1
|
Sanz-Fernandez MV, Doelman JH, Daniel JB, Ilg T, Mertens C, Martín-Tereso J. Characterization of a model of hindgut acidosis in mid-lactation cows: A pilot study. J Dairy Sci 2024; 107:829-839. [PMID: 37709027 DOI: 10.3168/jds.2023-23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The objective of this pilot study was to generate data to support the development of an experimental model of hindgut acidosis to further understand its systemic consequences independently of rumen acidosis. Four ruminally fistulated multiparous Holstein cows (213 ± 11 d in milk) were subjected to 2 consecutive experimental periods (P1 and P2), separated by a 3-d washout. Experimental periods were 96 h long from the baseline to the final measurements but expanded over 5 calendar days (d 0-4). Abomasal infusions of saline and corn starch (2.8 kg/d) were performed for the first 72 h (d 0-3) of P1 and P2, respectively. Final measurements were performed 24 h after the end of the infusions (d 4). Each cow was used as its own control by comparing P2 to P1. Postruminal-intestinal permeability was assessed by Cr appearance in blood after a pulse dose administration of Cr-EDTA into the abomasum on d 2 (48 h after infusion initiation) of each period. Starch infusion during P2 was associated with a milk protein yield increase (3.3%) and a decrease in milk urea nitrogen (11%). Fecal dry matter increased (8.8%), and starch content tended to increase (∼2 fold) during P2. There was a period-by-day interaction for fecal pH as it decreased during starch infusion (1.3 pH points) but remained constant during P1. Although fecal lactate was not detectable during P1, it consistently increased during starch infusion. Fecal alkaline phosphatase activity also increased (∼17 fold) in association with starch infusion. Two hours after Cr-EDTA administration, blood Cr concentration was higher during starch infusion, resulting in a tendency for a treatment-by-hour interaction. Furthermore, blood d-lactate increased (∼2.5 fold), serum Cu decreased (18%), and blood urea nitrogen, cholesterol, and Ca tended to decrease (9.4%, 1.2%, and 2.4%, respectively), relative to P1. The current results suggest that hindgut acidosis was successfully induced by postruminal starch infusion, leading to gut damage and increased intestinal permeability. However, indications of systemic inflammation were not observed. The herein described preliminary results will require confirmation in a properly powered study.
Collapse
Affiliation(s)
| | - John H Doelman
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands
| | | | - Thomas Ilg
- Elanco Animal Health GmbH, 40789, Monheim, Germany
| | | | | |
Collapse
|
2
|
Benedetti L, Cattaneo L, Vercesi A, Trevisi E, Piccioli-Cappelli F. Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows. Animals (Basel) 2024; 14:472. [PMID: 38338114 PMCID: PMC10854559 DOI: 10.3390/ani14030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Dairy cows face several challenges during the transition period, and the administration of live yeast might be useful to mitigate this stressful condition. In the current study, the effects of live yeast administration on milk production, feed intake, and metabolic and inflammatory conditions were evaluated. Multiparous Holstein cows were enrolled in this randomized controlled trial and received either a control diet (CTR, n = 14) or the control diet plus 4 g/d of live Saccharomyces cerevisiae yeast (LSC, n = 14) from -21 to 56 days relative to calving. Dry matter intake, milk yield and composition, and rumination time were monitored daily. Blood samples were collected at -21, -7, 3, 14, 28, 42, and 56 days relative to calving to evaluate the metabolic profile. Fecal samples were collected at 56 days relative to calving to measure volatile fatty acids and feed digestibility. No differences between groups were observed in dry matter intake. Compared with CTR, rumination time was lower in LSC in after calving. Although there were no differences in milk components between groups, LSC had greater milk yield in the last three weeks of the study than CTR. No differences were observed in inflammatory markers or other plasma metabolites, except for β-hydroxybutyrate, which was higher in LSC, and reactive oxygen metabolites (ROMs), which were lower in LSC. Overall, these outcomes suggest that live yeast supplementation had some positive effects on milk yield and oxidative status.
Collapse
Affiliation(s)
| | | | | | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.B.); (L.C.); (F.P.-C.)
| | | |
Collapse
|
3
|
Catellani A, Mezzetti M, Minuti A, Cattaneo L, Trevisi E. Metabolic and inflammatory responses reveal different adaptation to the transition period challenges in Holstein, Brown Swiss, and Simmental dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2196995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- A. Catellani
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - M. Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - L. Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - E. Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
4
|
Spina AA, Lopreiato V, Britti D, Minuti A, Trevisi E, Tilocca B, Perri A, Morittu VM. The Effect of Feeding a Total Mixed Ration with an ad libitum or Restricted Pelleted Starter on Growth Performance, Rumination Behavior, Blood Metabolites, and Rumen Fermentation in Weaning Holstein Dairy Calves. Animals (Basel) 2023; 14:81. [PMID: 38200812 PMCID: PMC10778400 DOI: 10.3390/ani14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of the current study was to evaluate the effect of the starter restriction and of the ad libitum TMR (total mixed ration) inclusion on intake, growth performance, rumination time (RT), and health condition of Holstein dairy calves during weaning. We randomly assigned thirty female Holstein calves (with an average weight of 38.5 ± 1.96 kg at birth) to one of three treatments. From 21 days of age, the calves were fed one of three treatments as follows: a control diet (CTR) with an ad libitum calf starter but without TMR; Treatment 1 diet (TRT1) with both an ad libitum calf starter and ad libitum TMR; Treatment 2 diet (TRT2) with ad libitum TMR and a restricted amount of a calf starter (50% of the intake recorder in the control group day by day). Calves in the TRT2 group, between 56 and 63 days of age, had a lower body weight (80.1; 79.5; 75.6 kg for the CTR, TRT1, and TRT2 groups, respectively) compared with CTR and TRT1 calves. This outcome is ascribed to the average daily gain (0.759; 0.913; 0.508 kg/day for the CTR, TRT1, and TRT2 groups, respectively), resulting also in TRT2 being lower than CTR or TRT1 calves. The inclusion of ad libitum TMR increased the rumination time, especially after weaning (15.28 min/h, 18.38 min/h, and 18.95 min/h for the CTR, TRT1, and TRT2 groups, respectively). Concerning the rumen metabolism and inflammometabolic response, overall, no differences were observed between the three dietary treatments. In conclusion, the results indicated that a TMR could partially replace a calf starter in weaning dairy calves, since neither growth performance nor health status were impaired. In addition, providing TMR (with or without concentrate restriction) led to a better rumen development and likely a better rumen fermentation efficiency in post-weaning.
Collapse
Affiliation(s)
- Anna Antonella Spina
- Interdepartmental Services Centre of Veterinary for Human and Animal Health (CISVetSUA), University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (D.B.); (B.T.); (V.M.M.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy;
| | - Domenico Britti
- Interdepartmental Services Centre of Veterinary for Human and Animal Health (CISVetSUA), University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (D.B.); (B.T.); (V.M.M.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (A.M.); (E.T.)
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (A.M.); (E.T.)
| | - Bruno Tilocca
- Interdepartmental Services Centre of Veterinary for Human and Animal Health (CISVetSUA), University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (D.B.); (B.T.); (V.M.M.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessia Perri
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Valeria Maria Morittu
- Interdepartmental Services Centre of Veterinary for Human and Animal Health (CISVetSUA), University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (D.B.); (B.T.); (V.M.M.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
5
|
Collins A, Bowring B. Pre-Treatment with Bromelain Prevents Intestinal Dysbiosis in Pigs with Post-Weaning Diarrhea, without Increasing Antimicrobial Resistance in Escherichia coli. Animals (Basel) 2023; 13:3229. [PMID: 37893953 PMCID: PMC10603644 DOI: 10.3390/ani13203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Pigs are especially vulnerable to intestinal pathogens and dysbiosis in the first two weeks after weaning. Infection with enterotoxigenic strains of Escherichia coli (ETEC) in combination with poor nutrition and hygiene can lead to diarrhea, poor growth and increased mortality. While neomycin and zinc oxide can prevent post-weaning diarrhea (PWD), their broad-spectrum activity also kills commensal microbiota and can lead to the emergence of heavy metal and antimicrobial resistance. Bromelain prevents attachment of F4 ETEC to intestinal enterocytes by cleaving the host receptor. In controlled environmental facilities, weaned pigs treated with either therapeutic levels of neomycin sulfate, zinc oxide, bromelain or non-treated were monitored for diarrhea, weight gain, feed intake, feed efficiency, excretion of F4 ETEC, changes to their intestinal microbiomes and antimicrobial resistance in E. coli. The treatment effects were evaluated at weaning, during two weeks of treatment and for three weeks after treatments ceased. Minimal clinical signs of PWD were observed, except in zinc-treated pigs post treatment. Intestinal dysbiosis was observed in response to diarrhea and in pigs treated with both neomycin and zinc. Antimicrobial resistance increased in commensal E. coli isolated from neomycin- and zinc-treated pigs. In contrast, bromelain controlled PWD and prevented intestinal dysbiosis without inducing antimicrobial resistance.
Collapse
Affiliation(s)
- Alison Collins
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, the Westmead Institute for Medical Research, Sydney, NSW 2145, Australia;
| |
Collapse
|
6
|
Zheng L, Shen J, Han X, Jin C, Chen X, Yao J. High rumen degradable starch diet induced blood bile acids profile changes and hepatic inflammatory response in dairy goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:121-129. [PMID: 37808950 PMCID: PMC10556040 DOI: 10.1016/j.aninu.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 10/10/2023]
Abstract
The objective of this study was to reveal the effect of rumen degradable starch (RDS) on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics. Eighteen Guanzhong dairy goats of a similar weight and production level (body weight = 45.8 ± 1.54 kg, milk yield = 1.75 ± 0.08 kg, and second parity) were randomly assigned to 3 treatment groups where they were fed a low RDS (LRDS, RDS = 20.52% DM) diet, medium RDS (MRDS, RDS = 22.15% DM) diet, or high RDS (HRDS, RDS = 24.88% DM) diet, respectively. The goats were fed with the experimental diets for 5 weeks. On the last day of the experiment, all goats were anesthetized, and peripheral blood and liver tissue samples were collected. The peripheral blood samples were used in metabolomic analysis and white blood cell (WBC) count, whereas the liver tissue samples were used in transcriptomic analysis. Based on the metabolomics results, the relative abundances of primary bile acids in the peripheral blood were significantly reduced in the group that was fed the HRDS diet (P < 0.05). The WBC count was significantly increased in the HRDS group compared with that in the LRDS and MRDS groups (P < 0.01), indicating that there was inflammation in the HRDS group. Transcriptomic analysis showed that 4 genes related to bile acid secretion (genes: MDR1, RXRα, AE2, SULT2A1) were significantly downregulated in the HRDS group. In addition, genes related to the immune response were upregulated in the HRDS group, suggesting the HRDS diet induced a hepatic inflammatory response mediated by lipopolysaccharides (LPS) (gene: LBP), activated the Toll-like receptor 4 binding (genes: S100A8, S100A9) and the NF-kappa B signaling pathway (genes: LOC106503980, LOC108638497, CD40, LOC102180880, LOC102170970, LOC102175177, LBP, LOC102168903, LOC102185461, LY96 and CXCL8), triggered inflammation and complement responses (genes: C1QB, C1QC, and CFD). The HRDS diet induced a hepatic inflammatory response may be mediated by activating the Toll-like receptor 4 binding and NF-kappa B signaling pathway after free LPS entered the liver. The changes of bile acids profile in blood and the down-regulation of 4 key genes (MDR1, RXRα, AE2, SULT2A1) involved in bile secretion in liver are probably related to liver inflammation.
Collapse
Affiliation(s)
- Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Newhope Dairy Co., Ltd, Chengdu, China
| | - Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J Dairy Sci 2023; 106:4353-4365. [PMID: 37080789 DOI: 10.3168/jds.2022-23046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
Dairy cows have to face several nutritional challenges during the transition period, and live yeast supplementation appears to be beneficial in modulating rumen activity. In this study, we evaluated the effects of live yeast supplementation on rumen function, milk production, and metabolic and inflammatory conditions. Ten Holstein multiparous cows received either live Saccharomyces cerevisiae (strain Sc47; SCY) supplementation from -21 to 21 d from calving (DFC) or a control diet without yeast supplementation. Feed intake, milk yield, and rumination time were monitored until 35 DFC, and rumen fluid, feces, milk, and blood samples were collected at different time points. Compared with the control diet, SCY had increased dry matter intake (16.7 vs. 19.1 ± 0.8 kg/d in wk 2 and 3) and rumination time postpartum (449 vs. 504 ± 19.9 min/d in wk 5). Milk yield tended to be greater in SCY (40.1 vs. 45.2 ± 1.7 kg/d in wk 5), protein content tended to be higher, and somatic cell count was lower. In rumen fluid, acetate molar proportion was higher and that of propionate lower at 21 DFC, resulting in increased acetate:propionate and (acetate + butyrate):propionate ratios. Cows in the SCY group had lower fecal dry matter but higher acetate and lower propionate proportions on total volatile fatty acids at 3 DFC. Plasma analysis revealed a lower degree of inflammation after calving in SCY (i.e., lower haptoglobin concentration at 1 and 3 DFC) and a likely better liver function, as suggested by the lower γ-glutamyl transferase, even though paraoxonase was lower at 28 DFC. Plasma IL-1β concentration tended to be higher in SCY, as well as Mg and P. Overall, SCY supplementation improved rumen and hindgut fermentation profiles, also resulting in higher dry matter intake and rumination time postpartum. Moreover, the postcalving inflammatory response was milder and liver function appeared to be better. Altogether, these effects also led to greater milk yield and reduced the risk of metabolic diseases.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
8
|
Mezzetti M, Trevisi E. Methods of Evaluating the Potential Success or Failure of Transition Dairy Cows. Vet Clin North Am Food Anim Pract 2023; 39:219-239. [PMID: 37032299 DOI: 10.1016/j.cvfa.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Early monitoring of the failure of metabolic adaptation to calving, represents the most effective measure for allowing a prompt intervention on transition dairy cows. This prevents deleterious effects on animal performance, health, and welfare, which are driven by multiple disorders during the following lactation. Applying metabolic profiling could (1) provide a deeper view on the cause of any pathologic condition affecting transition cows, aimed at increasing the effectiveness and timely application of any treatment and (2) provide detailed feedback on the management practices adopted in a farm during this challenging phase based on animal responses.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| |
Collapse
|
9
|
Abeyta MA, Goetz BM, Mayorga EJ, Rodriguez-Jimenez S, Opgenorth J, Freestone AD, Lourenco JM, Callaway TR, Baumgard LH. Effects of abomasally infused rumen fluid from corn-challenged donor cows on production, metabolism, and inflammatory biomarkers in healthy recipient cows. J Dairy Sci 2023; 106:4336-4352. [PMID: 37028958 DOI: 10.3168/jds.2022-22809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 04/08/2023]
Abstract
Subacute rumen acidosis may cause postruminal intestinal barrier dysfunction, but this does not appear to be due to increased hindgut fermentation. Alternatively, intestinal hyperpermeability may be explained by the plethora of potentially harmful substances (e.g., ethanol, endotoxin, and amines) produced in the rumen during subacute rumen acidosis, which are difficult to isolate in traditional in vivo experiments. Therefore, objectives were to evaluate whether abomasal infusion of acidotic rumen fluid collected from donor (Donor) cows elicits systemic inflammation or alters metabolism or production in healthy recipients. Ten rumen-cannulated lactating dairy cows [249 ± 63 d in milk; 753 ± 32 kg of body weight (BW)] were randomly assigned to 1 of 2 abomasal infusion treatments: (1) healthy rumen fluid (HF; 5 L/h; n = 5) or (2) acidotic rumen fluid (AF; 5 L/h; n = 5) infused. Eight rumen-cannulated cows [4 dry, 4 lactating (lactating = 391 ± 220 d in milk); 760 ± 70 kg of BW] were used as Donor cows. All 18 cows were acclimated to a high-fiber diet (46% neutral detergent fiber; 14% starch) during an 11-d prefeeding period during which rumen fluid was collected for the eventual infusion into HF cows. During period (P) 1 (5 d), baseline data were obtained and on d 5 Donor were corn-challenged (2.75% BW ground corn after 16 h of 75% feed restriction). Cows were fasted until 36 h relative to rumen acidosis induction (RAI), and data were collected through 96 h RAI. At 12 h RAI, an additional 0.50% BW of ground corn was added, and acidotic fluid collections began (7 L/Donor every 2 h; 6 M HCl was added to collected fluid until pH was between 5.0 and 5.2). On d 1 of P2 (4 d), HF/AF cows were abomasally infused with their respective treatments for 16 h, and data were collected for 96 h relative to the first infusion. Data were analyzed in SAS (SAS Institute Inc.) using PROC MIXED. Following the corn challenge in the Donor cows, rumen pH only mildly decreased at nadir (pH = 5.64 at 8 h RAI) and remained above the desired threshold for both acute (5.2) and subacute (5.6) acidosis. In contrast, fecal and blood pH markedly decreased to acidotic levels (nadir = 4.65 and 7.28 at 36 and 30 h RAI, respectively), and fecal pH remained below 5 from 22 to 36 h RAI. In Donor cows, dry matter intake remained decreased through d 4 (36% relative to baseline) and serum amyloid A and lipopolysaccharide-binding protein markedly increased by 48 h RAI in Donor cows (30- and 3-fold, respectively). In cows that received the abomasal infusions, fecal pH decreased in AF from 6 to 12 h relative to the first infusion (7.07 vs. 6.33) compared with HF; however, milk yield, dry matter intake, energy-corrected milk, rectal temperature, serum amyloid A, and lipopolysaccharide-binding protein were unaffected. Overall, the corn challenge did not cause subacute rumen acidosis but markedly decreased fecal and blood pH and stimulated a delayed inflammatory response in the Donor cows. Abomasal infusion of rumen fluid from corn-challenged Donor cows decreased fecal pH but did not cause inflammation, nor did it create an immune-activated phenotype in recipient cows.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames 50011
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
10
|
Zhao H, Lv F, Liu G, Pang X, Han X, Wang X. Effects of starters with different NDF/starch ratio on rumen fermentation parameters and rumen microorganisms in lambs. Front Vet Sci 2023; 10:1064774. [PMID: 36777666 PMCID: PMC9911143 DOI: 10.3389/fvets.2023.1064774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Starch and NDF are the main components in the diets of ruminants worldwide and are the main energy source for rumen microorganisms and hosts. The purpose of this study was to investigate the effects of different NDF/starch ratios on rumen fermentation parameters, rumen development and rumen microbes in lambs and to predict the function of rumen microbes by metagenomic techniques. In this study, 30 lambs with birth weights of (3.0 ± 0.5) kg were selected. The lambs of Hu sheep were randomly divided into two groups, fed starter with an NDF/starch ratio of 0.5 (group A) or 1.0 (group C). Samples of the rumen tissue and contents were collected after slaughter. The results showed that the ADG and ADFI of group A were significantly higher than those of group C (P < 0.05), but there was no significant difference in the FCR (P > 0.05). Therefore, from the perspective of feed-related economic benefits, group C showed greater economic value; the A/P of group C was significantly lower than that of group A (0.05 < P < 0.1), and the TVFA showed no significant difference (P > 0.05); The lengths of the rumen papillae of group C was significantly higher than that of group A (0.05 < P < 0.1). There was no significant difference in the abundance of the top 10 species at the phylum level and genus level (P > 0.05). CAZymes gene enrichment was observed in the rumen microbial community of lambs in group C (P < 0.05). In conclusion, group C, fed with starter with a higher NDF/starch ratio, had a higher feeding value. This study provides comprehensive insights into the composition of NDF and starch in lamb starter.
Collapse
|
11
|
Subacute Ruminal Acidosis as a Potential Factor that Induces Endometrium Injury in Sheep. Int J Mol Sci 2023; 24:ijms24021192. [PMID: 36674716 PMCID: PMC9861559 DOI: 10.3390/ijms24021192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a systemic inflammatory response. Inflammatory diseases, such as endometritis and mastitis, are often associated with SARA; however, in sheep, the mechanism of the effect of SARA on the endometrium has rarely been reported. Therefore, the aim of this study was to investigate, for the first time, the influence of LPS translocation on endometrial tight junctions (TJs) during SARA in sheep. The results showed that LPS and TNFα levels in the ruminal fluid, serum, and endometrial tissue supernatant during SARA increased, transcription levels of TLR4, NFκB, and TNFα in the endometrium increased, the protein expression level of claudin-1 in the endometrium increased, and the protein expression level of occludin decreased. 17β-estradiol (E2) inhibits claudin-1 protein expression and promotes occludin expression, and progesterone (P4) promotes claudin-1 protein expression and inhibits occludin protein expression. E2 and P4 regulate claudin-1 and occludin protein expression through their receptor pathways. Here, we found that LPS hindered the regulatory effect of E2 and P4 on endometrial TJs by inhibiting their receptor expression. The results of this study indicate that HC feeding can cause SARA-induced LPS translocation in sheep, increase susceptibility to systemic inflammation, induce the endometrial inflammatory response, and cause endometrial epithelial TJ damage directly and/or by obstructing E2 and P4 function. LPS translocation caused by SARA has also been suggested to induce an endometrial inflammatory response, resulting in endometrial epithelial barrier damage and physiological dysfunction, which seriously affects ruminant production. Therefore, this study provides new evidence that SARA is a potential factor that induces systemic inflammation in ruminants. It provides theoretical support for research on the prevention of endometritis in ruminants.
Collapse
|
12
|
Dagnaw Fenta M, Gebremariam AA, Mebratu AS. Effectiveness of Probiotic and Combinations of Probiotic with Prebiotics and Probiotic with Rumenotorics in Experimentally Induced Ruminal Acidosis Sheep. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2023; 14:63-78. [PMID: 37096143 PMCID: PMC10122474 DOI: 10.2147/vmrr.s396979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
Background Acidosis is one of the most common rumen diseases characterized by changes in the rumen environment and the circulatory system. Recent alternative trends in rearing small ruminants have led to the use of probiotics, rumenotorics and prebiotics to treat acidosis in animals. Purpose This study aimed to evaluate the efficacy of probiotics and the combination of probiotics with prebiotics and probiotics with rumenotorics for the treatment of acidosis in sheep. Methods This experimental study was conducted from September 2018 to May 2019. For the therapeutic study, 25 sheep were randomly divided into 5 equal groups. Acidosis was induced by an oral dose of 50 g/kg with wheat flour after a 24 hour fast. Four regimens of therapy were employed: PT probiotics, PPT probiotics with prebiotics; PRT probiotics with rumenotorics and standard ST treatment were adopted. Before and after therapy, laboratory analyses on rumen fluid, serum analysis, physical signs, and hematological changes were conducted. Results When probiotics were combined with rumenotorics (PRT), the mean standard deviation of rumen pH at day zero was 4.96±0.837 (PRT). Rumen pH improved from day one today three to 5.92±0.54, 6.30±041 and 6.75±0.34, respectively. The change in rumen pH was statistically significant after treatment on day 3 (p=0.002). The therapeutic regimens of PRT had improved heart rate and respiratory rate after treatment and the change was statistically significant (p=0.006 and p=0.000) compared to the control group. The PCV of the PRT treated sheep was also improved. Conclusion Probiotics with rumenotorics were the most successful therapeutic regimen for the treatment of ruminal acidosis in sheep. Therefore, the use of probiotics with rumenotorics is the promising alternative for the treatment of acidosis.
Collapse
Affiliation(s)
- Melkie Dagnaw Fenta
- Department of Clinical Veterinary Medicine, University of Gondar College of Veterinary Medicine, Gondar, Ethiopia
- Correspondence: Melkie Dagnaw Fenta, Department of Clinical Veterinary Medicine, University of Gondar, College of Veterinary Medicine, Gondar, PO Box 196, Ethiopia, Tel +251904573289, Email
| | - Ashenafi Assefa Gebremariam
- Department of Clinical Veterinary Medicine, University of Gondar College of Veterinary Medicine, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Pharmaceutics and Social Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Doll SK, Haimerl P, Bartel A, Arlt SP. Determination of reference intervals for nonesterified fatty acids in the blood serum of healthy dogs. Vet Rec Open 2022; 9:e40. [PMID: 35903267 PMCID: PMC9313937 DOI: 10.1002/vro2.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 01/23/2023] Open
Abstract
Background Nonesterified fatty acids (NEFAs) are an important energy substrate in mammals. Measurement of the NEFA concentration in blood serum is common practice and enables reliable detection of a negative energy balance in several species. This parameter can be used to detect subclinical metabolic diseases or to optimise feeding to prevent severe negative energy balance. Since no reference values for dogs have been published, the aim of this study was to establish such values. Methods Blood serum from 85 healthy dogs was examined with a multiparameter clinical chemistry analyser. Given that NEFA values are not usually normally distributed, reference intervals (RIs) were calculated nonparametrically using bootstrapping (5000 replicates) for the 90% confidence intervals. Results The examined cohort had a median age of 62.16 months (2-180 months) and a median weight of 19.2 kg (3.0-55.0 kg) and comprised 27 (31.8%) males and 58 (68.2%) females, with 32 (37.6%) neutered or spayed. The fasting time was 5.9 h (range 0-23 h). The tested confounders age, sex, neuter status, bodyweight and body condition score did not significantly affect the NEFA concentrations. Conclusions The NEFA RI for dogs in this study was 0.2-1.47 mmol/L. The results may be used to adjust food composition and amount in healthy dogs or to detect metabolic disorders. Further research on NEFA metabolism in dogs maintained in standardised conditions and in specific nutritional situations or with particular diseases is warranted.
Collapse
Affiliation(s)
- Sophie‐Charlotte K. Doll
- Clinic for Animal ReproductionFaculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| | - Peggy Haimerl
- Clinic for Animal ReproductionFaculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and BiostatisticsFaculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| | - Sebastian P. Arlt
- Clinic for Animal ReproductionFaculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| |
Collapse
|
14
|
Cattaneo L, Piccioli-Cappelli F, Minuti A, Trevisi E. Drying-off dairy cows without antibiotic therapy and orally supplemented with lyophilized Aloe arborescens: effects on rumen activity, immunometabolic profile, and milk yield. J Anim Physiol Anim Nutr (Berl) 2022; 107:794-807. [PMID: 36239181 DOI: 10.1111/jpn.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022]
Abstract
The drying-off is a stressful stage of the lactation cycle of dairy cows that deeply affects cows' metabolism, inflammatory status, and immune system. The promising effects observed during the transition period resulting from supplementation with Aloe arborescens Mill. suggest its potential utility during this phase. A group of 23 Holstein dairy cows with somatic cell count (SCC) less than 200 × 103 cells/ml and without intramammary infections were enroled in the study. Cows were divided into two groups: one orally receiving 10 g/day of A. arborescens Mill. lyophilized powder (AL; 11 cows) between -7 and 7 days from dry-off (DFD), and a control group (CTR; 12 cows). From -14 to 7 DFD and 7 and 28 days from calving, the body condition score and rectal temperature were determined, and rumen fluid, feces, milk, and blood samples were collected. Daily rumination times and milk yield were recorded. Data were analyzed through repeated measures mixed models. Compared to the CTR group, AL cows tended to show reduced production of volatile fatty acids in the rumen with acetate proportion that tended to be higher and valerate proportion that was lower. Moreover, Aloe supplementation caused a reduction in fecal dry matter. At the end of drying-off, AL cows presented better liver function, as suggested by higher paraoxonase plasma concentrations at 7 DFD, higher glucose, and lower urea, but showed increased reactive oxygen metabolites. Aloe supplementation at dry-off ameliorated inflammatory status after calving (lower haptoglobin and ceruloplasmin levels), and improved milk yield in the first weeks of subsequent lactation, without influencing milk composition, SCC, and incidence of intramammary infections. These results confirmed the positive effects of Aloe administration on liver function in dairy cows but indicate the need for further studies investigating the effects of Aloe on rumen fermentation profile and oxidative status.
Collapse
Affiliation(s)
- Luca Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Romeo and Enrica Invernizzi Research Centre for Sustainable Dairy Production (CREI), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
15
|
Cavallini D, Mammi LME, Palmonari A, García-González R, Chapman JD, McLean DJ, Formigoni A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals (Basel) 2022; 12:2129. [PMID: 36009720 PMCID: PMC9404850 DOI: 10.3390/ani12162129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy cows are often exposed to multiple stressors in a lactation-cycle, with sub-acute ruminal acidosis (SARA) a frequent example of nutritional stress. SARA affects ruminal and intestinal equilibrium resulting in dysbiosis with localized and systemic inflammation impacting animal health and productivity. OmniGen-AF (OMN, Phibro Animal Health Corporation, Teaneck, NJ, USA) is a feed product recognized for modulating innate immune function, especially during periods of stress. The objective of this study was to determine the effects of OMN in lactating dairy cows fed a high-starch, low-fiber diet. Twenty-four blocked cows were assigned to control or treatment (55 g/d). After the additive adaptation (49 d) cows were fed the challenge diet (28 d). Milk, rumination and pH were continuously recorded; components, rumen fluid, and blood were taken in multiple time-point and analyzed. Results showed that the challenge decreased the rumination, shifted ruminal fluid composition, decreased milk production and the components, and slightly increased the time below pH 5.5, with no differences between groups. The treatment produced greater rumen butyrate and lower lactate, prompter regeneration of red blood cells, increase of neutrophils, lower paraoxonase, gamma-glutamyl-transferase, and β-hydroxybutyrate, with no differences on other tested inflammatory markers. Results show that OMN helps modulating some of the metabolic and immunological responses to SARA.
Collapse
Affiliation(s)
- Damiano Cavallini
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| | - Ludovica M. E. Mammi
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| | - Alberto Palmonari
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| | | | | | | | - Andrea Formigoni
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| |
Collapse
|
16
|
Plaizier JC, Mulligan FJ, Neville EW, Guan LL, Steele MA, Penner GB. Invited review: Effect of subacute ruminal acidosis on gut health of dairy cows. J Dairy Sci 2022; 105:7141-7160. [PMID: 35879171 DOI: 10.3168/jds.2022-21960] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
Abstract
Subacute ruminal acidosis (SARA) is assumed to be a common disease in high-yielding dairy cows. Despite this, the epidemiological evidence is limited by the lack of survey data. The prevalence of SARA has mainly been determined by measuring the pH of ruminal fluid collected using rumenocentesis. This may not be sufficiently accurate, because the symptoms of SARA are not solely due to ruminal pH depression, and ruminal pH varies among sites in the rumen, throughout a 24-h period, and among days. The impact of SARA has mainly been studied by conducting SARA challenges in cows, sheep, and goats based on a combination of feed restriction and high-grain feeding. The methodologies of these challenges vary considerably among studies. Variations include differences in the duration and amount of grain feeding, type of grain, amount and duration of feed restriction, number of experimental cows, and sensitivity of cows to SARA challenges. Grain-based SARA challenges affect gut health. These effects include depressing the pH in, and increasing the toxin content of, digesta. They also include altering the taxonomic composition of microbiota, reducing the functionality of the epithelia throughout the gastrointestinal tract (GIT), and a moderate inflammatory response. The effects on the epithelia include a reduction in its barrier function. Effects on microbiota include reductions in their richness and diversity, which may reduce their functionality and reflect dysbiosis. Changes in the taxonomic composition of gut microbiota throughout the GIT are evident at the phylum level, but less evident and more variable at the genus level. Effects at the phylum level include an increase in the Firmicutes to Bacteroidetes ratio. More studies on the effects of a SARA challenge on the functionality of gut microbiota are needed. The inflammatory response resulting from grain-based SARA challenges is innate and moderate and mainly consists of an acute phase response. This response is likely a combination of systemic inflammation and inflammation of the epithelia of the GIT. The systemic inflammation is assumed to be caused by translocation of immunogenic compounds, including bacterial endotoxins and bioamines, through the epithelia into the interior circulation. This translocation is increased by the increase in concentrations of toxins in digesta and a reduction of the barrier function of epithelia. Severe SARA can cause rumenitis, but moderate SARA may activate an immune response in the epithelia of the GIT. Cows grazing highly fermentable pastures with high sugar contents can also have a low ruminal pH indicative of SARA. This is not accompanied by an inflammatory response but may affect milk production and gut microbiota. Grain-based SARA affects several aspects of gut health, but SARA resulting from grazing high-digestible pastures and insufficient coarse fiber less so. We need to determine which method for inducing SARA is the most representative of on-farm conditions.
Collapse
Affiliation(s)
- J C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.
| | - F J Mulligan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8
| | - E W Neville
- Celtic Sea Minerals Ltd., Strandfarm, Carrigaline, Co. Cork, Ireland P43 NN62
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2R2
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B5
| |
Collapse
|
17
|
Cangiano L, Villot C, Renaud J, Ipharraguerre I, McNeil B, DeVries T, Steele M. Induction of leaky gut by repeated intramuscular injections of indomethacin to preweaning Holstein calves. J Dairy Sci 2022; 105:7125-7139. [DOI: 10.3168/jds.2021-21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
|
18
|
Mezzetti M, Piccioli-Cappelli F, Minuti A, Trevisi E. Effects of an Intravenous Infusion of Emulsified Fish Oil Rich in Long-Chained Omega-3 Fatty Acids on Plasma Total Fatty Acids Profile, Metabolic Conditions, and Performances of Postpartum Dairy Cows During the Early Lactation. Front Vet Sci 2022; 9:870901. [PMID: 35651967 PMCID: PMC9149583 DOI: 10.3389/fvets.2022.870901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022] Open
Abstract
A group of 10 multiparous Italian Holstein cows were housed in individual tied stalls and infused with 150 ml of saline (CTR; 5 cows), or of 10% solution rich in long-chained omega-3 fatty acids (n3FA; 5 cows) at 12, 24, and 48 h after calving. From −7 to 21 days from calving (DFC), the body condition score, body weight, dry matter intake (DMI), and milk yield were measured, blood samples were collected to assess the plasma fatty acids (FA) and metabolic profiles, and milk samples were collected to assess the milk composition. Data underwent a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Plasma FA profile from n3FA cows had lower myristic and higher myristoleic proportions, higher cis-11,14-eicosadienoic acid and monounsaturated FA proportions at 3 DFC, and lower cis-10-pentadecanoic proportion at 10 DFC. Besides these, n3FA cows had higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) proportions (1.09 vs. 0.71 and 0.33 vs. 0.08 g/100 g), confirming the effectiveness of the infusion in elevating plasma availability of these FA. The plasma metabolic profile from n3FA cows revealed a tendency toward a lower concentration of reactive oxygen metabolites at 1 DFC and lower haptoglobin at 2 and 3 DFC, reflecting a mitigated inflammatory state. Furthermore, n3FA cows had a higher DMI during the first week of lactation. Higher DMI of n3FA could account for the changes detected on their plasma FAs, the higher milk yield they had at 1 and 2 DFC, the reduced lactose and urea nitrogen content in their milk. Higher DMI could also account for the lower plasma urea that n3FA cows had at 1 and 2 DFC, suggesting a lower amount of endogenous amino acids deserved to gluconeogenic fate. Milk from n3FA cows had lower rennet clotting time and higher curd firmness, which is probably driven by a higher EPA and DHA inclusion in the milk fat. Together, these outcomes suggest that the infusion exerts a short-term anti-inflammatory action on dairy cows at the onset of lactation.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production (CREI), Università Cattolica del Sacro Cuore, Piacenza, Italy
- *Correspondence: Erminio Trevisi
| |
Collapse
|
19
|
Giannuzzi D, Mota LFM, Pegolo S, Gallo L, Schiavon S, Tagliapietra F, Katz G, Fainboym D, Minuti A, Trevisi E, Cecchinato A. In-line near-infrared analysis of milk coupled with machine learning methods for the daily prediction of blood metabolic profile in dairy cattle. Sci Rep 2022; 12:8058. [PMID: 35577915 PMCID: PMC9110744 DOI: 10.1038/s41598-022-11799-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/12/2022] [Indexed: 12/29/2022] Open
Abstract
Precision livestock farming technologies are used to monitor animal health and welfare parameters continuously and in real time in order to optimize nutrition and productivity and to detect health issues at an early stage. The possibility of predicting blood metabolites from milk samples obtained during routine milking by means of infrared spectroscopy has become increasingly attractive. We developed, for the first time, prediction equations for a set of blood metabolites using diverse machine learning methods and milk near-infrared spectra collected by the AfiLab instrument. Our dataset was obtained from 385 Holstein Friesian dairy cows. Stacking ensemble and multi-layer feedforward artificial neural network outperformed the other machine learning methods tested, with a reduction in the root mean square error of between 3 and 6% in most blood parameters. We obtained moderate correlations (r) between the observed and predicted phenotypes for γ-glutamyl transferase (r = 0.58), alkaline phosphatase (0.54), haptoglobin (0.66), globulins (0.61), total reactive oxygen metabolites (0.60) and thiol groups (0.57). The AfiLab instrument has strong potential but may not yet be ready to predict the metabolic stress of dairy cows in practice. Further research is needed to find out methods that allow an improvement in accuracy of prediction equations.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy.
| | - Lucio Flavio Macedo Mota
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy
| | - Gil Katz
- Afimilk Ltd., 1514800, Kibbutz Afikim, Israel
| | | | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020, Legnaro (PD), Italy
| |
Collapse
|
20
|
Mezzetti M, Premi M, Minuti A, Bani P, Lopreiato V, Trevisi E. Effect of a feed additive containing yeast cell walls, clove and coriander essential oils and Hibiscus sabdariffa administered to mid-lactating dairy cows on productive performance, rumen fluid composition and metabolic conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2019619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Matteo Mezzetti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Michele Premi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Lopreiato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
21
|
The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. DAIRY 2021. [DOI: 10.3390/dairy2040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent research on the transition period (TP) of dairy cows has highlighted the pivotal role of immune function in affecting the severity of metabolic challenges the animals face when approaching calving. This suggests that the immune system may play a role in the etiology of metabolic diseases occurring in early lactation. Several studies have indicated that the roots of immune dysfunctions could sink way before the “classical” TP (e.g., 3 weeks before and 3 weeks after calving), extending the time frame deemed as “risky” for the development of early lactation disorders at the period around the dry-off. Several distressing events occurring during the TP (i.e., dietary changes, heat stress) can boost the severity of pre-existing immune dysfunctions and metabolic changes that physiologically affect this phase of the lactation cycle, further increasing the likelihood of developing diseases. Based on this background, several operational and nutritional strategies could be adopted to minimize the detrimental effects of immune dysfunctions on the adaptation of dairy cows to the new lactation. A suitable environment (i.e., optimal welfare) and a balanced diet (which guarantees optimal nutrient partitioning to improve immune functions in cow and calf) are key aspects to consider when aiming to minimize TP challenges at the herd level. Furthermore, several prognostic behavioral and physiological indicators could help in identifying subjects that are more likely to undergo a “bad transition”, allowing prompt intervention through specific modulatory treatments. Recent genomic advances in understanding the linkage between metabolic disorders and the genotype of dairy cows suggest that genetic breeding programs aimed at improving dairy cows’ adaptation to the new lactation challenges (i.e., through increasing immune system efficiency or resilience against metabolic disorders) could be expected in the future. Despite these encouraging steps forward in understanding the physiological mechanisms driving metabolic responses of dairy cows during their transition to calving, it is evident that these processes still require further investigation, and that the TP—likely extended from dry-off—continues to be “the final frontier” for research in dairy sciences.
Collapse
|
22
|
Cavallini D, Mammi LME, Buonaiuto G, Palmonari A, Valle E, Formigoni A. Immune-metabolic-inflammatory markers in Holstein cows exposed to a nutritional and environmental stressing challenge. J Anim Physiol Anim Nutr (Berl) 2021; 105 Suppl 1:42-55. [PMID: 34622484 DOI: 10.1111/jpn.13607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022]
Abstract
Dairy cows are exposed to multiple stressors during the productive cycle, such as metabolic challenges, overcrowding, grouping change, environmental stress and dietary errors. Thus, it is essential to study reliable markers able to detect stress conditions in dairy farms. This study evaluates dairy cows' immunologic and metabolic markers after the sudden and combined exposition to a high-grain diet (75% concentrates) and the abrupt change of the housing system (from free stall to tie stall). A group of twenty-four Holstein cows were enrolled in a challenge study of 28 days duration. Several immunological and metabolic blood markers were evaluated over the trial. Blood samples were taken at day 0 (normal value) and day 1, 3, 7, 14, 21, and 28 (challenge). Data were submitted to a mixed model for repeated measures, including time as fixed and cows as random effects. The nutritional and environmental challenge had heavy effects on animal welfare and cows responded with a dramatic rumination drop. Our results suggest that the most responsive markers after abiotic stressors in cows were as follows: Serum Amyloid A and ROM in the acute response; Ceruloplasmin and GGT in the mid acute and Albumin, Paroxonase and FRAP in the chronic phase. Serum Amyloid A, Ceruloplasmin, Paraoxonase, GGT and ROM resulted as positive phase proteins, while, Albumin and FRAP resulted as negative phase proteins. Preliminary obtained results could concur to develop strategies able to mitigate stressor effects; moreover, the proposed design can be used as a model to test stress nutritional modulators.
Collapse
Affiliation(s)
- Damiano Cavallini
- Department of Veterinary Science, University of Bologna, Bologna, Italy
| | | | | | - Alberto Palmonari
- Department of Veterinary Science, University of Bologna, Bologna, Italy
| | - Emanuela Valle
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Andrea Formigoni
- Department of Veterinary Science, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Lolli V, Caligiani A, Gachiuta O, Pizzamiglio V, Bani P. Study on the Effect of Ensiling Process and Ruminal Digestion on the Synthesis and Release of Cyclopropane Fatty Acids in Cow Feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11026-11032. [PMID: 34498864 DOI: 10.1021/acs.jafc.1c03204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cyclopropane fatty acids (CPFA) were found in milk fat from cows fed maize silage and suggested to be synthesized by lactic acid bacteria during ensiling. This study aimed to elucidate some gaps of knowledge about the microbial synthesis of CPFA, to strengthen the current authentication method based on their detection in cheese fat and performed for Parmigiano Reggiano (UNI11650), whose Specifications forbid the use of silage. CPFA were screened in different ensiled cows' feeding by gas chromatography-mass spectrometry, and the effect of feed ingredients and ruminal digestion on CPFA microbial production were further examined by in vitro tests. Results showed that solely the environmental conditions developed in silos for specific plant materials (e.g., maize) are essential for the bacterial synthesis of CPFA, whereas rumen activity did not affect CPFA levels in feeds. This supports the suitability of using CPFA as biomarkers of a crop silage-based diet forbidden by certain PDO feedstock regulations.
Collapse
Affiliation(s)
- Veronica Lolli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43123 Parma, Italy
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43123 Parma, Italy
| | - Olga Gachiuta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Valentina Pizzamiglio
- Consorzio del formaggio Parmigiano Reggiano, Via J.F. Kennedy 18, 42124 Reggio Emilia, Italy
| | - Paolo Bani
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
24
|
Giannuzzi D, Tessari R, Pegolo S, Fiore E, Gianesella M, Trevisi E, Ajmone Marsan P, Premi M, Piccioli-Cappelli F, Tagliapietra F, Gallo L, Schiavon S, Bittante G, Cecchinato A. Associations between ultrasound measurements and hematochemical parameters for the assessment of liver metabolic status in Holstein-Friesian cows. Sci Rep 2021; 11:16314. [PMID: 34381105 PMCID: PMC8357813 DOI: 10.1038/s41598-021-95538-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic disorders, including hepatic lipidosis and ketosis, severely affect animal health status and welfare with a large economic burden in dairy herds. The gold standard for diagnosing hepatic lipidosis is the liver biopsy, which is impractical and invasive for the screening at farm level. Ultrasound (US) imaging is a promising technique for identifying liver dysfunction, but standardized specifications in physiological conditions are needed. Herein, we described the features of four US measurements, namely the liver predicted triacylglycerol (pTAG) content, liver depth (LD), and portal vein area (PVA) and depth (PVD) and we investigated their associations with a set of hematochemical (HC) indicators in 342 clinically healthy Holstein Friesian dairy cows. Liver pTAG content was negatively associated with hematocrit and positively with globulin, whereas PVA was negatively associated with thiol group levels, and LD positively with ceruloplasmin. We found significant interactions between some HC parameters and parity: in particular, creatinine, thiol groups and globulin for PVA, and aspartate aminotransferase, paraoxonase and ceruloplasmin for PVD. This study offers new insights on variations in liver function occurring after calving and pave the way for the potential use of minimally invasive techniques for prompt detection of metabolic disorders in dairy herds.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Rossella Tessari
- Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy.
| | - Enrico Fiore
- Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Michele Premi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| |
Collapse
|
25
|
Han X, Liu H, Hu L, Zhao N, Xu S, Lin Z, Chen Y. Bacterial Community Characteristics in the Gastrointestinal Tract of Yak ( Bos grunniens) Fully Grazed on Pasture of the Qinghai-Tibetan Plateau of China. Animals (Basel) 2021; 11:ani11082243. [PMID: 34438701 PMCID: PMC8388508 DOI: 10.3390/ani11082243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Qinghai–Tibetan plateau is considered as the third Pole of the world and is characterized by low oxygen, high altitude, extreme cold weather and strong ultraviolet radiation. Yak, as the main domestic animals raised on the plateau, play various roles in local herdsmen’s lives by supplying necessities such as meat, milk and fuel. Yak are adapted to the harsh environment on the plateau; microbiota in gut equip the hosts with special abilities including adaptability, as illustrated by numerous research projects. Accordingly, the microbes in the gastrointestinal tract of yak must be characteristically profiled as a strategy to adapt to the environment. However, little is known about the microbial community in whole tract of yak; almost all of reported researches focused on rumen. Therefore, in the current study the bacterial community in the gastrointestinal tract of yak was explored using 16S rDNA amplicon sequencing technology, and the community profiling characteristic in each section was clearly elucidated. Abstract In the current research, samples of yak gastrointestinal tracts (GITs) were used to profile the bacterial compositional characteristics using high through-put sequencing technology of 16S RNA amplicon. A total of 6959 OTUs was obtained from 20,799,614 effective tags, among which 751 OTUs were shared by ten sections. A total of 16 known phyla were obtained in all samples—the most abundant phyla were Firmicutes (34.58%), Bacteroidetes (33.96%) and Verrucomicrobia (11.70%). At the genus level, a total of 66 genera were obtained—Rikenellaceae_RC9_gut_group (7.24%), Akkermansia (6.32%) and Ruminococcaceae_UCG-005 (6.14%) were the most abundant. Species of Observed (Sob), Shannon and Chao values of the Stomach were the greatest, followed by the large intestine, while small intestine had the lowest diversity (p < 0.05). Bacteroidete were more abundant in sections from rumen to duodenum; while Firmicutes were the most abundant in sections from jejunum. ABC transporters (7.82%), Aminoacyl-tRNA biosynthesis (4.85%) and Purine metabolism (3.77%) were the most abundant level-3 pathways in all samples. The results of associated correlation analysis indicated that rectum samples might be used as an estimator of rumen bacterial communities and fermentation. The results of this research enrich the current knowledge about the unique animals of the QTP and extend our insight into GITs microecology of various animals.
Collapse
Affiliation(s)
- Xueping Han
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
- Correspondence: (X.H.); (S.X.)
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.H.); (S.X.)
| | - Zhijia Lin
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| | - Yongwei Chen
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| |
Collapse
|
26
|
Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals (Basel) 2021; 11:ani11061714. [PMID: 34201201 PMCID: PMC8226749 DOI: 10.3390/ani11061714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study investigates the changes occurring in plasma analytes of healthy multiparous Holstein dairy cows during the dry, the postpartum, the early and the late lactation phases. A welfare assessment at the herd level and a retrospective subclinical diseases screening were used as blocking factors for the selection of reference individuals. Thus, this study provides measurements of the physiological variations affecting plasma analytes concentrations during the pivotal stages of the lactation cycle in a healthy, high welfare-raised subset of reference individuals and suggest an explanation for the underlying processes involved. Finally, we propose reference intervals for plasma analytes in the stages investigated. Abstract Here, we tested the changes occurring in several plasma analytes during different stages of the lactation cycle of high welfare raised multiparous Holstein cows, and provided reference intervals (RI) for plasma analytes concentrations. Eleven high-welfare farms (HWF) located in Northern Italy were selected and their herds used to recruit 361 clinically healthy cows undergoing the dry (from −30 to −10 days from real calving; DFC), the postpartum (from 3 to 7 DFC), the early lactation (from 28 to 45 DFC) and the late lactation phases (from 160 to 305 DFC). Cows affected by subclinical diseases (SCD) were retrospectively excluded, and a subset of 285 cows was selected. Data of plasma analytes underwent ANOVA testing using physiological phases as predictors. The individual effect of each phase was assessed using a pairwise t-test assuming p ≤ 0.05 as a significance limit. A bootstrap approach was used to define the reference interval (RI) for each blood analyte within physiological phases having a pairwise t-test p ≤ 0.05. The concentration of nonesterified fatty acids, albumin, cholesterol, retinol, paraoxonase and tocopherol changed throughout all the physiological phases, whereas the concentration of K, alkaline phosphatase and thiol groups remained stable. Triglycerides, Zn, and ferric ion reducing antioxidant power in the dry phase and BHB, Ca, myeloperoxidase, haptoglobin, reactive oxygen metabolites and advanced oxidation of protein product in postpartum differed compared with other physiological phases. During the dry phase, Packed cell volume, Cl, and urea concentrations were similar to during the postpartum phase. Similarly, Na, γ-glutamyl transferase and β-carotene concentrations were similar to during the early lactation phase; fructosamine and bilirubin concentrations were similar to during the late lactation phase. During the postpartum phase, fructosamine and P concentrations were similar to during the early lactation phase, and the aspartate transaminase concentration was similar to during the late lactation phase. During the early lactation phase, Mg, creatinine, total protein, globulin and ceruloplasmin concentrations were similar to during the postpartum phase, while the urea concentration was similar to during the late lactation phase. All these plasma analytes differed among the other phases. This study identifies physiological trends affecting plasma analytes concentrations during the different stages of the lactation cycle and provides a guideline for the duration and magnitude of their changes when animals are healthy and raised in optimal welfare conditions.
Collapse
|
27
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
28
|
Schmitz-Esser S. The Rumen Epithelial Microbiota: Possible Gatekeepers of the Rumen Epithelium and Its Potential Contributions to Epithelial Barrier Function and Animal Health and Performance. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ruminants are characterized by their unique mode of digesting cellulose-rich plant material in their forestomach, the rumen, which is densely populated by diverse microorganisms that are crucial for the breakdown of plant material. Among ruminal microbial communities, the microorganisms in the rumen fluid or attached to feed particles have attracted considerable research interest. However, comparatively less is known about the microorganisms attached to the rumen epithelium. Generally, the tissue lining the gastrointestinal tract serves the dual role of absorbing nutrients while preventing the infiltration of unwanted compounds and molecules as well as microorganisms. The rumen epithelium fulfills critical physiological functions for the ruminant host in energy absorption, metabolism, and nutrient transport. Essential host metabolites, such as short-chain fatty acids, ammonia, urea, and minerals, are exchanged across the rumen wall, thereby exposing the rumen epithelial microbiota to these nutrients. The integrity of the gastrointestinal barrier is central to animal health and productivity. The integrity of the rumen epithelium can be compromised by high ruminal microbial fermentation activity resulting in decreased rumen pH or by stress conditions such as heat stress or feed restriction. It is important to keep in mind that feeding strategies in cattle have changed over the last decades in favor of energy- and nutrient-rich concentrates instead of fiber-rich forages. These dietary shifts support high milk yields and growth rates but raised concerns regarding a possibly compromised rumen function. This paper will provide an overview of the composition of rumen epithelial microbial communities under physiological and disease conditions and will provide insights into the knowledge about the function and in situ activity of rumen epithelial microorganisms and their relevance for animal health and production. Given that an impaired intestinal barrier will negatively affect economically significant phenotypes, a better understanding of rumen wall microbiota is urgently needed.
Collapse
|
29
|
Human, Animal and Planet Health for Complete Sustainability. Animals (Basel) 2021; 11:ani11051301. [PMID: 33946569 PMCID: PMC8147195 DOI: 10.3390/ani11051301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Animal breeding must be seen within sustainability that includes human health and the health of the planet (ecology), without neglecting the economic and ethical aspects. The relationship with human health is dual, since in the absence of food of animal origin there is malnutrition, but excesses increase non-communicable diseases. However, animal farming is considered a cause of serious environmental impact, as well as a cause of suffering for animals (ethics). Therefore, it is proposed to modify the diet in relation to foods of animal origin, properly reducing them in rich countries, but increasing them in poor ones. To reduce the environmental impact of the animals, they must be reduced in number, but the quantities of food needed imply an increase in productivity and efficiency. Their good health is fundamental for these last objectives: to fight infectious and parasitic diseases, but also to ensure optimal feeding and living conditions to guarantee their welfare. Abstract In order to discuss the concepts of animal health and sustainability, we must remind ourselves that ASF (animal source foods) can play a large role in human health, but that animals are assumed to have a negative role in the environment. Indeed, ASF can compromise human health, both in excess and in deficiency, so a proper amount of them is important. In addition, the environmental impact of farmed animals: land occupation, greenhouse gas (GHG) emissions, energy use and water utilization, acidification and eutrophication, must be minimized by reducing ASF consumption, as well as by increasing productivity. To achieve this, besides genetics, feeding and good management, the hygienic-sanitary and comfort conditions that ensure good health and welfare are essential. Impaired animal health can cause zoonosis and food-borne diseases and be responsible for economic and socio-economic losses (lower production-productivity and profitability) with consequential effects on the planet’s health too, and there are big differences between developing and developed countries. In the former, a prevalence of endemic infectious diseases and parasites is observed, and there is a lack of tools to restrain them; in the latter there is a decline of the above diseases, but an increase of stress-related diseases. Their reduction is equally important but requires a different strategy. In developing countries, the strategy should be to facilitate the availability of prevention and treatment means, while in developed countries it is necessary to use drugs correctly (to reduce residues, especially antimicrobials which are associated with important resistance risks to antibiotics) and improve the living conditions of animals (welfare).
Collapse
|
30
|
Malaguez EG, Machado MC, Cardoso KB, Corrêa MN, Brauner CC, Barbosa AA, Kozloski GV, Del Pino FAB. Effect of different levels of Ipomoea batatas flour inclusion on the ruminal pH of sheep in metabolic cages. ACTA SCIENTIARUM: ANIMAL SCIENCES 2021. [DOI: 10.4025/actascianimsci.v43i1.52278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The accumulation of industrial by-products increases the use of sweet potato waste for ruminants, but ruminal pH characteristics are still not well known. The objective was to assess the fluctuation of ruminal pH in sheep supplemented with different levels of sweet potato flour inclusion in their diet. Four rumen-fistulated sheep were used; they were fed a diet based on ryegrass haylage (Lolium multiflorum) and sweet potato flour (Ipomoea batatas), provided according to the level of inclusion in the total diet (0, 0.5, 1.0 and 1.5%). Approximately 80 ml of ruminal fluid was collected for reading on a bench pH meter. Statistical data analysis was run on Statistical Analysis System (SAS Institute INC. Cary, NC, USA), and statistical difference was considered for p < 0.05. The animals that received 1.5% of sweet potato flour in their diet presented acid rumen pH; the 1.0% group presented rumen pH acidification in the first 6 hours after feeding, and the 0.5% level of inclusion did not change the rumen environment. It is concluded that the inclusion of 0.5% sweet potato flour in sheep diet proved to be an efficient energy supplementation strategy.
Collapse
|
31
|
|
32
|
Briggs NG, Brennan KM, Funnell BJ, Nicholls GT, Schoonmaker JP. Use of aspirin to intentionally induce gastrointestinal tract barrier dysfunction in feedlot cattle. J Anim Sci 2020; 98:5894892. [PMID: 32815992 DOI: 10.1093/jas/skaa264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/12/2020] [Indexed: 11/12/2022] Open
Abstract
Stress negatively affects the gastrointestinal tract (GIT) barrier function, resulting in compromised animal health. A deeper understanding of how diet and stress impacts the GIT barrier function in feedlot cattle is needed. Aspirin decreases mucus production and mucosal repair in the GIT and could be used as a model for GIT barrier dysfunction research. The objective of this study was to evaluate the effectiveness of aspirin to induce GIT barrier dysfunction in beef cattle. In experiment 1, sixteen crossbred heifers (425.0 ± 8.6 kg) were allotted to 0, 50, 100, or 200 mg/kg body weight (BW) aspirin doses based on BW. Experiment 1 consisted of two periods separated by 4 wk where four heifers per treatment received the same aspirin dose during each period. Heifers were fed a 49.4% corn silage and 50.6% concentrate diet. The 200 mg/kg BW aspirin treatment was dosed as a 100 mg/kg BW aspirin oral bolus 36 and 24 h prior to Cr-ethylenediaminetetraacetic acid (EDTA) dosing (1 liter; 180 mM). The 50 and 100 mg/kg BW aspirin treatments were dosed as an oral bolus 24 h prior to Cr-EDTA dosing. Urine was collected every 3 h for 48 h and analyzed for Cr. Serum was collected at 0 and 48 h and analyzed for lipopolysaccharide-binding protein (LBP), interleukin-6, serum amyloid A (SAA), haptoglobin, and aspartate aminotransferase. In experiment 2, sixteen crossbred steers (576.0 ± 14.2 kg) fed a similar diet were allotted by BW to the 0 and 200 mg/kg BW aspirin treatments (eight steers/treatment) and were slaughtered 24 h after the last dose. Jejunal tissues were collected, and claudin (CLDN) 1, 2, and 3, occludin, and zonula occludens tight junction messenger ribonucleic acid (mRNA) expression was determined. Data were analyzed using the MIXED procedure of SAS. Urinary Cr excretion increased linearly at hours 3, 6, 9, and 12 (P ≤ 0.04) as aspirin dose increased from 0 to 200 mg/kg. Aspirin linearly increased Cr absorption (P = 0.02) and elimination (P = 0.04) rates and linearly decreased mean retention time of Cr (P = 0.02). Aspirin increased SAA (P = 0.04) and tended to increase LBP (P = 0.09) in serum but did not affect any other serum inflammatory marker (P ≥ 0.19). Aspirin tended to increase jejunal CLDN-1 mRNA expression (P = 0.10) but did not affect the mRNA expression of other genes regulating tight junction function (P ≥ 0.20). Results from this study indicate that aspirin disrupts the GIT barrier function in beef cattle and has a potential as a model in GIT permeability research.
Collapse
Affiliation(s)
- Nathan G Briggs
- Department of Animal Science, Purdue University, West Lafayette, IN
| | | | - Bethany J Funnell
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | | | | |
Collapse
|
33
|
Sanz-Fernandez MV, Daniel JB, Seymour DJ, Kvidera SK, Bester Z, Doelman J, Martín-Tereso J. Targeting the Hindgut to Improve Health and Performance in Cattle. Animals (Basel) 2020; 10:E1817. [PMID: 33036177 PMCID: PMC7600859 DOI: 10.3390/ani10101817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
An adequate gastrointestinal barrier function is essential to preserve animal health and well-being. Suboptimal gut health results in the translocation of contents from the gastrointestinal lumen across the epithelium, inducing local and systemic inflammatory responses. Inflammation is characterized by high energetic and nutrient requirements, which diverts resources away from production. Further, barrier function defects and inflammation have been both associated with several metabolic diseases in dairy cattle and liver abscesses in feedlots. The gastrointestinal tract is sensitive to several factors intrinsic to the productive cycles of dairy and beef cattle. Among them, high grain diets, commonly fed to support lactation and growth, are potentially detrimental for rumen health due to their increased fermentability, representing the main risk factor for the development of acidosis. Furthermore, the increase in dietary starch associated with such rations frequently results in an increase in the bypass fraction reaching distal sections of the intestine. The effects of high grain diets in the hindgut are comparable to those in the rumen and, thus, hindgut acidosis likely plays a role in grain overload syndrome. However, the relative contribution of the hindgut to this syndrome remains unknown. Nutritional strategies designed to support hindgut health might represent an opportunity to sustain health and performance in bovines.
Collapse
Affiliation(s)
- M. Victoria Sanz-Fernandez
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Jean-Baptiste Daniel
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Dave J. Seymour
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | | | - Zeno Bester
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - John Doelman
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Javier Martín-Tereso
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| |
Collapse
|
34
|
Ribeiro ACS, da Conceição ÂI, Soares GSL, Correia FR, de Oliveira-Filho JP, Soares PC, de Mendonça CL, Afonso JAB. Hemogasometry, cardiac biomarkers and blood metabolites in goats with experimentally induced acute ruminal lactic acidosis. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Chishti GA, Salfer IJ, Nedelkov KV, Felix TL. Impacts of Time-Fed Concentrate-Based Diets on Plasma Metabolites, Rumen Histology, and mRNA Expression of Hepatic Enzymes of Wethers. Animals (Basel) 2020; 10:ani10040686. [PMID: 32326483 PMCID: PMC7222829 DOI: 10.3390/ani10040686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In modern ruminant meat production systems, wethers and steers are commonly fed diets containing 80% grain, or more. These diets are commonly fed to increase fat deposition in meat-producing ruminants. However, when wethers and steers are not appropriately transitioned to grain-based diets, they can experience metabolic and inflammatory conditions that negatively affect health and production. It is still unclear how meat-producing ruminants adapt to grain-based diets over time. This study evaluated the effects of an abrupt dietary change, from 80% forage to 80% grain, on rumen, plasma, and liver metabolism in growing wethers and monitored their ability to adapt over time. The results of the study suggest that wethers fed an 80% grain diet adapt over time by altering the expression of key enzymes involved in the systemic inflammation, iron metabolism, and cholesterol and glucose synthesis. This study provides novel insight into the physiology of fattening ruminants that have been abruptly fed grain-based diets and highlights the fact that meat-producing animals can be fed grain-based diets to meet increasing human meat requirements. Abstract Transition to grain increases inflammation and causes parakeratosis, which can decrease growth performance in fattening animals. It is unknown if ruminants adapt to these inflammatory responses over time. In a three-phase, 49-day experiment, all wethers (n = 13, BW = 50.6 ± 4.7 kg; 4.9 ± 0.3 months of age) were fed an 80% forage diet during P1(day 0 to 21). On day 21, 4 wethers were slaughtered to obtain baseline liver and rumen tissue. During P2 (day 22 to 25), the remaining wethers were fed an 80% concentrate diet. Four wethers were slaughtered on day 25 to obtain P2 liver and rumen tissue. During P3 (day 22 to 49), the remaining five wethers were fed 80% concentrate diets and were slaughtered on day 49 to obtain P3 liver and rumen tissue. Rumen parakeratosis was greater (p ≤ 0.02) in wethers sampled in P2 and P3 when compared to those sampled in P1. Among positive acute phase reactants, expression of serum α-amyloid (SAA) and haptoglobin (HPT) tended (p ≤ 0.12) to be 6- and 10-fold greater, respectively, in wethers sampled in P2 compared to wethers sampled in P1; however, SAA and HPT expression was not different between wethers sampled in P3 and P1. Plasma glucose and β-hydroxybutyric acid (BHBA) increased (p ≤ 0.03) in wethers sampled in both P2 and P3 compared to the wethers sampled in P1, while total protein and cholesterol decreased (p ≤ 0.06) only in wethers sampled from P2 compared to those sampled in P1. Hepatic acute phase responses suggest that the wethers adapted to an 80% concentrate diet over time.
Collapse
Affiliation(s)
- Ghazanfar A. Chishti
- Department of Animal Science, Penn State University, University Park, PA 16802, USA; (G.A.C.); (I.J.S.); (K.V.N.)
| | - Isaac J. Salfer
- Department of Animal Science, Penn State University, University Park, PA 16802, USA; (G.A.C.); (I.J.S.); (K.V.N.)
- Dairy and Food Science Department, South Dakota State University, 1224 Medary Ave., Brookings, SD 57006, USA
| | - Krum V. Nedelkov
- Department of Animal Science, Penn State University, University Park, PA 16802, USA; (G.A.C.); (I.J.S.); (K.V.N.)
- Faculty of Veterinary Medicine, Trakia University, BG-6000 Stara Zagora, Bulgaria
| | - Tara L. Felix
- Department of Animal Science, Penn State University, University Park, PA 16802, USA; (G.A.C.); (I.J.S.); (K.V.N.)
- Correspondence: ; Tel.: +814-865-0065
| |
Collapse
|
36
|
Lopreiato V, Vailati-Riboni M, Morittu V, Britti D, Piccioli-Cappelli F, Trevisi E, Minuti A. Post-weaning rumen fermentation of Simmental calves in response to weaning age and relationship with rumination time measured by the Hr-Tag rumination-monitoring system. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Trevisi E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1691472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
38
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Gabai G, Trevisi E. Administration of an Immune Stimulant during the Transition Period Improved Lipid Metabolism and Rumination without Affecting Inflammatory Status. Animals (Basel) 2019; 9:ani9090619. [PMID: 31466285 PMCID: PMC6770279 DOI: 10.3390/ani9090619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Immune stimulants are widely used to address immune dysfunctions that occur in transitioning dairy cows, reducing the likelihood they will develop infectious diseases. This study elucidates the effectiveness of an immune stimulant in promoting rumination recovery, reducing lipid mobilization and ketogenesis, and affecting the levels of circulating antioxidant systems in early lactation. These findings highlight the stimulant’s potential effect in treating metabolic disorders of the transition period in dairy cows. Abstract Omnigen-AF (OAF) increases leukocyte functions in immunosuppressed animal models and reduces incidence of infectious diseases in early lactating dairy cows, although its mode of action is still unclear. This study aims to provide a wider perspective of the metabolic effect of OAF to test its potential as a strategy to address metabolic disorders of the transition period. A group of 10 Holstein dairy cows were divided into 2 groups: The treated group (IMS; 5 cows) received 32.5 g of OAF twice a day (65 g d−1) as top-dress in the morning and afternoon feeds from −55 to 42 days from calving (DFC), whereas the control group (CTR; 5 cows) received no supplementation. From −62 to 42 DFC, body condition score, body weight, dry matter intake, rumination time and milk yield were measured; blood samples were collected weekly to assess a wide hematochemical profile and to test white blood cell functions by ex-vivo challenge assays. At 30 DFC, rumen fluid was collected and analyzed for pH, volatile fatty acids composition, urea nitrogen, and lactate contents. Data were submitted to ANOVA using a mixed model for repeated measures, including treatment, time, and their interaction as fixed effects. OAF decreased blood nonesterified fatty acids and beta hydroxybutyrate concentrations and increased rumination time in early lactation. Leukocytes from IMS cows had lower lactate production and lower glucose consumption after ex-vivo stimulation. OAF did not reduce the acute phase response indicators and reduced the blood concentrations of albumin and antioxidants after calving, suggesting impairment of hepatic functions related to protein synthesis and antioxidant management. Nevertheless, the lack of effect on bilirubin and liver enzymes refutes the possibility of severe liver damage occurring with OAF supplementation. Positive effects in reducing mobilization of body fats and ketogenesis and in increasing rumination time after calving suggest OAF effectiveness in preventing metabolic disorders of the transition period.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (PD), Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
39
|
Mezzetti M, Piccioli-Cappelli F, Bani P, Amadori M, Calamari L, Minuti A, Loor JJ, Bionaz M, Trevisi E. Monensin controlled-release capsule administered in late-pregnancy differentially affects rumination patterns, metabolic status, and cheese-making properties of the milk in primiparous and multiparous cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1645623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bani
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Amadori
- Laboratorio di Immunologia Cellulare, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Luigi Calamari
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
40
|
Liu H, Xu T, Xu S, Ma L, Han X, Wang X, Zhang X, Hu L, Zhao N, Chen Y, Pi L, Zhao X. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau. PeerJ 2019; 7:e7462. [PMID: 31404417 PMCID: PMC6686838 DOI: 10.7717/peerj.7462] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
This study aimed to research the effects of different dietary concentrate to forage (C:F) ratio on growth performance, rumen fermentation and bacteria diversity of barn feeding Tibetan sheep. The experiment contains fiver treatments (HS1, HS2 HS3, HS4 and HS5; n = 8, respectively) based on dietary C:F ratios 0:100, 15:85, 30:70, 45:55, and 60:40, respectively. The ruminal bacterial community structure was investigated through high-throughput sequencing of 16S rRNA genes in V4 hypervariable region. The results showed that increasing dietary concentrate feed level from 0% to 60% exerted a positive effect on DMI, BW gain, gain rate and feed conversation ratio (FCR) in Tibetan sheep. The increases dietary concentrate feed level elevatedNH3-N, propionate and valerate concentrations, whereas, reduced molar ratio of acetate to propionate (A/P ratio) (P < 0.05). For rumen bacterial diversity, increases in dietary concentrate content contributed to lower alpha diversity indexes including Shannon wiener, Chao1 and observed species, meanwhile, significantly increased the abundances of the phylum Bacteroidetes and the genus Prevotella_1 (P < 0.05). In conclusion, increases dietary concentrate content improved the growth performance and Tibetan sheep fed diets of 45% concentrate obtained a better performance; the inclusion of concentrate in feed changed rumen fermentation from acetate fermentation to propionate fermentation, and improved the energy utilization efficiency of Tibetan sheep; the increased in concentrate content significantly reduced rumen bacteria diversity and changed the abundance of some core bacteria.
Collapse
Affiliation(s)
- Hongjin Liu
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China.,University of Chinense Academy of Sciences, Beijing, China
| | - Tianwei Xu
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China
| | - Shixiao Xu
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Li Ma
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China.,University of Chinense Academy of Sciences, Beijing, China
| | - Xueping Han
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,University of Chinense Academy of Sciences, Beijing, China.,Technology Extension Service of Animal Husbandry of Qinghai, Xining, China
| | - Xungang Wang
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China.,University of Chinense Academy of Sciences, Beijing, China
| | - Xiaoling Zhang
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China.,University of Chinense Academy of Sciences, Beijing, China
| | - Linyong Hu
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China
| | - Na Zhao
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China
| | - Yongwei Chen
- Technology Extension Service of Animal Husbandry of Qinghai, Xining, China
| | - Li Pi
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Xinquan Zhao
- Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
41
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Amadori M, Bionaz M, Trevisi E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J Dairy Sci 2019; 102:9241-9258. [PMID: 31378488 DOI: 10.3168/jds.2019-16497] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Subclinical ketosis (SCK) may impair white blood cell (WBC) function and thus contribute to the risk of disease postpartum. This preliminary study investigated changes occurring in the immune system before disease onset to elucidate their role in the occurrence of SCK. A group of 13 Holstein dairy cows were housed in tie-stalls and retrospectively divided into 2 groups based on their levels of β-hydroxybutyrate (BHB) measured in plasma between calving day and 35 d from calving (DFC). Levels of BHB <1.4 mmol/L were found in 7 cows (control cows, CTR group) and levels >1.4 mmol/L were found in 6 cows at ≥1 of 6 time points considered (cows with SCK, KET group). From -48 to 35 DFC, body condition score, body weight, dry matter intake, rumination time, and milk yield were measured, and blood samples were collected regularly to assess the hematochemical profile and test the WBC function by ex vivo challenge assays. Data were submitted for ANOVA testing using a mixed model for repeated measurements that included health status and time and their interactions as fixed effects. Compared with CTR cows, KET cows had more pronounced activation of the immune system (higher plasma concentrations of proinflammatory cytokines, myeloperoxidase, and oxidant species, and greater IFN-γ responses to Mycobacterium avium), higher blood concentrations of γ-glutamyl transferase, and lower plasma concentrations of minerals before calving. Higher levels of nonesterified fatty acids, BHB, and glucose were detected in KET cows than in CTR cows during the dry period. The effect observed during the dry period was associated with a reduced dry matter intake, reduced plasma glucose, and increased fat mobilization (further increases in nonesterified fatty acids and BHB) during early lactation. A reduced milk yield was also detected in KET cows compared with CTR. The KET cows had an accentuated acute-phase response after calving (with greater concentrations of positive acute-phase proteins and lower concentrations of retinol than CTR cows) and impaired liver function (higher blood concentrations of glutamate-oxaloacetate transaminase and bilirubin). The WBC of the KET cows, compared with CTR cows, had a reduced response to an ex vivo stimulation assay, with lower production of proinflammatory cytokines and greater production of lactate. These alterations in the WBC could have been driven by the combined actions of metabolites related to the mobilization of lipids and the occurrence of a transient unresponsive state against stimulation aimed at preventing excessive inflammation. The associations identified here in a small number of cows in one herd should be investigated in larger studies.
Collapse
Affiliation(s)
- M Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Amadori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratory of Cellular Immunology, 25124 Brescia, Italy
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
42
|
Minuti A, Calamari L, Ferronato G, Ferrari A, Gachiuta O, Bani P, Trevisi E. Exploring Fourier transform mid-infra-red spectrometry to predict biochemical parameters in horse’s blood. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1647121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andrea Minuti
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Calamari
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Ferronato
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Annarita Ferrari
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Olga Gachiuta
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bani
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
43
|
Hidalgo AI, Carretta MD, Alarcón P, Manosalva C, Müller A, Navarro M, Hidalgo MA, Kaehne T, Taubert A, Hermosilla CR, Burgos RA. Pro-inflammatory mediators and neutrophils are increased in synovial fluid from heifers with acute ruminal acidosis. BMC Vet Res 2019; 15:225. [PMID: 31269952 PMCID: PMC6610826 DOI: 10.1186/s12917-019-1974-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute ruminal acidosis (ARA) is a metabolic disease of cattle characterized by an aseptic synovitis. ARA is the result of an increased intake of highly fermentable carbohydrates that frequently occurs in dairy cattle subjected to high production requirements. In human joint diseases such as rheumatoid arthritis and gout, several pro-inflammatory molecules are increased in the synovial fluid, including cytokines, prostaglandin E2 (PGE2), metalloproteinases, and neutrophil extracellular traps (NETs). The aim of this study was to identify the presence of proinflammatory mediators and neutrophils in the synovial fluid of heifers with ARA, induced by an oligofructose overload. Five heifers were challenged with an oligofructose overload (13 g/kg BW) dissolved in water. As a control, a similar vehicle volume was used in four heifers. Synovial fluid samples were collected from the tarso-crural joint and PGE2, IL-6, IL-1β, ATP, lactate dehydrogenase (LDH), albumin, glucose, matrix metalloproteinase-9 (MMP-9), cellular free DNA, NETs, and serpin B1 were analyzed at 0, 9, and 24 h post treatment. RESULTS At 9 h post oligofructose overload, an increase of IL-1β, IL-6, PGE2, serpin B1 and LDH was detected in the joints when compared to the control group. At 24 h, the synovial fluid was yellowish, viscous, turbid, and contained abundant neutrophils. An increase of DNA-backbone-like traps, histone 3 (H3cit), aggregated neutrophil extracellular traps (aggNETs), and serpin B1 were observed 24 h post treatment. Furthermore, albumins, LDH, ATP, MMP-9, IL-6, and IL-1β were increased after 24 h. CONCLUSIONS The overall results indicate that IL-1β, IL-6 and PGE2, were the earliest proinflammatory parameters that increased in the synovial fluid of animals with ARA. Furthermore, the most sever inflammatory response in the joint was observed after 24 h and could be associated with a massive presence of neutrophils and release of aggNETs.
Collapse
Affiliation(s)
- Alejandra I Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María D Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Müller
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Max Navarro
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44-0, 39120, Magdeburg, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Carlos R Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
44
|
Piccioli-Cappelli F, Calegari F, Calamari L, Bani P, Minuti A. Application of a NIR device for precision feeding in dairy farms: effect on metabolic conditions and milk production. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1570829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Fiorenzo Piccioli-Cappelli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ferdinando Calegari
- CRAST, Centro Ricerca Analisi geoSpaziale e Telerilevamento, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Catholic University of the Sacred Heart, Piacenza, Italy
| | | | - Paolo Bani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
45
|
Chen L, Shen Y, Wang C, Ding L, Zhao F, Wang M, Fu J, Wang H. Megasphaera elsdenii Lactate Degradation Pattern Shifts in Rumen Acidosis Models. Front Microbiol 2019; 10:162. [PMID: 30792704 PMCID: PMC6374331 DOI: 10.3389/fmicb.2019.00162] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/22/2019] [Indexed: 02/01/2023] Open
Abstract
Background:Megasphaera elsdenii is an ecologically important rumen bacterium that metabolizes lactate and relieves rumen acidosis (RA) induced by a high-grain-diet. Understanding the regulatory mechanisms of the lactate metabolism of this species in RA conditions might contribute to developing dietary strategies to alleviate RA. Methods:Megasphaera elsdenii was co-cultured with four lactate producers (Streptococcus bovis, Lactobacilli fermentum, Butyrivibrio fibrisolvens, and Selenomonas ruminantium) and a series of substrate starch doses (1, 3, and 9 g/L) were used to induce one normal and two RA models (subacute rumen acidosis, SARA and acute rumen acidosis, ARA) under batch conditions. The associations between bacterial competition and the shift of organic acids’ (OA) accumulation patterns in both statics and dynamics manners were investigated in RA models. Furthermore, we examined the effects of substrate lactate concentration and pH on Megasphaera elsdenii’s lactate degradation pattern and genes related to the lactate utilizing pathways in the continuous culture. Results and Conclusion: The positive growth of M. elsdenii and B. fibrisolvens caused OA accumulation in the SARA model to shift from lactate to butyrate and resulted in pH recovery. Furthermore, both the quantities of substrate lactate and pH had remarkable effects on M. elsdenii lactate utilization due to the transcriptional regulation of metabolic genes, and the lactate utilization in M. elsdenii was more sensitive to pH changes than to the substrate lactate level. In addition, compared with associations based on statics data, associations discovered from dynamics data showed greater significance and gave additional explanations regarding the relationships between bacterial competition and OA accumulation.
Collapse
Affiliation(s)
- Lianmin Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yizhao Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Wang
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Luoyang Ding
- School of Animal Biology, The University of Western Australia, Crawley, WA, Australia
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyuan Fu
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S, Penner GB. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci 2019; 102:1866-1882. [DOI: 10.3168/jds.2018-15243] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
47
|
Wilms J, Berends H, Martín-Tereso J. Hypertonic milk replacers increase gastrointestinal permeability in healthy dairy calves. J Dairy Sci 2019; 102:1237-1246. [DOI: 10.3168/jds.2018-15265] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
|
48
|
|
49
|
Caré S, Trevisi E, Minuti A, Ferrari A, Loor J, Calamari L. Plasma fructosamine during the transition period and its relationship with energy metabolism and inflammation biomarkers in dairy cows. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Abstract
Due to their high energy requirements, high-yielding dairy cows receive high-grain diets. This commonly jeopardises their gastrointestinal health by causing subacute ruminal acidosis (SARA) and hindgut acidosis. These disorders can disrupt nutrient utilisations, impair the functionalities of gastrointestinal microbiota, and reduce the absorptive and barrier capacities of gastrointestinal epithelia. They can also trigger inflammatory responses. The symptoms of SARA are not only due to a depressed rumen pH. Hence, the diagnosis of this disorder based solely on reticulo-rumen pH values is inaccurate. An accurate diagnosis requires a combination of clinical examinations of cows, including blood, milk, urine and faeces parameters, as well as analyses of herd management and feed quality, including the dietary contents of NDF, starch and physical effective NDF. Grain-induced SARA increases acidity and shifts availabilities of substrates for microorganisms in the reticulo-rumen and hindgut and can result in a dysbiotic microbiota that are characterised by low richness, diversity and functionality. Also, amylolytic microorganisms become more dominant at the expense of proteolytic and fibrolytic ones. Opportunistic microorganisms can take advantage of newly available niches, which, combined with reduced functionalities of epithelia, can contribute to an overall reduction in nutrient utilisation and increasing endotoxins and pathogens in digesta and faeces. The reduced barrier function of epithelia increases translocation of these endotoxins and other immunogenic compounds out of the digestive tract, which may be the cause of inflammations. This needs to be confirmed by determining the toxicity of these compounds. Cows differ in their susceptibility to poor gastrointestinal health, due to variations in genetics, feeding history, diet adaptation, gastrointestinal microbiota, metabolic adaptation, stress and infections. These differences may also offer opportunities for the management of gastrointestinal health. Strategies to prevent SARA include balancing the diet for physical effective fibre, non-fibre carbohydrates and starch, managing the different fractions of non-fibre carbohydrates, and consideration of the type and processing of grain and forage digestibility. Gastrointestinal health disorders due to high grain feeding may be attenuated by a variety of feed supplements and additives, including buffers, antibiotics, probiotics/direct fed microbials and yeast products. However, the efficacy of strategies to prevent these disorders must be improved. This requires a better understanding of the mechanisms through which these strategies affect the functionality of gastrointestinal microbiota and epithelia, and the immunity, inflammation and 'gastrointestinal-health robustness' of cows. More representative models to induce SARA are also needed.
Collapse
|