1
|
Wang Y, Wu Y, Jiang Y, Tan H, Guragain B, Nguyen T, Zhao J, Zhou Y, Nakada Y, Zhang J. Cardiomyocyte-Specific Overexpression of Activated Yes-Associated Protein Modified-RNA Promotes Cardiomyocyte Proliferation and Myocardial Regeneration. J Am Heart Assoc 2024; 13:e037120. [PMID: 39470057 DOI: 10.1161/jaha.124.037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The proliferative capacity of cardiomyocytes in adult mammalian hearts is far too low to replace the cells that are lost to myocardial infarction. Both cardiomyocyte proliferation and myocardial regeneration can be improved via the overexpression of a constitutively active variant of YAP5SA (Yes-associated protein, 5SA [active] mutant), but persistent overexpression of proliferation-inducing genes could lead to hypertrophy and arrhythmia, whereas off-target expression in fibroblasts and macrophages could increase fibrosis and inflammation. METHODS AND RESULTS Transient overexpression of YAP5SA or GFP (green fluorescent protein; control) was targeted to cardiomyocytes via our cardiomyocyte-specific modified mRNA translation system (YAP5SACM-SMRTs or GFPCM-SMRTs, respectively). YAP5SA-cardiomyocyte specificity was confirmed via in vitro experiments in cardiomyocytes and cardiac fibroblasts that had been differentiated from human induced- pluripotent stem cells and in human umbilical-vein endothelial cells, and the regenerative potency of YAP5SACM-SMRTs was evaluated in a mouse myocardial infarction model. In cultured human induced-pluripotent stem cells-cardiomyocytes, YAP was abundantly expressed for 3 days after YAP5SACM-SMRTs administration and was accompanied by increases in the expression of markers for proliferation, before declining to near-background levels after day 7, whereas GFP fluorescence remained high from days 1 to 3 after GFPCM-SMRTs treatment and then slowly declined. GFP fluorescence was also observed in human induced-pluripotent stem cells-cardiac fibroblasts and human umbilical-vein endothelial cells on day 1 after GFPCM-SMRTs administration but declined substantially by day 3. In the mouse myocardial infarction model, echocardiographic assessments of left-ventricular ejection fraction and fractional shortening were significantly greater, whereas infarct sizes were significantly smaller in YAP5SACM-SMRTs-treated mice than in vehicle-treated control animals, and YAP5SACM-SMRTs appeared to promote cardiomyocyte proliferation. CONCLUSIONS The CM-SMRTs can be used to transiently and specifically overexpress YAP5SA in cardiomyocytes, and this treatment strategy significantly promoted cardiomyocyte proliferation and myocardial regeneration in a mouse myocardial infarction model.
Collapse
Affiliation(s)
- Yongyu Wang
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Yalin Wu
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Yu Jiang
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Huilan Tan
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Bijay Guragain
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Thanh Nguyen
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Jianli Zhao
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Yang Zhou
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Yuji Nakada
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
| | - Jianyi Zhang
- Department of Biomedical Engineering University of Alabama at Birmingham Birmingham AL USA
- Department of Medicine, Cardiovascular Disease University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
2
|
Wu H, Che YN, Lan Q, He YX, Liu P, Chen MT, Dong L, Liu MN. The Multifaceted Roles of Hippo-YAP in Cardiovascular Diseases. Cardiovasc Toxicol 2024:10.1007/s12012-024-09926-6. [PMID: 39365552 DOI: 10.1007/s12012-024-09926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The Hippo-yes-associated protein (YAP) signaling pathway plays a crucial role in cell proliferation, differentiation, and death. It is known to have impact on the progression and development of cardiovascular diseases (CVDs) as well as in the regeneration of cardiomyocytes (CMs). However, further research is needed to understand the molecular mechanisms by which the Hippo-YAP pathway affects the pathological processes of CVDs in order to evaluate its potential clinical applications. In this review, we have summarized the recent findings on the role of the Hippo-YAP pathway in CVDs such as myocardial infarction, heart failure, and cardiomyopathy, as well as its in CM development. This review calls attention to the potential roles of the Hippo-YAP pathway as a relevant target for the future treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yan-Nan Che
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Lan
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yi-Xiang He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ming-Tai Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| | - Li Dong
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
4
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
5
|
Soroudi S, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J Control Release 2024; 372:113-140. [PMID: 38876358 DOI: 10.1016/j.jconrel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality among non-communicable diseases. Current cardiac regeneration treatments have limitations and may lead to adverse reactions. Hence, innovative technologies are needed to address these shortcomings. Messenger RNA (mRNA) emerges as a promising therapeutic agent due to its versatility in encoding therapeutic proteins and targeting "undruggable" conditions. It offers low toxicity, high transfection efficiency, and controlled protein production without genome insertion or mutagenesis risk. However, mRNA faces challenges such as immunogenicity, instability, and difficulty in cellular entry and endosomal escape, hindering its clinical application. To overcome these hurdles, lipid nanoparticles (LNPs), notably used in COVID-19 vaccines, have a great potential to deliver mRNA therapeutics for CVDs. This review highlights recent progress in mRNA-LNP therapies for CVDs, including Myocardial Infarction (MI), Heart Failure (HF), and hypercholesterolemia. In addition, LNP-mediated mRNA delivery for CAR T-cell therapy and CRISPR/Cas genome editing in CVDs and the related clinical trials are explored. To enhance the efficiency, safety, and clinical translation of mRNA-LNPs, advanced technologies like artificial intelligence (AGILE platform) in RNA structure design, and optimization of LNP formulation could be integrated. We conclude that the strategies to facilitate the extra-hepatic delivery and targeted organ tropism of mRNA-LNPs (SORT, ASSET, SMRT, and barcoded LNPs) hold great prospects to accelerate the development and translation of mRNA-LNPs in CVD treatment.
Collapse
Affiliation(s)
- Setareh Soroudi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Hou G, Alissa M, Alsuwat MA, Ali Alarjany HM, Alzahrani KJ, Althobaiti FM, Mujalli HM, Alotaiby MM, Al-Doaiss AA, Anthony S. The art of healing hearts: Mastering advanced RNA therapeutic techniques to shape the evolution of cardiovascular medicine in biomedical science. Curr Probl Cardiol 2024; 49:102627. [PMID: 38723793 DOI: 10.1016/j.cpcardiol.2024.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are associated with increasing financial health burden that requires research into novel therapeutic approaches. Since the early 2000s, the availability of next-generation sequencing techniques such as microRNAs, circular RNAs, and long non-coding RNAs have been proven as potential therapeutic targets for treating various CVDs. Therapeutics based on RNAs have become a viable option for addressing the intricate molecular pathways that underlie the pathophysiology of CVDs. We provide an in-depth analysis of the state of RNA therapies in the context of CVDs, emphasizing various approaches that target the various stages of the basic dogma of molecular biology to effect temporary or long-term changes. In this review, we summarize recent methodologies used to screen for novel coding and non-coding RNA candidates with diagnostic and treatment possibilities in cardiovascular diseases. These methods include single-cell sequencing techniques, functional RNA screening, and next-generation sequencing.Lastly, we highlighted the potential of using oligonucleotide-based chemical products such as modified RNA and RNA mimics/inhibitors for the treatment of CVDs. Moreover, there will be an increasing number of potential RNA diagnostic and therapeutic for CVDs that will progress to expand for years to come.
Collapse
Affiliation(s)
- Guoliang Hou
- Department of Cardiology, Tengzhou Central People's Hospital, Shandong 277599, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | | | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Fahad M Althobaiti
- Department of Nursing Leadership and Education, Nursing College, Taif University, Taif 21974, Saudi Arabia
| | | | - Monearah M Alotaiby
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, China.
| |
Collapse
|
7
|
Wang Y, Shou X, Wu Y, Li D. Immuno-inflammatory pathogenesis in ischemic heart disease: perception and knowledge for neutrophil recruitment. Front Immunol 2024; 15:1411301. [PMID: 39050842 PMCID: PMC11266024 DOI: 10.3389/fimmu.2024.1411301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Traditional Chinese Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xintian Shou
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Abdul-Rahman T, Lizano-Jubert I, Bliss ZSB, Garg N, Meale E, Roy P, Crino SA, Deepak BL, Miteu GD, Wireko AA, Qadeer A, Condurat A, Tanasa AD, Pyrpyris N, Sikora K, Horbas V, Sood A, Gupta R, Lavie CJ. RNA in cardiovascular disease: A new frontier of personalized medicine. Prog Cardiovasc Dis 2024; 85:93-102. [PMID: 38253161 DOI: 10.1016/j.pcad.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Personalized medicine has witnessed remarkable progress with the emergence of RNA therapy, offering new possibilities for the treatment of various diseases, and in particular in the context of cardiovascular disease (CVD). The ability to target the human genome through RNA manipulation offers great potential not only in the treatment of cardiac pathologies but also in their diagnosis and prevention, notably in cases of hyperlipidemia and myocardial infarctions. While only a few RNA-based treatments have entered clinical trials or obtained approval from the US Food and Drug Administration, the growing body of research on this subject is promising. However, the development of RNA therapies faces several challenges that must be overcome. These include the efficient delivery of drugs into cells, the potential for immunogenic responses, and safety. Resolving these obstacles is crucial to advance the development of RNA therapies. This review explores the newest developments in medical studies, treatment plans, and results related to RNA therapies for heart disease. Furthermore, it discusses the exciting possibilities and difficulties in this innovative area of research.
Collapse
Affiliation(s)
| | | | | | - Neil Garg
- Rowan-Virtua School of osteopathic medicine, Stratford, NJ, USA
| | - Emily Meale
- Rowan-Virtua School of osteopathic medicine, Stratford, NJ, USA
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | - Goshen David Miteu
- School of Biosciences, University of Nottingham, Nottingham, England, United Kingdom
| | | | - Abdul Qadeer
- Hospital Internal Medicine Department, Scottsdale Campus, Mayo Clinic, AZ, USA
| | | | | | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Lehigh Valley Heart and Vascular Institute, Lehigh Valley Health Network, Allentown, PA, USA.
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic Foundation, New Orleans, LA, United States; The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA, United States
| |
Collapse
|
9
|
Wang AYL, Chang YC, Chen KH, Loh CYY. Potential Application of Modified mRNA in Cardiac Regeneration. Cell Transplant 2024; 33:9636897241248956. [PMID: 38715279 PMCID: PMC11080755 DOI: 10.1177/09636897241248956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Heart failure remains the leading cause of human death worldwide. After a heart attack, the formation of scar tissue due to the massive death of cardiomyocytes leads to heart failure and sudden death in most cases. In addition, the regenerative ability of the adult heart is limited after injury, partly due to cell-cycle arrest in cardiomyocytes. In the current post-COVID-19 era, urgently authorized modified mRNA (modRNA) vaccines have been widely used to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Therefore, modRNA-based protein replacement may act as an alternative strategy for improving heart disease. It is a safe, effective, transient, low-immunogenic, and integration-free strategy for in vivo protein expression, in addition to recombinant protein and stem-cell regenerative therapies. In this review, we provide a summary of various cardiac factors that have been utilized with the modRNA method to enhance cardiovascular regeneration, cardiomyocyte proliferation, fibrosis inhibition, and apoptosis inhibition. We further discuss other cardiac factors, modRNA delivery methods, and injection methods using the modRNA approach to explore their application potential in heart disease. Factors for promoting cardiomyocyte proliferation such as a cocktail of three genes comprising FoxM1, Id1, and Jnk3-shRNA (FIJs), gp130, and melatonin have potential to be applied in the modRNA approach. We also discuss the current challenges with respect to modRNA-based cardiac regenerative medicine that need to be overcome to apply this approach to heart disease. This review provides a short description for investigators interested in the development of alternative cardiac regenerative medicines using the modRNA platform.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | |
Collapse
|
10
|
Wang Q, Song Y, Gao J, Li Q, Chen J, Xie Y, Wang Z, Tan H, Yang H, Zhang N, Qian J, Pang Z, Huang Z, Ge J. Hippo pathway-manipulating neutrophil-mimic hybrid nanoparticles for cardiac ischemic injury via modulation of local immunity and cardiac regeneration. Acta Pharm Sin B 2023; 13:4999-5015. [PMID: 38045050 PMCID: PMC10692379 DOI: 10.1016/j.apsb.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 12/05/2023] Open
Abstract
The promise of regeneration therapy for restoration of damaged myocardium after cardiac ischemic injury relies on targeted delivery of proliferative molecules into cardiomyocytes whose healing benefits are still limited owing to severe immune microenvironment due to local high concentration of proinflammatory cytokines. Optimal therapeutic strategies are therefore in urgent need to both modulate local immunity and deliver proliferative molecules. Here, we addressed this unmet need by developing neutrophil-mimic nanoparticles NM@miR, fabricated by coating hybrid neutrophil membranes with artificial lipids onto mesoporous silica nanoparticles (MSNs) loaded with microRNA-10b. The hybrid membrane could endow nanoparticles with strong capacity to migrate into inflammatory sites and neutralize proinflammatory cytokines and increase the delivery efficiency of microRNA-10b into adult mammalian cardiomyocytes (CMs) by fusing with cell membranes and leading to the release of MSNs-miR into cytosol. Upon NM@miR administration, this nanoparticle could home to the injured myocardium, restore the local immunity, and efficiently deliver microRNA-10b to cardiomyocytes, which could reduce the activation of Hippo-YAP pathway mediated by excessive cytokines and exert the best proliferative effect of miR-10b. This combination therapy could finally improve cardiac function and mitigate ventricular remodeling. Consequently, this work offers a combination strategy of immunity modulation and proliferative molecule delivery to boost cardiac regeneration after injury.
Collapse
Affiliation(s)
- Qiaozi Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yanan Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jinfeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yifang Xie
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhengmin Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haipeng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Hongbo Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zheyong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
11
|
Menasché P. Human PSC-derived cardiac cells and their products: therapies for cardiac repair. J Mol Cell Cardiol 2023; 183:14-21. [PMID: 37595498 DOI: 10.1016/j.yjmcc.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Despite the dramatic improvements in the management of patients with chronic heart failure which have occurred over the last decades, some of them still exhaust conventional drug-based therapies without being eligible for more aggressive options like heart transplantation or implantation of a left ventricular assist device. Cell therapy has thus emerged as a possible means of filling this niche. Multiple cell types have now been tested both in the laboratory but also in the clinics and it is fair to acknowledge that none of the clinical trials have yet conclusively proven the efficacy of cell-based approaches. These clinical studies, however, have entailed the use of cells from various sources but of non-cardiac lineage origins. Although this might not be the main reason for their failures, the discovery of pluripotent stem cells capable of generating cardiomyocytes now raises the hope that such cardiac-committed cells could be therapeutically more effective. In this review, we will first describe where we currently are with regard to the clinical trials using PSC-differentiated cells and discuss the main issues which remain to be addressed. In parallel, because the capacity of cells to stably engraft in the recipient heart has increasingly been questioned, it has been hypothesized that a major mechanism of action could be the cell-triggered release of biomolecules that foster host-associated reparative pathways. Thus, in the second part of this review, we will discuss the rationale, clinically relevant advantages and pitfalls associated with the use of these PSC "products".
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université Paris Cité, Inserm, PARCC, F-75015 Paris, France.
| |
Collapse
|
12
|
Wang Y, Wu M, Guo H. Modified mRNA as a Treatment for Myocardial Infarction. Int J Mol Sci 2023; 24:ijms24054737. [PMID: 36902165 PMCID: PMC10003380 DOI: 10.3390/ijms24054737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Myocardial infarction (MI) is a severe disease with high mortality worldwide. However, regenerative approaches remain limited and with poor efficacy. The major difficulty during MI is the substantial loss of cardiomyocytes (CMs) with limited capacity to regenerate. As a result, for decades, researchers have been engaged in developing useful therapies for myocardial regeneration. Gene therapy is an emerging approach for promoting myocardial regeneration. Modified mRNA (modRNA) is a highly potential delivery vector for gene transfer with its properties of efficiency, non-immunogenicity, transiency, and relative safety. Here, we discuss the optimization of modRNA-based therapy, including gene modification and delivery vectors of modRNA. Moreover, the effective of modRNA in animal MI treatment is also discussed. We conclude that modRNA-based therapy with appropriate therapeutical genes can potentially treat MI by directly promoting proliferation and differentiation, inhibiting apoptosis of CMs, as well as enhancing paracrine effects in terms of promoting angiogenesis and inhibiting fibrosis in heart milieu. Finally, we summarize the current challenges of modRNA-based cardiac treatment and look forward to the future direction of such treatment for MI. Further advanced clinical trials incorporating more MI patients should be conducted in order for modRNA therapy to become practical and feasible in real-world treatment.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiping Wu
- Science and Technology Department, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (M.W.); (H.G.)
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (M.W.); (H.G.)
| |
Collapse
|
13
|
Liu Y, Xue Y, Zhang Z, Ji J, Li C, Zheng K, Lu J, Gao Y, Gong Y, Zhang Y, Shi X. Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with acetaminophen-induced liver injury. FASEB J 2023; 37:e22689. [PMID: 36468767 DOI: 10.1096/fj.202200945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) by acetaminophen (APAP) was one of the most challenging liver diseases. Wolfberry (Lycium barbarum L.), a traditional Chinese medicinal material and food supplement, has a potential effect on increasing the abundance of Akkermansia muciniphila (A. muciniphila) in mice colons. However, the effect and mechanism of wolfberry remain unclear in APAP-induced DILI. In this study, wolfberry promoted the proliferation of activated-A. muciniphila in vitro and in vivo. For the first time, we detected that the activated-A. muciniphila but not the killed-A. muciniphila increased the expression level of Yes-associated protein 1 (YAP1) in the liver and alleviated liver injury in APAP-induced DILI mice. Mechanically, A. muciniphila improved the intestinal mucosal barrier and reduced lipopolysaccharide (LPS) content in the liver, leading to the increased expression level of YAP1. Furthermore, wolfberry increased the A. muciniphila abundance in the colon and YAP1 expression in the liver from APAP-induced DILI mice, which promoted the recovery of APAP-induced liver injury. Meanwhile, wolfberry combination with A. muciniphila synergistically increased AKK abundance and YAP1 expression in the liver. Our research provides an innovative strategy to improve DILI.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
14
|
Magadum A. Modified mRNA Therapeutics for Heart Diseases. Int J Mol Sci 2022; 23:ijms232415514. [PMID: 36555159 PMCID: PMC9779737 DOI: 10.3390/ijms232415514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a substantial global health problem and the leading cause of death worldwide. Although many conventional small-molecule treatments are available to support the cardiac function of the patient with CVD, they are not effective as a cure. Among potential targets for gene therapy are severe cardiac and peripheral ischemia, heart failure, vein graft failure, and some forms of dyslipidemias. In the last three decades, multiple gene therapy tools have been used for heart diseases caused by proteins, plasmids, adenovirus, and adeno-associated viruses (AAV), but these remain as unmet clinical needs. These gene therapy methods are ineffective due to poor and uncontrolled gene expression, low stability, immunogenicity, and transfection efficiency. The synthetic modified mRNA (modRNA) presents a novel gene therapy approach which provides a transient, stable, safe, non-immunogenic, controlled mRNA delivery to the heart tissue without any risk of genomic integration, and achieves a therapeutic effect in different organs, including the heart. The mRNA translation starts in minutes, and remains stable for 8-10 days (pulse-like kinetics). The pulse-like expression of modRNA in the heart induces cardiac repair, cardiomyocyte proliferation and survival, and inhibits cardiomyocyte apoptosis post-myocardial infarction (MI). Cell-specific (cardiomyocyte) modRNA translation developments established cell-specific modRNA therapeutics for heart diseases. With these laudable characteristics, combined with its expression kinetics in the heart, modRNA has become an attractive therapeutic for the treatment of CVD. This review discusses new developments in modRNA therapy for heart diseases.
Collapse
Affiliation(s)
- Ajit Magadum
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Depletion of VGLL4 Causes Perinatal Lethality without Affecting Myocardial Development. Cells 2022; 11:cells11182832. [PMID: 36139407 PMCID: PMC9496954 DOI: 10.3390/cells11182832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease is one of the leading causes of pediatric morbidity and mortality, thus highlighting the importance of deciphering the molecular mechanisms that control heart development. As the terminal transcriptional effectors of the Hippo-YAP pathway, YAP and TEAD1 form a transcriptional complex that regulates the target gene expression and depletes either of these two genes in cardiomyocytes, thus resulting in cardiac hypoplasia. Vestigial-like 4 (VGLL4) is a transcriptional co-factor that interacts with TEAD and suppresses the YAP/TEAD complex by competing against YAP for TEAD binding. To understand the VGLL4 function in the heart, we generated two VGLL4 loss-of-function mouse lines: a germline Vgll4 depletion allele and a cardiomyocyte-specific Vgll4 depletion allele. The whole-body deletion of Vgll4 caused defective embryo development and perinatal lethality. The analysis of the embryos at day 16.5 revealed that Vgll4 knockout embryos had reduced body size, malformed tricuspid valves, and normal myocardium. Few whole-body Vgll4 knockout pups could survive up to 10 days, and none of them showed body weight gain. In contrast to the whole-body Vgll4 knockout mutants, cardiomyocyte-specific Vgll4 knockout mice had no noticeable heart growth defects and had normal heart function. In summary, our data suggest that VGLL4 is required for embryo development but dispensable for myocardial growth.
Collapse
|
16
|
Zheng A, Chen Q, Zhang L. The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Front Immunol 2022; 13:971416. [PMID: 36059522 PMCID: PMC9433876 DOI: 10.3389/fimmu.2022.971416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster and mammals as a key regulator of tissue growth both in physiological and pathological states. Numerous studies depict the vital role of the Hippo pathway in cardiovascular development, heart regeneration, organ size and vascular remodeling through the regulation of YAP (yes-associated protein) translocation. Recently, an increasing number of studies have focused on the Hippo-YAP pathway in inflammation and immunology. Although the Hippo-YAP pathway has been revealed to play controversial roles in different contexts and cell types in the cardiovascular system, the mechanisms regulating tissue inflammation and the immune response remain to be clarified. In this review, we summarize findings from the past decade on the function and mechanism of the Hippo-YAP pathway in CVDs (cardiovascular diseases) such as myocardial infarction, cardiomyopathy and atherosclerosis. In particular, we emphasize the role of the Hippo-YAP pathway in regulating inflammatory cell infiltration and inflammatory cytokine activation.
Collapse
Affiliation(s)
| | | | - Li Zhang
- *Correspondence: Li Zhang, ; Qishan Chen,
| |
Collapse
|
17
|
Mia MM, Singh MK. Emerging roles of the Hippo signaling pathway in modulating immune response and inflammation-driven tissue repair and remodeling. FEBS J 2022; 289:4061-4081. [PMID: 35363945 DOI: 10.1111/febs.16449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Inflammation is an evolutionarily conserved process and part of the body's defense mechanism. Inflammation leads to the activation of immune and non-immune cells that protect the host tissue/organs from injury or intruding pathogens. The Hippo pathway is an evolutionarily conserved kinase cascade with an established role in regulating cell proliferation, survival, and differentiation. It is involved in diverse biological processes, including organ size control and tissue homeostasis. Recent clinical and pre-clinical studies have shown that the Hippo signaling pathway is also associated with injury- and pathogen-induced tissue inflammation and associated immunopathology. In this review, we have summarized the recent findings related to the involvement of the Hippo signaling pathway in modulating the immune response in different acute and chronic inflammatory diseases and its impact on tissue repair and remodeling.
Collapse
Affiliation(s)
- Masum M Mia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
18
|
Evers MJW, Du W, Yang Q, Kooijmans SAA, Vink A, van Steenbergen M, Vader P, de Jager SCA, Fuchs SA, Mastrobattista E, Sluijter JPG, Lei Z, Schiffelers R. Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J Control Release 2022; 343:207-216. [PMID: 35077739 DOI: 10.1016/j.jconrel.2022.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
Abstract
Lipid Nanoparticles (LNPs) are a promising drug delivery vehicle for clinical siRNA delivery. Modified mRNA (modRNA) has recently gained great attention as a therapeutic molecule in cardiac regeneration. However, for mRNA to be functional, it must first reach the diseased myocardium, enter the target cell, escape from the endosomal compartment into the cytosol and be translated into a functional protein. However, it is unknown if LNPs can effectively deliver mRNA, which is much larger than siRNA, to the ischemic myocardium. Here, we evaluated the ability of LNPs to deliver mRNA to the myocardium upon ischemia-reperfusion injury functionally. By exploring the bio-distribution of fluorescently labeled LNPs, we observed that, upon reperfusion, LNPs accumulated in the infarct area of the heart. Subsequently, the functional delivery of modRNA was evaluated by the administration of firefly luciferase encoding modRNA. Concomitantly, a significant increase in firefly luciferase expression was observed in the heart upon myocardial reperfusion when compared to sham-operated animals. To characterize the targeted cells within the myocardium, we injected LNPs loaded with Cre modRNA into Cre-reporter mice. Upon LNP infusion, Tdtomato+ cells, derived from Cre mediated recombination, were observed in the infarct region as well as the epicardial layer upon LNP infusion. Within the infarct area, most targeted cells were cardiac fibroblasts but also some cardiomyocytes and macrophages were found. Although the expression levels were low compared to LNP-modRNA delivery into the liver, our data show the ability of LNPs to functionally deliver modRNA therapeutics to the damaged myocardium, which holds great promise for modRNA-based cardiac therapies.
Collapse
Affiliation(s)
| | - Wenjuan Du
- Department of Experimental Cardiology, Circulatory Health Laboratory, UMC Utrecht, Utrecht, the Netherlands; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | | | | | - Aryan Vink
- Department of Pathology, UMC Utrecht, Utrecht, the Netherlands
| | - Mies van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, the Netherlands
| | - Pieter Vader
- CDL Research, UMC Utrecht, Utrecht, the Netherlands; Department of Experimental Cardiology, Circulatory Health Laboratory, UMC Utrecht, Utrecht, the Netherlands
| | - Saskia C A de Jager
- Department of Experimental Cardiology, Circulatory Health Laboratory, UMC Utrecht, Utrecht, the Netherlands
| | - Sabine A Fuchs
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, the Netherlands
| | - Joost P G Sluijter
- Department of Experimental Cardiology, Circulatory Health Laboratory, UMC Utrecht, Utrecht, the Netherlands; Regenerative medicine Centre, UMC Utrecht, University Utrecht, Utrecht, the Netherlands.
| | - Zhiyong Lei
- CDL Research, UMC Utrecht, Utrecht, the Netherlands; Department of Experimental Cardiology, Circulatory Health Laboratory, UMC Utrecht, Utrecht, the Netherlands.
| | | |
Collapse
|
19
|
Elkhalifa D, Rayan M, Negmeldin AT, Elhissi A, Khalil A. Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomed Pharmacother 2022; 145:112385. [PMID: 34915673 PMCID: PMC8552589 DOI: 10.1016/j.biopha.2021.112385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.
Collapse
Affiliation(s)
- Dana Elkhalifa
- Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T Negmeldin
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar; Office of the Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
21
|
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021; 10:cells10102512. [PMID: 34685492 PMCID: PMC8533951 DOI: 10.3390/cells10102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- COVID-19
- Homeostasis
- Humans
- Mice
- MicroRNAs/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- Myocardium/metabolism
- Origin of Life
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Untranslated/genetics
- RNA, Viral/metabolism
- Regeneration
- SARS-CoV-2/genetics
Collapse
Affiliation(s)
- Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Fabio Desideri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Center for Life Nano & Neuro-Science of Instituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Correspondence:
| |
Collapse
|
22
|
Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res 2021; 118:2402-2414. [PMID: 34528077 DOI: 10.1093/cvr/cvab291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo pathway is an evolutionarily and functionally conserved signaling pathway that controls organ size by regulating cell proliferation, apoptosis, and differentiation. Emerging evidence has shown that the Hippo pathway plays critical roles in cardiac development, homeostasis, disease, and regeneration. Targeting the Hippo pathway has tremendous potential as a therapeutic strategy for treating intractable cardiovascular diseases such as heart failure. In this review, we summarize the function of the Hippo pathway in the heart. Particularly, we highlight the posttranslational modification of Hippo pathway components, including the core kinases LATS1/2 and their downstream effectors YAP/TAZ, in different contexts, which has provided new insights and avenues in cardiac research.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Bing Xie
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030.,Texas Heart Institute, Houston, Texas, 77030
| |
Collapse
|
23
|
Ginkgolide B Protects Cardiomyocytes from Angiotensin II-Induced Hypertrophy via Regulation of Autophagy through SIRT1-FoxO1. Cardiovasc Ther 2021; 2021:5554569. [PMID: 34257705 PMCID: PMC8245256 DOI: 10.1155/2021/5554569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/01/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Ginkgolide B (GB) is an active ingredient extracted from Ginkgo biloba leaves. However, the effects of GB on cardiac hypertrophy remain unclear. The study is aimed at determining whether GB could alleviate cardiac hypertrophy and exploring its underlying molecular mechanism. Rat cardiomyocyte cell line H9c2 cells were pretreated with GB and incubated with angiotensin II (Ang II) to simulate an in vitro cardiac hypertrophy model. Cell viability, cell size, hypertrophy markers, and autophagy were determined in H9c2 cells after Ang II treatment. Proteins involved in autophagy and the SIRT1 pathway were determined by western blot. Our data demonstrated that GB attenuated Ang II-induced cardiac hypertrophy and reduced the mRNA expressions of hypertrophy marker, atrial natriuretic peptide (ANP), and β-myosin heavy chain (β-MHC). GB further increased Ang II-induced autophagy in H9c2 cells and modulated expressions of autophagy-related proteins Beclin1 and P62. Modulation of autophagy using autophagy inhibitor 3-methyladenine (3-MA) could abrogate GB-downregulated transcription of NPPA. We then showed that GB attenuated Ang II-induced oxidative stress and reduction in SIRT1 and FoxO1 protein expression. Finally, the effect of GB on autophagy and cardiac hypertrophy could be reversed by SIRT1 inhibitor EX-527. GB inhibits Ang II-induced cardiac hypertrophy by enhancing autophagy via the SIRT1-FoxO1 signaling pathway and might be a potential agent in treating pathological cardiac hypertrophy.
Collapse
|
24
|
Gao Y, Sun Y, Ercan-Sencicek AG, King JS, Akerberg BN, Ma Q, Kontaridis MI, Pu WT, Lin Z. YAP/TEAD1 Complex Is a Default Repressor of Cardiac Toll-Like Receptor Genes. Int J Mol Sci 2021; 22:6649. [PMID: 34206257 PMCID: PMC8268263 DOI: 10.3390/ijms22136649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.
Collapse
Affiliation(s)
- Yunan Gao
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| | - Adife Gulhan Ercan-Sencicek
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Justin S. King
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Maria I. Kontaridis
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| |
Collapse
|
25
|
Francisco J, Zhang Y, Nakada Y, Jeong JI, Huang CY, Ivessa A, Oka S, Babu GJ, Del Re DP. AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Sci Rep 2021; 11:10553. [PMID: 34006931 PMCID: PMC8131354 DOI: 10.1038/s41598-021-89989-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is a hallmark of heart disease independent of etiology and is thought to contribute to impaired cardiac dysfunction and development of heart failure. However, the underlying mechanisms that regulate the differentiation of fibroblasts to myofibroblasts and fibrotic responses remain incompletely defined. As a result, effective treatments to mitigate excessive fibrosis are lacking. We recently demonstrated that the Hippo pathway effector Yes-associated protein (YAP) is an important mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Yet, whether YAP activation in cardiac fibroblasts is sufficient to drive fibrosis, and how fibroblast YAP affects myocardial inflammation, a significant component of adverse cardiac remodeling, are largely unknown. In this study, we leveraged adeno-associated virus (AAV) to target cardiac fibroblasts and demonstrate that chronic YAP expression upregulated indices of fibrosis and inflammation in the absence of additional stress. YAP occupied the Ccl2 gene and promoted Ccl2 expression, which was associated with increased macrophage infiltration, pro-inflammatory cytokine expression, collagen deposition, and cardiac dysfunction in mice with cardiac fibroblast-targeted YAP overexpression. These results are consistent with other recent reports and extend our understanding of YAP function in modulating fibrotic and inflammatory responses in the heart.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Yasuki Nakada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Jae Im Jeong
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Chun-Yang Huang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
26
|
Magadum A, Singh N, Kurian AA, Sharkar MTK, Sultana N, Chepurko E, Kaur K, Żak MM, Hadas Y, Lebeche D, Sahoo S, Hajjar R, Zangi L. Therapeutic Delivery of Pip4k2c-Modified mRNA Attenuates Cardiac Hypertrophy and Fibrosis in the Failing Heart. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004661. [PMID: 34026458 PMCID: PMC8132051 DOI: 10.1002/advs.202004661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality worldwide. One of the risk factors for HF is cardiac hypertrophy (CH), which is frequently accompanied by cardiac fibrosis (CF). CH and CF are controlled by master regulators mTORC1 and TGF-β, respectively. Type-2-phosphatidylinositol-5-phosphate-4-kinase-gamma (Pip4k2c) is a known mTORC1 regulator. It is shown that Pip4k2c is significantly downregulated in the hearts of CH and HF patients as compared to non-injured hearts. The role of Pip4k2c in the heart during development and disease is unknown. It is shown that deleting Pip4k2c does not affect normal embryonic cardiac development; however, three weeks after TAC, adult Pip4k2c-/- mice has higher rates of CH, CF, and sudden death than wild-type mice. In a gain-of-function study using a TAC mouse model, Pip4k2c is transiently upregulated using a modified mRNA (modRNA) gene delivery platform, which significantly improve heart function, reverse CH and CF, and lead to increased survival. Mechanistically, it is shown that Pip4k2c inhibits TGFβ1 via its N-terminal motif, Pip5k1α, phospho-AKT 1/2/3, and phospho-Smad3. In sum, loss-and-gain-of-function studies in a TAC mouse model are used to identify Pip4k2c as a potential therapeutic target for CF, CH, and HF, for which modRNA is a highly translatable gene therapy approach.
Collapse
Affiliation(s)
- Ajit Magadum
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Neha Singh
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Ann Anu Kurian
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Nishat Sultana
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Elena Chepurko
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Keerat Kaur
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Magdalena M. Żak
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yoav Hadas
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Djamel Lebeche
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Susmita Sahoo
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Roger Hajjar
- Phospholamban FoundationAmsterdamThe Netherlands
| | - Lior Zangi
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
27
|
Liao H, Qi Y, Ye Y, Yue P, Zhang D, Li Y. Mechanotranduction Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes. Front Cell Dev Biol 2021; 8:625089. [PMID: 33553165 PMCID: PMC7858659 DOI: 10.3389/fcell.2020.625089] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are one of the most important organelles in cardiomyocytes. Mitochondrial homeostasis is necessary for the maintenance of normal heart function. Mitochondria perform four major biological processes in cardiomyocytes: mitochondrial dynamics, metabolic regulation, Ca2+ handling, and redox generation. Additionally, the cardiovascular system is quite sensitive in responding to changes in mechanical stress from internal and external environments. Several mechanotransduction pathways are involved in regulating the physiological and pathophysiological status of cardiomyocytes. Typically, the extracellular matrix generates a stress-loading gradient, which can be sensed by sensors located in cellular membranes, including biophysical and biochemical sensors. In subsequent stages, stress stimulation would regulate the transcription of mitochondrial related genes through intracellular transduction pathways. Emerging evidence reveals that mechanotransduction pathways have greatly impacted the regulation of mitochondrial homeostasis. Excessive mechanical stress loading contributes to impairing mitochondrial function, leading to cardiac disorder. Therefore, the concept of restoring mitochondrial function by shutting down the excessive mechanotransduction pathways is a promising therapeutic strategy for cardiovascular diseases. Recently, viral and non-viral protocols have shown potentials in application of gene therapy. This review examines the biological process of mechanotransduction pathways in regulating mitochondrial function in response to mechanical stress during the development of cardiomyopathy and heart failure. We also summarize gene therapy delivery protocols to explore treatments based on mechanical stress-induced mitochondrial dysfunction, to provide new integrative insights into cardiovascular diseases.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Chanda PK, Sukhovershin R, Cooke JP. mRNA-Enhanced Cell Therapy and Cardiovascular Regeneration. Cells 2021; 10:187. [PMID: 33477787 PMCID: PMC7832270 DOI: 10.3390/cells10010187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
mRNA has emerged as an important biomolecule in the global call for the development of therapies during the COVID-19 pandemic. Synthetic in vitro-transcribed (IVT) mRNA can be engineered to mimic naturally occurring mRNA and can be used as a tool to target "undruggable" diseases. Recent advancement in the field of RNA therapeutics have addressed the challenges inherent to this drug molecule and this approach is now being applied to several therapeutic modalities, from cancer immunotherapy to vaccine development. In this review, we discussed the use of mRNA for stem cell generation or enhancement for the purpose of cardiovascular regeneration.
Collapse
Affiliation(s)
| | | | - John P. Cooke
- RNA Therapeutics Program, Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (P.K.C.); (R.S.)
| |
Collapse
|
29
|
Yue P, Xia S, Wu G, Liu L, Zhou K, Liao H, Li J, Zheng X, Guo Y, Hua Y, Zhang D, Li Y. Attenuation of Cardiomyocyte Hypertrophy via Depletion Myh7 using CASAAV. Cardiovasc Toxicol 2020; 21:255-264. [PMID: 33098074 DOI: 10.1007/s12012-020-09617-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Myh7 is a classic biomarker for cardiac remodeling and a potential target to attenuate cardiomyocyte (CM) hypertrophy. This study aimed to identify the dominant function of Myh7 after birth and determine whether its removal would affect CM maturation or contribute to reversal of pathological hypertrophy phenotypes. The CASAAV (CRISPR/Cas9-AAV9-based somatic mutagenesis) technique was used to deplete Myh6 and Myh7, and an AAV dosage of 5 × 109 vg/g was used to generate a mosaic CM depletion model to explore the function of Myh7 in adulthood. CM hypertrophy was induced by transverse aortic constriction (TAC) in Rosa26Cas9-P2A-GFP mice at postnatal day 28 (PND28). Heart function was measured by echocardiography. Isolated CMs and in situ imaging were used to analyze the structure and morphology of CM. We discovered that CASAAV successfully silenced Myh6 and Myh7 in CMs, and early depletion of Myh7 led to mild adulthood lethality. However, the Myh7 PND28-knockout mice had normal heart phenotype and function, with normal cellular size and normal organization of sarcomeres and T-tubules. The TAC mice also received AAV-Myh7-Cre to produce Myh7-knockout CMs, which were also of normal size, and echocardiography demonstrated a reversal of cardiac hypertrophy. In conclusion, Myh7 has a role during the maturation period but rarely functions in adulthood. Thus, the therapeutic time should exceed the period of maturation. These results confirm Myh7 as a potential therapeutic target and indicate that its inhibition could help reverse CM hypertrophy.
Collapse
Affiliation(s)
- Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, Hubei, China
| | - Gang Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, Hubei, China.
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Abstract
Despite various clinical modalities available for patients, heart disease remains among the leading causes of mortality and morbidity worldwide. Genetic medicine, particularly mRNA, has broad potential as a therapeutic. More specifically, mRNA-based protein delivery has been used in the fields of cancer and vaccination, but recent changes to the structural composition of mRNA have led the scientific community to swiftly embrace it as a new drug to deliver missing genes to injured myocardium and many other organs. Modified mRNA (modRNA)-based gene delivery features transient but potent protein translation and low immunogenicity, with minimal risk of insertional mutagenesis. In this review, we compared and listed the advantages of modRNA over traditional vectors for cardiac therapy, with particular focus on using modRNA therapy in cardiac repair. We present a comprehensive overview of modRNA's role in cardiomyocyte (CM) proliferation, cardiac vascularization, and prevention of cardiac apoptosis. We also emphasize recent advances in modRNA delivery strategies and discuss the challenges for its clinical translation.
Collapse
|