. Transcriptomic Impacts of Rumen Epithelium Induced by Butyrate Infusion in Dairy Cattle in Dry Period. GENE REGULATION AND SYSTEMS BIOLOGY 2018; 12:1177625018774798. [PMID: 29785087 PMCID: PMC5954180 DOI: 10.1177/1177625018774798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach.
Collapse
Affiliation(s)
- Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
24
|
Abstract
Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. We explore the possibility of using butyrate-blocked cells to obtain synchronized cells and we characterize the properties of butyrate-induced cell cycle arrest. The site of growth inhibition and cell cycle arrest was analyzed using 5-bromo-2'-deoxyuridine (BrdU) incorporation and flow cytometry analyses. Exposure of MDBK cells to 10 mM butyrate caused growth inhibition and cell cycle arrest in a reversible manner. Butyrate affected the cell cycle at a specific point both immediately after mitosis and at a very early stage of the G1 phase. After release from butyrate arrest, MDBK cells underwent synchronous cycles of DNA synthesis and transited through the S phase. It takes at least 8 h for butyrate-induced G1-synchronized cells to begin the progression into the S phase. One cycle of cell division for MDBK cells is about 20 h. By combining BrdU incorporation and DNA content analysis, not only can the overlapping of different cell populations be eliminated, but the frequency and nature of individual cells that have synthesized DNA can be determined.
Collapse
|
25
|
Baraldi O, Bianchi F, Menghi V, Angeletti A, Croci Chiocchini AL, Cappuccilli M, Aiello V, Comai G, La Manna G. An in vitro model of renal inflammation after ischemic oxidative stress injury: nephroprotective effects of a hyaluronan ester with butyric acid on mesangial cells. J Inflamm Res 2017; 10:135-142. [PMID: 28932127 PMCID: PMC5598546 DOI: 10.2147/jir.s138431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Acute kidney injury, known as a major trigger for organ fibrosis and independent predictor of chronic kidney disease, is characterized by mesangial cell proliferation, inflammation and unbalance between biosynthesis and degradation of extracellular matrix. Therapeutic approaches targeting the inhibition of mesangial cell proliferation and matrix expansion may represent a promising opportunity for the treatment of kidney injury. An ester of hyaluronic acid and butyric acid (HB) has shown vasculogenic and regenerative properties in renal ischemic-damaged tissues, resulting in enhanced function recovery and minor degree of inflammation in vivo. This study evaluated the effect of HB treatment in mesangial cell cultures exposed to H2O2-induced oxidative stress. Materials and methods Lactate dehydrogenase release and caspase-3 activation were measured using mesangial cells prepared from rat kidneys to assess necrosis and apoptosis. Akt and p38 phosphorylation was analyzed to identify the possible mechanism underlying cell response to HB treatment. The relative expressions of matrix metallopeptidase 9 (MPP-9) and collagen type 1 alpha genes were also analyzed by quantitative real-time polymerase chain reaction. Cell proliferation rate and viability were measured using thiazolyl blue assay and flow cytometry analysis of cell cycle with propidium iodide. Results HB treatment promoted apoptosis of mesangial cells after H2O2-induced damage, decreased cellular proliferation and activated p38 pathway, increasing expression of its target gene MPP-9. Conclusion This in vitro model shows that HB treatment seems to redirect mesangial cells toward apoptosis after oxidative damage and to reduce cell proliferation through p38 MAPK pathway activation and upregulation of MPP-9 gene expression involved in mesangial matrix remodeling.
Collapse
Affiliation(s)
- Olga Baraldi
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Francesca Bianchi
- Stem Wave Institute for Tissue Healing, Gruppo Villa Maria Care & Research - Ettore Sansavini Health Science Foundation, Lugo, Ravenna.,National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Viola Menghi
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Andrea Angeletti
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Anna Laura Croci Chiocchini
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Maria Cappuccilli
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Valeria Aiello
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Giorgia Comai
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Gaetano La Manna
- Department of Experimental, Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| |
Collapse
|
26
|
Qiu Y, Ma X, Yang X, Wang L, Jiang Z. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells. In Vitro Cell Dev Biol Anim 2017; 53:304-311. [DOI: 10.1007/s11626-016-0119-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/02/2016] [Indexed: 02/05/2023]
|
27
|
O'Shea E, Waters SM, Keogh K, Kelly AK, Kenny DA. Examination of the molecular control of ruminal epithelial function in response to dietary restriction and subsequent compensatory growth in cattle. J Anim Sci Biotechnol 2016; 7:53. [PMID: 27651894 PMCID: PMC5025635 DOI: 10.1186/s40104-016-0114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The objective of this study was to investigate the effect of dietary restriction and subsequent compensatory growth on the relative expression of genes involved in volatile fatty acid transport, metabolism and cell proliferation in ruminal epithelial tissue of beef cattle. Sixty Holstein Friesian bulls (mean liveweight 370 ± 35 kg; mean age 479 ± 15 d) were assigned to one of two groups: (i) restricted feed allowance (RES; n = 30) for 125 d (Period 1) followed by ad libitum access to feed for 55 d (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n = 30). Target growth rate for RES was 0.6 kg/d during Period 1. At the end of each dietary period, 15 animals from each treatment group were slaughtered and ruminal epithelial tissue and liquid digesta harvested from the ventral sac of the rumen. Real-time qPCR was used to quantify mRNA transcripts of 26 genes associated with ruminal epithelial function. Volatile fatty acid analysis of rumen fluid from individual animals was conducted using gas chromatography. RESULTS Diet × period interactions were evident for genes involved in ketogenesis (BDH2, P = 0.017), pyruvate metabolism (LDHa, P = 0.048; PDHA1, P = 0.015) and cellular transport and structure (DSG1, P = 0.019; CACT, P = 0.027). Ruminal concentrations of propionic acid (P = 0.018) and n-valeric acid (P = 0.029) were lower in RES animals, compared with ADLIB, throughout the experiment. There was also a strong tendency (P = 0.064) toward a diet × period interaction for n-butyric with higher concentrations in RES animals, compared with ADLIB, during Period 1. CONCLUSIONS These data suggest that following nutrient restriction, the structural integrity of the rumen wall is compromised and there is upregulation of genes involved in the production of ketone bodies and breakdown of pyruvate for cellular energy. These results provide an insight into the potential molecular mechanisms regulating ruminal epithelial absorptive metabolism and growth following nutrient restriction and subsequent compensatory growth.
Collapse
Affiliation(s)
- Emma O'Shea
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4 Ireland ; Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland ; UCD Earth Institute, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4 Ireland
| | - David A Kenny
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4 Ireland ; Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
28
|
Li CJ, Li RW, Baldwin RL, Blomberg LA, Wu S, Li W. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:1-8. [PMID: 26819550 PMCID: PMC4723047 DOI: 10.4137/grsb.s35607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/19/2023]
Abstract
Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation.
Collapse
Affiliation(s)
- Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Robert W Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Ransom L Baldwin
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Le Ann Blomberg
- United States Department of Agriculture, Agriculture Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, USA
| | - Sitao Wu
- Informatics Group, J. Craig Venter Institute, La Jolla, CA. USA
| | - Weizhong Li
- Informatics Group, J. Craig Venter Institute, La Jolla, CA. USA
| |
Collapse
|
29
|
Abstract
Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.
Collapse
|
30
|
Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model. J Pediatr Gastroenterol Nutr 2014; 59:264-9. [PMID: 24625969 DOI: 10.1097/mpg.0000000000000369] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. METHODS The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. RESULTS Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. CONCLUSIONS p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.
Collapse
|
31
|
Shin JH, Xu L, Li RW, Gao Y, Bickhart D, Liu GE, Baldwin R, Li CJ. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells. Anim Genet 2014; 45 Suppl 1:40-50. [PMID: 24990294 DOI: 10.1111/age.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3 and H4 and their variants in bovine cells at the whole-genome scale. A total of 10 variants of histone H3 and H4 modifications were mapped at the whole-genome scale (acetyl-H3K18-ChIP-seq, trimethy-H3K9, histone H4 ChIP-seq, acetyl-H4K5 ChIP-seq, acetyl-H4K12 ChIP-seq, acetyl-H4K16 ChIP-seq, histone H3 ChIP-seq, acetyl H3H9 ChIP-seq, acetyl H3K27 ChIP-seq and tetra-acetyl H4 ChIP-seq). Integrated experiential data and an analysis of histone and histone modification at a single base resolution across the entire genome are presented. We analyzed the enriched binding regions in the proximal promoter (within 5 kb upstream or at the 5'-untranslated region from the transcriptional start site (TSS)), and the exon, intron and intergenic regions (defined by regions 25 kb upstream and 10 kb downstream from the TSS). A de novo search for the binding motif of the 10 ChIP-seq datasets discovered numerous motifs from each of the ChIP-seq datasets. These consensus sequences indicated that histone modification at different locations changes the histone H3 and H4 binding preferences. Nevertheless, a high degree of conservation in histone binding also was presented in these motifs. This first extensive epigenomic landscape mapping in bovine cells offers a new framework and a great resource for testing the role of epigenomes in cell function and transcriptomic regulation.
Collapse
Affiliation(s)
- J H Shin
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe Street, Suite 102, Baltimore, MD, 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li CJ, Li RW. Bioinformatic Dissecting of TP53 Regulation Pathway Underlying Butyrate-induced Histone Modification in Epigenetic Regulation. GENETICS & EPIGENETICS 2014; 6:1-7. [PMID: 25512709 PMCID: PMC4251064 DOI: 10.4137/geg.s14176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
Butyrate affects cell proliferation, differentiation, and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell-cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by ingenuity pathways analysis (IPA) in our RNA-sequencing data set. TP53 signaling pathway plays key role in many cellular processes. TP53 pathway and their involvement in cellular functions modified by butyrate treatment were scrutinized in this report by data mining the RNA-sequencing data using IPA (Ingenuity System®). The TP53 mechanistic pathway targets more than 600 genes. Downstream analysis predicted the activation of the TP53 pathway after butyrate treatment. The data mining also revealed that nine transcription factors are downstream regulators in TP53 signaling pathways. The analysis results also indicated that butyrate not only inhibits the HDAC activities, but also regulates genes encoding the HDAC enzymes through modification of histones and epigenomic landscape.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics Laboratory, Agricultural Research Service, USDA. Beltsville, MD, USA
| | - Robert W Li
- Bovine Functional Genomics Laboratory, Agricultural Research Service, USDA. Beltsville, MD, USA
| |
Collapse
|
33
|
Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 2013; 12:71. [PMID: 23876056 PMCID: PMC3726476 DOI: 10.1186/1475-2859-12-71] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 02/08/2023] Open
Abstract
The human gut is one of the most complex ecosystems, composed of 1013-1014 microorganisms which play an important role in human health. In addition, some food products contain live bacteria which transit through our gastrointestinal tract and could exert beneficial effects on our health (known as probiotic effect). Among the numerous proposed health benefits attributed to commensal and probiotic bacteria, their capacity to interact with the host immune system is now well demonstrated. Currently, the use of recombinant lactic acid bacteria to deliver compounds of health interest is gaining importance as an extension of the probiotic concept. This review summarizes some of the recent findings and perspectives in the study of the crosstalk of both commensal and probiotic bacteria with the human host as well as the latest studies in recombinant commensal and probiotic bacteria. Our aim is to highlight the potential roles of recombinant bacteria in this ecosystem.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78350, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, F-78350, France
| | - Sylvie Miquel
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78350, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, F-78350, France
| | - Jonathan Ulmer
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78350, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, F-78350, France
| | - Noura Kechaou
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78350, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, F-78350, France
| | - Philippe Langella
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78350, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, F-78350, France
| | - Luis G Bermúdez-Humarán
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78350, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, F-78350, France
| |
Collapse
|
34
|
Zhang L, Ma N, Liu Q, Ma Y. Genome-wide screening for genes associated with valproic acid sensitivity in fission yeast. PLoS One 2013; 8:e68738. [PMID: 23861937 PMCID: PMC3702616 DOI: 10.1371/journal.pone.0068738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 06/03/2013] [Indexed: 11/22/2022] Open
Abstract
We have been studying the action mechanisms of valproic acid (VPA) in fission yeast Schizosaccharomyces pombe by developing a genetic screen for mutants that show hypersensitivity to VPA. In the present study, we performed a genome-wide screen of 3004 haploid deletion strains and confirmed 148 deletion strains to be VPA sensitive. Of the 148 strains, 93 strains also showed sensitivity to another aliphatic acids HDAC inhibitor, sodium butyrate (SB), and 55 strains showed sensitivity to VPA but not to SB. Interestingly, we found that both VPA and SB treatment induced a marked increase in the transcription activity of Atf1 in wild-type cells. However, in clr6-1, a mutant allele the clr6+ gene encoding class I HDAC, neither VPA- nor SB induced the activation of Atf1 transcription activity. We also found that VPA, but not SB, caused an increase in cytoplasmic Ca2+ level. We further found that the cytoplasmic Ca2+ increase was caused by Ca2+ influx from extracellular medium via Cch1-Yam8 channel complex. Altogether, our present study indicates that VPA and SB play similar but distinct roles in multiple physiological processes in fission yeast.
Collapse
Affiliation(s)
- Lili Zhang
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ning Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Qingbin Liu
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
35
|
Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave J, Vyas B. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013; 4:181-92. [PMID: 23511582 PMCID: PMC3669163 DOI: 10.4161/gmic.23919] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism."
Collapse
Affiliation(s)
- Maya Raman
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences and Bioengineering; Indian Institute of Technology; Chennai, India
| | - Padma Ambalam
- Department of Biotechnology; Christ College; Rajkot, India,Correspondence to: Padma Ambalam,
| | | | - Sheetal Pithva
- Department of Biosciences; Saurashtra University; Rajkot, India
| | - Charmy Kothari
- Department of Biotechnology; Christ College; Rajkot, India
| | - Arti T. Patel
- SMC College of Dairy Science; Anand Agricultural University; Anand, India
| | | | | | - B.R.M. Vyas
- Department of Biosciences; Saurashtra University; Rajkot, India
| |
Collapse
|
36
|
Shin JH, Li RW, Gao Y, Bickhart DM, Liu GE, Li W, Wu S, Li CJ. Butyrate Induced IGF2 Activation Correlated with Distinct Chromatin Signatures Due to Histone Modification. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:57-70. [PMID: 23645985 PMCID: PMC3623616 DOI: 10.4137/grsb.s11243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes, including proliferation and apoptosis. H19 gene is closely linked to IGF2 gene, and IGF2 and H19 are reciprocally regulated imprinted genes. The epigenetic signature of H19 promoter (hypermethylation) on the paternal allele plays a vital role in allowing the expression of the paternal allele of IGF2.46 Our previous studies demonstrate that butyrate regulates the expression of IGF2 as well as genes encoding IGF Binding proteins. To obtain further understanding of histone modification and its regulatory potentials in controlling IGF2/H19 gene expression, we investigated the histone modification status of some key histones associated with the expression of IGF2/H19 genes in bovine cells using RNA-seq in combination with Chip-seq technology. A high-resolution map of the major chromatin modification at the IGF2/H19 locus induced by butyrate was constructed to illustrate the fundamental association of the chromatin modification landscape that may play a role in the activation of the IGF2 gene. High-definition epigenomic landscape mapping revealed that IGF2 and H19 have distinct chromatin modification patterns at their coding and promoter regions, such as TSSs and TTSs. Moreover, the correlation between the differentially methylated regions (DMRs) of IGF2/H19 locus and histone modification (acetylation and methylation) indicated that epigenetic signatures/markers of DNA methylation, histone methylation and histone acetylation were differentially distributed on the expressed IGF2 and silenced H19 genes. Our evidence also suggests that butyrate-induced regional changes of histone acetylation statusin the upstream regulation domain of H19 may be related to the reduced expression of H19 and strong activation of IGF2. Our results provided insights into the mechanism of butyrate-induced loss of imprinting (LOI) of IGF2 and regulation of gene expression by histone modification.
Collapse
Affiliation(s)
- Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang A, Akers RM, Jiang H. Short communication: Presence of G protein-coupled receptor 43 in rumen epithelium but not in the islets of Langerhans in cattle. J Dairy Sci 2012; 95:1371-5. [PMID: 22365220 DOI: 10.3168/jds.2011-4886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/03/2011] [Indexed: 01/02/2023]
Abstract
Volatile fatty acids (VFA) are the major products of microbial fermentation in the rumen. Besides serving as substrates for energy generation, VFA are known to stimulate rumen development, increase serum insulin and glucagon concentrations, and regulate gene expression in cattle and sheep. The mechanisms underlying these regulatory effects of VFA are unknown, but the recent discovery that VFA can bind to G protein-coupled receptor 43 (GPR43) and 41 (GPR41) suggests that the regulatory effects of VFA may be mediated by these receptors. As a step toward testing this possibility, we determined whether GPR43 was expressed in bovine rumen wall and the pancreatic islets of Langerhans. Polyclonal antibody against a bovine GPR43 peptide was generated. The specificity of the antibody for bovine GPR43 was confirmed by Western blot analysis of recombinant bovine GPR43 protein. Immunohistochemical analyses using this antibody revealed the presence of GPR43-immunoreactive cells in the epithelium, but not in the other layers of cattle rumen wall. The same immunohistochemical analyses did not reveal GPR43-immunoreactive cells in the islets of Langerhans or the surrounding exocrine tissue of cattle pancreas. These data support the possibility that the effect of VFA on rumen epithelial growth in cattle is directly mediated by GPR43 in the rumen epithelial cells and that the effect of VFA on pancreatic secretion of insulin and glucagon in cattle is unlikely to be directly mediated by GPR43.
Collapse
Affiliation(s)
- A Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061, USA
| | | | | |
Collapse
|
38
|
Baldwin RL, Wu S, Li W, Li C, Bequette BJ, Li RW. Quantification of Transcriptome Responses of the Rumen Epithelium to Butyrate Infusion using RNA-seq Technology. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:67-80. [PMID: 22654504 PMCID: PMC3362330 DOI: 10.4137/grsb.s9687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms, play a critical role in energy metabolism and physiology of ruminants as well as in human health. In this study, the temporal effect of elevated butyrate concentrations on the transcriptome of the rumen epithelium was quantified via serial biopsy sampling using RNA-seq technology. The mean number of genes transcribed in the rumen epithelial transcriptome was 17,323.63 ± 277.20 (±SD; N = 24) while the core transcriptome consisted of 15,025 genes. Collectively, 80 genes were identified as being significantly impacted by butyrate infusion across all time points sampled. Maximal transcriptional effect of butyrate on the rumen epithelium was observed at the 72-h infusion when the abundance of 58 genes was altered. The initial reaction of the rumen epithelium to elevated exogenous butyrate may represent a stress response as Gene Ontology (GO) terms identified were predominantly related to responses to bacteria and biotic stimuli. An algorithm for the reconstruction of accurate cellular networks (ARACNE) inferred regulatory gene networks with 113,738 direct interactions in the butyrate-epithelium interactome using a combined cutoff of an error tolerance (ɛ = 0.10) and a stringent P-value threshold of mutual information (5.0 × 10−11). Several regulatory networks were controlled by transcription factors, such as CREBBP and TTF2, which were regulated by butyrate. Our findings provide insight into the regulation of butyrate transport and metabolism in the rumen epithelium, which will guide our future efforts in exploiting potential beneficial effect of butyrate in animal well-being and human health.
Collapse
Affiliation(s)
- Ransom L Baldwin
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wu S, Li RW, Li W, Li CJ. Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells. PLoS One 2012; 7:e36940. [PMID: 22615851 PMCID: PMC3352864 DOI: 10.1371/journal.pone.0036940] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells.
Collapse
Affiliation(s)
- Sitao Wu
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Robert W. Li
- United States Department of Agriculture–Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
| | - Weizhong Li
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Cong-jun Li
- United States Department of Agriculture–Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 2012; 155:324-31. [DOI: 10.1016/j.vetmic.2011.08.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/20/2011] [Accepted: 08/25/2011] [Indexed: 01/12/2023]
|
41
|
Shin JH, Li RW, Gao Y, Baldwin R, Li CJ. Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells. Funct Integr Genomics 2012; 12:119-30. [PMID: 22249597 DOI: 10.1007/s10142-012-0263-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 12/18/2022]
Abstract
Butyrate-induced histone acetylation plays an important role in the regulation of gene expression. However, the regulation mechanisms of histone modification remain largely unclear. To comprehensively analyze histone modification induced by butyrate, we utilized chromatin immunoprecipitation (ChIP) technology combined with next-generation sequencing technology (ChIP-seq) to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27 on a large scale. To determine the location of histone H3, acetyl-H3K9, and acetyl-H3K27 binding sites within the bovine genome, we analyzed the H3-, acetyl-H3K9-, and acetyl-H3K27-enriched binding regions in the proximal promoter within 5 kb upstream, or at the 5' untranslated region (UTR) from the transcriptional start site (TSS), exon, intron, and intergenic regions (defined as regions 25 kb upstream or 10 kb downstream from the TSS). Our analysis indicated that the distribution of histone H3, acetyl-H3K9, and acetyl-H3K27 correlated with transcription activity induced by butyrate. Using the GADEM algorithm, several motifs were generated for each of the ChIP-seq datasets. A de novo search for H3, acetyl-H3K9, and acetyl-H3K27 binding motifs indicated that histone modification (acetylation) at various locations changes the histone H3 binding preferences. Our results reveal that butyrate-induced acetylation in H3K9 and H3K27 changes the sequence-based binding preference of histone H3 and underlies the potential mechanisms of gene expression regulation induced by butyrate.
Collapse
Affiliation(s)
- Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe Street, Suite 102, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
42
|
Purwani EY, Iskandriati D, Suhartono MT. Fermentation product of RS3 inhibited proliferation and induced apoptosis in colon cancer cell HCT-116. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.38145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Li CJ, Li RW, Kahl S, Elsasser TH. Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells. GENE REGULATION AND SYSTEMS BIOLOGY 2011; 6:1-14. [PMID: 22267916 PMCID: PMC3256998 DOI: 10.4137/grsb.s8303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To further investigate the potential role of α-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-α as an immuno-stimulant to simulate inflammation response in cells with or without α-tocopherol pre-treatment. Using microarray global-profiling and IPA (Ingenuity Pathways Analysis, Ingenuity® Systems, http://www.ingenuity.com) data analysis on TNF-α-induced gene perturbation in those cells, we focused on determining whether α-tocopherol treatment of normal bovine cells in a standard cell culture condition can modify cell’s immune response induced by TNF-α challenge. When three datasets were filtered and compared using IPA, there were a total of 1750 genes in all three datasets for comparison, 97 genes were common in all three sets; 615 genes were common in at least two datasets; there were 261 genes unique in TNF-α challenge, 399 genes were unique in α-tocopherol treatment, and 378 genes were unique in the α-tocopherol plus TNF-α treatment. TNF-α challenge induced significant change in gene expression. Many of those genes induced by TNF-α are related to the cells immune and inflammatory responses. The results of IPA data analysis showed that α-tocopherol-pretreatment of cells modulated cell’s response to TNF-α challenge. In most of the canonical pathways, α-tocopherol pretreatment showed the antagonistic effect against the TNF-α-induced pro-inflammatory responses. We concluded that α-tocopherol pre-treatment has a significant antagonistic effect that modulates the cell’s response to the TNF-α challenge by altering the gene expression activities of some important signaling molecules.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, ARS, USDA, 10300 Baltimore Ave, Beltsville, MD 20705
| | | | | | | |
Collapse
|
44
|
Fiorito F, Ciarcia R, Granato GE, Marfe G, Iovane V, Florio S, De Martino L, Pagnini U. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced autophagy in a bovine kidney cell line. Toxicology 2011; 290:258-70. [DOI: 10.1016/j.tox.2011.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/12/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022]
|
45
|
Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 2011; 69:245-58. [DOI: 10.1111/j.1753-4887.2011.00388.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Abstract
Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in Madin Darby Bovine Kidney (MDBK) cells. We explore the possibility of using butyrate-blocked cells to obtain synchronized cells and we characterize the properties of butyrate-induced cell cycle arrest. The site of growth inhibition and cell cycle arrest was analyzed using 5-bromo-2'-deoxyuridine (BrdU) incorporation and flow cytometry analyses. Exposure of MDBK cells to 10 mM butyrate caused growth inhibition and cell cycle arrest in a reversible manner. Butyrate affected the cell cycle at a specific point both immediately after mitosis and at a very early stage of the G1 phase. After release from butyrate arrest, MDBK cells underwent synchronous cycles of DNA synthesis and transited through the S phase. It takes at least 8 h for butyrate-induced G1-synchronized cells to begin the progression into the S phase. One cycle of cell division for MDBK cells is about 20 h. By combining BrdU incorporation and DNA content analysis, not only can the overlapping of different cell populations be eliminated, but the frequency and nature of individual cells that have synthesized DNA can also be determined.
Collapse
Affiliation(s)
- Congjun Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, ARS, USDA, 20705, Beltsville, MD, USA.
| |
Collapse
|
47
|
Li CJ, Li RW, Elsasser TH. Alpha-Tocopherol Modulates Transcriptional Activities that Affect Essential Biological Processes in Bovine Cells. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:109-24. [PMID: 21157515 PMCID: PMC3001320 DOI: 10.4137/grsb.s6007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using global expression profiling and pathway analysis on α-tocopherol-induced gene perturbation in bovine cells, this study has generated comprehensive information on the physiological functions of α-tocopherol. The data confirmed α-tocopherol is a potent regulator of gene expression and α-tocopherol possesses novel transcriptional activities that affect essential biological processes. The genes identified fall within a broad range of functional categories and provide the molecular basis for its distinctive effects. Enrichment analyses of gene regulatory networks indicate α-tocopherol alter the canonical pathway of lipid metabolism and transcription factors SREBP1 and SREBP2, (Sterol regulatory element binding proteins), which mediate the regulatory functions of lipid metabolism. Transcription factors HNF4-α (Hepatocyte nuclear factor 4), c-Myc, SP1 (Sp1 transcription factor), ESR1 (estrogen receptor 1, nuclear), and androgen receptor, along with several others, were centered as the hubs of transcription regulation networks. The data also provided direct evidence that α-tocopherol is involved in maintaining immuno-homeostasis through targeting the C3 (Complement Component 3) gene.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | | | | |
Collapse
|
48
|
Koprinarova M, Markovska P, Iliev I, Anachkova B, Russev G. Sodium butyrate enhances the cytotoxic effect of cisplatin by abrogating the cisplatin imposed cell cycle arrest. BMC Mol Biol 2010; 11:49. [PMID: 20576112 PMCID: PMC2906439 DOI: 10.1186/1471-2199-11-49] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/24/2010] [Indexed: 01/29/2023] Open
Abstract
Background Histone deacetylase inhibitors have been proposed as potential enhancers of the cytotoxic effect of cisplatin and other anticancer drugs. Their application would permit the use of lower therapeutic doses and reduction of the adverse side effects of the drugs. However, the molecular mechanisms by which they sensitize the cells towards anticancer drugs are not known in details, which is an obstacle in developing effective therapeutic protocols. Results In the present work, we studied the molecular mechanisms by which sodium butyrate sensitizes cancer cells towards cisplatin. HeLa cells were treated with 5 mM butyrate, with 8 μM cis-diaminedichloroplatinum II (cisplatin), or with both. Cells treated with both agents showed approximately two-fold increase of the mortality rate in comparison with cells treated with cisplatin only. Accordingly, the life span of albino mice transfected with Ehrlich ascites tumor was prolonged almost two-fold by treatment with cisplatin and butyrate in comparison with cisplatin alone. This showed that the observed synergism of cisplatin and butyrate was not limited to specific cell lines or in vitro protocols, but was also expressed in vivo during the process of tumor development. DNA labeling and fluorescence activated cell sorting experiments showed that cisplatin treatment inhibited DNA synthesis and arrested HeLa cells at the G1/S transition and early S phase of the cell cycle. Western blotting and chromatin immunoprecipitation revealed that this effect was accompanied with a decrease of histone H4 acetylation levels. Butyrate treatment initially reversed the effect of cisplatin by increasing the levels of histone H4 acetylation in euchromatin regions responsible for the G1/S phase transition and initiation of DNA synthesis. This abrogated the cisplatin imposed cell cycle arrest and the cells traversed S phase with damaged DNA. However, this effect was transient and continued only a few hours. The long-term effect of butyrate was a massive histone acetylation in both eu- and heterochromatin, inhibition of DNA replication and apoptosis. Conclusion The study presents evidence that cell sensitization towards cisplatin by sodium butyrate is due to hyperacetylation of histone H4 in specific chromatin regions, which temporarily abrogates the cisplatin imposed cell cycle arrest.
Collapse
Affiliation(s)
- Miglena Koprinarova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, block 21, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
49
|
Wang A, Jiang H. Rumen fluid inhibits proliferation and stimulates expression of cyclin-dependent kinase inhibitors 1A and 2A in bovine rumen epithelial cells. J Anim Sci 2010; 88:3226-32. [PMID: 20562358 DOI: 10.2527/jas.2009-2769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been known for decades that microbial fermentation within the rumen is critical to postnatal rumen epithelial growth and maturation in ruminants, but the underlying mechanism is largely unknown. In this study, we determined the effect of rumen fluid, which should contain all products from rumen fermentation, on growth of rumen epithelial cells in vitro. Addition of 10% rumen fluid from cows to the culture medium inhibited (P < 0.05), whereas addition of 6.5 mM acetate, 2.5 mM propionate, or 1 mM butyrate had no effect (P > 0.1) on, the proliferation of rumen epithelial cells isolated from newborn calves. Flow cytometric assays showed that 10% rumen fluid inhibited (P < 0.05) the transition of rumen epithelial cells from the G1 phase to the S phase during the cell cycle. Real-time RT-PCR analyses of mRNA for key cell cycle regulators indicated that 10% rumen fluid did not change (P > 0.1) the expression of cyclin D1, D2, D3, E1, or E2 mRNA or that of cyclin-dependent kinase inhibitor 1B or 2B mRNA, but increased (P < 0.05) the expression of cyclin-dependent kinase inhibitors 1A and 2A mRNA in rumen epithelial cells. These mRNA data support the possibility that rumen fluid inhibits proliferation of rumen epithelial cells in vitro by increasing the expression of cyclin-dependent kinase inhibitors 1A and 2A. The result that rumen fluid inhibits proliferation of bovine rumen epithelial cells in culture indicates that rumen fermentation does not stimulate the postnatal rumen epithelial growth in cattle by directly stimulating proliferation of rumen epithelial cells.
Collapse
Affiliation(s)
- A Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
50
|
Campos-Vega R, Guevara-Gonzalez R, Guevara-Olvera B, Dave Oomah B, Loarca-Piña G. Bean (Phaseolus vulgaris L.) polysaccharides modulate gene expression in human colon cancer cells (HT-29). Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|