1
|
Hung PHS, Thi Dung H, Thao LD, Van Chao N, Thi Hoa N, Thi Hien B, Mondal A, Nsereko V, Phung LD. Effects of Saccharomyces cerevisiae fermentation-derived postbiotics supplementation in sows and piglets' diet on intestinal morphology, and intestinal barrier function in weaned pigs in an intensive pig production system. Vet Immunol Immunopathol 2025; 283:110934. [PMID: 40187222 DOI: 10.1016/j.vetimm.2025.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
This study evaluates the effects of Saccharomyces cerevisiae fermentation-derived postbiotics (SCFP) supplementation on diarrhea incidence, small intestinal morphology, and expression of tight junction genes in piglets. The study compared three groups: a control group (CON), which received a standard basal diet; a standard basal control diet containing 1.0 kg/mT of Beta-glucan 50 % (BG); and a standard basal control diet containing 2.0 kg/mT of SCFP (Diamond V XPC). The experimental design involved feeding the diets to the sows from the day when they were inseminated until their piglets were weaned and to piglets from birth to weaning. Diarrhea incidence was monitored, intestinal morphology was assessed, and gene expression of tight junction proteins (Claudin-1, Claudin-2, Occludin, and ZO-1) and inflammatory cytokines (IL-1β) was analyzed using qPCR. Results revealed that SCFP supplementation significantly reduced diarrhea incidence and upregulated the expression of tight junction proteins Claudin-1 (1.61-fold) and Occludin (1.90-fold) compared to CON. These improvements were not associated with changes in intestinal morphology. BG supplementation showed intermediate effects on tight junction gene expression but did not differ significantly from CON. These findings highlight the potential of SCFP as a dietary supplement to enhance gastrointestinal health in piglets by strengthening the intestinal epithelial barrier and reducing pathogen translocation. The study underscores the efficacy of SCFP in improving gut health without altering intestinal structure, offering an effective approach to manage pre-weaning diarrhea. Future studies are needed to explore the long-term impact of SCFP on growth performance and immunity.
Collapse
Affiliation(s)
- Pham Hoang Son Hung
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Ho Thi Dung
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Le Duc Thao
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Nguyen Van Chao
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Nguyen Thi Hoa
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Bui Thi Hien
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Anjan Mondal
- USAID-- TRANSFORM, Cargill Inc., Iowa City, Iowa, USA
| | | | - Le Dinh Phung
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam.
| |
Collapse
|
2
|
Nazir A, Khan EU, Muneeb M, Qaisrani SN, Naveed S, Ahmad S, Yameen RMK, Al Sulaiman AR, Alhotan RA, Abudabos AE. Influence of Dietary Supplementation with Yeast Culture and Microencapsulated Butyric Acid on Growth Performance, Carcass Traits, Gut Health, and Immune Status in Broilers. Vet Sci 2025; 12:359. [PMID: 40284861 PMCID: PMC12031145 DOI: 10.3390/vetsci12040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds per replicate) in a complete block design. The experimental diets included the following treatments: (1) Negative control (NC) with basal diet without any additives. (2) Positive control (PC) with basal diet + 0.2 g/kg enramycin. (3) EBA, basal diet + 0.3 g/kg EBA. (4) YC, basal diet + 1 g/kg YC. (5) EBA+YC, basal diet + 0.3 g/kg EBA and 1 g/kg YC. The results indicated a non-significant effect on feed intake (FI) during the experiment periods. However, the EBA+YC treatment exhibited significantly increased body weight gain (BWG), better feed conversion ratio (FCR), and enhanced carcass traits (p < 0.05) compared to other treatments. A significant effect was observed for the immune organ weights and ND titters. Villus height (VH) and the ratio of villus height-to-crypt depth (VH: CD) were noted for EBA+YC across all other treatments. Ileal microbial analysis revealed a significantly lower count of E. coli and Salmonella in the ileal digesta of broiler chickens in the EBA+YC treatment compared to the NC group (p < 0.05). In conclusion, dietary supplementation with any supplement positively influences the broiler's performance, carcass characteristics, gut health, and immune status over the NC group. More pronounced improvements were obtained from the EBA+YC group, indicating that EBA and YC had a synergistic effect on broilers.
Collapse
Affiliation(s)
- Azhar Nazir
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Shafqat Nawaz Qaisrani
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Saima Naveed
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (S.A.); (R.M.K.Y.)
| | - Rao Muhammad Kashif Yameen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (S.A.); (R.M.K.Y.)
| | - Ali R. Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ala E. Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096-7500, USA
| |
Collapse
|
3
|
Mahmoud RES, Ateya A, Gadalla H, Alharbi HM, Alwutayd KM, Embaby EM. Growth Performance, Immuno-Oxidant Status, Intestinal Health, Gene Expression, and Histomorphology of Growing Quails Fed Diets Supplemented with Essential Oils and Probiotics. Vet Sci 2025; 12:341. [PMID: 40284844 PMCID: PMC12031328 DOI: 10.3390/vetsci12040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
This study aimed to evaluate how natural dietary supplements, including essential oils (EOs) and probiotics, influence the growth performance, carcass traits, serum components, gut function, gene expression, and jejunal histomorphology of growing quails. A total of 240 unsexed 7-day-old growing Japanese quails were randomly assigned to four experimental groups (n = 60 per group), with each group further divided into six replicates (10 quails per replicate). The control group (S0) received a basal diet without incorporating any additives, while the experimental groups were supplemented with (i) essential oils (S1); (ii) probiotics (S2); or (iii) a mixture of EOs and probiotics (S3) at a level of 1.5 kg/ton and 0.55 g per kg diet, respectively, and the ratio of the mixture of EOs and probiotics was approximately 2.73:1. The results showed that, from 7 to 35 days of age, S3 quails showed increased growth performance, carcass weight, and serum total protein with a decreased lipid profile, outperforming the individual supplementation of either additive (p < 0.05). Importantly, EOs or probiotics enhanced immune-antioxidant status in growing quails, particularly those who were fed both EOs and probiotics, showing significantly increased levels of the serum immune parameters IgY and IgM as well as boosting T-AOC, SOD, and GPx levels when MDA content was lowered compared to S0 quails (p < 0.05). Additionally, in quails fed a mixture of EOs and probiotics, the primary pro-inflammatory factors TNF-α, IL-1β, and IL-6 were downregulated, and the anti-inflammatory factors TGF-β and IL-10 were elevated compared to the S0 group (p < 0.05). In this context, there was a notable increase in growth (IGF-I, myogenin, and AvUCP), immunological (IL-2, IL-4, IL-6, and AVBD), antioxidant (SOD, CAT, GPx, and ATOX1), and intestinal absorption (VEGF, MUC2, GLUT2, calbindin, and FABP6) markers in quails supplemented with EOs and/or probiotics when compared to the control group (p < 0.05). The combination of EOs and probiotics had the most noticeable impact on the markers' expression patterns compared to either additive alone (p < 0.05). Consistent with our results, quails given both EOs and probiotics showed significantly greater villi in terms of height and width when compared to the control group in intestinal histomorphology, the primary measure of intestinal wellness. In conclusion, quail diets could benefit from the use of EOs or probiotics as natural growth promoters since they improve growth performance, blood parameters associated with protein and lipid profiles, immune-antioxidant status and inflammation, and marker gene expression profiles of growth, immune, antioxidant, and intestinal absorption.
Collapse
Affiliation(s)
- Rania El Sayed Mahmoud
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam Gadalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hanan M. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (H.M.A.); (K.M.A.)
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (H.M.A.); (K.M.A.)
| | - Eman M. Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
4
|
Wei G. Insights into gut fungi in pigs: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2025; 109:96-112. [PMID: 39154229 DOI: 10.1111/jpn.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Fungi in the gut microbiota of mammals play a crucial role in host physiological regulation, including intestinal homeostasis and host immune regulation. However, our understanding of gut fungi in mammals remains limited, especially in economically valuable animals, such as pigs. Therefore, this review first describes the classification and characterisation of fungi, provides insights into the methods used to study gut fungi, and summarises the recent progress on pig gut fungi. Additionally, it discusses the challenges in the study of pig gut fungi and highlights potential perspectives. The aim of this review is to serve as a valuable reference for advancing our knowledge of gut fungi in animals.
Collapse
Affiliation(s)
- Guanyue Wei
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Gormley AR, Duarte ME, Deng Z, Kim SW. Saccharomyces yeast postbiotics mitigate mucosal damages from F18 + Escherichia coli challenges by positively balancing the mucosal microbiota in the jejunum of young pigs. Anim Microbiome 2024; 6:73. [PMID: 39707576 DOI: 10.1186/s42523-024-00363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is one of the most prevalent causes of diarrhea in young animals. Postbiotics derived from yeast have the potential to positively influence the mucosal microbiota in the jejunum, therefore it was hypothesized that Saccharomyces yeast postbiotics could enhance the microbiota and mucosal immune response in the jejunum, mitigating the effects of infection with enterotoxigenic E. coli. The purpose of this study was to investigate the effects of a Saccharomyces yeast postbiotic on the mucosal microbiota and mucosal immune response in the jejunum of newly weaned pigs challenged with F18+ E. coli. RESULTS Thirty-six individually housed nursery pigs were allotted into three treatments utilizing a randomized complete block design; negative control (NC: basal diet, no challenge), positive control (PC: basal diet, challenge), and SYP (basal diet + Saccharomyces yeast postbiotics at 175 g/ton, challenge). On d 7, PC and SYP were orally inoculated with F18+ E. coli, whereas NC received saline. On d 28, pigs were euthanized for sampling of the jejunum to analyze the mucosal microbiota, oxidative stress, immune status, and intestinal morphology. The PC reduced (P < 0.05) growth performance compared to NC. The SYP improved (P < 0.05) fecal score from d 7-18 when compared with PC. SYP reduced (P < 0.05) protein carbonyl, reduced (P < 0.05) gene expression of Toll-like receptor 4, and increased (P < 0.05) gene expression of mammalian target of rapamycin, compared with PC. CONCLUSIONS Challenge with F18+ E. coli negatively impacted jejunal mucosa-associated microbiota and jejunal morphology, affecting growth performance. Saccharomyces yeast postbiotics could reduce the negative effects associated with F18+ E. coli infection.
Collapse
Affiliation(s)
- Alexa R Gormley
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Hu B, Liu T, Xia B, Dong Y, Liu M, Zhou J. Precise evaluation of the nutritional value of yeast culture and its effect on pigs fed low-protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:325-338. [PMID: 39640552 PMCID: PMC11617308 DOI: 10.1016/j.aninu.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/07/2024]
Abstract
The purpose of the present study was to assess the nutritional value of yeast culture (YC) and to explore the effect of YC on growth performance and health of piglets fed low-protein diets. In Exp. 1, 12 growing barrows were allocated into control diet and YC diet treatments to determine the available energy of YC. Results showed that the digestible energy and metabolizable energy of YC are 12.12 and 11.66 MJ/kg dry matter (DM), respectively. In Exp. 2, 12 growing barrows were surgically equipped with a T-cannula near the distal ileum and were assigned to 2 dietary treatments (nitrogen-free diet and YC diet), and the amino acid digestibility of YC was determined. In Exp. 3, a total of 96 weaned piglets were randomly divided into 4 treatments, including low-protein basal diet (Basal), Basal + 0.5% YC (0.5%YC), Basal + 1.0% YC (1.0%YC), and Basal + 1.5% YC (1.5%YC). The results were as follows: YC supplementation linearly improved the weight gain and feed intake ratio (P < 0.001), linearly increased the activity of glutathione peroxidase on d 14 (P = 0.032) and linearly decreased the concentration of malondialdehyde on d 14 (P = 0.008) and d 32 (P = 0.004) in serum, and linearly decreased the concentration of total short-chain fatty acid on d 14 in feces (P = 0.045). Compared with other treatments, 1.5%YC group showed a greater abundance of various probiotics, such as Prevotellaceae, Prevotella and Turicibacter. In Exp. 4, twelve growing barrows with an ileal T-cannula were randomly assigned to Control and 1.5%YC treatments to clarify the impact of YC supplementation on nitrogen balance and nutrient digestibility. Results showed that YC had no significant effect on nitrogen efficiency and nutrient digestibility, except for trend of reducing the total tract digestibility of organic matter (P = 0.067). In conclusion, the present study assessed the digestible and metabolizable energy values (12.12 and 11.66 MJ/kg DM, respectively) and standardized ileal digestibility of amino acid (from 43.93% to 82.65%) of YC in pig feed and demonstrated that moderate supplementation of YC (1.5% of diet) can effectively improve feed conversion efficiency, enhance antioxidant capacity, and promote a balanced gut microbiota in piglets.
Collapse
Affiliation(s)
- Baocheng Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Tairan Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanjun Dong
- Beijing China-Agri Hong Ke Bio-Technology Co, Ltd., Beijing 100226, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Junyan Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
7
|
Izadi E, Shahir MH, Torshizi MAK. Relative bioavailability of L-methionine and DL-methionine in growing broilers. Poult Sci 2024; 103:104311. [PMID: 39332342 PMCID: PMC11639581 DOI: 10.1016/j.psj.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Two separate studies were conducted in growing broiler chickens to examine the relative bioavailability (RBA) of L-smethionine (L-Met) vs. DL-methionine (DL-Met) in the starter (0-10 d, Experiment 1) and grower (11-24 d, Experiment 2) periods. In each experiment, 540 male Arian broilers were weighed and randomly allocated to nine dietary treatments in a completely randomized design with 6 replicates: basal diet (BD) with no methionine (Met) supplementation and eight diets supplemented with incremental levels (0.8, 1.6, 2.4, and 3.2 g/kg) of DL-methionine (DL-Met) or L-methionine (L-Met). Supplementation of the BD with either DL-Met or L-Met improved growth performance (P < 0.05), breast percentage (P < 0.05), and antioxidant status (P < 0.05) of broilers in both experiments. Orthogonal contrasts showed that L-Met supplementation compared to DL-Met (specifically at levels 0.8 and 1.6 g/kg) improved average daily gain (ADG, P < 0.05), average daily feed intake (ADFI, P < 0.01), and feed to gain ratio (F:G, P < 0.01) in the starter phase. In the grower phase, L-Met supplementation (specifically at levels 0.8 and 1.6 g/kg) only improved F:G (P < 0.05) compared to DL-Met, with no significant differences in the other performance parameters. Nonlinear regression analysis showed that RBA of L-Met based on carcass percentage was significantly (P < 0.05) higher than that of DL-Met in the starter phase. Based on the findings of this study, it seems that using L-Met compared to DL-Met may improve the feed efficiency and carcass percentage of young growing broiler chickens.
Collapse
Affiliation(s)
- Elham Izadi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran; Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hossein Shahir
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran.
| | | |
Collapse
|
8
|
Parada J, Magnoli A, Poloni V, Corti Isgro M, Rosales Cavaglieri L, Luna MJ, Carranza A, Cavaglieri L. Pediococcus pentosaceus RC007 and Saccharomyces boulardii RC009 as antibiotic alternatives for gut health in post-weaning pigs. J Appl Microbiol 2024; 135:lxae282. [PMID: 39501497 DOI: 10.1093/jambio/lxae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
AIMS The aim of the present study was to evaluate a novel probiotic Pediococcus pentosaceus RC007 used alone and convined with Saccharomyces cerevisiae var. boulardii RC009, as in-feed additives to substitute the nontherapeutic use of antibiotics, and evaluate the different structural characteristics of intestinal bacterial populations between groups, correlated with pig production performance. METHODS AND RESULTS The in vivo study was conducted on post-weaning pigs, from 21 to 56 days old. Three dietary treatments were included: T1-basal diet (BD-control group); T2-BD with P. pentosaceus RC007; and T3-BD with a mix of P. pentosaceus RC007 and S. boulardii RC009. The weight gain increase of pigs consuming non-therapeutic antibiotics was similar to those that did not consume antibiotics during the study (P = 0.0234), but had better health indicators. The use of a probiotic combination increased carcass weight and significantly reduced the lumbar fat thickness. In terms of taxonomic composition, there was a tendency to modify the abundance of Proteobacteria, Cyanobacteria, Enterobacteriaceae, and Lactobacillaceae in pigs that consumed the additives. The genus Butyricicoccus, Collinsella, and Ruminococcus tended to be more abundant in the microbiota of pigs at T3. CONCLUSIONS For the first time, the results of the present study indicate that P. pentosaceus RC007 and S. boulardii RC009, a probiotic combination, could be a good substitute for antibiotics in improving pig production performance, while also contributing to a healthier gut microbiota, especially with the reduced abundance of Proteobacteria and Cyanobacteria.
Collapse
Affiliation(s)
- Julián Parada
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
| | - Alejandra Magnoli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Valeria Poloni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Maite Corti Isgro
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
| | - Lorenzo Rosales Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - María Julieta Luna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Alicia Carranza
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Lilia Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| |
Collapse
|
9
|
Wang L, Lv Z, Ning X, Yue Z, Wang P, Liu C, Jin S, Li X, Yin Q, Zhu Q, Chang J. The effects of compound probiotics on production performance, rumen fermentation and microbiota of Hu sheep. Front Vet Sci 2024; 11:1440432. [PMID: 39545259 PMCID: PMC11560882 DOI: 10.3389/fvets.2024.1440432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal probiotics have the potential as feed additives, but less has been explored in ruminant feed up to date. This study aimed to determine the effect of compound probiotics (CPs) with Aspergillus oryzae 1, Aspergillus oryzae 2 and Candida utilis on Hu sheep's growth performance, rumen fermentation and microbiota. A total of 120 male Hu sheep, aged 2 months and with the body weight of 16.95 ± 0.65 kg were divided into 4 groups. Each group consisted of 5 replicates, with 6 sheep per replicate. Group A was the control group fed with the basal diet. Group B, C and D was supplemented with the basal diet by adding 400, 800 and 1,200 grams per ton (g/t) CPs, respectively. The feeding trial lasted for 60 days after a 10-day adaptation period. The results showed that the average daily gain (ADG) of sheep in the CPs groups were significantly higher, the feed/gain were significantly lower than those in group A in the later stage and the overall period. The addition of CPs increased the economic benefit. The levels of CD4+ and the CD4+/CD8+ ratio in the CPs groups were higher than those in Group A. The levels of GSH, IgG, IL-2, IL-6, and IFN-γ in group C were significantly elevated compared with group A. Group B showed a significant increase in rumen NH3-N and cellulase activity. There was no difference in VFAs content between group A and group B, however, with the increasing addition of CPs, the butyric acid and isobutyric acid content tended to decrease. The rumen microbiota analysis indicated that the CPs addition increased the Firmicutes and Proteobacteria abundances, decreased the Bacteroidetes abundance. The correlation analysis showed that Prevotella was negatively correlated with ADG, and the addition of 400 CPs in group B reduced Prevotella's relative abundance, indicating CPs increased sheep growth by decreasing Prevotella abundance. The CPs addition reduced caspase-3, NF-κB and TNF-α expression in liver, jejunum and rumen tissues. In conclusion, the addition of CPs increased the sheep production performance, reduced inflammation, improved rumen and intestinal health. Considering the above points and economic benefits, the optimal addition of CPs as an additive for Hu sheep is 800 g/t.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhanqi Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | | | - Zhiguang Yue
- Henan Anjin Biotechnology Co., Ltd., Xinxiang, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Liu X, Yang J, Yan Y, Wang K, Guo C. Effects of yeast peptides on the growth, antioxidant and anti-inflammatory capacities, immune function, and diarrhea status of suckling calves. Front Vet Sci 2024; 11:1454839. [PMID: 39450408 PMCID: PMC11499939 DOI: 10.3389/fvets.2024.1454839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Yeast peptides, which are small-molecule active peptides extracted from yeast proteins, are known for their antibacterial, antioxidant, and anti-inflammatory properties. However, the effects of yeast peptide on suckling calves remain unclear. In this study, the effects of yeast peptide supplementation on the growth, diarrhea incidence, and immune function of calves during the suckling period were determined. Thirty newborn calves were randomly divided into two groups: the control group (CON) and the treatment group (AP), which received fresh pasteurized milk supplemented with yeast peptides (5 g/day). The experiment lasted for 49 days (7-56 days of age). The dry matter intake, body weight, diarrhea status, immune function, antioxidant capacity, and anti-inflammatory activity of the calves were analyzed. The AP group had higher dry matter intake, daily weight gain, and feed efficiency than the CON group (P < 0.05). Moreover, the duration and frequency of diarrhea were significantly lower in the AP group than in the CON group (P < 0.05). Furthermore, the immune, antioxidant, and anti-inflammatory capabilities of the AP group were significantly higher than those of the CON group (P < 0.05). These findings provide valuable insights for the improvement of early health management during calf rearing.
Collapse
Affiliation(s)
- Xuexian Liu
- Department of Bioengineering, Jinzhong Vocational and Technical College, Jinzhong, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiashu Yang
- Department of Bioengineering, Jinzhong Vocational and Technical College, Jinzhong, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yibo Yan
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Kai Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Chunyan Guo
- Department of Bioengineering, Jinzhong Vocational and Technical College, Jinzhong, China
| |
Collapse
|
11
|
Kim S, Cho J, Keum GB, Kwak J, Doo H, Choi Y, Kang J, Kim H, Chae Y, Kim ES, Song M, Kim HB. Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:876-890. [PMID: 39398307 PMCID: PMC11466735 DOI: 10.5187/jast.2024.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Haram Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 31434, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
12
|
Chen J, Mou L, Wang L, Wu G, Dai X, Chen Q, Zhang J, Luo X, Xu F, Zhang M, Duan Y, Pang H, Wang Y, Cai Y, Tan Z. Mixed Bacillus subtilis and Lactiplantibacillus plantarum-fermented feed improves gut microbiota and immunity of Bamei piglet. Front Microbiol 2024; 15:1442373. [PMID: 39268530 PMCID: PMC11390403 DOI: 10.3389/fmicb.2024.1442373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Antibiotics are widely used in the breeding production of Bamei pigs, affecting the quality and safety of pork and causing enormous harm to human health, the environment, and public health. The use of probiotic fermented feed to replace antibiotic feed is one of the solutions, which has the potential to improve the intestinal microbiota, promote animal growth, and enhance immunity. The purpose of this study was to evaluate the effect of fermented feed with Lactiplantibacillus (L.) plantarum QP28-1a or Bacillus (B.) subtilis QB8a on feed, growth performance, gut microbiota, and immunity of weaned piglets. A total of 60 freshly weaned piglets from the Tibetan Plateau were randomly divided into five groups and fed basal feed, L. plantarum fermented feed, B. subtilis fermented feed, mixed fermented feed, and antibiotic fermented feed for 60 days, respectively. The results showed fermented feed supplemented with L. plantarum QP28-1a or B. subtilis QB8a significantly lowered the pH of the feed (P < 0.05), produced lactic acid and acetic acid, inhibited the growth of harmful bacteria in the feed, and reduced the feed conversion rate in the group fed mixed fermented feed (P < 0.05). The fermented feed increased the α-diversity and prominently altered the β-diversity of the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Lactobacillus and Turicibacter and decreasing the relative abundance of conditional pathogens such as Streptococcus and Clostridium, improving the intestinal microbiota of the Bamei piglets. Notably, the mixed fermented feed improved the immunity of Bamei piglets by modulating the production of pro-inflammatory cytokines, anti-inflammatory cytokines, and inflammatory-related signaling pathways. Spearman's correlation analysis revealed that the increased expression of immune-related cytokines may be associated with a significant enrichment of Lactobacillus, Prevotellaceae, Erysipelotrichaceae, and Ruminococcaceae in the gut. In conclusion, the probiotic fermented feed maintained an acidic environment conducive to suppressing pathogens, reduced the feed conversion ratio, optimized the intestinal microbiota, improved immunity, and alleviated intestinal inflammation that may be caused by weaning, demonstrating the excellent application prospects of L. plantarum QP28-1a and B. subtilis QB8a fermented feed in the feeding of Bamei piglets.
Collapse
Affiliation(s)
- Jun Chen
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyu Mou
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Ximei Dai
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Qiufang Chen
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Huzhou, China
| | - Miao Zhang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaoke Duan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huili Pang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yimin Cai
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Shruthi B, Adithi G, Deepa N, Divyashree S, Sreenivasa MY. Probiotic and Functional Attributes of Yeasts Isolated from Different Traditional Fermented Foods and Products. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10342-z. [PMID: 39180663 DOI: 10.1007/s12602-024-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Though numerous bacteria have been used as probiotics by industries, at present, Saccharomyces boulardii and Saccharomyces cerevesiae are the only yeast probiotics which are industrially exploited. In view of this, yeast probiotics were isolated from traditional fermented foods and products collected from different parts of Karnataka, India. In this work, we have studied the probiotic attributes of ten yeast isolates isolated from different traditionally fermented foods and products. About 73 yeast isolates were initially isolated by serially diluting the samples and plating on the Potato Dextrose Agar (PDA) plates. The spot assay was performed to screen the yeast isolates against test pathogens. Ten isolates were selected based on their significant antimicrobial activity. These isolates were subjected to biochemical characterization and then assessed for probiotic properties. The ability of probiotics to endure at pH 2.0 and tolerate bile conditions (0.3%) are crucial attributes for the survival in the gastrointestinal tract (GIT). The yeast isolates were also assessed for cell surface hydrophobicity and autoaggregation capabilities. All the ten isolates showed endurance in GIT tract and > 40% of adhesion. The study further examined cholesterol assimilation, antioxidant and antagonistic properties of the yeasts. Subsequently, the molecular characterization was performed by isolating the DNA of yeast isolates by phenol-chloroform method and identified molecularly through sequencing of D1/D2 regions. The isolates tested negative for gelatinase and DNase and were non-haemolytic indicating they are safe for consumption. Among ten isolates, Meyerozyma guillermondii (MYSY23), Meyerozyma caribbica (MYSY22) and Meyerozyma guillermondii (MYSY19) showed significant results for all probiotic and functional characteristics with greater than 65% survivability in GIT tract and > 50% of antagonistic activity against test pathogens and also proved non-cytotoxic and safe. These findings suggest that yeasts with significant probiotic attributes could be recommended for various probiotic application.
Collapse
Affiliation(s)
- B Shruthi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - G Adithi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - N Deepa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - S Divyashree
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - M Y Sreenivasa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
14
|
Kim SW, Duarte ME. Saccharomyces yeast postbiotics supplemented in feeds for sows and growing pigs for its impact on growth performance of offspring and growing pigs in commercial farm environments. Anim Biosci 2024; 37:1463-1473. [PMID: 38419538 PMCID: PMC11222863 DOI: 10.5713/ab.23.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Three experiments were conducted to evaluate the effects of Saccharomyces yeast postbiotics (SYP) in feeds for sows on the growth of offspring (Exp. 1), for nursery pigs on their growth (Exp. 2), and for nursery and finishing pigs on their growth (Exp. 3). METHODS Exp. 1 had 80 sows at breeding assigned to 4 groups with SYP at 0, 0.050, 0.175, and 0.500 g/kg. Offspring were fed a common diet for 126 d. Exp. 2 had 144 barrows at 8 kg body weight (BW) allotted to CON (no SYP); YPC (SYP at 0.175 g/kg; d 0 to 42); and YPD (SYP at 1.25, 0.75, and 0 g/kg; d 0 to 7, d 8 to 21, and d 22 to 42, respectively) with 8 pens/treatment (6 pigs/pen). Exp. 3 had 96 barrows at 8 kg BW allotted to CON (no SYP); YPN (SYP at 0.175 g/kg; d 0 to 42); YPF (SYP at 0.100 g/kg; d 43 to 119); and YPA (SYP at 0.175 and 0.100 g/kg; d 0 to 42 and d 43 to 119, respectively) with 8 pens/ treatment (3 pigs/pen). RESULTS In Exp. 1, increasing SYP increased (p<0.05, quadratic) the sow body score (maximum at 0.30% SYP), reduced (p<0.05, quadratic) the days-wean-to-estrus (minimum at 0.27% SYP), and increased (p<0.05) offspring BW at weaning and their average daily gain (ADG) and feed efficiency (G:F) at d 126. In Exp. 2, ADG, average daily feed intake (ADFI), and G:F of YPC were the greatest (p<0.05). The ADG and ADFI of YPD were greater (p<0.05) than CON. Fecal score of YPC and YPD was smaller (p<0.05) than CON. In Exp. 3, YPA had the greatest (p<0.05) ADG and YPN and YPF had greater (p<0.05) ADG than CON. CONCLUSION SYP enhanced sow performance, offspring growth, growth of nursery and growing pigs with the greater efficacy at 0.27 to 0.32 g/kg feed.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| |
Collapse
|
15
|
Qiu Q, Zhan Z, Zhou Y, Zhang W, Gu L, Wang Q, He J, Liang Y, Zhou W, Li Y. Effects of Yeast Culture on Laying Performance, Antioxidant Properties, Intestinal Morphology, and Intestinal Flora of Laying Hens. Antioxidants (Basel) 2024; 13:779. [PMID: 39061848 PMCID: PMC11274294 DOI: 10.3390/antiox13070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Yeast culture (YC) plays a significant role in enhancing the performance and health of poultry breeding. This study investigated the impact of different YC supplementation concentrations (basal diet with 1.0 g/kg and 2.0 g/kg of YC, YC1.0, and YC2.0) on egg production performance, egg quality, antioxidant properties, intestinal mucosal structure, and intestinal flora of laying hens. Both YC1.0 and YC2.0 groups significantly enhanced the egg protein height, Haugh unit, and crude protein content of egg yolks compared to the control group (p < 0.05). The supplementation with YC2.0 notably increased the egg production rate, reduced feed-to-egg ratio, and decreased the broken egg rate compared to the control group (p < 0.05). Additionally, YC supplementation enhanced serum total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity while reducing malondialdehyde (MDA) content (p < 0.05). Moreover, YC supplementation promoted duodenal villus height and villus ratio in the duodenum and jejunum (p < 0.05). Analysis of cecal microorganisms indicated a decrease in Simpson and Shannon indices with YC supplementation (p < 0.05). YC1.0 reduced the abundance of Proteobacteria, while YC2.0 increased the abundance of Bacteroidales (p < 0.05). Overall, supplementation with YC improved egg production, quality, antioxidant capacity, intestinal morphology, and cecal microbial composition in laying hens, with significant benefits observed at the 2.0 g/kg supplementation level.
Collapse
Affiliation(s)
- Quan Qiu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Q.); (J.H.); (Y.L.)
- Wuhan Sunhy Biology Co., Ltd., Wuhan 430070, China; (Z.Z.); (Y.Z.); (W.Z.); (L.G.); (Q.W.)
| | - Zhichun Zhan
- Wuhan Sunhy Biology Co., Ltd., Wuhan 430070, China; (Z.Z.); (Y.Z.); (W.Z.); (L.G.); (Q.W.)
| | - Ying Zhou
- Wuhan Sunhy Biology Co., Ltd., Wuhan 430070, China; (Z.Z.); (Y.Z.); (W.Z.); (L.G.); (Q.W.)
| | - Wei Zhang
- Wuhan Sunhy Biology Co., Ltd., Wuhan 430070, China; (Z.Z.); (Y.Z.); (W.Z.); (L.G.); (Q.W.)
| | - Lingfang Gu
- Wuhan Sunhy Biology Co., Ltd., Wuhan 430070, China; (Z.Z.); (Y.Z.); (W.Z.); (L.G.); (Q.W.)
| | - Qijun Wang
- Wuhan Sunhy Biology Co., Ltd., Wuhan 430070, China; (Z.Z.); (Y.Z.); (W.Z.); (L.G.); (Q.W.)
| | - Jing He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Q.); (J.H.); (Y.L.)
| | - Yunxiang Liang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Q.); (J.H.); (Y.L.)
| | - Wen Zhou
- Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yingjun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Q.); (J.H.); (Y.L.)
| |
Collapse
|
16
|
Kumar S, Pattanaik AK, Jadhav SE, Jangir BL. Lactobacillus johnsonii CPN23 vis-à-vis Lactobacillus acidophilus NCDC15 Improves Gut Health, Intestinal Morphometry, and Histology in Weaned Wistar Rats. Probiotics Antimicrob Proteins 2024; 16:474-489. [PMID: 36976517 DOI: 10.1007/s12602-023-10063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The present investigation was carried out with the aim to establish the comparative efficacy of a canine-sourced probiotic meant for canine feeding and a conventional dairy-sourced probiotic. For this purpose, canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophilus NCDC15 were evaluated for potential probiotics health benefits in the rat model. Forty-eight weaned Wistar rats enrolled in this experiment of 8 weeks were fed a basal diet and divided into three dietary treatments. Rats of group I enrolled as control (CON) were given MRS placebo at 1 mL/head/day, while rats of group II (LAJ) and III (LAC) were administered with overnight MRS broth grown-culture of L. johnsonii CPN23 and L. acidophilus NCDC15, respectively, at 1 mL/head/day (108 cfu/mL). The average daily gain and net gain in body weight were significantly higher (p < 0.05) in LAJ and LAC than in CON. Fecal and digesta biochemical attributes altered (p < 0.05) positively in response to both probiotics. Total fecal and pooled digesta SCFAs were higher (p < 0.05) in both LAJ and LAC than in CON. The microbial population in cecal and colonic digesta responded (p < 0.05) positively to both probiotics. The diameter of intestinal segments was higher (p < 005) in LAJ as compared to CON. The number and height of villi in jejunum tended to be higher in LAJ as compared to CON. The humoral immune response to sheep erythrocytes as well as chicken egg-white lysozyme was higher in LAJ as compared to CON. Overall, the results of the study have demonstrated the effectiveness of the canine-sourced L. johnsonii CPN23 as a potential probiotic, with a comparatively better response than the dairy-sourced L. acidophilus NCDC15. It could thus be recommended for use in feeding dogs to help augment their health.
Collapse
Affiliation(s)
- Sachin Kumar
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132 001, India
| | - Ashok Kumar Pattanaik
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India.
| | - Sunil Ekanath Jadhav
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Babu Lal Jangir
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| |
Collapse
|
17
|
Salah N, Legendre H, Nenov V, Briche M, Serieys F, Grossi S, Sgoifo Rossi CA. Does micro-granulated yeast probiotic ( Saccharomyces cerevisiae) supplementation in milk replacer affect health, growth, feed efficiency and economic gain of calves? Vet Anim Sci 2024; 23:100329. [PMID: 38222799 PMCID: PMC10787290 DOI: 10.1016/j.vas.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The goal of calf feeding systems is to provide calves with optimum nutrition to promote growth, health, and future milk production and to reduce antibiotic use which leads to a need for alternatives that reduce illness and promote growth in dairy calves. We hypothesized that feeding live yeast would improve gastrointestinal health and growth performance of calves. The aim of this study was then to evaluate the effects of supplementing a yeast probiotic Saccharomyces cerevisiae (CNCM I-4407, 1010 CFU/g, Actisaf® Sc47 powder; Phileo by Lesaffre, France) in milk replacers (MR), on health and growth of pre-weaned calves. Forty Holstein female calves were used during this trial. Each calf was weighed at 3 days of age and then introduced in the trial. Calves were randomly assigned to 2 groups (n = 20/group) and were fed MR without (control; CON) or with yeast probiotic at 1 g/calf/d (experimental; EXP). Milk replacer (12.5 % solids) was offered twice a day until 66 days of age (DOA). Body Weight (BW), wither height, hip width, body length and chest girth were collected in day 3 and day 66. Compared to CON, calves supplemented with yeast probiotic had better average daily gain (ADG, 0.456 ± 0.1 vs. 0.556 ± 0.09 kg/d, p < 0.05). There was no difference (p > 0.05) in both starter and MR intake between the two groups. Feed efficiency was better (p < 0.05) in the EXP group (2.18 ± 0.53) compared to CON (2.63 ± 0.78). No statistical differences were found between groups even if the lower total morbidity (40.91 % in the CON vs. 19.05 % in EXP) and incidence of gastrointestinal disorders (36.36 % in the CON vs. 14.29 % in EXP) were observed in calves supplemented with yeast probiotic. The severity of diarrhea was numerically lower in calves supplemented with yeast probiotic. No severe cases of respiratory disorders were highlighted in the present trial. The cost/kg of gain was higher (p < 0.05) in CON compared to EXP group. Total expenses linked to feeds and veterinary treatments were higher in CON compared to EXP group. During the study, the use 1 g/d of yeast probiotic allows to save 32.86 €/calf. It could be concluded that supplementing Actisaf® powder (Actisaf® SC 47 PWD) in MR improved health, growth performance, feed efficiency, and reduced the expenses linked to feeds and veterinary treatments.
Collapse
Affiliation(s)
- Nizar Salah
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Héloïse Legendre
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Valentin Nenov
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Maxime Briche
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Flore Serieys
- l'INP ENSAT Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France
| | - Silvia Grossi
- University of Milan, Department of Veterinary Science for Health, Animal Production and Food Safety, Via Dell'Università 1, 26900 Lodi, France
| | - Carlo Angelo Sgoifo Rossi
- University of Milan, Department of Veterinary Science for Health, Animal Production and Food Safety, Via Dell'Università 1, 26900 Lodi, France
| |
Collapse
|
18
|
Chang J, Jia X, Liu Y, Jiang X, Che L, Lin Y, Zhuo Y, Feng B, Fang Z, Li J, Hua L, Wang J, Ren Z, Wu D, Xu S. Microbial Mechanistic Insight into the Role of Yeast-Derived Postbiotics in Improving Sow Reproductive Performance in Late Gestation and Lactation Sows. Animals (Basel) 2024; 14:162. [PMID: 38200893 PMCID: PMC10777949 DOI: 10.3390/ani14010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of this study is to investigate the effects of supplementing Yeast-derived postbiotics (Y-dP) to the diet of sows during late pregnancy and lactation on fecal microbiota and short-chain fatty acids (SCFA) in sows and their offspring weaned piglets, as well as the relationship between gut microbiota and SCFA, serum cytokines, and sow reproductive performance. A total of 150 sows were divided into three groups: control diet (CON), CON + Y-dP 1.25 g/kg, and CON + Y-dP 2 g/kg. The results showed that supplementing 0.125% Y-dP to the diet of sows can increase the content of isobutyric acid (IBA) in the feces of pregnant sows and reduce the content of butyric acid (BA) in the feces of weaned piglets (p < 0.05). The fecal microbiota of pregnant sows β diversity reduced and piglet fecal microbiota β diversity increased (p < 0.05). Y-dP significantly increased the abundance of Actinobacteria and Limosilactobacilli in the feces of pregnant sows (p < 0.05), as well as the abundance of Verrucomicrobiota, Bacteroidota, and Fusobacteriota in the feces of piglets (p < 0.05). The abundance of Bacteroidota in the feces of pregnant sows is positively correlated with propionic acid (PA) (r > 0.5, p < 0.05). The abundance of Prevotellaceae_NK3B31_group was positively correlated with Acetic acid (AA), PA, Valerate acid (VA), and total volatile fatty acid (TVFA) in the feces of pregnant sows (r > 0.5, p < 0.05), and Bacteroidota and Prevotellaceae_NK3B31_group were negatively correlated with the number of stillbirths (r < -0.5, p < 0.05). The abundance of Lactobacillus and Holdemanella in piglet feces was positively correlated with TVFA in feces and negatively correlated with IgA in serum (r > 0.5, p < 0.05). In conclusion, supplementing Y-dP to the diet of sows from late gestation to lactation can increase the chao1 index and α diversity of fecal microorganisms in sows during lactation, increase the abundance of Actinobacteria and Limosilactobacilli in the feces of sows during pregnancy, and increase the abundance of beneficial bacteria such as Bacteroidetes in piglet feces, thereby improving intestinal health. These findings provide a reference for the application of Y-dP in sow production and a theoretical basis for Y-dP to improve sow production performance.
Collapse
Affiliation(s)
- Junlei Chang
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Xinlin Jia
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Yalei Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Zhihua Ren
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (X.J.); (Y.L.); (X.J.); (L.C.); (Y.L.); (Y.Z.); (B.F.); (Z.F.); (J.L.); (L.H.); (J.W.); (D.W.)
| |
Collapse
|
19
|
Jenkins AK, DeRouchey JM, Gebhardt JT, Tokach MD, Woodworth JC, Goodband RD, Loughmiller JA, Kremer BT. Effect of yeast probiotics in lactation and yeast cell wall prebiotic and Bacillus subtilis probiotic in nursery on lifetime growth performance, immune response, and carcass characteristics. J Anim Sci 2024; 102:skae320. [PMID: 39432555 PMCID: PMC11561585 DOI: 10.1093/jas/skae320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Twenty-eight mixed-parity sows (Line 241; DNA) and their offspring were used to evaluate live yeast supplementation during lactation with or without a pre/probiotic combination during the nursery period on lactation performance, lifetime growth performance, and immune response. On day 110 of gestation, sows were allotted to a lactation diet with or without a live yeast probiotic (0.10% Actisaf Sc 47 HR+; Phileo by Lesaffre, Milwaukee, WI). At weaning, their offspring (350 pigs; initially 6.1 ± 0.02 kg) were randomly assigned in a 2 × 2 factorial with main effects of sow treatment and nursery treatment consisting of a control diet or a diet with a yeast cell wall prebiotic and Bacillus subtilis probiotic (0.10% YB; Phileo by Lesaffre, Milwaukee, WI) fed for 42 d followed by common diets fed until marketing. Two nursery pens were combined into 1 finishing pen, such that there were 5 and 10 pigs per pen with 17 or 18 and 8 or 9 replications per treatment during the nursery and finishing periods, respectively. There were no significant effects of yeast supplementation on lactation performance (P ≥ 0.079). There was a sow × nursery diet interaction (P = 0.024) on nursery ADG. Pigs from yeast-fed sows had increased ADG when fed control nursery diets compared to pigs from control sows fed the control nursery diet with pigs fed pre/probiotic nursery diets intermediate, regardless of sow diet. Pigs from yeast-fed sows tended (P = 0.067) to have greater final body weight (BW) (day 165). A subset of pigs was sampled throughout their lifetime to determine serum porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae antibody sample-to-positive (S/P) ratios and percentage inhibition of Lawsonia intracellularis. There was a tendency for a PCV2 S/P ratio sow diet × day interaction (P = 0.097) where progeny from yeast-fed sows had higher PCV2 S/P ratios at 101 d of age compared to control sow progeny (P = 0.046). There was a PCV2 S/P ratio nursery diet × day interaction (P = 0.036) where pigs fed a pre/probiotic combination had reduced S/P ratios at 66, 78, and 162 d of age (P ≤ 0.022); however, at 22 d of age pigs fed a pre/probiotic combination tended to have an increased S/P ratio (P = 0.051). In conclusion, the effects of combining a yeast probiotic in lactation diets and a pre/probiotic in nursery diets were not additive. However, feeding a live yeast probiotic during lactation resulted in tendencies (P ≤ 0.10) for increased progeny final BW and hot carcass weight.
Collapse
Affiliation(s)
- Abigail K Jenkins
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
20
|
Luo L, Gu Z, Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Synbiotics improve growth performance and nutrient digestibility, inhibit PEDV infection, and prevent intestinal barrier dysfunction by mediating innate antivirus immune response in weaned piglets. J Anim Sci 2024; 102:skae023. [PMID: 38271094 PMCID: PMC10894507 DOI: 10.1093/jas/skae023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ± 1 d old) with a mean body weight (BW) of 6.62 ± 0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.
Collapse
Affiliation(s)
- Luhong Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhemin Gu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
21
|
Liu C, Asano S, Sato S, Murai K, Yabe N, Kajikawa H. Nucleic acid-extracted torula yeast from the paper industry as a protein feed for ruminants: A comparison with soybean meal. Anim Sci J 2024; 95:e13948. [PMID: 38623923 DOI: 10.1111/asj.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
We compared nucleic acid-extracted torula yeast (NTY) with soybean meal (SBM) to evaluate NTY as a potential protein feed for ruminants in a metabolic trial using four castrated male goats. NTY was replaced isonitrogenously with SBM at a 25% crude protein (CP) level on a dry matter (DM) basis. NTY has 55% CP and 74% total digestive nutrients on DM. Absorbed N was lower on the NTY diet, but since the urinary N excretion was lower on the NTY diet, no significant between-diet difference in retained N was observed. The efficiency of N utilization (retained N/absorbed N) was significantly higher on the NTY diet. The Lys and Met contents (presumed limiting amino acids for dairy cattle) were higher in NTY than SBM, which may be why N utilization efficiency was higher for the NTY diet. Ruminal ammonia-N and blood serum N were lower on the NTY diet, suggesting that NTY has more rumen undegradable protein than SBM. There was no significant between-diet difference in the visceral disorder indicators or antioxidant activities. Our results indicate that NTY is a safe protein feed with a high CP ratio and high-quality amino acid profile for ruminants that is equivalent to SBM.
Collapse
Affiliation(s)
- Chunyan Liu
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Sanae Asano
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Saeko Sato
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Kae Murai
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nanami Yabe
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Kajikawa
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
22
|
McConn BR, Kpodo KR, Rivier JE, Behan DP, Richert BT, Radcliffe JS, Lay DC, Johnson JS. Interactions between corticotropin releasing factor signaling and prophylactic antibiotics on measures of intestinal function in weaned and transported pigs. Front Physiol 2023; 14:1266409. [PMID: 37908333 PMCID: PMC10615255 DOI: 10.3389/fphys.2023.1266409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
The study objective was to evaluate the interaction between corticotrophin releasing factor (CRF) receptor signaling and prophylactic antibiotic administration on intestinal physiology in newly weaned and transported pigs. Pigs (n = 56; 5.70 ± 1.05 kg) were weaned (20.49 ± 0.64 d), a blood sample was taken, and then pigs were given an intraperitoneal injection of saline (SAL; n = 28 pigs) or a CRF receptor antagonist (CRFA; n = 28 pigs; 30 μg/kg body weight; Astressin B), and then were transported in a livestock trailer for 12 h and 49 min. A second and third intraperitoneal injection was given at 4 h 42 min and 11 h 36 min into the transport process, respectively. Following transport, 4 SAL and 4 CRFA pigs were blood sampled and euthanized. The remaining 48 pigs were individually housed and given dietary antibiotics [AB; n = 12 SAL and 12 CRFA pigs; chlortetracycline (441 ppm) + tiamulin (38.6 ppm)] or no dietary antibiotics (NAB; n = 12 SAL and 12 CRFA pigs) for 14 d post-transport. Blood was collected at 12 h and on d 3, 7, and 14, and then pigs were euthanized on d 7 (n = 24) and d 14 (n = 24) post-weaning and transport. Circulating cortisol was reduced (p = 0.05) in CRFA pigs when compared to SAL pigs post-weaning and transport. On d 7, jejunal villus height and crypt depth was greater overall (p < 0.05) in AB-fed pigs versus NAB-fed pigs. On d 14, ileal crypt depth was reduced (p = 0.02) in CRFA pigs when compared to SAL pigs. Jejunal CRF mRNA abundance tended to be reduced (p = 0.09) on d 7 in CRFA pigs versus SAL pigs. On d 14, jejunal tumor necrosis factor-alpha was reduced (p = 0.01) in AB-fed pigs versus NAB-fed pigs. On d 7, change in glucose short-circuit current tended to be increased (p = 0.07) in CRFA pigs fed the AB diet when compared to CRFA pigs fed the NAB diet. In conclusion, CRFA pigs and pigs fed AB had some similar biological intestinal function measures post-weaning and transport.
Collapse
Affiliation(s)
- Betty R. McConn
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | | | - Jean E. Rivier
- Sentia Medical Sciences Inc, San Diego, CA, United States
| | | | | | | | - Donald C. Lay
- Livestock Behavior Research Unit, Agricultural Research Service (USDA), West Lafayette, IN, United States
| | - Jay S. Johnson
- Livestock Behavior Research Unit, Agricultural Research Service (USDA), West Lafayette, IN, United States
| |
Collapse
|
23
|
Sampath V, Sureshkumar S, Kim IH. The Efficacy of Yeast Supplementation on Monogastric Animal Performance-A Short Review. Life (Basel) 2023; 13:2037. [PMID: 37895419 PMCID: PMC10608604 DOI: 10.3390/life13102037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Due to a continual growth in the world's population and the prohibition of antibiotics in animal production, the livestock industry faces significant challenges in the global demand for meat, eggs, and dairy products. The growing demand for organic products and the prohibition on antibiotic growth promoters (AGPs) have compelled animal nutrition experts to search for natural substitutes that include medical plants and beneficial microorganisms. Natural feed additives like probiotics are found to be more effective than AGPs in reducing the load of harmful intestinal pathogens. One of the probiotics that has generated considerable interest since ancient times is yeast. Yeast is used as a supplement in animal feeds due to its relatively high protein, amino acid, energy, and micronutrient content. Yeast byproducts such as yeast cells and cell walls contain nutraceutical compounds (i.e., β-glucans, mannooligosaccharides, and nucleotides) and have been shown to improve animal growth performance and health. Though the application of yeast supplements has been reviewed to date, only a scarce amount of information exists on the yeast-derived products in non-ruminant nutrition. Additionally, it is difficult for nutritionists to differentiate the characteristics, composition, and optimal feeding among the diverse number of yeast-containing products. Due to the increasing popularity of using yeast-based products in animal feeds, the development of analytical approaches to estimate yeast and its components in these products is greatly needed. Thus, in this review, we intend to provide current knowledge of different categories of commercially available yeast and yeast-derived additives, along with their role in improving animal growth performance and health, their proposed mechanisms of action, and the challenges of quantifying yeast content and biologically active components.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea; (V.S.); (S.S.)
- Smart Animal Bio Institute, Dankook University, Cheonan 330-714, Republic of Korea
| | - Shanmugam Sureshkumar
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea; (V.S.); (S.S.)
- Smart Animal Bio Institute, Dankook University, Cheonan 330-714, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea; (V.S.); (S.S.)
- Smart Animal Bio Institute, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
24
|
Scollo A, Borello I, Ghilardi M, Cavagnini A. The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use. Vet Sci 2023; 10:576. [PMID: 37756098 PMCID: PMC10538003 DOI: 10.3390/vetsci10090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Increasingly hyperprolific sows and the need to reduce antibiotics represent challenges in pig farming. The aim of this work was to determine the effects of a postbiotic obtained from inactivated and stabilized whole-cells of Saccharomyces cerevisiae, administered during the sow's gestation, on the performance of the mother and litter. Maternal feed intake, productive parameters, colostrum quality and post-weaning piglets' health were assessed, including antibiotic consumption. The trial involved 183 sows, divided into two groups: (1) sows fed with a daily supplementation of postbiotic during gestation (n = 90); (2) sows without any supplement (n = 93). Piglets were followed up at two different post-weaning sites. The lactation efficiency of the treated sows improved by +5.9% (41.3 ± 11.4 vs. 35.4 ± 11.6%; p = 0.011). Lactating piglets' mortality was lower in the treated group (25.1 ± 16.7 vs. 28.8 ± 14.4%; p = 0.048). The same tendency was shown in both the weaning sites, together with a reduced antibiotic consumption in weaning site 1 (0.72 ± 0.25 vs. 1.22 ± 0.30 DDDvet/PCU; p = 0.047). The results suggest the role of this postbiotic administered to the mother in improving the health status of the piglets. Furthermore, lactation efficiency is suggested as an interesting parameter for assessing the efficiency of farming.
Collapse
Affiliation(s)
- Annalisa Scollo
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy;
| | - Irene Borello
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy;
| | | | | |
Collapse
|
25
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
26
|
Paul SS, Rama Rao SV, Chatterjee RN, Raju MVLN, Mahato AK, Prakash B, Yadav SP, Kannan A, Reddy GN, Kumar V, Kumar PSP. An Immobilized Form of a Blend of Essential Oils Improves the Density of Beneficial Bacteria, in Addition to Suppressing Pathogens in the Gut and Also Improves the Performance of Chicken Breeding. Microorganisms 2023; 11:1960. [PMID: 37630519 PMCID: PMC10459846 DOI: 10.3390/microorganisms11081960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial growth promoters (AGP) are used in chicken production to suppress pathogens in the gut and improve performance, but such products tend to suppress beneficial bacteria while favoring the development and spread of antimicrobial resistance. A green alternative to AGP with the ability to suppress pathogens, but with an additional ability to spare beneficial gut bacteria and improve breeding performance is urgently required. We investigated the effect of supplementation of a blend of select essential oils (cinnamon oil, carvacrol, and thyme oil, henceforth referred to as EO; at two doses: 200 g/t and 400 g/t feed) exhibiting an ability to spare Lactobacillus while exhibiting strong E. coli inhibition ability under in vitro tests and immobilized in a sunflower oil and calcium alginate matrix, to broiler chickens and compared the effects with those of a probiotic yeast (Y), an AGP virginiamycin (V), and a negative control (C). qPCR analysis of metagenomic DNA from the gut content of experimental chickens indicated a significantly (p < 0.05) lower density of E. coli in the EO groups as compared to other groups. Amplicon sequence data of the gut microbiome indicated that all the additives had specific significant effects (DESeq2) on the gut microbiome, such as enrichment of uncultured Clostridia in the V and Y groups and uncultured Ruminococcaceae in the EO groups, as compared to the control. LEfSe analysis of the sequence data indicated a high abundance of beneficial bacteria Ruminococcaceae in the EO groups, Faecalibacterium in the Y group, and Blautia in the V group. Supplementation of the immobilized EO at the dose rate of 400 g/ton feed improved body weight gain (by 64 g/bird), feed efficiency (by 5 points), and cellular immunity (skin thickness response to phytoheamagglutinin lectin from Phaseolus vulgaris by 58%) significantly (p < 0.05), whereas neither yeast nor virginiamycin showed a significant effect on performance parameters. Expression of genes associated with gut barrier and immunity function such as CLAUDIN1, IL6, IFNG, TLR2A, and NOD1 were significantly higher in the EO groups. This study showed that the encapsulated EO mixture can improve the density of beneficial microbes in the gut significantly, with concomitant suppression of potential pathogens such as E.coli and improved performance and immunity, and hence, has a high potential to be used as an effective alternative to AGP in poultry.
Collapse
Affiliation(s)
- Shyam Sundar Paul
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Savaram Venkata Rama Rao
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Rudra Nath Chatterjee
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Mantena Venkata Lakshmi Narasimha Raju
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Department of Biotechnology, Hyderabad 500039, India;
| | - Bhukya Prakash
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Satya Pal Yadav
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Alagarsamy Kannan
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Godumagadda Narender Reddy
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Vikas Kumar
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Prakki Santosh Phani Kumar
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| |
Collapse
|
27
|
Choi H, Kim SW. Characterization of β-Glucans from Cereal and Microbial Sources and Their Roles in Feeds for Intestinal Health and Growth of Nursery Pigs. Animals (Basel) 2023; 13:2236. [PMID: 37444033 DOI: 10.3390/ani13132236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The objectives of this review are to investigate the quantitative, compositional, and structural differences of β-glucans and the functional effects of β-glucans on the intestinal health and growth of nursery pigs. Banning antibiotic feed supplementation increased the research demand for antibiotic alternatives to maintain the intestinal health and growth of nursery pigs. It has been proposed that β-glucans improve the growth efficiency of nursery pigs through positive impacts on their intestinal health. However, based on their structure and source, their impacts can be extensively different. β-glucans are non-starch polysaccharides found in the cell walls of yeast (Saccharomyces cerevisiae), bacteria, fungi (Basidiomycota), and cereal grains (mainly barley and oats). The total β-glucan content from cereal grains is much greater than that of microbial β-glucans. Cereal β-glucans may interfere with the positive effects of microbial β-glucans on the intestinal health of nursery pigs. Due to their structural differences, cereal β-glucans also cause digesta viscosity, decreasing feed digestion, and decreasing nutrient absorption in the GIT of nursery pigs. Specifically, cereal β-glucans are based on linear glucose molecules linked by β-(1,3)- and β-(1,4)-glycosidic bonds with relatively high water-soluble properties, whereas microbial β-glucans are largely linked with β-(1,3)- and β-(1,6)-glycosidic bonds possessing insoluble properties. From the meta-analysis, the weight gain and feed intake of nursery pigs increased by 7.6% and 5.3%, respectively, through the use of yeast β-glucans (from Saccharomyces cerevisiae), and increased by 11.6% and 6.9%, respectively, through the use of bacterial β-glucans (from Agrobacterium sp.), whereas the use of cereal β-glucans did not show consistent responses. The optimal use of yeast β-glucans (Saccharomyces cerevisiae) was 50 mg/kg in nursery pig diets based on a meta-analysis. Collectively, use of microbial β-glucans can improve the intestinal health of nursery pigs, enhancing immune conditions, whereas the benefits of cereal β-glucans on intestinal health were not consistent.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
28
|
Deng Z, Jang KB, Jalukar S, Du X, Kim SW. Efficacy of Feed Additive Containing Bentonite and Enzymatically Hydrolyzed Yeast on Intestinal Health and Growth of Newly Weaned Pigs under Chronic Dietary Challenges of Fumonisin and Aflatoxin. Toxins (Basel) 2023; 15:433. [PMID: 37505702 PMCID: PMC10467124 DOI: 10.3390/toxins15070433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to investigate the efficacy of a feed additive containing bentonite and enzymatically hydrolyzed yeast on the intestinal health and growth of newly weaned pigs under chronic dietary exposure to fumonisin and aflatoxin. Newly weaned pigs were randomly allotted to one of four possible treatments: a control diet of conventional corn; a diet of corn contaminated with fumonisin and aflatoxin; a diet of mycotoxin-contaminated corn with 0.2% of feed additive; and a diet of mycotoxin contaminated corn with 0.4% of feed additive. We observed lower average weight gain and average daily feed intake in pigs that were fed only mycotoxin-contaminated corn compared to the control group. Feed additive supplementation linearly increased both average weight gain and feed intake, as well as tumor necrosis factor-alpha. In the jejunum, there was an observed decrease in immunoglobulin A and an increase in claudin-1. Additionally, feed additive supplementation increased the villus height to crypt depth ratio compared to the control. In conclusion, feed additives containing bentonite and enzymatically hydrolyzed yeast could mitigate the detrimental effects of mycotoxins on the growth performance of newly weaned pigs by improving intestinal integrity and positively modulating immune response.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| | - Sangita Jalukar
- Arm & Hammer Animal and Food Production, Church & Dwight Co., Inc., Ewing, NJ 02628, USA;
| | - Xiangwei Du
- College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| |
Collapse
|
29
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
30
|
Bastos TS, Souza CMM, Kaelle GCB, do Nascimento MQ, de Oliveira SG, Félix AP. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 37129233 DOI: 10.1111/jpn.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed at evaluating the coefficients of total tract apparent digestibility (CTTAD) of nutrients, metabolisable energy (ME), diet palatability, faecal fermentative products and microbiota of dogs fed yeasts from different fermentation media and its fractions. Four diets were evaluated: control, without yeast (CO); diet with 10 g/kg brewer's yeast (BY); diet with 10 g/kg brewer's yeast + corn yeast (BCY); and diet with 10 g/kg BCY + cell wall fractions (BCYF). Twelve adult dogs were distributed in a randomized block design (periods). Each of the four diets was fed to a group of three dogs per period of 20 days, totalling two periods and six repetitions per treatment. Sixteen adult dogs were used for the palatability test, which compared the CO diet versus each one of the yeast diets. Data with normal distribution were subjected to analysis of variance (p < 0.05). Means were compared by orthogonal contrasts (p < 0.05): (A) CO diet versus BY, BCY and BCYF diets; (B) BY diet versus BCY and BCYF diets; (C) BCY diet versus BCYF diet. There was no difference in the CTTAD and ME of the diets (p > 0.05). Yeast diets reduced faecal odour and indole peak area (p < 0.05). Faecal short-chain fatty acids concentration was greater in dogs fed yeast diets compared to those fed the CO (p < 0.05). Yeast diets showed a higher intake ratio compared to the CO (p < 0.05). The BCY and BCYF diets resulted in a greater abundance of Bacteroides, Faecalibacterium, Coprococcus, and Phascolarctobacterium in relation to the CO (p < 0.05). Our results suggest that dietary yeast supplementation results in beneficial changes in intestinal functionality indicators, mainly with the combination of yeasts from brewers and corn fermentation media. In addition, yeast supplementation improves diet palatability without compromising nutrient digestibility.
Collapse
Affiliation(s)
- Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Ananda Portella Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
31
|
Maggiolino A, Centoducati G, Casalino E, Elia G, Latronico T, Liuzzi MG, Macchia L, Dahl GE, Ventriglia G, Zizzo N, De Palo P. Use of a commercial feed supplement based on yeast products and microalgae with or without nucleotide addition in calves. J Dairy Sci 2023; 106:4397-4412. [PMID: 37080790 DOI: 10.3168/jds.2022-22656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 04/22/2023]
Abstract
The use of feed additives with antioxidant and immune response modulatory activity could be a useful strategy in suckling calves to reduce morbidity and mortality. This strategy is based on several feed additives tested for these purposes. The aim of the paper is the examination of a commercial feed additive for adult cows for use in calves, with and without nucleotide supplementation. Seventy-five Holstein Friesian male calves were divided in 3 groups, with each calf randomly assigned to a group according to birth order. All calves received 2 L of pooled colostrum within 2 h of birth. The commercial feed supplement group was orally administered with 5 g/head of Decosel (dried brewer's yeast lysate (Saccharomyces cerevisiae), brewer's yeast walls (Saccharomyces cerevisiae), diatoms, spirulina, barley flour, calcium carbonate; Agroteam srl, Torrimpietra, Italy) and the nucleotides + commercial feed supplement group was orally administered with 5 g/head of an additive containing 2.5 g of Decosel and 2.5 g of nucleotides once daily from birth to 25 d. The control group was orally administered 20 mL of fresh water/head once daily. Calves that received the supplement and the nucleotides showed lower rates of protein and metabolizable energy conversion, with longer villi and greater crypt depth in duodenum. Moreover, the commercial feed supplement alone increased antioxidant capacity [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and ferric-reducing antioxidant power] in plasma some activity of antioxidant liver enzymes, and peripheral blood mononuclear cell viability after in vitro concanavalin A and H2O2 stimuli. Dietary supplementation with a commercial feed supplement containing yeast products (yeast cell walls and hydrolyzed yeast) and microalgae enhanced the redox balance and gut morphology in calves, allowing calves to improve their immune response, increasing resistance to stress. Moreover, these beneficial effects were strongly potentiated when dietary nucleotides were added to the supplement.
Collapse
Affiliation(s)
- Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy.
| | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, 70026 Bari, Italy
| | - Maria Grazia Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, 70026 Bari, Italy
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation, School and Chair of Allergology and Clinical Immunology, University of Bari, Aldo Moro, 70010 Bari, Italy
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Nicola Zizzo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| |
Collapse
|
32
|
Zhang J, Yuan Y, Wang F, He H, Wan K, Liu A. Effect of yeast culture supplementation on blood characteristics, body development, intestinal morphology, and enzyme activities in geese. J Anim Physiol Anim Nutr (Berl) 2023; 107:598-606. [PMID: 35357043 DOI: 10.1111/jpn.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The objective of this experiment is to evaluate the effects of yeast culture (YC) supplementation on blood characteristics, body size, carcass characteristics, organ weights, intestinal morphology, and enzyme activities. Five groups of geese were randomly assigned to five dietary treatments: the basal diet (control) and basal diets plus 0.5%, 1.0%, 2.0%, or 4.0% YC. Compared with the controls, YC supplementation at 0.5% and 1.0% increased the serum total protein (TP), albumin (ALB), and globulin (GLO) and decreased the uric acid and creatine kinase (CK) contents (p < 0.05). YC supplementation at 2.0% and 4.0% increased the CK, growth hormone, catalase and glutathione reductase contents, and relative proventriculus weights, and decreased the TP, ALB, and GLO contents, relative liver, gizzard, jejunum, ileum, and thymus weights (p < 0.05). YC supplementation at 2.0% improved fossil bone length, breast muscle percentage, jejunal villus height, ileal and jejunal villus height/crypt depth ratios, pepsin, lipase, amylase and pancreatic trypsin activities, and decreased abdominal fat percentage (p < 0.05). Furthermore, YC inclusion increased the body slope length (linear, p = 0.002; quadratic, p = 0.02), breast width (quadratic, p = 0.02), ileal (linear, p = 0.04; quadratic, p = 0.01) and duodenal villus height (cubic, p = 0.04), and decreased the relative gizzard (quadratic, p = 0.04) and thymus (linear, p = 0.002; quadratic, p = 0.02; cubic, p = 0.02) weights, liver (linear, p = 0.002; quadratic, p = 0.02), and serum (linear, p = 0.006; quadratic, p = 0.03) malondialdehyde contents, and jejunal crypt depth (quadratic, p = 0.03). The findings indicated that the YC supplementation had a positive effect on the growth and development of geese, with 2% YC being the most effective.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yancong Yuan
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fen Wang
- Beijing Enhalor Biotechnology, Beijing, China
| | - Hang He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Kun Wan
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Bearson SMD, Trachsel JM, Bearson BL, Loving CL, Kerr BJ, Shippy DC, Kiros TG. Effects of β-glucan on Salmonella enterica serovar Typhimurium swine colonization and microbiota alterations. Porcine Health Manag 2023; 9:7. [PMID: 36782292 PMCID: PMC9926856 DOI: 10.1186/s40813-023-00302-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The 2017 Veterinary Feed Directive eliminated the use of medically important antibiotics for growth promotion of food animals; thus, alternative growth promoters are highly desirable by food animal producers to enhance animal health and reduce pathogen colonization, including the human foodborne pathogen Salmonella. β(1-3)(1-6)-D-glucan (β-glucan) is a soluble fiber with prebiotic characteristics; it has been shown to modulate immune and intestinal functions that strengthen swine resistance to health challenges such as bacterial infections when supplemented in the diets of growing pigs. The current study evaluated the effects of a β-glucan product on gut microbial community structure as well as Salmonella shedding and intestinal colonization. RESULTS Five-week-old pigs were fed a β-glucan amended diet at 500 g/ton (n = 13) or a non-amended control diet (n = 14) for three weeks, followed by inoculation of the 27 pigs with 1 × 109 colony forming units of Salmonella enterica serovar Typhimurium strain UK1. While remaining on the respective diets, fecal samples collected at 2, 4, 7, and 16 days post-inoculation (dpi) were similar for Salmonella shedding counts between the two diets. At 16 dpi, Salmonella counts were significantly lower in the cecal contents of the β-glucan-fed pigs (P = 0.0339) and a trend towards a reduction was observed in the Peyer's patches region of the ileum (P = 0.0790) compared to the control pigs. Pigs fed β-glucan for three weeks exhibited an increase in members of the Clostridia class in their fecal microbial communities, and after inoculation with Salmonella, several potentially beneficial microorganisms were enriched in the microbiota of β-glucan-fed pigs (Lactobacillus, Ruminococcaceae, Prevotellaceae, Veillonellaceae, Bifidobacterium and Olsenella). CONCLUSION Administration of β-glucan altered the swine gut microbiome and reduced Salmonella colonization in the cecal contents.
Collapse
Affiliation(s)
- Shawn M. D. Bearson
- grid.512856.d0000 0000 8863 1587Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 USA
| | - Julian M. Trachsel
- grid.512856.d0000 0000 8863 1587Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 USA ,grid.410547.30000 0001 1013 9784Agricultural Research Service Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN USA
| | - Bradley L. Bearson
- grid.512855.eAgroecosystems Management Research Unit, USDA, ARS, National Laboratory for Agriculture and the Environment, Ames, IA USA
| | - Crystal L. Loving
- grid.512856.d0000 0000 8863 1587Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 USA
| | - Brian J. Kerr
- grid.512855.eAgroecosystems Management Research Unit, USDA, ARS, National Laboratory for Agriculture and the Environment, Ames, IA USA
| | - Daniel C. Shippy
- grid.512856.d0000 0000 8863 1587Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 USA
| | - Tadele G. Kiros
- grid.478269.60000 0004 5902 7857Phileo by Lesaffre, North America, Milwaukee, WI USA
| |
Collapse
|
34
|
Papadomichelakis G, Palamidi I, Paraskeuas VV, Giamouri E, Mountzouris KC. Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals (Basel) 2023; 13:431. [PMID: 36766320 PMCID: PMC9913353 DOI: 10.3390/ani13030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
A natural phytogenic formulation (NPF) was tested as an alternative to pharmaceutical zinc oxide (ZnO) in weaned piglets with respect to growth performance, apparent total tract digestibility and faecal microbiota composition and metabolic activity. Two dietary NPF levels (NPF: 1000 and 2000 mg/kg diet) were compared to a positive control (ZnO: 3000 mg ZnO/kg diet) and a negative control (CON: no added ZnO or NPF) using 84 weaned piglets from 29 d to 78 d (days of age). Feed conversion ratio was improved (p < 0.05) in ZnO and NPF piglets were compared to CON at 50 d. Dry matter, organic matter and crude protein (p < 0.05) digestibility was improved in NPF piglets compared to CON at 57 d. Compared to CON, NPF inclusion reduced E. coli (p < 0.05) and increased C. leptum subgroup (p < 0.01) at 57 d and 78 d, and reduced C. perfringens subgroup (p < 0.05; at 78 d). The ZnO reduced (p < 0.001) E. coli and C. perfringens subgroup (p < 0.01) compared to CON at 78 d. Moreover, ZnO and NPF reduced molar ratios of branched chain volatile fatty acids (p < 0.05) compared to CON, while NPF also increased butyric acid (p < 0.05) at 78 d. In conclusion, the NPF appeared to be a promising alternative to pharmaceutical doses of ZnO.
Collapse
Affiliation(s)
| | | | | | | | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
35
|
Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study aimed to investigate the effects of a two-stage fermented feather meal-soybean meal product (TSFP) on the performance, clinical blood biochemistry, and immunity of sows and piglets. TSFP was fermented by Saccharomyces cerevisiae Y10 for three days in the second stage, which showed similar results to the five-day fermentation of B. coagulans (p > 0.05). Fifty hybrid sows (Duroc × KHAPS black pig) were randomly assigned into dietary supplementation groups of 2% fish meal or different levels of TSFP at 0%, 1%, 2%, or 3%. The results showed that body weight gain and feed conversion ratio of 2% and 3% TSFP groups were better than the control group and fish meal group during the gestation period (d 80–114) (p < 0.05). During the lactation period, the 3% TSFP group showed the best weaning litter weight (p < 0.05). In sows, interferon-γ and immunoglobulin G (IgG) of 2% and 3% TSFP groups were higher than the control group and fish meal group (p < 0.05). In piglets, in groups of 2% and 3% TSFP blood urea decreased (p < 0.05). The IgG of fermented groups was superior to the control group (p < 0.05). The oxidative burst of phagocytes in the 3% TSFP was higher than those of the control and fish meal groups (p < 0.05). In conclusion, TSFP supplementation exhibits the advantages of performance and immunity of lactating sows and piglets. Furthermore, adding 3% TSFP in the feed showed the best performance.
Collapse
|
36
|
Liu Y, Jia X, Chang J, Pan X, Jiang X, Che L, Lin Y, Zhuo Y, Feng B, Fang Z, Li J, Hua L, Wang J, Sun M, Wu D, Xu S. Yeast culture supplementation of sow diets regulates the immune performance of their weaned piglets under lipopolysaccharide stress. J Anim Sci 2023; 101:skad226. [PMID: 37394233 PMCID: PMC10358228 DOI: 10.1093/jas/skad226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
The aim of this study was to investigate the effect of dietary supplementation of sows with yeast cultures (XPC) during late gestation and lactation on the immune performance of their weaned offspring under lipopolysaccharide (LPS) stress. A total of 40 Landrace × Yorkshire sows (parity 3 to 7) with similar backfat thickness were selected and randomly divided into two treatment groups: a control group (basal diet) and a yeast culture group (basal diet + 2.0 g/kg XPC). The trial was conducted from day 90 of gestation to day 21 of lactation. At the end of the experiment, 12 piglets with similar weights were selected from each group and slaughtered 4 h after intraperitoneal injection with either saline or LPS. The results showed that the concentrations of interleukin-6 (IL-6) in the thymus and tumor necrosis factor-α in the liver increased significantly (P < 0.05) in weaned piglets after LPS injection. Maternal dietary supplementation with XPC significantly reduced the concentration of inflammatory factors in the plasma and thymus of weaned piglets (P < 0.05). LPS injection significantly upregulated the expression of some tissue inflammation-related genes, significantly downregulated the expression of intestinal tight junction-related genes, and significantly elevated the protein expression of liver phospho-nuclear factor kappa B (p-NF-κB), the phospho-inhibitory subunit of NF-κB (p-IκBα), phospho-c-Jun N-terminal kinase (p-JNK), Nuclear factor kappa-B (NF-κB), and the inhibitory subunit of NF-κB (IκBα) in weaned piglets (P < 0.05). Maternal dietary supplementation with XPC significantly downregulated the gene expression of IL-6 and interleukin-10 (IL-10) in the thymus and decreased the protein expression of c-Jun N-terminal kinase (JNK) in the liver of weaned piglets (P < 0.05). In summary, injection of LPS induced an inflammatory response in weaned piglets and destroyed the intestinal barrier. Maternal dietary supplementation of XPC improved the immune performance of weaned piglets by inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Yalei Liu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Xinlin Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Junlei Chang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Xunjing Pan
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Xuemei Jiang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Lianqiang Che
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Yan Lin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Bin Feng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Zhengfeng Fang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Jian Li
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Lun Hua
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya’an 625014, P.R. China
| | - De Wu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P. R. China
| |
Collapse
|
37
|
Oba PM, Carroll MQ, Sieja KM, de Souza Nogueira JP, Yang X, Epp TY, Warzecha CM, Varney JL, Fowler JW, Coon CN, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, metabolite concentrations, and microbiota populations of dogs subjected to exercise challenge. J Anim Sci 2023; 101:skac424. [PMID: 36573478 PMCID: PMC9890449 DOI: 10.1093/jas/skac424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to determine the fecal characteristics, microbiota, and metabolites of dogs fed a Saccharomyces cerevisiae fermentation product (SCFP) and subjected to exercise challenge in untrained and trained states. Thirty-six adult dogs (18 male, 18 female; mean age: 7.1 yr; mean body weight: 29.0 kg) were randomly assigned to control or SCFP-supplemented (250 mg/dog/d) diets and fed for 10 wk. After 3 wk, dogs were given an exercise challenge (6.5 km run), with fresh fecal samples collected pre- and post-challenge. Dogs were then trained by a series of distance-defined running exercise regimens over 7 wk (two 6.4 km runs/wk for 2 wk; two 9.7 km runs/wk for 2 wk; two 12.9 km runs/wk for 2 wk; two 3.2 km runs/wk). Dogs were then given exercise challenge (16 km run) in the trained state, with fresh fecal samples collected pre- and post-challenge. Fecal microbiota data were evaluated using QIIME2, while all other data were analyzed using the Mixed Models procedure of SAS. Effects of diet, exercise, and diet*exercise were tested with P < 0.05 considered significant. Exercise challenge reduced fecal pH and ammonia in both treatments, and in untrained and trained dogs. After the exercise challenge in untrained dogs, fecal indole, isobutyrate, and isovalerate were reduced, while acetate and propionate were increased. Following the exercise challenge in trained dogs, fecal scores and butyrate decreased, while isobutyrate and isovalerate increased. SCFP did not affect fecal scores, pH, dry matter, or metabolites, but fecal Clostridium was higher in controls than in SCFP-fed dogs over time. SCFP and exercise challenge had no effect on alpha or beta diversity in untrained dogs. However, the weighted principal coordinate analysis plot revealed clustering of dogs before and after exercise in trained dogs. After exercise challenge, fecal Collinsella, Slackia, Blautia, Ruminococcus, and Catenibacterium were higher and Bacteroides, Parabacteroides, Prevotella, Phascolarctobacterium, Fusobacterium, and Sutterella were lower in both untrained and trained dogs. Using qPCR, SCFP increased fecal Turicibacter, and tended to increase fecal Lactobacillus vs. controls. Exercise challenge increased fecal Turicibacter and Blautia in both untrained and trained dogs. Our findings show that exercise and SCFP may affect the fecal microbiota of dogs. Exercise was the primary cause of the shifts, however, with trained dogs having more profound changes than untrained dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly M Sieja
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Xiaojing Yang
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tammi Y Epp
- Cargill, Incorporated, Wayzata, MN 55391, USA
| | | | | | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Li C, Zhao P, Shao Q, Chen W, Huang S, Wang X, Zhang C, He L. Effects of dietary Glycyrrhiza polysaccharide on growth performance, blood parameters and immunity in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:136-146. [PMID: 35247286 DOI: 10.1111/jpn.13692] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to evaluate the effects of dietary Glycyrrhiza polysaccharide (GCP) on growth performance, blood parameters and immunity in weaned piglets. A total of 240 (10.33 ± 0.62 kg body weight) 35-day-old (Duroc × Landrace × White) weaned piglets were randomly assigned to four dietary treatments, with six replicate pens per treatment and 10 piglets per pen (five males and five females). The dietary treatments continued for 21 days and comprised a basal diet supplemented with 0 (control group), 500, 1000 and 2000 mg/kg GCP. The results showed that the inclusion of 1000 and 2000 mg/kg GCP increased the average daily gain and decreased the feed conversion rate compared with the control group (p < 0.05). The piglets treated with 500 and 1000 mg/kg GCP had a lower diarrhoeal incidence than the control group (p < 0.05). Moreover, supplementation with 1000 mg/kg GCP increased the counts of white blood cells, neutrophils, red blood cells, and platelets, and elevated alkaline phosphatase, total protein, globulin, glucose, triglyceride, immunoglobulin A, immunoglobulin G, and total antioxidant capacity levels (p < 0.05), and decreased malondialdehyde content compare with the control group (p < 0.05). In addition, relative to the control group, piglets fed 500 and 1000 mg/kg GCP had significantly lower expression of interleukin-6 mRNA in spleen (p < 0.05). Our results indicate that dietary supplementation with GCP can improve growth performance, blood parameters and immunity in weaned piglets. Our study suggests that adding 1000 mg/kg GCP to the diet had the most beneficial effect.
Collapse
Affiliation(s)
- Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Pengli Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Wenbin Chen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
39
|
Jin W, Jiang L, Hu S, Zhu A. Metabolite features of serum and intestinal microbiota response of largemouth bass (Micropterus salmoides) after Aeromonas hydrophila challenge. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109496. [PMID: 36306998 DOI: 10.1016/j.cbpc.2022.109496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022]
Abstract
The enteric morphology, enteric microbiota structure and serum metabolomics of M. salmoides before and after infected by A. hydrophila were analysed to explore the pathogenic mechanism of A. hydrophila infection in M. salmoides. The results revealed that, after the infection of A. hydrophila, the villus boundary of largemouth bass became less obvious; the relative abundance of Proteobacteria and decreasing relative abundance of Tenericutes were increasing; genera relative abundance of putatively beneficial bacteria (Mycoplasma) were decreasing, whereas the genus Aeromonas increased after infection; serum metabolomic analysis showed that infection with A. hydrophila caused disorder to the metabolic processes of largemouth bass, particularly amino acid metabolism, and caused inflammation; several potential pathogen infection-related and significantly differential intestinal microbiota-related metabolite markers were identified, such as 6-hydroxy-5-methoxyindole glucuronide, zalcitabine, bilirubin, aciclovir. This study may provide new insights into the potential association between enteric microbiota and serum metabolism and the pathogenic mechanism of M. salmoides infected by A. hydrophila, providing a scientific basis for disease control in largemouth bass breeding.
Collapse
Affiliation(s)
- Wangyang Jin
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Siling Hu
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Aiyi Zhu
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
40
|
Guo Y, Zhang L, Liang Y, Li P, Zhang T, Meng F, Liu B, Zhang H, Fu W, Wang W, Liang J, Tian X. Effects of dietary yeast culture on health status in digestive tract of juvenile Pacific white shrimp Litopenaeus Vannamei. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100065. [PMID: 36419603 PMCID: PMC9680107 DOI: 10.1016/j.fsirep.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
A feeding trial was conducted to investigate the effects of dietary yeast culture (YC) on health status in digestive tract of juvenile Pacific white shrimp Litopenaeus Vannamei. Shrimps (initial weight: 3.33 ± 0.06 g) were fed with graded levels of dietary YC (control, 0.3%, 0.5% and 1.0%). Results of the present study showed that villus height and the ratio between villus height and crypt depth in the digestive tract of juvenile shrimp was significantly increased by dietary 0.5% and 1.0%YC (P < 0.05). Besides, dietary 0.5% and 1.0%YC significantly activities of phenoloxidase (PO), lysozyme (LZ), acid phosphatase (ACP) and alkaline phosphatase (AKP) (P < 0.05), significantly up-regulated mRNA levels of prophenoloxidase (propo), lysozyme (lz), anti-lipopolysaccharide factor (alf), crustin and penaienadin (P < 0.05) and down-regulated mRNA levels of caspase-1, nuclear factor κB p65 (nf-κbp65) myeloid differentiation primary response protein (myd88) and toll like receptor (tlr) in the digestive tract of juvenile shrimp (P < 0.05). Compared with the control, dietary 0.5%YC increased Chao1 index in the digestive tract of juvenile shrimp. In addition, compared with the control, dietary 0.5% and 1.0%YC significantly increased relative abundance of Lactobacillus (P < 0.05). It can be concluded that dietary YC made positive contribution to health status in digestive tract of juvenile shrimp through improving morphology and microbiota, enhancing immune function, and inhibiting inflammation of digestive tract.
Collapse
Affiliation(s)
- Yanlin Guo
- GBW Biotechnology Group, Qingdao 266111, China
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266237, China
| | - Lei Zhang
- GBW Biotechnology Group, Qingdao 266111, China
| | - Yi Liang
- GBW Biotechnology Group, Qingdao 266111, China
| | - Peigen Li
- GBW Biotechnology Group, Qingdao 266111, China
| | | | - Fankui Meng
- GBW Biotechnology Group, Qingdao 266111, China
| | - Baotong Liu
- GBW Biotechnology Group, Qingdao 266111, China
| | | | - Wenzhong Fu
- GBW Biotechnology Group, Qingdao 266111, China
| | - Wei Wang
- GBW Biotechnology Group, Qingdao 266111, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266237, China
| |
Collapse
|
41
|
Alagbe EO, Aderibigbe AS, Schulze H, Ajuwon KM, Adeola O. Gastrointestinal dynamics, immune response, and nutrient digestibility of weanling pigs fed diets supplemented with enzymatically treated yeast1. J Anim Sci 2022; 100:skac377. [PMID: 36373005 PMCID: PMC9762883 DOI: 10.1093/jas/skac377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2023] Open
Abstract
The objective of this trial was to investigate the effect of enzymatically treated yeast (ETY) on the growth performance, nutrient digestibility, immune response, and gut health of weanling pigs. A total of 192 weanling pigs (6.0 ± 1.04 kg) were allocated to 4 corn and soybean-based diets with increasing concentrations of ETY (0, 1, 2, or 4 g/kg) for a 43-d trial. There were 8 replicate pens (4 replicate pens per sex) and 6 pigs per replicate. The experiment was set up as a randomized complete block design with body weight used as a blocking factor. Pigs had ad libitum access to water and diets for the duration of the study. There was no effect of ETY supplementation on the growth performance indices of weanling pigs. At day 14, there was a quadratic decrease (P < 0.05) in the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF). At day 28, there was a linear increase (P < 0.05) in the ATTD of neutral detergent fiber and a quadratic decrease (P < 0.05) in the ATTD of ADF. On day 14, there was a linear increase (P < 0.05) in serum catalase activity with ETY supplementation. There was a linear increase (P < 0.01) in the gene expression of glutathione peroxidase-4 in the ileal mucosa of pigs. Increasing dietary ETY supplementation linearly decreased (P < 0.05) the gene expression of ileal peptide transporter 1. There was a tendency for a quadratic effect (P = 0.07) in the ileal villus height to crypt depth ratio with ETY supplementation. In addition, there was a tendency for a linear increase (P = 0.06) in ileal digesta butyrate with ETY supplementation. In conclusion, the current study demonstrated that dietary ETY supplementation could partly ameliorate the deleterious effects of post-weaning stress by enhancing the antioxidative status of weanling pigs. However, prolonged supplementation of ETY may be needed to see its effect on growth performance.
Collapse
Affiliation(s)
- Emmanuel O Alagbe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ayodeji S Aderibigbe
- Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Hagen Schulze
- Livalta, AB Agri Ltd, 64 Innovation Way, Lynchwood, Peterborough, PE2 6FL, UK
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
42
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
43
|
Hu P, Zong Q, Zhao Y, Gu H, Liu Y, Gu F, Liu HY, Ahmed AA, Bao W, Cai D. Lactoferrin Attenuates Intestinal Barrier Dysfunction and Inflammation by Modulating the MAPK Pathway and Gut Microbes in Mice. J Nutr 2022; 152:2451-2460. [PMID: 36774111 DOI: 10.1093/jn/nxac200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 08/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a major mycotoxin present in staple foods (particularly in cereal products) that induces intestinal inflammation and disrupts intestinal integrity. Lactoferrin (LF) is a multifunctional protein that contributes to maintaining intestinal homeostasis and improving host health. However, the protective effects of LF on DON-induced intestinal dysfunction remain unclear. OBJECTIVES This study aimed to investigate the effects of LF on DON-induced intestinal dysfunction in mice, and its underlying protective mechanism. METHODS Male BALB/c mice (5 wk old) with similar body weights were divided into 4 groups (n = 6/group) and treated as follows for 5 wk: Veh [peroral vehicle daily, commercial (C) diet]; LF (peroral 10 mg LF/d, C diet); DON (Veh, C diet containing 12 mg DON/kg); and LF + DON (peroral 10 mg LF/d, DON diet). Intestinal morphology, tight junction proteins, cytokines, and microbial community were determined. Data were analyzed by 2-factor ANOVA or Kruskal-Wallis test. RESULTS The DON group exhibited lower final body weight (-12%), jejunal villus height (VH; -41%), and jejunal occludin expression (-36%), and higher plasma IL-1β concentration (+85%) and jejunal Il1b mRNA expression (+98%) compared with the Veh group (P < 0.05). In contrast, final body weight (+19%), jejunal VH (+49%), jejunal occludin (+53%), and intelectin 1 protein expression (+159%) were greater in LF + DON compared with DON (P < 0.05). Additionally, jejunal Il1b mRNA expression (-31%) and phosphorylation of p38 and extracellular signal regulated kinase 1/2 (-40% and - 38%) were lower in LF + DON compared with DON (P < 0.05). Furthermore, the relative abundance of Clostridium XIVa (+181%) and colonic butyrate concentration (+53%) were greater in LF + DON compared with DON (P < 0.05). CONCLUSIONS Our study highlights a promising antimycotoxin approach using LF to alleviate DON-induced intestinal dysfunction by modulating the mitogen-activated protein kinase pathway and gut microbial community in mice.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - YaYa Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Abdelkareem A Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Ebele, Gaborone, Botswana; Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
44
|
Dietary autolysed yeast modulates blood profiles, small intestinal morphology and caecal microbiota of weaning pigs. Animal 2022; 16:100660. [DOI: 10.1016/j.animal.2022.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
|
45
|
Sivinski SE, Meier KE, Mamedova LK, Saylor BA, Shaffer JE, Sauls-Hiesterman JA, Yoon I, Bradford BJ. Effect of Saccharomyces cerevisiae fermentation product on oxidative status, inflammation, and immune response in transition dairy cattle. J Dairy Sci 2022; 105:8850-8865. [PMID: 36153156 DOI: 10.3168/jds.2022-21998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
Dairy cattle are subjected to oxidative stress, inflammation, and altered immune function during the transition to lactation. The objective of this study was to evaluate the effects of a dietary Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V) on oxidative status, inflammation, and innate and adaptive immune responses during the transition period. Holstein cows were blocked by parity, expected calving date, and previous milk yield and then randomly assigned to treatment within block. Treatment was a control total mixed ration (n = 30) or SCFP total mixed ration (n = 34) fed from -29 ± 5 to 42 d relative to calving (RTC). Blood was sampled during wk -4, -2, 1, 2, and 5 and liver tissue at wk -3 and 2 RTC. Oxidative status was evaluated in plasma by retinol, α-tocopherol, and malondialdehyde concentrations, glutathione peroxidase activity, and Trolox equivalent antioxidant capacity, and in liver by mRNA abundance of nuclear factor E2-related factor 2 (NFE2L2), metallothionein 1E (MT1E), and glutathione peroxidase 3 (GPX3). Inflammation was evaluated in plasma by haptoglobin (HP) and serum amyloid A (SAA) concentrations and in liver by mRNA abundance of HP, serum amyloid A3 (SAA3), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB1). Innate immune response was measured by stimulated oxidative burst of polymorphonuclear cells (neutrophils) isolated from blood. Ovalbumin (OVA) was administered with adjuvant on d 7 and 21 RTC, and adaptive immune response was evaluated by serum anti-OVA IgG content on d 28 and 35. Mixed models were used to assess effects of treatment, time, parity, and all interactions. We previously reported that SCFP had limited effects on productivity in this cohort, although milk fat yield was transiently increased and subclinical ketosis incidence was increased. Supplementation with SCFP did not affect overall oxidative, inflammatory, or immune parameters. The only treatment × week interaction detected was for plasma α-tocopherol concentration, which tended to be greater in control cows during wk 2 RTC. A tendency for a treatment × parity interaction was detected for serum anti-OVA IgG titer, which tended to be greater for SCFP than for controls among primiparous cows. Plasma inflammatory biomarkers were not affected by SCFP but, unexpectedly, plasma HP was elevated at both prepartum time points and plasma SAA was elevated during wk -2 RTC compared with the expected increases in both biomarkers postpartum. In this cohort of transition cows with low disease incidence, SCFP generally did not affect oxidative, inflammatory, or immune parameters.
Collapse
Affiliation(s)
- S E Sivinski
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - K E Meier
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B A Saylor
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J E Shaffer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J A Sauls-Hiesterman
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - I Yoon
- Diamond V, Cedar Rapids, IA 74570
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
46
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
47
|
Chen X, Li W, Chen T, Ren X, Zhu J, Hu F, Luo J, Xing L, Zhou H, Sun J, Jiang Q, Zhang Y, Xi Q. miR-146a-5p promotes epithelium regeneration against LPS-induced inflammatory injury via targeting TAB1/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 221:1031-1040. [PMID: 36096257 DOI: 10.1016/j.ijbiomac.2022.09.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Intestinal inflammation often restricts the health and production of animals. MiR-146a has been proved to be an anti-inflammatory molecule in inflammatory disorders, but its role in the intestinal injury and regeneration remains unclear. The study aimed to explore the inflammatory response of intestinal epithelial cells (IECs) in intestinal tissue-specific miR-146a-5p knockout mouse models. We identified the role of miR-146a-5p in inhibiting inflammatory response and promoting proliferation under lipopolysaccharide (LPS) stimulation in vitro and vivo. LPS stimulation significantly increased the expression of TNF-α, IL6 and inhibited IPEC-J2 cell proliferation. Overexpression of miR-146a-5p can reverse the effect of LPS stimulation, and promote the proliferation of intestinal epithelial cells. In the LPS challenge experiment in intestine-specific miR-146a knock-out mice (CKO) and Floxp+/+ mice (CON), CKO mice were more sensitive to LPS stimulation, with more weight loss and more severe intestinal morphological damage than CON mice. Also, miR-146a-5p regulated LPS-induced intestinal injury, inflammation by targeting TAB1. Taken together, miR-146a may function as an anti-inflammatory factor in IECs by targeting TAB1/TAK1-IKK-NF-κB signaling pathway. miR-146a-5p may represent a promising biomarker for inflammatory disorders, and may provide an effective therapeutic method to alleviate weaning stress in piglets and some experimental basis to improve the intestinal health of livestock.
Collapse
Affiliation(s)
- Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Weite Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fangxin Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Lipeng Xing
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
48
|
Kim B, Jeong JY, Park SH, Jung H, Kim M. Effects of dietary copper sources and levels on growth performance, copper digestibility, fecal and serum mineral characteristics in growing pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:885-896. [PMID: 36287789 PMCID: PMC9574621 DOI: 10.5187/jast.2022.e48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
This experiment was conducted to investigate the effects of three different
copper (Cu) sources (one inorganic and two organics) and levels (0, 50, and 100
mg/kg) on the growth performance, Cu digestibility, fecal mineral excretion,
serum mineral concentration, jejunal morphology, and serum biochemical profile
of growing pigs. A total of 42 male, growing pigs (31.08 ± 1.82 kg) were
randomly assigned to seven treatments consisting of one negative control (0
mg/kg of added Cu level) and treatments with copper sulfate (CuSO4), Cu-amino
acid complex (CuAA), and Cu-hydroxy-4-methylthio butanoate chelate complex
(CuHMB) at 50 and 100 mg/kg each for 28 d. Pigs fed 50 or 100 mg/kg of Cu showed
improved (p < 0.05) average daily gain and feed intake.
Although Cu excretion decreased (p < 0.01) in pigs fed
100 mg/kg of organic Cu sources compared to those fed CuSO4, there
was no difference between the Cu sources in pigs fed 50 mg/kg. However, the
apparent total tract digestibility of Cu increased (p <
0.01) in pigs fed organic Cu sources compared with that in pigs fed
CuSO4. The addition of CuHMB increased (p
< 0.01) serum phosphorus and sulfur concentrations; however, there were
no effects of source and level on jejunal morphology and serum biochemical
profile. These results suggest that the inclusion (50 mg/kg) of organic Cu
sources (CuAA and CuHMB) in the growing pig diet could be beneficial for growth
performance and Cu availability and may reduce environmental pollution.
Collapse
Affiliation(s)
- Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
49
|
Effect of Weaning at 21 Days of Age on the Content of Bile Acids in Chyme of Cecum. Animals (Basel) 2022; 12:ani12162138. [PMID: 36009728 PMCID: PMC9405307 DOI: 10.3390/ani12162138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
This experiment was conducted to investigate the effects of weaning at 21 days of age on cecal chyme bile acids (BAs) in piglets. According to a 2 × 3 factorial design, the main factors were lactation and weaning, and the other factor was 22, 24, and 28 days of age, respectively. Piglets were randomly divided into two groups of eighteen piglets each and six piglets were selected for slaughter at 22, 24, and 28 days of age, respectively, to determine the content of different types of Bas in the intestinal lumen of the cecum. Results: (1) There was a significant interaction between weaning and age on intestinal primary Bas hyocholic acid (HCA) and chenodeoxycholic acid (CDCA) (p < 0.05), and weaning significantly increased the content of primary BAs in piglets’ intestines, which showed a trend of decreasing and then increasing with the increase in piglets’ age. (2) There was a significant interaction between weaning and age on intestinal secondary BAs deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) (p < 0.05). DCA and LCA in piglets’ intestines tended to decrease with increasing age, while UDCA showed a trend of decreasing and then increasing with increasing piglets’ age; weaning significantly increased the content of secondary BAs in piglets’ intestines. (3) There was a significant interaction between weaning and age on intestinal glycine chenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid (TCDCA), and taurolithocholic acid (TLCA), but not on taurohyocholic acid (THCA), taurohyodeoxycholic acid (THDCA), and taurineursodeoxycholic acid (TUDCA) (p > 0.05). Weaning significantly increased the contents of GCDCA, TCDCA, TLCA, THDCA, and TUDCA in the intestinal tract (p < 0.05), while THCA content was not significant. In conclusion, weaning can increase the BAs content in the cecum of piglets, and there is an interaction between group and weaning age on BAs content.
Collapse
|
50
|
He T, Ma J, Mahfuz S, Zheng Y, Long S, Wang J, Wu D, Piao X. Dietary live yeast supplementation alleviates transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4086-4096. [PMID: 34997593 PMCID: PMC9302652 DOI: 10.1002/jsfa.11758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/22/2021] [Accepted: 01/08/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This experiment was to investigate the effect of dietary live yeast (LY, 1 × 1010 CFU g-1 ) supplementation on serum metabolic parameters, meat quality as well as antioxidant enzyme activity of transported broilers. A total of 192 one-day-old broilers were randomly assigned to four treatments with six replicates and eight chicks per replicate: a basal diet without transportation (CON), a basal diet containing 0 (T), 500 (T + LY500 ) and 1000 mg kg-1 (T + LY1000 ) LY with 3 h of transportation after feeding for 42 days, respectively. The serum and muscle samples of broilers were collected immediately after 3 h of transportation. RESULTS A higher (P < 0.05) final body weight and average daily weight gain were observed in T + LY1000 group compared with CON and T groups. The T + LY1000 group reduced (P < 0.05) the serum lactate contents and improved (P < 0.05) the pH24h and decreased (P < 0.05) the drip loss in muscles of transported-broilers. Also, the T + LY1000 group enhanced (P < 0.05) the total-antioxidant capacity and reduced (P < 0.05) the malondialdehyde in serum and muscles. Besides, the messenger RNA (mRNA) expression of avian uncoupling protein (avUCP) in muscles was down-regulated (P < 0.05) of T + LY1000 group compared with T group. CONCLUSION Dietary LY supplementation alleviates transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Therefore, LY may serve as a potential protector for broilers under transport stress in the future. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tengfei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Department of Animal NutritionSylhet Agricultural UniversitySylhetBangladesh
| | - Yuhui Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Di Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|