1
|
Feng L, Luo Z, Wang J, Wu K, Wang W, Liu Z, Wen J, Wang Z, Duns GJ, Ma X, Tan B. Effects of different ratios of soluble to insoluble dietary fiber on growth performance and intestinal health of piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:257-271. [PMID: 39281054 PMCID: PMC11402385 DOI: 10.1016/j.aninu.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 09/18/2024]
Abstract
This study investigated the impact of different ratios of soluble to insoluble dietary fiber (SDF:IDF) formulations by sugar beet pulp (SBP) supplementation on piglet growth performance, nutrient digestibility, immune function, intestinal morphology, intestinal microbiota and intestinal health. A total of 60 crossbred piglets (Duroc × [Landrace × Yorkshire]) at 40 d old with body weight of 10.0 ± 0.3 kg were randomly assigned to 5 treatments with 6 replicates per treatment and 2 piglets per replicate in a 21-d trial. The dietary treatments included a corn-soybean meal diet (0% SBP supplementation; CON), and diets supplemented with 2%, 4%, 6%, and 8% SBP, representing different SDF:IDF ratios at 10.16%, 13.53%, 16.79%, 19.86%, and 24.81%, respectively. The results indicated that the 8% SBP treatment had a negative effect on feed-to-gain ratio (linear, P = 0.009) compared with the CON treatment (P = 0.021). The apparent total tract digestibility (ATTD) of crude protein was lower in treatments supplemented with SBP (P = 0.002) and showed a linear decrease (P = 0.001), while the ATTD of IDF showed a linear increase (P = 0.037) in four SBP treatments compared to the CON treatment. The 4% SBP treatment increased serum concentrations of triglyceride (quadratic, P = 0.019) and K (linear, P < 0.0037), and decreased alanine transaminase concentration (quadratic, P = 0.015) compared with the CON treatment. The concentrations of Cit, Cys, Ile, Leu, Orn, Arg, taurine, urea, 1-methylhistidine, α-aminoadipic acid, α-aminobutyric acid and cystathionine in the 4% SBP treatment were highest among all treatments (P < 0.05). The serum concentrations of interleukin-6, interleukin-8, interleukin-10, transforming growth factor-β, and tumor necrosis factor-α in the 6% SBP treatment were higher than those in the CON treatment (P < 0.05), which also increased mucin-2 and G protein-coupled receptor 41 mRNA expression (P < 0.05) in colonic mucosa compared with the CON treatment and improved the intestinal barrier function. Diets containing more than 19.86% SDF:IDF could impair the intestinal health in piglets when SBP was used as the SDF source. Supplementing nursery piglet diets with 16.79% to 19.86% SDF:IDF is recommended for improving intestinal barrier function, increasing short-chain fatty acids concentrations, and improving intestinal microbiota composition.
Collapse
Affiliation(s)
- Luya Feng
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhenfu Luo
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Kunfu Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenliang Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhimou Liu
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Juping Wen
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Zhenbin Wang
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Gregory J Duns
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaokang Ma
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Bi'e Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Lee J, Kim HA, Kang YJ, Kim YK, Shin MC. Effect of Sasa quelpaertensis Nakai extract on gut microbiota and production performance in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:740-748. [PMID: 39165746 PMCID: PMC11331370 DOI: 10.5187/jast.2024.e84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2024]
Abstract
Different dietary patterns affect the gut microbial compositions and diversity. Consistently, microbiome alterations are linked to digestion, immunity, and productivity. Sasa quelpaertensis Nakai (SQ) is a perennial bamboo species rich in proteins and fiber. Previous studies have confirmed the health benefits of SQ; however, the effects of SQ supplementation on gut microbiome and production performance are unclear. Herein, Landrace pigs were supplemented with SQ extract (SQE) and gut microbial compositions as opposed to the control group were assessed using 16S rRNA sequencing. Additionally, the influences of SQE supplementation on average daily gain (ADG) and backfat thickness (BF) were assessed after slaughter. In the SQE group, Firmicutes and Actinobacteria phyla increased significantly, whereas Bacteroidetes and Spirochaetes phyla markedly decreased (p < 0.05). The expression level of Bifidobacterium and Lactobacillus genera increased, whereas that of Treponema, Prevotella, and Turicibacter decreased (p < 0.05). The microbial richness was similar between groups; however, microbial diversity decreased in the SQE supplementation group. Additionally, the SQE supplementation in pigs resulted in a slight increase in ADG. In contrast, BF in the SQE group decreased notably (p < 0.05). These results underscore the significant influence of SQE supplementation on the gut microbiota and demonstrate the potential of SQ as a valuable feed resource for enhancing animal productivity.
Collapse
Affiliation(s)
- Jongan Lee
- Animal Genome & Bioinformatics,
National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Hyeon-Ah Kim
- Subtropical Livestock Research Institute,
National Institute of Animal Science, Rural Development
Administration, Jeju 63242, Korea
| | - Yong-Jun Kang
- Subtropical Livestock Research Institute,
National Institute of Animal Science, Rural Development
Administration, Jeju 63242, Korea
| | - Yoo-Kyung Kim
- Subtropical Livestock Research Institute,
National Institute of Animal Science, Rural Development
Administration, Jeju 63242, Korea
| | - Moon-Cheol Shin
- Planning & Coordination Division,
National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| |
Collapse
|
3
|
Xu G, Huang J, Chen W, Zhao A, Pan J, Yu F. The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs. Animals (Basel) 2024; 14:1913. [PMID: 38998025 PMCID: PMC11240776 DOI: 10.3390/ani14131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The Jinwu pig (JW) is a hybrid breed originating from the Chinese indigenous Jinhua pig and Duroc pig, boasting excellent meat quality and fast growth rates. This study aimed to verify the tolerance of JW to roughage, similar to most Chinese indigenous pigs. In this research, two types of feed were provided to JW and Duroc × Landrace × Yorkshire pigs (DLY): a basal diet and a roughage diet (increasing the rice bran and wheat bran content in the basal diet from 23% to 40%) for a 65-day experimental period. The roughage diet showed an increasing trend in the feed conversion ratio (F/G), with a 17.61% increase in feed consumption per unit weight gain for DLY, while the increase for JW was only 4.26%. A 16S rRNA sequencing analysis revealed that the roughage diet increased the relative abundance of beneficial bacteria, such as Lactobacillus and Clostridium, while reducing the relative abundance of some potential pathogens, thus improving the gut microbiota environment. After being fed with the roughage diet, the abundance of bacterial genera, such as Treponema, Terrisporobacter, Coprococcus, and Ruminococcaceae, which aid in the digestion and utilization of dietary fiber, were significantly higher in Jinwu compared to DLY, indicating that these bacterial genera confer Jinwu with a higher tolerance to roughage than DLY.
Collapse
Affiliation(s)
- Gaili Xu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Jing Huang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenduo Chen
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Jianzhi Pan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fuxian Yu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| |
Collapse
|
4
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
5
|
Lee J, González-Vega JC, Htoo JK, Nyachoti CM. Effects of dietary crude protein content and resistant starch supplementation on growth performance, intestinal histomorphology and microbial metabolites in weaned pigs. Arch Anim Nutr 2024; 78:192-207. [PMID: 39047153 DOI: 10.1080/1745039x.2024.2376093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A 4-week study was conducted to evaluate the effects of dietary crude protein (CP) content and resistant starch (RS) supplementation on growth performance, intestinal histomorphology and microbial metabolites of weaned pigs. A total of 96 pigs (7.06 ± 0.45 kg body weight) were assigned to 1 of 4 diets in a randomised complete block design involving a 2 (CP levels) × 2 (without or with RS) factorial arrangement to give 8 replicate pens and 3 pigs per pen. Body weight and feed disappearance were recorded weekly, and the faecal consistency score was determined every morning. Blood was sampled on days 1, 14 and 28 from one pig per pen, and the same pig was euthanised on day 28 to collect ileal tissue and ileal and colon digesta. Data were analysed using the MIXED procedure of SAS. The average daily gain and gain:feed ratio were lower (p < 0.05) in pigs fed low crude protein (LCP) diets compared to those fed high CP (HCP) diets during week 3 and overall period. The analysed Lys, Met+Cys and Thr in feed were lower than calculated values, particularly in LCP diets, which may have affected performance. Pigs fed the LCP diets had longer (p < 0.05) ileal villi and higher villus height to crypt depth ratios than those fed the HCP diets, and RS supplementation increased (p < 0.05) ileal villus height. Interactions (p < 0.05) between dietary CP content and RS inclusion were observed for short-chain fatty acid concentration in the ileum and colon in phase 2. There was no difference in propionic acid (ileum) or butyric acid (colon) concentrations among pigs fed HCP diets, however, the butyric acid concentration increased in pigs fed the LCP diet when supplemented with RS. Reducing dietary CP lowered (p < 0.05) faecal score, plasma urea nitrogen and digesta ammonia content. Overall, feeding LCP diets reduced growth performance but improved gut morphology in weaned pigs. Feeding the LCP diet with RS supplementation modulated concentrations of ileal propionic acid and colonic butyric acid in weaned pigs.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - John Kyaw Htoo
- Nutrition & Care, Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | |
Collapse
|
6
|
Valini GADC, Méthot S, Pomar C, Hauschild L, Remus A. Size matters: lower body weight pigs have a different response to immune challenge and amino acids supplementation above the estimated requirement compared to heavy pigs. J Anim Sci 2024; 102:skae255. [PMID: 39207124 PMCID: PMC11439151 DOI: 10.1093/jas/skae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The immune response varies between pigs, as not all pigs have the same response to a stressor. This variation may exist between individuals due to body weight (BW) or body composition, which may impact the capacity for coping with an immune challenge (IC). Tryptophan (Trp), threonine (Thr), and methionine (Met) requirements might also play a considerable part in supporting immune system activation while reducing variation between pigs; however, the latter has yet to be reported. This exploratory study investigated the effect of initial BW (light vs. heavy-weight) and supplementation of Trp, Thr, and Met above National Research Council (NRC) requirements on feeding behavior and the coping capacity of growing pigs under an IC. Eighty gilts were categorized into 2 groups according to BW: light-weight (LW, 22.5 kg) and heavy-weight pigs (HW, 28.5 kg). Both BW groups were group-housed for a 28-d trial in a good or poor sanitary condition (SC). Pigs within a poor SC were orally inoculated with 2 × 109 colony units of Salmonella Typhimurium, and fresh manure from a pig farm was spread on the floor. Pigs within good SC were not inoculated, nor was manure spread. Two diets were provided within each SC: control (CN) or supplemented (AA+) with Trp, Thr, and Met at 120% of NRC recommended levels. A principal component analysis was performed in R, and a feeding behavior index was calculated in SAS. Results showed that LW and HW pigs were clustered separately on day 0, where LW pigs had a positive correlation with body lipid percentage (r = 0.83), and HW pigs had a positive correlation with body protein percentage (r = 0.75). After the IC, the cluster configuration changed, with diets influencing LW more than HW pigs within poor SC. On day 14, LW fed AA + diet in poor SC was clustered separately from LW pigs fed CN diet, whereas LW fed AA + and CN diets in good SC were clustered together. For feeding behavior, in both analyzed periods (period 1: days 7 to 14; period 2: days 21 to 28), LW had lower total feed intake and shorter meals than HW pigs (P < 0.10), independent of the SC. Furthermore, LW pigs fed AA + diet had a more regular feed intake pattern than those fed CN diet, while a more irregular pattern was observed for HW pigs fed AA + diet than CN diet at period 2. These findings suggest that supplementing Trp, Thr, and Met above requirements may be a nutritional strategy for LW pigs under IC by improving feed intake regularity and reducing the probability of being susceptible to IC.
Collapse
Affiliation(s)
- Graziela Alves da Cunha Valini
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP, Brazil
- Sherbrooke Research and Development Centre – Agriculture and Agri-Food Canada, Sherbrooke, Québec, Canada J1M 0C8
| | - Steve Méthot
- Sherbrooke Research and Development Centre – Agriculture and Agri-Food Canada, Sherbrooke, Québec, Canada J1M 0C8
| | - Candido Pomar
- Sherbrooke Research and Development Centre – Agriculture and Agri-Food Canada, Sherbrooke, Québec, Canada J1M 0C8
| | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP, Brazil
| | - Aline Remus
- Sherbrooke Research and Development Centre – Agriculture and Agri-Food Canada, Sherbrooke, Québec, Canada J1M 0C8
| |
Collapse
|
7
|
Wang D, Chen G, Li W, Chai M, Zhang H, Su Y. Effects of Low Protein Diet on Production Performance and Intestinal Microbial Composition in Pigs. Vet Sci 2023; 10:655. [PMID: 37999478 PMCID: PMC10675339 DOI: 10.3390/vetsci10110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
In order to study the effects of a low protein diet on the production performance and intestinal microbiota composition of Hexi pigs, twenty-seven Hexi pigs with an initial body weight of 60.50 ± 2.50 kg were randomly divided into three groups (control group (CG), group 1 (G1), and group 2 (G2)) and participated in a 60-day finishing trial. The CG was fed a normal protein level diet with a protein level of 16.0%, and G1 and G2 were fed a low protein level diet with protein levels of 14.0% and 12.0%, respectively. The results showed that the low protein level diet had no significant effect on the production performance of Hexi pigs, compared with the CG, the slaughter rate of G1 and G2 increased by 2.49% (p > 0.05) and 6.18% (p > 0.05), the shear force decreased by 2.43% (p > 0.05) and 15.57% (p > 0.05), the cooking loss decreased by 24.02% (p < 0.05) and 21.09% (p > 0.05), and the cooking percentage increased by 13.20% (p > 0.05) and 11.59% (p > 0.05). From 45 min to 24 h and 48 h after slaughter, each group of pH decreased by 1.02, 0.66, and 0.42. For muscle flesh color, the lightness (L) increased by 13.31% (p > 0.05) and 18.01% (p > 0.05) in G1 and G2 and the yellowness (b) increased by 7.72% (p > 0.05) and 13.06% (p > 0.05). A low protein level diet can improve the intestinal flora richness and diversity of growing and finishing pigs. In the jejunum, the ACE index (899.95), Simpson index (0.90), and Shannon (4.75) index were higher in G1 than in the other groups, but the Chao1 index (949.92) was higher in G2 than in the remaining two groups. Proteobacteria, Actinobacteria, Euryarchaeota, and Verrucomicrobia were significantly higher in G1 than in the CG. The relative abundances of Lactobacillus, Terrisporobacter, and Megasphaera in G1 was significantly higher than in the CG (p < 0.05). In the cecum, the ACE index (900.93), Chao1 index (879.10), Simpson index (0.94), and Shannon (5.70) index were higher in G1 than in the remaining groups. The Spirochaetes in G2 were significantly higher than in the other groups, but the Verrucomicrobia was significantly lower than in the other groups. The relative abundances of Lactobacillus were higher in G1 and G2 than in the CG (p > 0.05). The relative abundances of unidentified_Clostridiales and Terrisporobacter in G2 were significantly lower than in the CG (p < 0.05). The relative abundance of Turicibacter in G1 was significantly lower than in the CG (p < 0.05). The relative abundances of other bacterial genera in G1 and G2 were increased by 30.81% (p > 0.05) and 17.98% (p > 0.05).
Collapse
Affiliation(s)
- Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Wenzhong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Mingjie Chai
- Pingliang Animal Husbandry and Fishery Station, Pingliang 744000, China;
| | - Hua Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Yingyu Su
- College of Animal Science and Technology, Xinjiang Agricultural Vocational Technical College, Changji 831100, China;
| |
Collapse
|
8
|
Li X, Hu B, Zheng J, Pan Z, Cai Y, Zhao M, Jin X, Li ZQ. Probiotics Alleviate Chemotherapy-Associated Intestinal Mucosal Injury via the TLR4-NFκB Signaling Pathway. Drug Des Devel Ther 2023; 17:2183-2192. [PMID: 37521036 PMCID: PMC10386857 DOI: 10.2147/dddt.s403087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Temozolomide (TMZ) induces intestinal mucosa injury that cannot be fully counteracted by supportive treatment. Probiotics regulate gut microbial composition and the host immune system and may alleviate this side effect. We aimed to investigate the potential and mechanism of Lactobacillus rhamnosus GG (LGG) in relieving intestinal mucosal injury induced by TMZ. Methods Glioblastoma mice were divided into four groups: CON (control), LGG (109 CFU/mL, treated for 7 days), TMZ (50 mg/kg·d, treated for 5 days), LGG+TMZ (LGG for 7 days and TMZ subsequently for 5 days). Body weight, food intake, and fecal pH were recorded. Intestinal tissue samples were collected 1 day after the end of TMZ treatment. Degree of damage to intestine, expression of IL1β, IL6, TNFα, and IL10 in jejunum were determined. Levels of tight-junction proteins (ZO1, occludin), TLR4, IKKβ, IκBα, and P65 with their phosphorylation in jejunum were measured. Results Decreases in body weight, food intake, spleen index in the TMZ group were mitigated in the LGG+TMZ group, and the degree of intestinal shortening and damage to jejunum villus were also alleviated. The expression of tight-junction proteins in the LGG+TMZ group was significantly greater than that in the TMZ group. IκBα in intestinal tissue significantly decreased in the TMZ group, phos-IKKβ and phos-P65 increased compared to the CON group, and LGG reversed such changes in IκBα and phos-P65 in the LGG+TMZ group. Intestinal inflammatory cytokines were significantly increased in the TMZ group, but lower in the LGG+TMZ group. Moreover, expression of TLR4 in LGG group was significantly lower than that in the CON group. LGG inhibited the rise of TLR4 after TMZ in the LGG+TMZ group compared to the TMZ group. Conclusion LGG inhibits the activation of the TLR4-NFκB pathway and alleviates intestinal mucosal inflammation induced by TMZ, thereby protect the jejunum villi and mucosal physical barrier.
Collapse
Affiliation(s)
- Xiaochong Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Bowen Hu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Jiachen Zheng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- The Second Clinical School, Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Zhiyong Pan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Mingjuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| |
Collapse
|
9
|
Dahmer PL, DeRouchey JM, Gebhardt JT, Paulk CB, Jones CK. Summary of methodology used in enterotoxigenic Escherichia coli (ETEC) challenge experiments in weanling pigs and quantitative assessment of observed variability. Transl Anim Sci 2023; 7:txad083. [PMID: 37711356 PMCID: PMC10499306 DOI: 10.1093/tas/txad083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023] Open
Abstract
Postweaning diarrhea in pigs is often caused by the F4 or F18 strains of enterotoxigenic Escherichia coli (ETEC). To evaluate interventions for ETEC, experimental infection via a challenge model is critical. Others have reviewed ETEC challenge studies, but there is a lack of explanation for the variability in responses observed. Our objective was to quantitatively summarize the responses and variability among ETEC challenge studies and develop a tool for sample size calculation. The most widely evaluated response criteria across ETEC challenge studies consist of growth performance, fecal consistency, immunoglobulins, pro-inflammatory cytokines, and small intestinal morphology. However, there is variation in the responses seen following ETEC infection as well as the variability within each response criteria. Contributing factors include the type of ETEC studied, dose and timing of inoculation, and the number of replications. Generally, a reduction in average daily gain and average daily feed intake are seen following ETEC challenge as well as a rapid increase in diarrhea. The magnitude of response in growth performance varies, and methodologies used to characterize fecal consistency are not standardized. Likewise, fecal bacterial shedding is a common indicator of ETEC infection, but the responses seen across the literature are not consistent due to differences in bacterial enumeration procedures. Emphasis should also be placed on the piglet's immune response to ETEC, which is commonly assessed by quantifying levels of immunoglobulins and pro-inflammatory cytokines. Again, there is variability in these responses across published work due to differences in the timing of sample collection, dose of ETEC pigs are challenged with, and laboratory practices. Small intestinal morphology is drastically altered following infection with ETEC and appears to be a less variable response criterion to evaluate. For each of these outcome variables, we have provided quantitative estimates of the responses seen across the literature as well as the variability within them. While there is a large degree of variability across ETEC challenge experiments, we have provided a quantitative summary of these studies and a Microsoft Excel-based tool was created to calculate sample sizes for future studies that can aid researchers in designing future work.
Collapse
Affiliation(s)
- Payton L Dahmer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Sahar NU, Shoaib M, Mirza MA, Bhatti SA, Ashraf S, Aslam N, Roobi A, Asif MA. Production performance, protein digestibility, gut health and economic efficiency in sexed broilers with super dozing of lysine. Trop Anim Health Prod 2023; 55:40. [PMID: 36645529 DOI: 10.1007/s11250-023-03450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Modern commercial broiler is growing very rapidly and its amino acid requirement is not fulfilling. An experimental trial was conducted to study the effect of super-dosing of lysine in fish meal-based diets (50% fish meal and 50% SBM) on production performance, protein digestibility and economic efficiency in male and female broiler chickens. Four hundred and eighty (480) one-day-old male and female broiler chicks were divided into forty experimental units of 12 birds each. Five levels of dietary lysine i.e. 90, 100, 110, 120 and 130% of Ross-308 recommendation in male and female birds were separately used. Weight gain and feed intake were higher (p < 0.05) in birds received 100 and 110% recommended lysine than other levels. Feed conversion ratio and EPEF were improved (p < 0.05) in birds received 100% recommended lysine than other levels. Higher (p < 0.05) CP digestibility and lower production cost per kg live weight were noted for birds fed diet containing lysine 100, 110 and 120% than 90 and 130%. Male birds had higher (p < 0.05) WG, FI, EPEF, protein digestibility and lower production cost per kg live weight than female birds. In conclusion, lysine levels below 100% and above 110% of Ross recommended levels had poor production performance, protein digestibility and economic efficiency.
Collapse
Affiliation(s)
- Najam Us Sahar
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Muhammad Shoaib
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Muhammad Aslam Mirza
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Shaukat Ali Bhatti
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan.
| | - Shahzad Ashraf
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Noreen Aslam
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Alishbah Roobi
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Muhammad Arslan Asif
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| |
Collapse
|
11
|
Wellington MO, Hulshof TG, Resink JW, Ernst K, Balemans A, Page GI. The effect of supplementation of essential amino acid combinations in a low crude protein diet on growth performance in weanling pigs. Transl Anim Sci 2023; 7:txad008. [PMID: 36777099 PMCID: PMC9909505 DOI: 10.1093/tas/txad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The present study investigated the impact of providing different supplemental essential amino acids (EAA) in a low crude protein (CP) diet on growth performance in weanling pigs. A total of 324 mixed-sex 24-d weaned piglets (initial BW 6.9 ± 0.34 kg) were used in a 27-d growth trial with six dietary treatments immediately post-weaning. The first two treatments were a control standard CP (19%) diet (positive control; PC) and a negative control (NC) diet with low CP (16%) and reduced Ile, Leu, and histidine levels. The rest of the treatments had low CP with varied EAA types and levels; T1 had similar Ile, Leu, and His levels as PC but with low CP (16%), while T2 had low CP and 10% higher His, Thr, Trp, and Met+Cys compared to PC. The T3 was a low CP diet with 10% supplemental Leu, Ile, and Val compared to PC, while T4 was a low CP diet with 10% supplementation with all the EAA except Lys compared to PC. The initial body weight (BW) was not statistically different (P > 0.05) among the treatments. Also, on d 6, no statistical differences in BW were observed among the treatments. The average BW recorded on d 13, 20, and 27 showed significant treatment differences where the PC had consistently higher BW than all the other treatments (P < 0.05). The average daily gain (ADG) of the PC was higher than the rest of the treatments. Between d 13 and 20, the average daily feed intake (ADFI) for PC was not different from NC and T1 (P > 0.05), but compared to T2, T3, and T4, the PC treatment showed a high ADFI (P < 0.05). Overall (d 0-27), the ADFI for PC was not different from T1 and was significantly higher than all other treatments. Overall, results showed that the gain to feed (G:F) ratio was higher (P < 0.05) for PC compared to other dietary treatments. In summary, although the treatments (T1-T4) consisted of varying levels of EAA above the recommended requirement levels for optimal performance, we did not see a significant impact on growth performance improvement, which may indicate that the targeted EAA (His, Val, Thr, lle, Leu, Trp, and Met) may not have been limiting in these diets. On the other hand, the phenylalanine (Phe) requirement may be limited in the current formulations, or perhaps the EAA: total N ratio in T1, T2, T3, and T4 may have been too high, resulting in the inefficiency of EAA utilization for growth.
Collapse
Affiliation(s)
| | - Tetske G Hulshof
- Nutreco Netherland B.V, Trouw Nutrition R&D Swine, 3800 AG, Amersfoort, The Netherlands
| | - Jan Wellim Resink
- Nutreco Netherland B.V, Trouw Nutrition R&D Swine, 3800 AG, Amersfoort, The Netherlands
| | - Kristi Ernst
- Nutreco Netherland B.V, Trouw Nutrition R&D Swine, 3800 AG, Amersfoort, The Netherlands
| | - Anke Balemans
- Nutreco Netherland B.V, Trouw Nutrition R&D Swine, 3800 AG, Amersfoort, The Netherlands
| | - Greg I Page
- Nutreco Netherland B.V, Trouw Nutrition R&D Swine, 3800 AG, Amersfoort, The Netherlands
| |
Collapse
|
12
|
Zhang G, Zhao J, Song X, Yang M, Wang H, Wu Y. Feeding dietary fermentable fiber improved fecal microbial composition and increased acetic acid production in a nursery pig model. J Anim Sci 2023; 101:skad260. [PMID: 37535451 PMCID: PMC10464512 DOI: 10.1093/jas/skad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
The objective of this study was to determine the fermentable fiber (FF) content of several common fibrous ingredients fed to nursery pigs, and then evaluate the effect of dietary FF level on growth performance and fecal microbial composition. In experiment 1, 54 nursery pigs were randomly allotted to be fed nine diets with six replicate pigs per diet. Dietary treatments included a corn-soybean meal basal diet and eight test diets based on a mixture of the corn-soybean meal diet and corn distillers dried grains with solubles, sunflower meal, oat bran, wheat bran, corn bran, sugar beet pulp (SBP), apple pomace (AP) or soybean hulls (SH). In experiment 2, 180 nursery pigs were housed in 30 pens (six pigs per pen) and randomly allotted to be fed five diets with different FF to total dietary fiber (TDF) ratios, which were 0.52, 0.55, 0.58, 0.61, and 0.64, respectively. Results showed that the FF content in SBP, AP, and SH was greater (P < 0.01) than that in other ingredients. Water binding capacity of fibrous ingredients was positively correlated (P < 0.05) to the digestibility of TDF, acid detergent fiber, and non-starch polysaccharides in test ingredients. Pigs fed the SBP, AP and SH diets had greater (P < 0.05) fecal acetic acid and total short-chain fatty acids (SCFAs) concentrations compared with pigs fed other diets. Fecal acetic acid and total SCFAs concentrations were positively correlated (P < 0.05) with FF content in experimental diets. Average daily weight gain and average daily feed intake of pigs quadratically increased (P < 0.01) as the ratios of FF to TDF increased. Pigs in FF64% group showed higher (P < 0.05) ACE index and fecal acetic acid concentration compared with pigs fed the dietary FF/TDF ratio of 0.52 to 0.61. Compared with the classification system of soluble dietary fiber and insoluble dietary fiber, FF could better describe the mechanism by which dietary fiber has beneficial effects on pig gut health.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Swine Nutrition laboratory, Wellhope Foods Co., Ltd., Shengyang 110164, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoming Song
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meiyu Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Bekebrede A, Noorman L, Keijer J, de Boer V, Gerrits W. Functional metabolic capacity of pig colonocytes is differentially modulated by fermentable fibre and poorly digestible protein. Animal 2022; 16:100625. [DOI: 10.1016/j.animal.2022.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
|
14
|
Sanchez-Zannatta J, Le Thanh B, Wang L, Beltranena E, Newkirk R, Zijlstra R. Ileal nutrient and energy digestibility of steam-exploded canola meal in cannulated grower pigs and total tract nutrient digestibility and growth performance of diets containing steam-exploded canola meal in weaned pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
16
|
Vangroenweghe FACJ, Boone M. Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals (Basel) 2022; 12:ani12172231. [PMID: 36077950 PMCID: PMC9454454 DOI: 10.3390/ani12172231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Post-weaning diarrhea (PWD) due to Escherichia coli (E. coli) remains a major cause of economic losses for the pig industry. Therapy to combat PWD typically consists of antibiotic treatment or supplementation of zinc oxide to the feed. The emergence of antimicrobial resistance and new EU regulations prompt the need for alternative control strategies, such as immunization. The aim of the field study was to evaluate the effect of an oral live non-pathogenic E. coli vaccine on piglet performance, health, and antimicrobial use. We compared 10 batches receiving a standard antimicrobial control treatment to 10 batches vaccinated with the oral E. coli vaccine. The vaccine-treated groups demonstrated a significant improvement in performance, mortality weight, and antimicrobial use. In addition, secondary infections due to Streptococcus suis in the second part of nursery were reduced, as indicated by the reduction in amoxicillin use. In conclusion, the present study demonstrates the efficacy of an oral live non-pathogenic E. coli vaccine for the active immunization of piglets against PWD under field conditions. Therefore, vaccination against PWD may be considered a valuable alternative for strengthening piglet performance while meeting the new EU requirements concerning the prudent use of antimicrobials in intensive pig production. Abstract Post-weaning diarrhea (PWD) due to Escherichia coli (E. coli) remains a major cause of economic losses for the pig industry. Therapy to combat PWD typically consists of antibiotic treatment or supplementation of zinc oxide to the feed. The emergence of antimicrobial resistance to E. coli and new EU regulations prompt the need for alternative control strategies, such as immunization. The aim of the field study was to evaluate the effect of an oral live non-pathogenic E. coli vaccine on piglet performance, health, and antimicrobial use. We evaluated vaccination with an oral live non-pathogenic E. coli F4/F18 under field conditions in 10 consecutive batches against a standard antimicrobial treatment in 10 historical control batches. The vaccine-treated groups demonstrated a significant improvement in feed conversion rate, mortality weight, and antimicrobial use. From a general health perspective, secondary infections due to Streptococcus suis (S. suis) in the second part of nursery were markedly reduced, as indicated by the reduction in amoxicillin use. In conclusion, the present study demonstrates the efficacy of an oral live non-pathogenic E. coli vaccine for active immunization of piglets against PWD under field conditions. The vaccine-treated groups showed an improvement in several economically important performance parameters while reducing the overall antimicrobial use and infection pressure due to S. suis. Therefore, vaccination against PWD may be considered a valuable alternative for consolidating piglet performance while meeting the new EU requirements concerning the prudent use of antimicrobials in intensive pig production.
Collapse
Affiliation(s)
- Frédéric A. C. J. Vangroenweghe
- Elanco Animal Health Benelux, BU Swine & Ruminants, 2018 Antwerpen, Belgium
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Department of Internal Medicine–Reproduction–Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Correspondence: ; Tel.: +32-477-558-562
| | | |
Collapse
|
17
|
Patience JF, Ramirez A. Invited review: strategic adoption of antibiotic-free pork production: the importance of a holistic approach. Transl Anim Sci 2022; 6:txac063. [PMID: 35854972 PMCID: PMC9278845 DOI: 10.1093/tas/txac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.
Collapse
Affiliation(s)
- John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50011-1178, USA
| | - Alejandro Ramirez
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ 85737, USA
| |
Collapse
|
18
|
Blachier F, Andriamihaja M, Kong XF. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? ANIMAL NUTRITION 2022; 9:110-118. [PMID: 35573094 PMCID: PMC9065739 DOI: 10.1016/j.aninu.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine, and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA, which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of note, the production of the AA-derived metabolites greatly depends on the amount of undigested polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa, isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate, hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will contribute to a better understanding of the potential causal links between diet-induced changes in the luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial barrier function and water/electrolyte absorption.
Collapse
|
19
|
Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms 2022; 10:microorganisms10051065. [PMID: 35630507 PMCID: PMC9143759 DOI: 10.3390/microorganisms10051065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Functional foods are classified as traditional or staple foods that provide an essential nutritional level and share potentially positive effects on host health, including the reduction of disease by optimizing the immune system’s ability to prevent and control infections by pathogens, as well as pathologies that cause functional alterations in the host. This chapter reviews the most recent research and advances in this area and discusses some perspectives on what the future holds in this area.
Collapse
|
20
|
Effects of Dietary Protein Level on the Microbial Composition and Metabolomic Profile in Postweaning Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3355687. [PMID: 35401925 PMCID: PMC8986435 DOI: 10.1155/2022/3355687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 03/12/2022] [Indexed: 01/10/2023]
Abstract
Since the human and porcine digestive systems have similar anatomical structures and physiological functions, pigs are a useful animal model for studying human digestive diseases. By investigating intestinal metabolites in piglets after weaning, this study attempted to identify the inherent connection between dietary protein levels and changes in the intestinal microbiota of piglets. Casein was employed as the only source of protein for the piglets in this study to avoid the influence of other protein sources. 14 weaning at 28-day-old piglets (6.9 ± 0.19 kg) formed into two dietary groups: 17% casein fed group (LP) and 30% casein fed group (HP). Piglets were allowed to free food and water during the 2-week experiment. Throughout the trial, the piglets' diarrhea index (1: no diarrhea and 3: watery diarrhea) and food intake were noted during the experiment. We discovered piglets fed a high-protein diet developed diarrhea throughout the duration of the research, whereas piglets fed a normal protein diet did not. In addition, the HP group had lower feed intake and body weight than the control group (P < 0.05). The HP diet influenced the content of short-chain and branched-chain fatty acids in the colon, including acetate and isovaleric acid. The ileal microbiota's 16S rRNA gene was sequenced, and it was discovered that the relative abundance of gastrointestinal bacteria differed between the HP and control groups. Dietary protein levels influenced bile acid biosynthesis, alpha-linolenic acid metabolism, phospholipid biosynthesis, arachidonic acid metabolism, fatty acid biosynthesis, retinol metabolism, arginine and proline metabolism, pyrimidine metabolism, tryptophan metabolism, and glycine and serine metabolism, according to gas chromatography-mass spectrometry analysis. Furthermore, a correlation analysis of the pooled information revealed a possible link between intestinal metabolites and specific bacteria species. These findings demonstrate that weaned piglets' microbiota composition and metabolites are modified by a high-protein diet and thus inducing severe postweaning diarrhea and inhibiting growth performance. However, the potential molecular mechanism of this regulation in the growth of piglets remains unclear.
Collapse
|
21
|
Engelsmann MN, Jensen LD, van der Heide ME, Hedemann MS, Nielsen TS, Nørgaard JV. Age-dependent development in protein digestibility and intestinal morphology in weaned pigs fed different protein sources. Animal 2022; 16:100439. [PMID: 35007883 DOI: 10.1016/j.animal.2021.100439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Today, weaner diets are optimised using digestibility coefficients obtained from grower-finisher pigs, which may overestimate the digestibility in weaners. The aim of this study was to evaluate the standardised ileal digestibility (SID) of CP and amino acids (AAs), and the intestinal morphology in pigs 0-4 weeks postweaning when fed different protein sources. The experiment included 128 pigs weaned at day 28 and the protein sources were wheat, soybean meal (SBM), enzyme-treated soybean meal (ESBM), hydrothermally treated rapeseed meal (HRSM) and casein. The experiment was conducted as a difference method study including wheat in all diets. Eight pigs were slaughtered on the day of weaning (day 0) and six pigs/treatment were slaughtered at days 7, 14, 21, and 28 postweaning. The SID of CP and AA, as average over the four weeks, was lowest for ESBM and highest for wheat and casein, with SBM and HRSM being intermediate. The SID of CP and AA increased (both linear and quadratic, P < 0.05) over time after weaning. The average SID of CP for all protein sources postweaning was 0.38, 0.59, 0.76, and 0.71 on days 7, 14, 21, and 28, respectively. These differences were significant (P < 0.05) between days 7 and 21, and between days 7 and 28 (P < 0.05), whereas there tended to be a difference between days 7 and 14 (P = 0.06). Protein source did not affect the small intestinal morphology response parameters, whereas time after weaning did. Villous height and villous height to crypt depth ratio differed (P < 0.05) between the days 0 and 7, with shorter villi and a higher ratio at day 7. Crypt depth was not altered between days 0 and 7, or between days 7 and 14. For villi density, crypt density and small intestinal length, a significant increase from days 7 to 14 was observed, but there was no further increase to or difference between days 21 and 28. In conclusion, the low SID of CP in casein on day 7 (0.50) illustrates the challenges related to protein digestion in weanling pigs. The SID of CP and AA is very low during the first two weeks postweaning and time after weaning is more important for protein digestibility, than the source of protein. Fewer mature epithelial cells and less absorptive area in the small intestine in the early postweaning period may partly explain the poor protein digestibility.
Collapse
Affiliation(s)
- M N Engelsmann
- Department of Animal Science, Aarhus University, Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - L D Jensen
- Department of Animal Science, Aarhus University, Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - M E van der Heide
- Department of Animal Science, Aarhus University, Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - M S Hedemann
- Department of Animal Science, Aarhus University, Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - T S Nielsen
- Department of Animal Science, Aarhus University, Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - J V Nørgaard
- Department of Animal Science, Aarhus University, Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
22
|
Tan FPY, Beltranena E, Zijlstra RT. Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: a review. J Anim Sci Biotechnol 2021; 12:124. [PMID: 34784962 PMCID: PMC8597317 DOI: 10.1186/s40104-021-00644-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Starch from cereal grains, pulse grains, and tubers is a major energy substrate in swine rations constituting up to 55% of the diet. In pigs, starch digestion is initiated by salivary and then pancreatic α-amylase, and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides (glucose) for absorption. Resistant starch (RS) is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine. The undigested starch reaches the distal small intestine and hindgut for microbial fermentation, which produces short-chain fatty acids (SCFA) for absorption. SCFA in turn, influence microbial ecology and gut health of pigs. These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes, maintenance of intestinal integrity and thus immunity, and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes. Thus, RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period. Despite these benefits to the well-being of pigs, RS has a contradictory effect due to lower energetic efficiency of fermented vs. digested starch absorption products. The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake, energy metabolism, and feed efficiency. Results of research indicate that the use of RS as prebiotic may improve gut health and thereby, reduce the incidence of post-weaning diarrhea (PWD) and associated mortality. This review summarizes our current knowledge on the effects of RS on microbial ecology, gut health and growth performance in pigs.
Collapse
Affiliation(s)
- Felina P Y Tan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Eduardo Beltranena
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
23
|
Yin L, Li J, Wang M, Wang Q, Li J, Ding N, Yang H, Yin Y. Dietary high protein-induced diarrhea and intestinal inflammation by activation of NF-κB signaling in piglets. ACTA ACUST UNITED AC 2021; 7:1070-1077. [PMID: 34738037 PMCID: PMC8546374 DOI: 10.1016/j.aninu.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
The present study aimed to investigate whether inflammation-associated responses in piglets are induced by high protein (HP) through activating nuclear factor kappa B (NF-κB) signaling. Sixteen piglets (35 d of age, Duroc × [Landrace × Yorkshire], weaned at d 21, initial BW = 9.70 ± 0.11 kg) were allocated to 18% and 26% CP (HP group) at random, comprising 8 replicate pens per treatment. The piglets were slaughtered to collect intestinal tissues when apparent, persistent, and stable diarrhea syndromes happened (on d 12). No significant differences were observed in their growth performance (P > 0.05), but reduction by 19.11%, 25.31%, 23.64% of ADFI, ADG, and G:F, respectively was detected in the HP group. The HP group had greater (P = 0.002) diarrhea rates. Furthermore, dietary HP had lower ileal villus height (VH; P = 0.048), ratio of villus height to crypt depth (VH/CD ratio; P = 0.016), and colonic CD (P = 0.034), as well as had the trend (P = 0.075) to reduce the ileal villus absorptive area. Moreover, HP diets significantly elevated the goblet cell numbers in the ileal villi (P = 0.016) and colonic crypts (P < 0.001) and up-regulated (P = 0.012) the mRNA expression of mucin2 (Muc2) in the ileum. In addition, HP diets increased the myeloperoxidase concentration in the ileum (P = 0.002) and colon (P = 0.007) of piglets. Dietary HP significantly down-regulated the mRNA expression of tumor necrosis factor-α (TNF-α; P < 0.001) in the ileum, induced nitric oxide synthase (iNOS; P = 0.040) and interleukin-22 (IL-22; P = 0.008) in the colon, and inclined to down-regulate interleukin-1β (IL-1β; P = 0.076) expression in the colon. The relative protein abundance of Galectin-3 (P = 0.046) in the colon and the ratio of phosphorylation NF-κB to NF-κB (p-NF-κB/NF-κB ratio) in the ileum of HP piglets were also greater (P = 0.038). These results suggest that dietary HP may cause diarrhea in piglets by activating NF-κB signaling induced intestinal inflammation.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
24
|
Yang P, Zhao J. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Sci Nutr 2021; 9:4639-4654. [PMID: 34401110 PMCID: PMC8358348 DOI: 10.1002/fsn3.2421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Many studies have reported that dietary fibers play a crucial role in promoting intestinal health of the host, since it strengthens functions of epithelial barrier and meanwhile maintains intestinal homeostasis of the host by modulating gut microbiota and short-chain fatty acid (SCFA) production. Pig is a good animal model to study effects of dietary fiber on gut health and microbial community. This review has summarized the relevant knowledge available based on roles of various dietary fibers in gut health and energy metabolism of pigs and humans. Evidences summarized in our review indicated that modulating intestinal microbial composition and SCFA production by consuming specific dietary fibers properly could be conducive to health improvement and disease prevention of the host. However, types of dietary fiber from edible foods exert divergent impacts on gut health, energy metabolism, microbial composition, and SCFA production. Therefore, more attention should be focused on different responses of various dietary fibers intake on host metabolism and health.
Collapse
Affiliation(s)
- Pan Yang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jinbiao Zhao
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
25
|
Zhang K, Wang N, Lu L, Ma X. Fermentation and Metabolism of Dietary Protein by Intestinal Microorganisms. Curr Protein Pept Sci 2021; 21:807-811. [PMID: 32048966 DOI: 10.2174/1389203721666200212095902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Dietary protein is linked to the intestinal microorganisms. The decomposition of dietary protein can provide nutrients for microbial growth, which in turn can ferment protein to produce some metabolites. This review elaborates that the effects of different protein levels and types on intestinal microorganisms and their metabolites fermented by intestinal microorganisms, as well as the effects of these metabolites on organisms. It is well known that intestinal microbial imbalance can cause some diseases. Dietary protein supplementation can alter the composition of intestinal microorganisms and thus regulates the body health. However, protein can also produce some harmful metabolites. Therefore, how to rationally supplement protein is particularly important.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
Beijing 100193, China
| | - Nan Wang
- China Institute of Veterinary Drug Control, Beijing 100081,China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
Beijing 100193, China
| |
Collapse
|
26
|
Laskoski F, Tokach MD, Woodworth JC, DeRouchey JM, Dritz SS, Gebhardt JT, Goodband RD, Faccin JEG, Bortolozzo FP. Effects of different diet alternatives to replace the use of pharmacological levels of zinc on growth performance and fecal dry matter of weanling pigs. Transl Anim Sci 2021; 5:txab074. [PMID: 34189416 PMCID: PMC8223593 DOI: 10.1093/tas/txab074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
A total of 300 weanling pigs (Line 400 × 200, DNA, Columbus, NE, initially 4.83 kg) were used in a 46-d trial to evaluate the effects of different nutritional strategies to replace pharmacological levels of Zn, provided by zinc oxide (ZnO), in nursery diets on growth performance and fecal dry matter (DM). Six treatments with 10 replicate pens per treatment and 5 pigs per pen were used. Diets consisted of: (1) positive control (ZnO providing 3,000 mg/kg added Zn from d 0 to 7 and 2,000 mg/kg added Zn from d 8 to 25 and 21% crude protein, CP); (2) negative control (NC; no added ZnO); (3) NC plus 1.2% Na diformate; (4) NC with 4% coarse ground wheat bran; (5) NC but formulated to 18% CP; and (6) the combination of NC with 18% CP, 1.2% Na diformate, and 4% coarse ground wheat bran. The diets formulated to 18% CP contained 1.2% standardized ileal digestible (SID) Lys from d 0 to 25, whereas the 21% CP diets contained 1.4% SID Lys from d 0 to 7 and 1.35% SID Lys from d 7 to 25. From d 25 to 46, all pigs were fed a common diet. From d 0 to 7, no differences in any variables were observed between treatments. From d 7 to 25, pigs fed the diet with added ZnO had greater (P < 0.01) average daily gain (ADG) and average daily feed intake (ADFI) than all other treatments. Pigs fed the diet formulated to 18% CP had decreased (P < 0.01) ADG when compared with pigs fed the other diets. From d 25 to 46, no previous treatment effects on ADG or gain to feed ratio (G:F) were observed. Overall (d 0 to 46), pigs fed the diet with added ZnO from d 0 to 25 had greater (P < 0.01) ADG, ADFI, and final body weight than pigs fed added Na Diformate, or 4% coarse ground wheat bran, or with the 18% CP diet, or with pigs fed the combination of the additives intermediate. There was no evidence for differences in overall G:F. Pigs fed the NC diet had the lowest fecal DM and highest fecal scores (P < 0.05), indicating the greatest incidence of loose stools. Pigs fed added ZnO had greater fecal DM than pigs fed the NC, 4% added wheat bran, or 18% CP diets, or with pigs fed the combination of additives intermediate (P < 0.01). These results suggest that adding pharmacological levels of Zn from ZnO improves nursery pig performance and increases DM content of feces when compared with pigs fed diets with either Na diformate, 4% course wheat bran, or 18% CP alone. However, a combination of all three alternatives appeared to be additive and partially restored growth performance similar to adding pharmacological levels of Zn.
Collapse
Affiliation(s)
- Fernanda Laskoski
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Manhattan, KS 66506-0201
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Manhattan, KS 66506-0201
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201
| | - Jamil E G Faccin
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando P Bortolozzo
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
A Very Low CP Level Reduced Diarrhoea and Productivity in Weaner Pigs, but No Differences between Post-Weaning Diets Including Soybean Meal or Soy Protein Concentrate Were Found. Animals (Basel) 2021; 11:ani11030678. [PMID: 33806270 PMCID: PMC7998764 DOI: 10.3390/ani11030678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Soy protein concentrate improves nutrient utilization and growth performance compared to soybean meal, and diets with a low crude protein (CP) level decreases diarrhoea. The objectives were to (1) test a low CP diet based on different soy products, and (2) to test a very-low CP diet (15.1%) with amino acids (AA) on diarrhoea and productivity. A total of 5,635 weaned pigs (~28 days), were assigned to five dietary treatments; PC (positive control): Standard CP levels (192, 189, 191 g/kg CP) with 2500 ppm ZnO; NC (negative control): Same as PC without ZnO; SP (Soy protein concentrate): Low CP levels (176, 174, 191 g/kg CP); SB (Soybean meal): Low CP levels (177, 176, 191 g/kg CP); and XLA (X-low CP + AA): Very low CP levels (154, 151, 191 g/kg CP) with AA. The PC and XLA diets reduced diarrhoea by 41 and 61%, respectively, compared to the NC group, while no difference between SB and SP were observed. The XLA diet reduced feed intake and daily gain compared with PC and NC, where SP, SB, and XLA had a poorer feed conversion compared with PC. Conclusively, the SP and SB low-protein diets did not reduce diarrhoea or growth performance, whereas the XLA diet decreased both diarrhoea and performance.
Collapse
|
28
|
Lee JS, Kim TH, Song MH, Oh HJ, Yun W, Lee JH, Kim YJ, Lee BK, Kim HB, Cho JH. Effects of microencapsulated organic acids on growth performance, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:104-113. [PMID: 33987588 PMCID: PMC7882838 DOI: 10.5187/jast.2021.e16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
This study was conducted to investigate the efficiency of a microencapsulated
mixture of organic acids (MOA) with low protein in piglet feed on growth
performance, diarrhea score, nutrient digestibility, fecal microbial counts, and
blood profiles in weaning pigs. A total of 80 pigs [(Landrace ×
Yorkshire) × Duroc; 6.8 ± 0.48 kg] were randomly assigned to four
dietary treatment groups: high protein (HP); low protein (LP); MOA1, LP + 0.2%
MOA; and MOA2, LP + 0.3% MOA. The MOA2 group had higher average daily weight
gains (during days 0–14 and days 0–28), diarrhea score (during
days 0–14, during days 14–28 and days 0–28) and greater
digestibility of dry matter (days 14 and 28) compared to the LP group
(p < 0.05). However, there were no significant
differences (p > 0.05) between the pigs fed diets with
the MOA1 and MOA2 in blood profiles and fecal microflora. In conclusion, this
study indicates that piglets fed 0.3% MOA in low protein diets maintained
similar growth performance and nutrient digestibility, but alleviated the
incidence of diarrhea compared to piglets fed high protein diets.
Collapse
Affiliation(s)
- Jun Soeng Lee
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Tae Heon Kim
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Min Ho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Han Jin Oh
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Won Yun
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Ji Hwan Lee
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yong Ju Kim
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | | | - Hyeun Bum Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
29
|
Swallah MS, Fan H, Wang S, Yu H, Piao C. Prebiotic Impacts of Soybean Residue (Okara) on Eubiosis/Dysbiosis Condition of the Gut and the Possible Effects on Liver and Kidney Functions. Molecules 2021; 26:E326. [PMID: 33440603 PMCID: PMC7826621 DOI: 10.3390/molecules26020326] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Okara is a white-yellow fibrous residue consisting of the insoluble fraction of the soybean seeds remaining after extraction of the aqueous fraction during the production of tofu and soymilk, and is generally considered a waste product. It is packed with a significant number of proteins, isoflavones, soluble and insoluble fibers, soyasaponins, and other mineral elements, which are all attributed with health merits. With the increasing production of soy beverages, huge quantities of this by-product are produced annually, which poses significant disposal problems and financial issues for producers. Extensive studies have been done on the biological activities, nutritional values, and chemical composition of okara as well as its potential utilization. Owing to its peculiar rich fiber composition and low cost of production, okara might be potentially useful in the food industry as a functional ingredient or good raw material and could be used as a dietary supplement to prevent varied ailments such as prevention of diabetes, hyperlipidemia, obesity, as well as to stimulate the growth of intestinal microbes and production of microbe-derived metabolites (xenometabolites), since gut dysbiosis (imbalanced microbiota) has been implicated in the progression of several complex diseases. This review seeks to compile scientific research on the bioactive compounds in soybean residue (okara) and discuss the possible prebiotic impact of this fiber-rich residue as a functional diet on eubiosis/dysbiosis condition of the gut, as well as the consequential influence on liver and kidney functions, to facilitate a detailed knowledge base for further exploration, implementation, and development.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (M.S.S.); (H.F.); (S.W.)
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (M.S.S.); (H.F.); (S.W.)
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (M.S.S.); (H.F.); (S.W.)
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (M.S.S.); (H.F.); (S.W.)
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (M.S.S.); (H.F.); (S.W.)
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
30
|
Van Liefferinge E, Van Noten N, Degroote J, Vrolix G, Van Poucke M, Peelman L, Van Ginneken C, Roura E, Michiels J. Expression of Transient Receptor Potential Ankyrin 1 and Transient Receptor Potential Vanilloid 1 in the Gut of the Peri-Weaning Pig Is Strongly Dependent on Age and Intestinal Site. Animals (Basel) 2020; 10:ani10122417. [PMID: 33348615 PMCID: PMC7766004 DOI: 10.3390/ani10122417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Weaning is a critical event for the piglet, contributing to aberrant gut function and resulting in reduced barrier function and retarded protein digestion. The gut is able to “sense” nutrients and release gut hormones to regulate digestive processes. To that end, various gastrointestinal cell types possess transient receptor potential channels that are involved in regulating gastric motility and secretion. Herbal compounds, currently used in pig nutrition as antibiotic alternatives, are able to activate these channels and could potentially aid digestion. However, these channels have not been characterized in the gut of the pig and their ability to release gut hormones has never been explored. This study’s objective was to characterize TRPA1 and TRPV1 in the pig’s gut and explore their potential to modulate gastric function. A gene expression study was performed on tissues obtained from different locations in the guts of piglets of varying age. Moreover, the ability to secrete peptide hormones was investigated by characterizing them on enteroendocrine cells. Both channels were found to be expressed in the mucosa of the porcine gut, strongly dependent on age and location. Moreover, the endocrine nature of both channels was confirmed, indicating their possible role in gut hormone release and the regulation of gastric emptying. Abstract Transient receptor potential (TRP) channels contribute to sensory transduction in the body, agonized by a variety of stimuli, such as phytochemicals, and they are predominantly distributed in afferent neurons. Evidence indicates their expression in non-neuronal cells, demonstrating their ability to modulate gastrointestinal function. Targeting TRP channels could potentially be used to regulate gastrointestinal secretion and motility, yet their expression in the pig is unknown. This study investigated TRPA1 and TRPV1 expression in different gut locations of piglets of varying age. Colocalization with enteroendocrine cells was established by immunohistochemistry. Both channels were expressed in the gut mucosa. TRPV1 mRNA abundance increased gradually in the stomach and small intestine with age, most notably in the distal small intestine. In contrast, TRPA1 exhibited sustained expression across ages and locations, with the exception of higher expression in the pylorus at weaning. Immunohistochemistry confirmed the endocrine nature of both channels, showing the highest frequency of colocalization in enteroendocrine cells for TRPA1. Specific co-localization on GLP-1 immunoreactive cells indicated their possible role in GLP-1 release and the concomitant intestinal feedback mechanism. Our results indicate that TRPA1 and TRPV1 could play a role in gut enteroendocrine activity. Moreover, age and location in the gut significantly affected gene expression.
Collapse
Affiliation(s)
- Elout Van Liefferinge
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
- Correspondence: ; Tel.: +32-0498-604-126
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Gunther Vrolix
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2000 Antwerp, Belgium; (G.V.); (C.V.G.)
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium; (M.V.P.); (L.P.)
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium; (M.V.P.); (L.P.)
| | - Chris Van Ginneken
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2000 Antwerp, Belgium; (G.V.); (C.V.G.)
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia 4072, Australia;
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| |
Collapse
|
31
|
Soares MH, Rodrigues GA, Barbosa LMR, Valente Júnior DT, Santos FC, Rocha GC, Campos PHRF, Saraiva A. Effects of crude protein and lactose levels in diets on growth performance, intestinal morphology, and expression of genes related to intestinal integrity and immune system in weaned piglets. Anim Sci J 2020; 91:e13429. [PMID: 32696533 DOI: 10.1111/asj.13429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 05/03/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022]
Abstract
To evaluate the effects of crude protein (CP) and lactose (LAC) for weaned piglets on performance, intestinal morphology, and expression of genes related to intestinal integrity and immune system, 144 piglets with initial weight 7.17 ± 0.97 kg were allotted in a randomized design, in a 2 × 3 factorial arrangement (20.0% and 24.0% CP and 8.0%, 12.0%, and 16.0% LAC) with eight replicates. Piglets fed 20.0% CP had greater weight gain and feed intake. Including 12.0% LAC in the 20.0% CP diet provided higher villous height in the duodenum than 8.0% LAC, and 12.0% or 16.0% LAC in the 24.0% CP diet resulted in higher villous height in the jejunum and ileum, and higher villi/crypt ratio in the ileum than 8.0% LAC. No effects of CP and LAC on interleukin-1β and tumor necrosis factor-α mRNA were observed. The 16.0% LAC diet provided higher gene expression of transforming-β1 growth factor. Feeding 20.0% CP resulted in better performance than 24.0% CP. The 12.0% LAC diet promoted greater genetic expression of occludin and zonula occludens. Including 12.0% LAC in the diet may improve intestinal epithelial morphology and integrity, and these improvements are more evident when piglets are fed diets with 24.0% CP.
Collapse
Affiliation(s)
- Marcos H Soares
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Gustavo A Rodrigues
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Lívia M R Barbosa
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | | | - Felipe C Santos
- Department of Biology, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Gabriel C Rocha
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Paulo H R F Campos
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Alysson Saraiva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| |
Collapse
|
32
|
Intestinal Health and Threonine Requirement of Growing Pigs Fed Diets Containing High Dietary Fibre and Fermentable Protein. Animals (Basel) 2020; 10:ani10112055. [PMID: 33171958 PMCID: PMC7694666 DOI: 10.3390/ani10112055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Dietary components, such as fibre and protein, have significant impacts on nutrient requirements and intestinal health in pigs. The objectives of this study were to investigate the interactive effects of dietary fibre and fermentable protein on threonine requirement for protein deposition in growing pigs and to determine how these factors affect markers of intestinal health. In this study we used the nitrogen-balance approach to study the influence of high protein diets combined with high fibre on threonine requirement for protein deposition. We further used gene expression, fermentation metabolites (short and branched chain fatty acid concentration), and serum antioxidant status in these pigs as markers of intestinal health and function. We demonstrate that high fibre will indeed increase threonine requirement for protein deposition but can mitigate the negative effects of fermentable protein metabolites on intestinal health. These results will have implications for the development of dietary strategies to improve growth and overall health in pigs, including adjustments to dietary fibre, protein, and amino acid content that maximize pig growth, nutrient utilization, and intestinal health. Abstract Dietary fibre (DF) and fermentable crude protein (fCP) are dietary factors which affect nutrient utilization and intestinal health in pigs. A nitrogen (N)-balance study was conducted to determine the impact of DF and fCP on threonine (Thr) requirement for protein deposition (PD) and indicators of intestinal health. A total of 160 growing pigs (25 kg) were randomly assigned to 1 of 20 dietary treatments in a 2 × 2 × 5 factorial arrangement in a randomized complete block design with dietary fibre (low (LF) or high fibre (HF)], fCP [low (LfCP) or high fCP (HfCP)) and Thr (0.52, 0.60, 0.68, 0.76, or 0.82% standardized ileal digestible) as factors. Then, 4-day total urine and fecal collection was conducted, and pigs were euthanized for intestinal tissue and digesta sampling. Feeding high DF, regardless of fCP content, increased Thr requirement for PD (p < 0.05). High fCP, regardless of DF content, reduced Thr requirement for PD. Serum antioxidant capacity increased as dietary Thr level increased (p < 0.05). Cecal digesta short-chain fatty acids (SCFA) increased (p < 0.05) with HF and branched-chain fatty acids (BCFA) increased with HfCP and reduced with HF (p < 0.05). HfCP reduced (p < 0.05) mucin-2 (MUC2) expression in the colon of the HF but not the LF fed pigs and HF increased MUC2 in the LfCP but not the HfCP fed pigs. Feeding HF diet increased (p < 0.05) expression of zonula occludens-1 in the LfCP with no effect on HfCP fed pigs. Ammonia concentration in both cecum and colon increased (p < 0.05) in the HfCP fed pigs. Overall, high DF reduced the negative impact of HfCP on intestinal health, as indicated by alterations in SCFA and BCFA production and gut barrier gene expression. While increased dietary Thr content is required for PD in pigs fed high DF, feeding high fCP reduced Thr requirements.
Collapse
|
33
|
Zhang H, van der Wielen N, van der Hee B, Wang J, Hendriks W, Gilbert M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020; 8:microorganisms8111735. [PMID: 33167470 PMCID: PMC7694525 DOI: 10.3390/microorganisms8111735] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023] Open
Abstract
In pigs, high protein diets have been related to post-weaning diarrhoea, which may be due to the production of protein fermentation metabolites that were shown to have harmful effects on the intestinal epithelium in vitro. In this review, we discussed in vivo effects of protein fermentation on the microbial composition and their protein catabolic activity as well as gut and overall health. The reviewed studies applied different dietary protein levels, which was assumed to result in contrasting fermentable protein levels. A general shift to N-utilisation microbial community including potential pathogens was observed, although microbial richness and diversity were not altered in the majority of the studies. Increasing dietary protein levels resulted in higher protein catabolic activity as evidenced by increased concentration of several protein fermentation metabolites like biogenic amines in the digesta of pigs. Moreover, changes in intestinal morphology, permeability and pro-inflammatory cytokine concentrations were observed and diarrhoea incidence was increased. Nevertheless, higher body weight and average daily gain were observed upon increasing dietary protein level. In conclusion, increasing dietary protein resulted in higher proteolytic fermentation, altered microbial community and intestinal physiology. Supplementing diets with fermentable carbohydrates could be a promising strategy to counteract these effects and should be further investigated.
Collapse
Affiliation(s)
- Hanlu Zhang
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bart van der Hee
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands;
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Wouter Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
| | - Myrthe Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Correspondence:
| |
Collapse
|
34
|
Wang Y, Han S, Zhou J, Li P, Wang G, Yu H, Cai S, Zeng X, Johnston LJ, Levesque CL, Qiao S. Effects of dietary crude protein level and N-carbamylglutamate supplementation on nutrient digestibility and digestive enzyme activity of jejunum in growing pigs. J Anim Sci 2020; 98:5810962. [PMID: 32201878 DOI: 10.1093/jas/skaa088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 11/12/2022] Open
Abstract
Three experiments were conducted to investigate the effects of dietary crude protein (CP) level and N-carbamylglutamate (NCG) supplementation on apparent total tract digestibility (ATTD) and ileal digestibility of nutrients and digestive enzyme activity of jejunum in growing pigs. In experiment 1, 10 Duroc × Landrace × Yorkshire barrows (initial BW: 48.7 kg) were allotted to a three-period switchback design with five experimental diets and two replicate pigs per diet in each period. Diets were categorized as high CP (HP, 18% CP), moderate low CP (MLP, 15% CP), very low CP (VLP, 12% CP), and MLP and VLP with 0.1% NCG supplementation. Feces and urine were collected from day 6 to day 11 after a 5-d adaptation period. The DE, ME, and ATTD of GE, OM, CP, NDF, ADF, and P decreased (P < 0.01) with a reduction of dietary CP, but no effect of dietary treatments on pig daily N retention was detected. The NCG supplementation increased (P < 0.01) DE and ATTD of ADF of the VLP diet. In experiment 2, 10 jejunal-cannulated Duroc × Landrace × Yorkshire barrows (initial BW: 44.5 kg) were fed five diets for three periods as experiment 1. Jejunal fluid was collected on days 6 and 8 after a 5-d adaptation period. The digestive enzymes activity was not affected by dietary CP level, except for α-amylase, for which there was a decrease (P < 0.01) in pigs fed VLP diets compared to HP and MLP diets. In experiment 3, 12 ileal-cannulated Duroc × Landrace × Yorkshire barrows (initial BW: 46.7 kg) were allotted to a three-period switchback design with six diets and two replicate pigs per diet in each period. The six experimental diets consisted of five experimental diets as experiment 1 and one N-free diet. Ileal digesta was collected from day 6 to day 8 after a 5-d adaptation period. Results indicated that apparent ileal digestibility (AID) of CP and P and ileal digestibility of Arg, His, Ile, Leu, Phe, and all dispensable AA, except Pro, decreased (P < 0.01) in pigs fed VLP diet compared to HP and MLP diets, but AID of GE, OM, EE, NDF, and ADF were not affected. The supplementation of NCG in the VLP diet increased (P < 0.01) the AID of CP and ileal digestibility of Arg, His, Leu, Phe, Val, Ser, and Tyr. In conclusion, reducing dietary CP level decreased nutrient digestibility, but improved the efficiency of dietary N utilization and reduced N emission. Moderate reduction of dietary CP level had a minimal effect on nutrient digestibility and digestive enzyme activity. Additionally, NCG supplementation plays a beneficial effect on nutrient digestion only if the dietary CP level is extremely lowered.
Collapse
Affiliation(s)
- Yuming Wang
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuaijuan Han
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Junyan Zhou
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peili Li
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gang Wang
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haitao Yu
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Cai
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris, MN
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD
| | - Shiyan Qiao
- Beijing Advanced Innovation Health Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Yin L, Li J, Wang H, Yi Z, Wang L, Zhang S, Li X, Wang Q, Li J, Yang H, Yin Y. Effects of vitamin B6 on the growth performance, intestinal morphology, and gene expression in weaned piglets that are fed a low-protein diet1. J Anim Sci 2020; 98:5709825. [PMID: 31958134 DOI: 10.1093/jas/skaa022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin B6 (VB6), which is an essential functional substance for biosome, plays an irreplaceable role in animal health. However, there are few studies that focus on the correlation between VB6 and intestinal health in weaned piglets. This study was conducted to investigate the effects of VB6 on the growth performance, intestinal morphology, and inflammatory cytokines and amino acid (AA) transporters mRNA expression in weaned piglets that are fed a low crude-protein (CP, 18%) diet. Eighteen crossbred piglets with initial body weights of 7.03 ± 0.17 kg (means ± SEM), weaned at 21-d age, were randomly assigned three diets with 0, 4, and 7 mg/kg VB6 supplementation, respectively. The experimental period lasted 14 days. Our results showed that there were no significant differences in growth performance, diarrhea rate, and biochemical parameters among the three treatments. In the jejunum, dietary VB6 supplementation did not affect the morphology and positive Ki67 counts. Dietary supplementation with 4 mg/kg VB6 decreased the mRNA expression of COX-2, IL-10, and TGF-β (P < 0.05). Dietary supplementation with 7 mg/kg VB6 increased the mRNA expression of SLC7A1, SLC7A6, SLC16A14, and SLC38A5 (P < 0.05) and 4 or 7 mg/kg VB6 decreased SLC36A1 mRNA expression (P < 0.05). In the ileum, VB6 supplementation did not affect positive Ki67 counts but significantly decreased villus area (P < 0.05) and tended to decrease villus height (P = 0.093). Dietary supplementation with 4 mg/kg VB6 had significantly increased the mRNA expression of IL-1β, TNF-α, COX-2, IL-10, and TGF-β (P < 0.05). Dietary supplementation with 4 or 7 mg/kg VB6 had significantly decreased SLC6A20, SLC7A1, SLC7A6, SLC16A14, and SLC38A5 mRNA expression (P < 0.05). These findings suggest that dietary supplementation of VB6 mainly down-regulated inflammatory cytokines and up-regulated AA transporters mRNA expression in jejunum, while up-regulated (4 mg/kg) inflammatory cytokines and down-regulated AA transporters mRNA expression in ileum, which may provide a reference for the intestinal development of weaned piglets that are fed a low-CP diet.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huiru Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhenfeng Yi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shuo Zhang
- Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd, Kunming, China
| | - Xiaozhen Li
- Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd, Kunming, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd, Kunming, China
- Academics Working Station at The First Affiliated Hospital of Changsha Medical University, Changsha, China
| |
Collapse
|
36
|
Almeida V, Nuñez A, Schinckel A, Alvarenga P, Castelini F, Silva-Guillen Y, Thomaz M. Fecal characteristics and gut bacterial population of weaned pigs fed amino acid-supplemented diets varying in crude protein and fermentable carbohydrate contents. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. Porcine Epidemic Diarrhea Altered Colonic Microbiota Communities in Suckling Piglets. Genes (Basel) 2019; 11:genes11010044. [PMID: 31905830 PMCID: PMC7016528 DOI: 10.3390/genes11010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a major gastrointestinal disease afflicting suckling pigs that causes huge industrial economic losses. In this study, we investigated microbiota from the colonic mucosa and content in healthy and PED piglets. High-throughput 16S rRNA gene sequencing was performed to identify inter-group differences. Firmicutes, Fusobacteria, Proteobacteria, and Bacteroidetes were the top four affected phyla. The proportion of Proteobacteria was higher in infected than in healthy piglets, and the opposite was observed for Bacteroidetes (more than four-fold higher in the healthy group). In the infected group, Fusobacterium accounted for 36.56% and 21.61% in the colonic mucosa and contents, respectively, while in the healthy group, they comprised 22.53% and 12.67%, respectively. The percentage of Lactobacillus in healthy colons (15.63%) was considerably higher than that in the disease group (<10%). In both the colonic mucosa and contents, functional enrichment differed significantly between healthy and diseased groups. Overall, infection with the PED virus increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria in the colons of piglets. Targeting intestinal microbiota could be a promising method for PED prevention, thus opening new avenues for future research.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
- College of Animal Science and Technology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
| | - Yaqun Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
- Correspondence:
| |
Collapse
|
38
|
What Is the Impact of Diet on Nutritional Diarrhea Associated with Gut Microbiota in Weaning Piglets: A System Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6916189. [PMID: 31976326 PMCID: PMC6949732 DOI: 10.1155/2019/6916189] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Piglets experience severe growth challenges and diarrhea after weaning due to nutritional, social, psychological, environmental, and physiological changes. Among these changes, the nutritional factor plays a key role in postweaning health. Dietary protein, fibre, starch, and electrolyte levels are highly associated with postweaning nutrition diarrhea (PWND). In this review, we mainly discuss the high protein, fibre, resistant starch, and electrolyte imbalance in diets that induce PWND, with a focus on potential mechanisms in weaned piglets.
Collapse
|
39
|
Aluthge ND, Van Sambeek DM, Carney-Hinkle EE, Li YS, Fernando SC, Burkey TE. BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. J Anim Sci 2019; 97:3741-3757. [PMID: 31250899 DOI: 10.1093/jas/skz208] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.
Collapse
Affiliation(s)
- Nirosh D Aluthge
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | | | - Yanshuo S Li
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
40
|
Qaisrani SN, Van Krimpen MM, Verstegen MWA, Hendriks WH, Kwakkel RP. Effects of three major protein sources on performance, gut morphology and fermentation characteristics in broilers. Br Poult Sci 2019; 61:43-50. [PMID: 31547675 DOI: 10.1080/00071668.2019.1671958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This study determined the effects of three protein sources (PS), each at two digestibility crude protein (DCP) levels, on performance, gut morphology and fermentation characteristics in the hindgut of broilers.2. It was hypothesised that broilers fed ingredients high in indigestible CP, i.e. rapeseed meal (RSM) or maize gluten (MG), could potentially cause reduced growth, impaired gut health, and more protein fermentation products in caecal digesta. Increasing the DCP level in each of the indigestible CP diets may compensate for these detrimental effects.3. In total, 288 one-d-old male Ross 308 broilers were used in a completely randomised 3 × 2 factorial design, with six replicate pens per treatment. Three PS: soybean meal (SBM), rapeseed meal (RSM) or maize gluten (MG), and two DCP levels: 15.8 and 17.2% were used.4. Broilers fed SBM had increased feed intake and BWG and improved FCR compared with those fed RSM and MG diets. Broilers fed high DCP had better performance compared with those on low DCP. No significant effects of PS or DCP level were found on gastrointestinal tract development, caecal ammonia or volatile fatty acid concentrations.5. Broilers fed SBM had longer villi, smaller crypts and increased villus height to crypt depth ratio compared with those fed RSM and MG diets. Broilers fed RSM diet had a lower caecal pH, and had 16.5% and 14.9% more branched chain fatty acid contents in caecal digesta compared with those fed SBM and MG diets, respectively, indicating more proteolytic fermentation.6. Replacing SBM by RSM and MG negatively affected growth performance and gut morphology. Hindgut protein fermentation was substantially increased in RSM fed birds.7. To a certain extent, retarded growth performance in RSM and MG fed birds could be counterbalanced by increasing the dietary level of digestible CP.
Collapse
Affiliation(s)
- S N Qaisrani
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Lahore-Pakistan, Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - M M Van Krimpen
- Department Animal Nutrition, Wageningen Livestock Research, Wageningen, The Netherlands
| | - M W A Verstegen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - W H Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - R P Kwakkel
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
41
|
Changes in the Ileal, but Not Fecal, Microbiome in Response to Increased Dietary Protein Level and Enterotoxigenic Escherichia coli Exposure in Pigs. Appl Environ Microbiol 2019; 85:AEM.01252-19. [PMID: 31324635 PMCID: PMC6752020 DOI: 10.1128/aem.01252-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Gut bacterial communities have been shown to play a key role in pig health and development and are strongly influenced by host diet, but studies highlighting the complex interactions between nutrition, gut infections and the microbiome tend to focus on bacterial populations in the feces and not other important gut locations. We found that alteration of dietary protein level and exposure to a pathogenic microorganism, enterotoxigenic Escherichia coli (ETEC), changed bacterial populations in the distal small intestine (i.e., the ileum). We found that the most profound changes occurred in pigs fed a high-protein diet in combination with exposure to ETEC, showing a clear interaction between dietary composition and exposure to a key pathogen. These changes were not observed in the fecal samples, revealing the importance of studying biologically pertinent sites in the gut, and so the data will help to inform the development of alternative management strategies for enteric disorders. The relationship between porcine gut microbiota composition and health is an important area of research, especially due to the need to find alternatives to antimicrobial use to manage disease in livestock production systems. Previous work has indicated that lower crude dietary protein levels can reduce the impacts of postweaning colibacillosis, which is a porcine diarrheal disease caused by enterotoxigenic Escherichia coli (ETEC). Here, to explore the complex interactions between the gut microbiota, protein nutrition, and ETEC exposure, the microbial compositions of both ileal digesta and feces were analyzed with or without ETEC exposure from pigs fed a low- or high-protein diet. Since ETEC colonization is mostly localized to the ileum, changes in the small intestinal microbiota were expected in response to ETEC exposure. This was supported by the study findings, which identified significant microbiota changes in ileal samples but not in fecal samples. Both increased dietary protein and ETEC exposure impacted on ileal microbiota alpha diversity (richness and diversity indices) and beta diversity (structure, stability, and relative taxon abundances) at certain sampling points, although the combination of a high-protein diet and ETEC exposure had the most profound impact on ileal microbiota composition. An understanding of how infection and nutrition lead to microbiota changes is likely to be required if dietary strategies are to be developed for the management of enteric diseases. IMPORTANCE Gut bacterial communities have been shown to play a key role in pig health and development and are strongly influenced by host diet, but studies highlighting the complex interactions between nutrition, gut infections and the microbiome tend to focus on bacterial populations in the feces and not other important gut locations. We found that alteration of dietary protein level and exposure to a pathogenic microorganism, enterotoxigenic Escherichia coli (ETEC), changed bacterial populations in the distal small intestine (i.e., the ileum). We found that the most profound changes occurred in pigs fed a high-protein diet in combination with exposure to ETEC, showing a clear interaction between dietary composition and exposure to a key pathogen. These changes were not observed in the fecal samples, revealing the importance of studying biologically pertinent sites in the gut, and so the data will help to inform the development of alternative management strategies for enteric disorders.
Collapse
|
42
|
Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS One 2019; 14:e0219868. [PMID: 31310635 PMCID: PMC6634403 DOI: 10.1371/journal.pone.0219868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Diarrhea, caused by porcine epidemic diarrhea virus (PEDV), is a catastrophic gastrointestinal disease among suckling piglets, with high infectivity, morbidity, and mortality, causing huge economic losses to the pig industry. In the present study, we investigated the different microbiota from the cecal mucosa and cecal contents between healthy and PEDV-infected piglets. High-throughput 16S rRNA gene sequencing was performed to explore differences. The results revealed that microbial dysbiosis by PEDV infection occurred in the cecal mucosa and contents of suckling piglets at each microbial taxonomic level. The abundance of pathogenic bacteria associated with diseases, including diarrhea, was increased. The abundance of Fusobacterium was 26.71% and 33.91% in cecal mucosa and contents of PEDV-infected group, respectively, whereas that in the healthy groups was 17.85% and 9.88%. The proportion of Proteobacteria in the infected groups was relatively high (24.67% and 22.79%, respectively), whereas that in the healthy group was 13.13% and 11.34% in the cecal mucosa and contents, respectively. Additionally, the proportion of Bacteroidetes in the healthy group (29.89%, 37.32%) was approximately twice that of the PEDV-infected group (15.50%, 15.39%). “Nitrate reduction”, “Human pathogens diarrhea”, “Human pathogens gastroenteritis”, “Nitrite respiration”, and “Nitrite ammonification” were the enriched functional annotation terms in the PEDV-infected groups. Porcine epidemic diarrhea virus infection increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria in the cecal mucosa and contents of suckling piglets. Our findings suggest that determining the intestinal microbiota might provide a promising method to prevent PEDV and open a new avenue for future research.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- College of Animal Science and Technology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, P.R. China
| | - Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yaqun Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
43
|
Effects of Feeding Low Protein Diets on Serum and Faeces Parameters in Weaned Piglets. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
This study was conducted to determine the effects of a low-protein diet supplemented with synthetic amino acids on the biochemical parameters in the blood serum, the indicators of fermentation processes, and nitrogen excretion in 12 crossbred piglets. The piglets (weaned at 28 days of age) were divided into two groups with 6 piglets each. The control group had an initial average body weight of 8.8 ± 0.6 kg and the experimental group with an average initial body weight of 8.6 ± 0.7 kg. The control diet contained 210.8 g.kg−1 crude protein and the experimental diet contained 186.4 g.kg−1. The experimental diet was supplemented with lysine, methionine and threonine to achieve a more ideal amino acid pattern. The blood collections from the sinus ophthalmicus for the determination of the biochemical parameters were performed 4 times at weekly intervals in the control and experimental groups 4—5 hours after feeding. The faeces were taken from the rectum at the end of the study period. The decrease in the dietary crude protein content of the experimental group was manifested by a significant decrease of the blood urea level (2.61 mmol.l−1 average concentration) compared to the control groups (4.21 mmol.l−1 average concentration) (P < 0.001). The other serum component concentrations (total protein, albumin, glucose, cholesterol, total lipids and selected enzymes) showed no significant statistical changes between the control and experimental groups. The results of the fermentation process analysis indicated that the butyrate concentration decreased (P = 0.0017) and the pH increased (P = 0.0180) in the experimental group compared to the control group. The levels of crude protein and ammonia in the faeces of experimental animals were significantly lower (P < 0.001) in comparison with those in the control animals.
Collapse
|
44
|
Yu D, Zhu W, Hang S. Effects of low-protein diet on the intestinal morphology, digestive enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned pigs. Arch Anim Nutr 2019; 73:287-305. [PMID: 31163993 DOI: 10.1080/1745039x.2019.1614849] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of low-protein diet supplemented with Lysine (Lys), Methionine (Met), Threonine (Thr), and Tryptophan (Trp) on small intestine morphology, enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned piglets. Eighteen weaned pigs weighing an average of 9.57 kg received one of three treatments: a normal protein diet with 20% crude protein (CP, diet [NP]), a moderately reduced protein diet with 17% CP (MP), or a low-protein diet with 14% CP (LP). All three diets were supplemented with Lys, Met, Thr and Trp to meet essential amino acid requirements for post-weaned piglets according to the NRC (2012). Following a 45 d study period, piglets on the LP and MP diets demonstrated atrophic small intestinal morphology, with decreased villus heights and lower ratios of villus height to crypt depth (p < 0.05); pepsin activity in the stomach was also reduced in these two groups (p < 0.05). Increased plasma cholesterol and decreased blood urea nitrogen presented in the MP and LP groups compared with the NP group (p < 0.05). Overall, gastrointestinal hormones were not affected by dietary protein levels with the exception of reduced somatostatin levels in the MP and LP groups. Jejunum and colon microbiota were not affected at either the phyla or genera level in any of the diets. Colonic ammonia nitrogen concentration was reduced in MP and LP groups. Dietary protein level had no effect on short chain fatty acids or biogenic amines. Our data suggest that reducing dietary protein levels by 3% (MP) or 6% (LP) in weaned pigs has the potential to decrease nitrogen emissions and impaired digestive capacity. Therefore, dietary protein level cannot be reduced by more than 3% in consideration of maladaptive changes to small intestinal morphology and pepsin activity in weaned piglets.
Collapse
Affiliation(s)
- Defu Yu
- a Laboratory of Gastrointestinal Microbiology , Nanjing Agricultural University , Nanjing , China
| | - Weiyun Zhu
- a Laboratory of Gastrointestinal Microbiology , Nanjing Agricultural University , Nanjing , China
| | - Suqin Hang
- a Laboratory of Gastrointestinal Microbiology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
45
|
Adams S, Che D, Hailong J, Zhao B, Rui H, Danquah K, Qin G. Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence, growth performance, immunity, and microbial composition in piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3616-3627. [PMID: 30628086 PMCID: PMC6593831 DOI: 10.1002/jsfa.9582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pleurotus ostreatus mushroom (POM) is an edible mushroom with rich nutritional components and vital pharmacological properties. The present study comprised 100 cross-bred piglets, weaned at 28 days old, who were randomly assigned to four POM diets with five replicates per diet and five piglets per pen. RESULTS POM supplementation (P < 0.05) decreased the incidence of diarrhea, and also increased the average daily feed intake and average daily gain of pigs. Fecal acetate, butyrate and propionate increased with the addition of POM. Interleukin-2, immunoglobulin G, immunoglobulin M, tumor necrosis factor-α and immunoglobulin A increased (P < 0.05) with the addition of POM. The 16S rDNA sequencing results showed that the Bacteroidetes and Firmicutes were the dominant microbial strains in the fecal samples, irrespective of POM supplementation. Shannon diversity, whole tree phylogenetic diversity, observed species and Chao1 analysis exhibited significant variation in species richness across the treatments. Principal coordinates analysis showed a significant (P < 0.1) increase in the microbial communities amongst all of the treatment groups. CONCLUSION The results of the present study suggest that the supplementation of POM in the diet of piglets might increase feed consumption, gut microbial composition and diversity, as well as short-chain fatty acids synthesis, consequently preventing the occurrence of diarrhea and increasing the growth of piglets. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Seidu Adams
- Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunP.R. China
| | - Dongsheng Che
- Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunP.R. China
| | - Jiang Hailong
- Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunP.R. China
| | - Bao Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunP.R. China
| | - Han Rui
- Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunP.R. China
| | - Kofi Danquah
- School of Allied Health Sciences, Department of Nutritional SciencesUniversity for Development StudiesTamaleGhana
| | - Guixin Qin
- Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunP.R. China
| |
Collapse
|
46
|
Che D, Adams S, Wei C, Gui‐Xin Q, Atiba EM, Hailong J. Effects of Astragalus membranaceus fiber on growth performance, nutrient digestibility, microbial composition, VFA production, gut pH, and immunity of weaned pigs. Microbiologyopen 2019; 8:e00712. [PMID: 30117299 PMCID: PMC6528644 DOI: 10.1002/mbo3.712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023] Open
Abstract
Astragalus membranaceus is an herbaceous perennial plant, growing to about 2 feet tall, with sprawling stems and alternate leaves about 12-24 leaflets. In total, 24 cross bred (Duroc × Landrace × Yorkshire) piglets weaned at 4 weeks with an average body weight of 10.84 ± 1.86 kg, were divided into four groups and randomly assigned to dietary treatments containing different AMSLF levels (0.00%, 2.50%, 5.00%, and 7.50%). The piglets in the control group (0.00% AMSLF) were fed basal diet and other treatment groups were fed basal diet in addition to 2.50%, 5.00%, and 7.50% pulverized AMSLF. The results indicated that supplementation with AMSLF significantly (p < 0.05) decreased diarrheal incidence in piglets. There was significant difference between treatment in terms of ADFI, ADG and FCR. Both 5.00% and 7.50% treatments significantly increased growth performance. The digestibility of gross energy and dry matter increased (p > 0.05) with increasing AMSLF level. The level of blood IL-2 and TNF-α were significantly affected by AMSLF supplementation with 7.50% AMSLF group having higher (p < 0.05) IL-2 and TNF-α levels than the other treatment groups. The 16SrDNA sequencing results from the four treatments showed that the potentially active bacterial microbial population and diversity in pig cecum were dominated by the phyla Bacteriodetes and Firmicutes regardless of the AMSLF supplementation. The Shannon diversity, PD whole tree diversity indices and Chao analyses exhibited significant variability in species richness across the treatments. The principal coordinates analysis (PCoA) showed significant (p < 0.1) differences between bacterial communities in all treatment groups. Results from the current study suggested that AMSLF supplementation increased composition of bacterial microbiota in pig gut. In conclusion, dietary supplements with AMSLF could potentially be used to prevent diarrheal incidence and improved pig production.
Collapse
MESH Headings
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/immunology
- Astragalus propinquus/chemistry
- Bacteria/classification
- Bacteria/genetics
- Biota
- Cecum/microbiology
- Cluster Analysis
- Cytokines/blood
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Diarrhea/prevention & control
- Diarrhea/veterinary
- Dietary Fiber/administration & dosage
- Fatty Acids, Volatile/analysis
- Incidence
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Swine
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Key Laboratory of Animal ProductionProduct Quality and SecurityMinistry of EducationChangchunChina
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed ScienceChangchunChina
| | - Seidu Adams
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Cai Wei
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Key Laboratory of Animal ProductionProduct Quality and SecurityMinistry of EducationChangchunChina
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed ScienceChangchunChina
| | - Qin Gui‐Xin
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Key Laboratory of Animal ProductionProduct Quality and SecurityMinistry of EducationChangchunChina
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed ScienceChangchunChina
| | - Emmanuel M. Atiba
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Jiang Hailong
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Key Laboratory of Animal ProductionProduct Quality and SecurityMinistry of EducationChangchunChina
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed ScienceChangchunChina
| |
Collapse
|
47
|
Adams S, Xiangjie K, Hailong J, Guixin Q, Sossah FL, Dongsheng C. Prebiotic effects of alfalfa ( Medicago sativa) fiber on cecal bacterial composition, short-chain fatty acids, and diarrhea incidence in weaning piglets. RSC Adv 2019; 9:13586-13599. [PMID: 35519545 PMCID: PMC9063875 DOI: 10.1039/c9ra01251f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
Dietary alfalfa fiber (AF) is conceived to modulate gut microbial richness and diversity to improve the health and growth of weaning piglets. The objective of this study was to evaluate the prebiotic effects of AF on diarrhea incidence, the production of short-chain fatty acids (SCFAs), and microbiota composition in weaning piglets. This study utilized 100 crossbred piglets (Duroc × Landrace × Yorkshire) with a body weight of 8.42 ± 1.88 kg randomly assigned to the following treatments: 0.00% AF meal (A), 6.00% of AF meal (B), 12.00% AF meal (C), and 18.00% AF meal (D). The cecum samples were used to determine microbial community composition and diversity through high-throughput 16S rDNA sequencing. The results of this study show that the lowest average daily gain (ADG) was observed in treatment D, and the highest ADG was recorded in treatment C. However there was no significant difference between the treatment groups and the control. The average daily feed intake (ADFI) was significantly higher in treatment C compared to the other treatments. The feed conversion ratio was high in the control group compared to the AF treated groups. The highest diarrhea incidence was observed in treatment A and the lowest diarrhea incidence was observed in treatment C and D. The highest acetate and propionate levels were observed in treatment B, but there was no significant difference between the treatment groups and the control. The supplementation of AF significantly increased the butyrate level in treatment D compared with treatments A and B but was not significantly different from treatment C. The Observed_species richness and Simpson diversity values of the cecum bacterial composition in the AF fed piglets were higher than the control. In addition, the Chao 1 richness and Shannon diversity increased with an increase in AF supplementation, reaching a plateau at treatment B and C, then decreasing at treatment D. The Bacteroidetes, Firmicutes, Tenericutes, Proteobacteria, Cyanobacteria, Spirochaetae, Actinobacteria, Fibrobacteres, Saccharibacteria, Synergistetes, Chlamydiae, Elusimicrobia, Deferribacteres, Fusobacteria, and others were relatively abundant in all treatments. The Bacteroidetes and Firmicutes were the dominant phyla, accounting for 98% of all reads. AF treatment decreased the Bacteroidetes phylum and increased the Firmicutes phylum compared with treatment A. Therefore, the dietary inclusion of AF may decrease diarrhea incidence, increase cecal bacterial composition and richness, and consequently improve the growth performance of weaning piglets.
Collapse
Affiliation(s)
- Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University Changchun 130118 China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University Changchun 130118 China
| | - Kong Xiangjie
- College of Animal Science and Technology, Jilin Agricultural University Changchun 130118 China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University Changchun 130118 China
| | - Jiang Hailong
- College of Animal Science and Technology, Jilin Agricultural University Changchun 130118 China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University Changchun 130118 China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | - Qin Guixin
- College of Animal Science and Technology, Jilin Agricultural University Changchun 130118 China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University Changchun 130118 China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | | | - Che Dongsheng
- College of Animal Science and Technology, Jilin Agricultural University Changchun 130118 China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University Changchun 130118 China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| |
Collapse
|
48
|
Effects of Long-Term Dietary Protein Restriction on Intestinal Morphology, Digestive Enzymes, Gut Hormones, and Colonic Microbiota in Pigs. Animals (Basel) 2019; 9:ani9040180. [PMID: 31010000 PMCID: PMC6523122 DOI: 10.3390/ani9040180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In China, a shortage of protein resources is an important limiting factor to the economic benefit of pig production, and the use of protein-restriction diets balanced with amino acids is an effective strategy to save protein resources. However, long-term protein-restriction diets can impair the growth performance, and the reason is still unknown. This study is to investigate the response of gastrointestinal physiology and gut microbiota to the condition of long-term low-protein diet and to try to provide a theoretical foundation for better use of protein resources in swine production. Results showed that presented with moderate protein-restriction diets, pigs are able to adjust their absorption and consumption of nutrients to maintain growth performance; whereas extremely low-protein diets suppress pigs’ appetite, impair intestinal morphology, decrease Lactobacillus and Streptococcus, and reduce energy expenditure. Thus, moderate reduction of dietary protein is more suitable for pig production than extremely low-protein diets supplemented with essential amino acids, and moderate protein-restriction diets can potentially increase protein utilization in pig production. Abstract Using protein-restriction diets becomes a potential strategy to save the dietary protein resources. However, the mechanism of low-protein diets influencing pigs’ growth performance is still controversial. This study aimed to investigate the effect of protein-restriction diets on gastrointestinal physiology and gut microbiota in pigs. Eighteen weaned piglets were randomly allocated to three groups with different dietary protein levels. After a 16-week trial, the results showed that feeding a low-protein diet to pigs impaired the epithelial morphology of duodenum and jejunum (p < 0.05) and reduced the concentration of many plasma hormones (p < 0.05), such as ghrelin, somatostatin, glucose-dependent insulin-tropic polypeptide, leptin, and gastrin. The relative abundance of Streptococcus and Lactobacillus in colon and microbiota metabolites was also decreased by extreme protein-restriction diets (p < 0.05). These findings suggested that long-term ingestion of a protein-restricted diet could impair intestinal morphology, suppress gut hormone secretion, and change the microbial community and fermentation metabolites in pigs, while the moderately low-protein diet had a minimal effect on gut function and did not impair growth performance.
Collapse
|
49
|
Lei XJ, Lee SI, Kim IH. Effects of different levels of dietary protein with or without plant extract YGF251 on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding, and fecal gas emission in growing pigs. Anim Sci J 2019; 90:547-553. [PMID: 30793461 DOI: 10.1111/asj.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/26/2018] [Accepted: 11/22/2018] [Indexed: 01/10/2023]
Abstract
This experiment was conducted to evaluate the effects of plant extract YGF251 supplementation in different protein level diets on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding, and fecal gas emission in growing pigs. A total of 144 pigs (24.72 ± 1.54 kg) were randomly assigned to the treatments in a 2 × 3 factorial arrangement of dietary protein levels (15.50%, 14.00% or 12.50%) and plant extract YGF251 levels (0 or 0.05%) with 6 replications per treatment and 4 pigs per pen. Pigs fed low protein diets had reduced average daily gain (p < 0.05) and increased feed conversion ratio (p < 0.01) compared with pigs fed high protein diets. The apparent total tract digestibility of nitrogen was decreased (p < 0.05) when reducing dietary protein level. Fecal ammonia and hydrogen sulfide emissions were reduced (p < 0.05) when reducing dietary protein level. In conclusion, the results of the current study indicated that reducing dietary protein level impaired growth performance and nitrogen digestibility but reduced ammonia and hydrogen sulfide emissions in growing pigs. Dietary supplementation with 0.05% herbal extract YGF251 was not effective in improving growth performance, nutrient digestibility, or in decreasing gas emission in different protein diets.
Collapse
Affiliation(s)
- Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Sang In Lee
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam, South Korea
| |
Collapse
|
50
|
Wang L, Zhang H, Beltranena E, Zijlstra R. Diet nutrient and energy digestibility and growth performance of weaned pigs fed hulled or hull-less barley differing in fermentable starch and fibre to replace wheat grain. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|