1
|
Pittman Ratterree DC, Dass SC, Ndeffo-Mbah ML. Mechanistic Models of Influenza Transmission in Commercial Swine Populations: A Systematic Review. Pathogens 2024; 13:746. [PMID: 39338936 PMCID: PMC11434764 DOI: 10.3390/pathogens13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza in commercial swine populations leads to reduced gain in fattening pigs and reproductive issues in sows. This literature review aims to analyze the contributions of mathematical modeling in understanding influenza transmission and control among domestic swine. Twenty-two full-text research articles from seven databases were reviewed, categorized into swine-only (n = 13), swine-avian (n = 3), and swine-human models (n = 6). Strains of influenza models were limited to H1N1 (n = 7) and H3N2 (n = 1), with many studies generalizing the disease as influenza A. Half of the studies (n = 14) considered at least one control strategy, with vaccination being the primary investigated strategy. Vaccination was shown to reduce disease prevalence in single animal cohorts. With a continuous flow of new susceptible animals, such as in farrow-to-finish farms, it was shown that influenza became endemic despite vaccination strategies such as mass or batch-to-batch vaccination. Human vaccination was shown to be effective at mitigating human-to-human influenza transmission and to reduce spillover events from pigs. Current control strategies cannot stop influenza in livestock or prevent viral reassortment in swine, so mechanistic models are crucial for developing and testing new biosecurity measures to prevent future swine pandemics.
Collapse
Affiliation(s)
- Dana C. Pittman Ratterree
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Sapna Chitlapilly Dass
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
2
|
Petro-Turnquist E, Madapong A, Steffen D, Weaver EA. Immunogenicity and Protective Efficacy of Dose-Sparing Epigraph Vaccine against H3 Swine Influenza A Virus. Vaccines (Basel) 2024; 12:943. [PMID: 39204066 PMCID: PMC11359338 DOI: 10.3390/vaccines12080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Swine influenza A virus (IAV-S) is a highly prevalent and transmissible pathogen infecting worldwide swine populations. Our previous work has shown that the computationally derived vaccine platform, Epigraph, can induce broadly cross-reactive and durable immunity against H3 IAV-S in mice and swine. Therefore, in this study, we assess the immunogenicity and protective efficacy of the Epigraph vaccine at increasingly lower doses to determine the minimum dose required to maintain protective immunity against three genetically divergent H3 IAV-S. We assessed both antibody and T cell responses and then challenged with three H3N2 IAV-S derived from either Cluster IV(A), Cluster I, or the 2010.1 "human-like" cluster and assessed protection through reduced pathology, reduced viral load in the lungs, and reduced viral shedding from nasal swabs. Overall, we observed a dose-dependent effect where the highest dose of Epigraph protected against all three challenges, the middle dose of Epigraph protected against more genetically similar IAV-S, and the lowest dose of Epigraph only protected against genetically similar IAV-S. The results of these studies can be used to continue developing a broadly protective and low-dose vaccine against H3 IAV-S.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (A.M.)
| | - Adthakorn Madapong
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (A.M.)
| | - David Steffen
- Nebraska Veterinary Diagnostics Center, Lincoln, NE 68583, USA;
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (A.M.)
| |
Collapse
|
3
|
Magalhães ES, Zimmerman JJ, Thomas P, Moura CAA, Trevisan G, Schwartz KJ, Burrough E, Holtkamp DJ, Wang C, Rademacher CJ, Silva GS, Linhares DCL. Utilizing productivity and health breeding-to-market information along with disease diagnostic data to identify pig mortality risk factors in a U.S. swine production system. Front Vet Sci 2024; 10:1301392. [PMID: 38274655 PMCID: PMC10808511 DOI: 10.3389/fvets.2023.1301392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024] Open
Abstract
Aggregated diagnostic data collected over time from swine production systems is an important data source to investigate swine productivity and health, especially when combined with records concerning the pre-weaning and post-weaning phases of production. The combination of multiple data streams collected over the lifetime of the pigs is the essence of the whole-herd epidemiological investigation. This approach is particularly valuable for investigating the multifaceted and ever-changing factors contributing to wean-to-finish (W2F) swine mortality. The objective of this study was to use a retrospective dataset ("master table") containing information on 1,742 groups of pigs marketed over time to identify the major risk factors associated with W2F mortality. The master table was built by combining historical breed-to-market performance and health data with disease diagnostic records (Dx Codes) from marketed groups of growing pigs. After building the master table, univariate analyses were conducted to screen for risk factors to be included in the initial multivariable model. After a stepwise backward model selection approach, 5 variables and 2 interactions remained in the final model. Notably, the diagnosis variable significantly associated with W2F mortality was porcine reproductive and respiratory syndrome virus (PRRSV). Closeouts with clinical signs suggestive of Salmonella spp. or Escherichia coli infection were also associated with higher W2F mortality. Source sow farm factors that remained significantly associated with W2F mortality were the sow farm PRRS status, average weaning age, and the average pre-weaning mortality. After testing for the possible interactions in the final model, two interactions were significantly associated with wean-to-finish pig mortality: (1) sow farm PRRS status and a laboratory diagnosis of PRRSV and (2) average weaning age and a laboratory diagnosis of PRRS. Closeouts originating from PRRS epidemic or PRRS negative sow farms, when diagnosed with PRRS in the growing phase, had the highest W2F mortality rates. Likewise, PRRS diagnosis in the growing phase was an important factor in mortality, regardless of the average weaning age of the closeouts. Overall, this study demonstrated the utility of a whole-herd approach when analyzing diagnostic information along with breeding-to-market productivity and health information, to measure the major risk factors associated with W2F mortality in specified time frames and pig populations.
Collapse
Affiliation(s)
- Edison S. Magalhães
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jeff J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Pete Thomas
- Iowa Select Farms, Iowa Falls, IA, United States
| | | | - Giovani Trevisan
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kent J. Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Derald J. Holtkamp
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, United States
| | - Christopher J. Rademacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Gustavo S. Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Karl CA, Andres D, Carlos M, Peña M, Juan HO, Jorge O. Farm management practices, biosecurity and influenza a virus detection in swine farms: a comprehensive study in colombia. Porcine Health Manag 2022; 8:42. [PMID: 36199147 PMCID: PMC9532805 DOI: 10.1186/s40813-022-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Biosecurity protocols (BP) and good management practices are key to reduce the risk of introduction and transmission of infectious diseases into the pig farms. In this observational cross-sectional study, survey data were collected from 176 pig farms with inventories over 100 sows in Colombia. We analyzed a complex survey dataset to explore the structure and identify clustering patterns using Multiple Correspondence Analysis (MCA) of swine farms in Colombia, and estimated its association with Influenza A virus detection. Two principal dimensions contributed to 27.6% of the dataset variation. Farms with highest contribution to dimension 1 were larger farrow-to-finish farms, using self-replacement of gilts and implementing most of the measures evaluated. In contrast, farms with highest contribution to dimension 2 were medium to large farrow-to-finish farms, but implemented biosecurity in a lower degree. Additionally, two farm clusters were identified by Hierarchical Cluster Analysis (HCA), and the odds of influenza A virus detection was statistically different between clusters (OR 7.29, CI: 1.7,66, p = < 0.01). Moreover, after logistic regression analysis, three important variables were associated with higher odds of influenza detection: (1) “location in an area with a high density of pigs”, (2) “farm size”, and (3) “after cleaning and disinfecting, the facilities are allowed to dry before use”. Our results revealed two clustering patterns of swine farms. This systematic analysis of complex survey data identified relationships between biosecurity, husbandry practices and influenza status. This approach helped to identify gaps on biosecurity and key elements for designing successful strategies to prevent and control swine respiratory diseases in the swine industry.
Collapse
Affiliation(s)
- Ciuoderis-Aponte Karl
- Universidad Nacional de Colombia sede Medellín. Consortium Colombia Wisconsin One Health, Cra 75#61-85, 050034, Medellín, Colombia.
| | - Diaz Andres
- Pig Improvement Company, Hendersonville, North Carolina , USA
| | - Muskus Carlos
- Programa de Estudio y Control de Enfermedades Tropicales- PECET, Universidad de Antioquia, Medellín, Colombia
| | - Mario Peña
- Asociación Porkcolombia - Fondo nacional de la porcicultura, Bogotá, Colombia
| | - Hernández-Ortiz Juan
- Universidad Nacional de Colombia sede Medellín. Consortium Colombia Wisconsin One Health, Cra 75#61-85, 050034, Medellín, Colombia
| | - Osorio Jorge
- Department of Pathobiological sciences, University of Wisconsin-Madison. Consortium Colombia Wisconsin One Health, 53706, Madison, USA
| |
Collapse
|
5
|
Lillie-Jaschniski K, Lisgara M, Pileri E, Jardin A, Velazquez E, Köchling M, Albin M, Casanovas C, Skampardonis V, Stadler J. A New Sampling Approach for the Detection of Swine Influenza a Virus on European Sow Farms. Vet Sci 2022; 9:vetsci9070338. [PMID: 35878355 PMCID: PMC9324471 DOI: 10.3390/vetsci9070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Due to concerns in public health and its negative impact on the pig industry the need for Influenza A virus (IAV) surveillance is rising. The gold standard procedure for detecting IAV is to sample acutely diseased pigs. Endemic infections with unspecific clinical signs and low disease prevalence need new approaches. Our study aimed to evaluate a standardized sampling procedure for the detection of IAV in epidemically and endemically infected farms. We performed a cross-sectional study in 131 farms investigating three different age groups per farm in 12 European countries. The results of our investigation indicate that 10 nasal swabs each in suckling piglets, weaners and middle of nursery is a valuable tool for influenza detection and identification of subtypes. However, for farms with a lower prevalence than 15% it is advisable to either increase the number of nasal swabs in each age group or to use group sampling methods. Interestingly, different subtypes were found in different age groups. Thus, our study underlines that sampling of different age groups is mandatory to obtain a comprehensive overview on all circulating variants on farm. In addition, our results highlight that sampling strategies should also consider piglets without obvious clinical signs for IAV infection. Abstract Swine influenza A virus (swIAV), which plays a major role in the porcine respiratory disease complex (PRDC), is eliminated from the respiratory tract within 7–9 days after infection. Therefore, diagnosis is complicated in endemically infected swine herds presenting no obvious clinical signs. This study aimed to investigate the right time point for sampling to detect swIAV. A cross-sectional study was performed in 131 farms from 12 European countries. The sampling protocol included suckling piglets, weaners, and nursery pigs. In each age group, 10 nasal swabs were collected and further examined in pools of 5 for swIAV by Matrix rRT-PCR, followed by a multiplex RT-PCR to determine the influenza subtype. SwIAV was detected in 284 (37.9%) of the samples and on 103 (78.6%) farms. Despite the highest number of animals with clinical signs being found in the nursery, the weaners were significantly more often virus-positive compared to nursery pigs (p = 0.048). Overall, the swIAV detection rate did not significantly differ between diseased or non-diseased suckling and nursery piglets, respectively; however, diseased weaners had significantly more positive pools than the non-diseased animals. Interestingly, in 9 farms, different subtypes were detected in different age groups. Our findings indicate that to detect all circulating swIAV subtypes on a farm, different age groups should be sampled. Additionally, the sampling strategy should also aim to include non-diseased animals, especially in the suckling period.
Collapse
Affiliation(s)
- Kathrin Lillie-Jaschniski
- Ceva Tiergesundheit, Kanzlerstraße 4, 40472 Düsseldorf, Germany;
- Correspondence: ; Tel.: +49-1733680459
| | | | | | - Agnes Jardin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33501 Libourne, France;
| | | | - Monika Köchling
- Ceva Tiergesundheit, Kanzlerstraße 4, 40472 Düsseldorf, Germany;
| | - Michael Albin
- Ceva Animal Health Ltd., Ladegaardsvej 2, 7100 Vejle, Denmark;
| | | | - Vassilis Skampardonis
- Department of Epidemiology, Biostatistics and Economics of Animal Production, School of Veterinary Medicine, University of Thessaly, 43132 Karditsa, Greece;
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University, 75000 Munich, Germany;
| |
Collapse
|
6
|
Unterweger C, Debeerst S, Klingler E, Auer A, Redlberger-Fritz M, Stadler J, Pesch S, Lillie-Jaschniski K, Ladinig A. [Challenges in Influenza diagnostics in a swine herd - a case report]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:425-431. [PMID: 34861735 DOI: 10.1055/a-1580-6938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In a gilt producing farm in Lower Austria, respiratory diseases occurred over the previous years in self-reared gilts after being introduced into the sow herd. In addition, fertility disorders in terms of late abortions and re-breeders were observed in the fall of 2019. Nasal swabs of 3 gilts with respiratory signs and fever were tested positive for influenza A virus (IAV) subtype H1avN1 by PCR. However, examination of serum samples from these animals at 2 different time points did not detect antibodies using the standard hemagglutination inhibition (HI) test of the laboratory. Examination of additional age groups likewise failed to detect H1avN1 antibody titers. In consequence to the extension of the diagnostic panel of the HI test by 7 additional H1avN1 test antigens, a clear seroconversion of the PCR positive sows against 2 different H1avN1 isolates could be measured. In addition, high antibody titers against these 2 H1avN1 strains were also detectable in the majority of the remaining age groups tested. Following the administration of the trivalent influenza vaccine, which has been approved throughout Europe, a significant improvement of the clinical presentation in the herd was achieved. The present case report illustrates that direct and indirect pathogen detection should be used in combination for targeted influenza diagnostics. In addition, it was shown that the continuous adaptation of test antigens to the isolates circulating in the field would be extremely crucial for the significance of the HI test.
Collapse
Affiliation(s)
- Christine Unterweger
- Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien
| | | | | | - Angelika Auer
- Institut für Virologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien
| | | | - Julia Stadler
- Klinik für Schweine, Ludwig-Maximilians-Universität München
| | | | | | - Andrea Ladinig
- Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien
| |
Collapse
|
7
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
8
|
Er JC. Longitudinal Projection of Herd Prevalence of Influenza A(H1N1)pdm09 Virus Infection in the Norwegian Pig Population by Discrete-Time Markov Chain Modelling. Infect Dis Rep 2021; 13:748-756. [PMID: 34449635 PMCID: PMC8395842 DOI: 10.3390/idr13030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
In order to quantify projections of disease burden and to prioritise disease control strategies in the animal population, good mathematical modelling of infectious disease dynamics is required. This article investigates the suitability of discrete-time Markov chain (DTMC) as one such model for forecasting disease burden in the Norwegian pig population after the incursion of influenza A(H1N1)pdm09 virus (H1N1pdm09) in Norwegian pigs in 2009. By the year-end, Norway's active surveillance further detected 20 positive herds from 54 random pig herds, giving an estimated initial population prevalence of 37% (95% CI 25-52). Since then, Norway's yearly surveillance of pig herd prevalence has given this study 11 years of data from 2009 to 2020 to work with. Longitudinally, the pig herd prevalence for H1N1pdm09 rose sharply to >40% in three years and then fluctuated narrowly between 48% and 49% for 6 years before declining. This initial longitudinal pattern in herd prevalence from 2009 to 2016 inspired this study to of test the steady-state discrete-time Markov chain model in forecasting disease prevalence. With the pig herd as the unit of analysis, the parameters for DTMC came from the initial two years of surveillance data after the outbreak, namely vector prevalence, first herd incidence and recovery rates. The latter two probabilities formed the fixed probability transition matrix for use in a discrete-time Markov chain (DTMC) that is quite similar to another compartmental model, the susceptible-infected-susceptible (SIS) model. These DTMC of predicted prevalence (DTMCP) showed good congruence (Pearson correlation = 0.88) with the subsequently observed herd prevalence for seven years from 2010 to 2016. While the DTMCP converged to the stationary (endemic) state of 48% in 2012, after three time steps, the observed prevalence declined instead from 48% after 2016 to 25% in 2018 before rising to 29% in 2020. A sudden plunge in H1N1pdm09 prevalence amongst Norwegians during the 2016/2017 human flu season may have had a knock-on effect in reducing the force of infection in pig herds in Norway. This paper endeavours to present the discrete-time Markov chain (DTMC) as a feasible but limited tool in forecasting the sequence of a predicted infectious disease's prevalence after it's incursion as an exotic disease.
Collapse
Affiliation(s)
- Jwee Chiek Er
- Department of Epidemiology, Norwegian Veterinary Institute, Postboks 64, 1433 Ås, Norway
| |
Collapse
|
9
|
Wang XH, Gong XQ, Wen F, Ruan BY, Yu LX, Liu XM, Wang Q, Wang SY, Wang J, Zhang YF, Zhou YJ, Shan TL, Tong W, Zheng H, Kong N, Yu H, Tong GZ. The role of PA-X C-terminal 20 residues of classical swine influenza virus in its replication and pathogenicity. Vet Microbiol 2020; 251:108916. [PMID: 33197868 DOI: 10.1016/j.vetmic.2020.108916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
PA-X is a fusion protein encoded by a +1 frameshifted open reading frame (X-ORF) in PA gene. The X-ORF can be translated in full-length (61 amino acids, aa) or truncated (41 aa) form. However, the role of C-Terminal 20 aa of PA-X in virus function has not yet been fully elucidated. To this end, we constructed the contemporary influenza viruses with full and truncated PA-X by reverse genetics to compare their replication and pathogenicity. The full-length PA-X virus in MDCK and human A549 cells conferred 10- to 100-fold increase in viral replication, and more virulent and caused more severe inflammatory responses in mice relative to corresponding truncated PA-X virus, suggesting that the terminal 20 aa could play a role in enhancing viral replication and contribute to virulence.
Collapse
Affiliation(s)
- Xiu-Hui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Hebei University of Engineering, Handan 056038, China
| | - Xiao-Qian Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bao-Yang Ruan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Min Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuai-Yong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Juan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yi-Feng Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Hebei University of Engineering, Handan 056038, China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
10
|
Chamba Pardo FO, W Allerson M, R Culhane M, B Morrison R, R Davies P, Perez A, Torremorell M. Effect of influenza A virus sow vaccination on infection in pigs at weaning: A prospective longitudinal study. Transbound Emerg Dis 2020; 68:183-193. [PMID: 32652870 DOI: 10.1111/tbed.13688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Although vaccination is the main measure to control influenza A virus (IAV) in swine, there is limited information on the efficacy of sow vaccination on reducing IAV infections in pigs at weaning. We assessed the effect of sow vaccination on IAV infection in pigs at weaning in a cohort of 52 breeding herds studied prospectively. Herds were voluntarily enrolled according to their IAV history, sow vaccination protocol and monitored during six months (prospective longitudinal study). On each herd, nasal swabs were collected monthly from 30 pigs at weaning and tested for IAV by RT-PCR. IAV was detected in 25% (75/305) of sampling events. Of 9,150 nasal swab pools (3 individual nasal swabs/pool), 15% (458/3050) of pools tested IAV positive. IAV infections in pigs at weaning were lower in vaccinated herds compared to non-vaccinated ones. Moreover, no significant differences were seen between prefarrow and whole herd protocols, or the use of commercial versus autogenous IAV vaccines. Prefarrow and whole herd vaccination protocols reduced the odds of groups testing IAV positive at weaning in comparison with no vaccination. Our results are relevant when considering implementation of sow vaccination to control influenza infections in pigs at weaning and, hence, minimize transmission to growing pigs and other farms.
Collapse
Affiliation(s)
- Fabian O Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | | - Marie R Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Robert B Morrison
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Peter R Davies
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
11
|
Li Y, Edwards J, Huang B, Shen C, Cai C, Wang Y, Zhang G, Robertson I. Risk of zoonotic transmission of swine influenza at the human-pig interface in Guangdong Province, China. Zoonoses Public Health 2020; 67:607-616. [PMID: 32506781 DOI: 10.1111/zph.12723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/24/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
A cross-sectional survey was conducted from 2015 to 2018 to assess the risk of zoonotic influenza to humans at the human-pig interface in Guangdong Province, south China. One hundred and fifty-three pig farmers, 21 pig traders and 16 pig trade workers were recruited using convenience sampling and surveyed at local pig farms, live pig markets and slaughterhouses, respectively. Questionnaires were administered to collect information on the biosecurity and trading practices adopted and their knowledge and beliefs about swine influenza (SI). Most (12 of 16) trade workers said they would enter piggeries to collect pigs and only six of 11 said they were always asked to go through an on-farm disinfection procedure before entry. Only 33.7% of the interviewees believed that SI could infect humans, although pig farmers were more likely to believe this than traders and trade workers (p < .01). Several unsafe practices were reported by interviewees. 'Having vaccination against seasonal flu' (OR = 3.05, 95% CI: 1.19-8.93), 'Believe that SI can cause death in pigs' (no/yes: OR = 8.69, 95% CI: 2.71-36.57; not sure/yes: OR = 4.46, 95% CI: 1.63-14.63) and 'Keep on working when getting mild flu symptoms' (OR = 3.80, 95% CI: 1.38-11.46) were significantly and positively correlated to 'lacking awareness of the zoonotic risk of SI'. 'Lacking awareness of the zoonotic risk of SI' (OR = 3.19, 95% CI: 1.67-6.21), 'Keep on working when getting mild flu symptoms' (OR = 3.59, 95% CI: 1.57-8.63) and 'Don't know SI as a pig disease' (OR = 3.48, 95% CI: 1.02-16.45) were significantly and positively correlated to 'not using personal protective equipment when contacting pigs'. The findings of this study would benefit risk mitigation against potential pandemic SI threats in the human-pig interface in China.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,China Animal Health and Epidemiology Center, Qingdao, China
| | - John Edwards
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,China Animal Health and Epidemiology Center, Qingdao, China
| | - Baoxu Huang
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,China Animal Health and Epidemiology Center, Qingdao, China
| | - Chaojian Shen
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Chang Cai
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Youming Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guihong Zhang
- South China Agriculture University, Guangzhou, China
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Hubei Province, China
| |
Collapse
|
12
|
Nirmala J, Perez A, Culhane MR, Allerson MW, Sreevatsan S, Torremorell M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound Emerg Dis 2020; 68:62-75. [PMID: 32187882 DOI: 10.1111/tbed.13529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.
Collapse
Affiliation(s)
| | - Andres Perez
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Matthew W Allerson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
13
|
Li Y, Edwards J, Wang Y, Zhang G, Cai C, Zhao M, Huang B, Robertson ID. Prevalence, distribution and risk factors of farmer reported swine influenza infection in Guangdong Province, China. Prev Vet Med 2019; 167:1-8. [PMID: 31027710 DOI: 10.1016/j.prevetmed.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023]
Abstract
A cross-sectional study was undertaken to better understand the husbandry, management and biosecurity practices of pig farms in Guangdong Province (GD), China to identify risk factors for farmer reported swine influenza (SI) on their farms. Questionnaires were administered to 153 owners/managers of piggeries (average of 7 from each of the 21 prefectures in GD). Univariable and multivariable logistic regression analyses were used to identify risk factors for farmer reported SI in piggeries during the six months preceding the questionnaire administration. The ability of wild birds to enter piggeries (OR 2.50, 95% CI: 1.01-6.16), the presence of poultry on a pig-farm (OR 3.24, 95% CI: 1.52-6.94) and no biosecurity measures applied to workers before entry to the piggery (OR 2.65, 95% CI: 1.04-6.78) were found to increase the likelihood of SI being reported by farmers in a multivariable logistic regression model. The findings of this study highlight the importance of understanding the local pig industry and the practices adopted when developing control measures to reduce the risk of SI to pig farms.
Collapse
Affiliation(s)
- Y Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.
| | - J Edwards
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Y Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - G Zhang
- South China Agriculture University, Guangzhou, Guangdong, PR China
| | - C Cai
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - M Zhao
- Department of Agriculture of Guangdong Province, Guangzhou, Guangdong, PR China
| | - B Huang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - I D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
14
|
Chamba Pardo FO, Wayne S, Culhane MR, Perez A, Allerson M, Torremorell M. Effect of strain-specific maternally-derived antibodies on influenza A virus infection dynamics in nursery pigs. PLoS One 2019; 14:e0210700. [PMID: 30640929 PMCID: PMC6331129 DOI: 10.1371/journal.pone.0210700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022] Open
Abstract
Reducing the number of influenza A virus (IAV) infected pigs at weaning is critical to minimize IAV spread to other farms. Sow vaccination is a common measure to reduce influenza levels at weaning. However, the impact of maternally-derived antibodies on IAV infection dynamics in growing pigs is poorly understood. We evaluated the effect of maternally-derived antibodies at weaning on IAV prevalence at weaning, time of influenza infection, number of weeks that pigs tested IAV positive, and estimated quantity of IAV in nursery pigs. We evaluated 301 pigs within 10 cohorts for their influenza serological (seroprevalence estimated by hemagglutination inhibition (HI) test) and virological (prevalence) status. Nasal swabs were collected weekly and pigs were bled 3 times throughout the nursery period. There was significant variability in influenza seroprevalence, HI titers and influenza prevalence after weaning. Increase in influenza seroprevalence at weaning was associated with low influenza prevalence at weaning and delayed time to IAV infection throughout the nursery. Piglets with IAV HI titers of 40 or higher at weaning were also less likely to test IAV positive at weaning, took longer to become infected, tested IAV RT-PCR positive for fewer weeks, and had higher IAV RT-PCR cycle threshold values compared to piglets with HI titers less than 40. Our findings suggest that sow vaccination or infection status that results in high levels of IAV strain-specific maternally-derived antibodies may help to reduce IAV circulation in both suckling and nursery pigs.
Collapse
Affiliation(s)
| | - Spencer Wayne
- Health Services, Pipestone Veterinary Services, Pipestone, MN, United States of America
| | - Marie Rene Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
| | - Matthew Allerson
- Health and Research Division, Holden Farms Inc., Northfield, MN, United States of America
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chamba Pardo FO, Schelkopf A, Allerson M, Morrison R, Culhane M, Perez A, Torremorell M. Breed-to-wean farm factors associated with influenza A virus infection in piglets at weaning. Prev Vet Med 2018; 161:33-40. [PMID: 30466656 DOI: 10.1016/j.prevetmed.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Breed-to-wean pig farms play an important role in spreading influenza A virus (IAV) because suckling piglets maintain, diversify and transmit IAV at weaning to other farms. Understanding the nature and extent of which farm factors drive IAV infection in piglets is a prerequisite to reduce the burden of influenza in swine. We evaluated the association between IAV infection in piglets at weaning and farm factors including farm features, herd management practices and gilt- and piglet-specific management procedures performed at the farm. Voluntarily enrolled breed-to-wean farms (n = 83) agreed to share IAV diagnostic testing and farm data from July 2011 through March 2017 including data obtained via the administration of a survey. There were 23% IAV RT-PCR positive samples of the 12,814 samples submitted for IAV testing within 2989 diagnostic submissions with 30% positive submissions. Among all the factors evaluated (n = 24), and considering the season-adjusted multivariable analysis, only sow IAV vaccination and gilt IAV status at entry significantly reduced (p-value<0.05) IAV infections in piglets at weaning. Results from this study indicate that veterinarians and producers could manage these identified factors to reduce the burden of influenza in piglets prior to wean and perhaps, reduce the spread of IAV to other farms and people.
Collapse
Affiliation(s)
- Fabian Orlando Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Adam Schelkopf
- Health Department, Pipestone Veterinary Services, 1300 South Highway 75, PO Box 188, Pipestone, MN 56164, USA.
| | - Matthew Allerson
- Health and Research Department, Holden Farms Inc., 457 375th street, Dennison, MN 55018, USA.
| | - Robert Morrison
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Marie Culhane
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
16
|
A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system. Biochem Biophys Res Commun 2017; 495:1871-1877. [PMID: 29223400 PMCID: PMC7124307 DOI: 10.1016/j.bbrc.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples. Development of a comprehensive method to detect viruses using SureSelect system. A method by which almost the full length of the viral genome can be determined without virus isolation. Widely available methods for comprehensive analysis of virus genomic information.
Collapse
|
17
|
Chamba Pardo FO, Alba-Casals A, Nerem J, Morrison RB, Puig P, Torremorell M. Influenza Herd-Level Prevalence and Seasonality in Breed-to-Wean Pig Farms in the Midwestern United States. Front Vet Sci 2017; 4:167. [PMID: 29075636 PMCID: PMC5641542 DOI: 10.3389/fvets.2017.00167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 01/30/2023] Open
Abstract
Influenza is a costly disease for pig producers and understanding its epidemiology is critical to control it. In this study, we aimed to estimate the herd-level prevalence and seasonality of influenza in breed-to-wean pig farms, evaluate the correlation between influenza herd-level prevalence and meteorological conditions, and characterize influenza genetic diversity over time. A cohort of 34 breed-to-wean farms with monthly influenza status obtained over a 5-year period in piglets prior to wean was selected. A farm was considered positive in a given month if at least one oral fluid tested influenza positive by reverse transcriptase polymerase chain reaction. Influenza seasonality was assessed combining autoregressive integrated moving average (ARIMA) models with trigonometric functions as covariates. Meteorological conditions were gathered from local land-based weather stations, monthly aggregated and correlated with influenza herd-level prevalence. Influenza herd-level prevalence had a median of 28% with a range from 7 to 57% and followed a cyclical pattern with levels increasing during fall, peaking in both early winter (December) and late spring (May), and decreasing in summer. Influenza herd-level prevalence was correlated with mean outdoor air absolute humidity (AH) and temperature. Influenza genetic diversity was substantial over time with influenza isolates belonging to 10 distinct clades from which H1 delta 1 and H1 gamma 1 were the most common. Twenty-one percent of farms had three different clades co-circulating over time, 18% of farms had two clades, and 41% of farms had one clade. In summary, our study showed that influenza had a cyclical pattern explained in part by air AH and temperature changes over time, and highlighted the importance of active surveillance to identify high-risk periods when strategic control measures for influenza could be implemented.
Collapse
Affiliation(s)
| | - Ana Alba-Casals
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Joel Nerem
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Robert B Morrison
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
18
|
Artiaga BL, Yang G, Hutchinson TE, Loeb JC, Richt JA, Lednicky JA, Salek-Ardakani S, Driver JP. Rapid control of pandemic H1N1 influenza by targeting NKT-cells. Sci Rep 2016; 6:37999. [PMID: 27897246 PMCID: PMC5126553 DOI: 10.1038/srep37999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Swine influenza A viruses (IAV) are a major cause of respiratory disease in pigs and humans. Currently approved anti-influenza therapies directly target the virus, but these approaches are losing effectiveness as new viral strains quickly develop drug resistance. To over come this challenge, there is an urgent need for more effective antiviral drugs. Here we tested the anti-influenza efficacy of the invariant natural killer T (NKT) cell superagonist, α-galactosylceramide (α-GalCer), which stimulates a wide array of anti-viral immune responses. We show that intranasal but not systemic administration of α-GalCer to piglets infected with pandemic A/California/04/2009 (CA04) H1N1 IAV ameliorated disease symptoms and resulted in the restoration of weight gain to the level of uninfected pigs. Correspondingly, viral titers in the upper-and lower-respiratory tract were reduced only in piglets that had received intranasal α-GalCer. Most significantly, lung inflammation as a consequence of virus persistence was largely prevented when NKT-cells were targeted via the respiratory route. Thus, targeting mucosal NKT-cells may provide a novel and potent platform for improving the course of disease in swine infected with seasonal and pandemic influenza viruses, and leads to the suggestion that this may also be true in humans and therefore deserves further study.
Collapse
Affiliation(s)
- Bianca L Artiaga
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Tarun E Hutchinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Julia C Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jürgen A Richt
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - John P Driver
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Occurrence and spread of influenza A(H1N1)pdm09 virus infection in Norwegian pig herds based on active serosurveillance from 2010 to 2014. Epidemiol Infect 2016; 144:3148-3165. [PMID: 27412705 PMCID: PMC5080672 DOI: 10.1017/s0950268816001424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The incursion of influenza A(H1N1)pdm09 virus was detected by Norway's active serosurveillance of its pig population in 2009. Since then, surveillance data from 2010 to 2014 revealed that 54% of 5643 herd tests involving 1567 pig herds and 28% of 23 036 blood samples screened positive for antibodies against influenza A virus. Positive herds were confirmed to have influenza A(H1N1)pdm09 virus infection by haemagglutination inhibition test. In 50% of positive herd tests, ⩾60% of the sampled pigs in each herd had antibodies against influenza A(H1N1)pdm09 virus. This within-herd animal seroprevalence did not vary for type of production, herd size or year of test. The overall running mean of national herd seroprevalence, and annual herd incidence risks fluctuated narrowly around the means of 45% and 32%, respectively, with the highest levels recorded in the three densest pig-producing counties. The probability of a herd being seropositive varied in the five production classes, which were sow pools, multiplier herds, conventional sow herds, nucleus herds, and fattening herds in descending order of likelihood. Large herds were more likely to be seropositive. Seropositive herds were highly likely to be seropositive the following year. The study shows that influenza A(H1N1)pdm09 virus is established in the Norwegian pig population with recurrent and new herd infections every year with the national herd seroprevalence in 2014 hovering at around 43% (95% confidence interval 40–46%).
Collapse
|