1
|
Fang L, Zhang G, Wu Y, Li H, Li Z, Yu B, Wang B, Zhou L. Fibroblast growth factor 23 inhibition attenuates steroid-induced osteonecrosis of the femoral head through pyroptosis. Sci Rep 2024; 14:16270. [PMID: 39009650 PMCID: PMC11251279 DOI: 10.1038/s41598-024-66799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is the predominant cause of non-traumatic osteonecrosis of the femoral head (ONFH). Impaired blood supply and reduced osteogenic activity of the femoral head are the key pathogenic mechanisms of SONFH. Fibroblast growth factor 23 (FGF23) levels are not only a biomarker for early vascular lesions caused by abnormal mineral metabolism, but can also act directly on the peripheral vascular system, leading to vascular pathology. The aim of this study was to observe the role of FGF23 on bone microarchitecture and vascular endothelium, and to investigate activation of pyroptosis in SONFH. Lipopolysaccharide (LPS) combined with methylprednisolone (MPS) was applied for SONFH mouse models, and adenovirus was used to increase or decrease the level of FGF23. Micro-CT and histopathological staining were used to observe the structure of the femoral head, and immunohistochemical staining was used to observe the vascular density. The cells were further cultured in vitro and placed in a hypoxic environment for 12 h to simulate the microenvironment of vascular injury during SONFH. The effect of FGF23 on osteogenic differentiation was evaluated using alkaline phosphatase staining, alizarin red S staining and expression of bone formation-related proteins. Matrigel tube formation assay in vitro and immunofluorescence were used to detect the ability of FGF23 to affect endothelial cell angiogenesis. Steroids activated the pyroptosis signaling pathway, promoted the secretion of inflammatory factors in SONFH models, led to vascular endothelial dysfunction and damaged the femoral head structure. In addition, FGF23 inhibited the HUVECs angiogenesis and BMSCs osteogenic differentiation. FGF23 silencing attenuated steroid-induced osteonecrosis of the femoral head by inhibiting the pyroptosis signaling pathway, and promoting osteogenic differentiation of BMSCs and angiogenesis of HUVECs in vitro.
Collapse
Affiliation(s)
- Lun Fang
- Institute of Sports Medicine, College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, People's Republic of China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, People's Republic of China
| | - Yadi Wu
- Institute of Sports Medicine, College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, People's Republic of China
| | - Hao Li
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Zhongzhe Li
- Institute of Sports Medicine, College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, People's Republic of China
| | - Beilei Yu
- Institute of Sports Medicine, College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, People's Republic of China
| | - Bin Wang
- Institute of Sports Medicine, College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, People's Republic of China
| | - Lu Zhou
- Institute of Sports Medicine, College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Chai JL, Lu BW, Du HT, Wen MT, Liang XZ, Wang P. Pyroptosis -related potential diagnostic biomarkers in steroid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord 2023; 24:609. [PMID: 37491198 PMCID: PMC10367407 DOI: 10.1186/s12891-023-06729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
PURPOSE Steroid-induced necrosis of the femoral head (SONFH) is a refractory orthopedic hip disease occurring in young and middle-aged people, with glucocorticoids being the most common cause. Previous experimental studies have shown that cell pyroptosis may be involved in the pathological process of SONFH, but its pathogenesis in SONFH is still unclear. This study aims to screen and validate potential pyroptosis-related genes in SONFH diagnosis by bioinformatics analysis to further elucidate the mechanism of pyroptosis in SONFH. METHODS There were 33 pyroptosis-related genes obtained from the prior reviews. The mRNA expression was downloaded from GSE123568 dataset in the Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The pyroptosis-related differentially expressed genes involved in SONFH were identified with "affy" and "limma" R package by intersecting the GSE123568 dataset with pyroptosis genes. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the pyroptosis-related differentially expressed genes involved in SONFH were conducted by "clusterProfiler" R package and visualized by "GOplot" R package. Then, the correlations between the expression levels of the pyroptosis-related differentially expressed genes involved in SONFH were confirmed with "corrplot" R package. Moreover, the protein-protein interaction (PPI) network was analysed by using GeneMANIA database. Next, The ROC curve of pyroptosis-related differentially expressed genes were analyzed by "pROC" R package. RESULTS A total of 10 pyroptosis-related differentially expressed genes were identified between the peripheral blood samples of SONFH patients and non-SONFH patients based on the defined criteria, including 20 upregulated genes and 10 downregulated genes. The GO and KEGG pathway enrichment analyses revealed that these 10 pyroptosis-related differentially expressed genes involved in SONFH were particularly enriched in cysteine-type endopeptidase activity involved in apoptotic process, positive regulation of interleukin-1 beta secretion and NOD-like receptor signaling pathway. Correlation analysis revealed significant correlations among the 10 differentially expressed pyroptosis-related genes involved in SONFH. The PPI results demonstrated that the 10 pyroptosis-related differentially expressed genes interacted with each other. Compared to non-SONFH samples, these pyroptosis-related differentially expressed genes had good predictive diagnostic efficacy (AUC = 1.000, CI = 1.000-1.000) in the SONFH samples, and NLRP1 had the highest diagnostic value (AUC: 0.953) in the SONFH samples. CONCLUSIONS There were 10 potential pyroptosis-related differentially expressed genes involved in SONFH were identified via bioinformatics analysis, which might serve as potential diagnostic biomarkers because they regulated pyroptosis. These results expand the understanding of SONFH associated with pyroptosis and provide new insights to further explore the mechanism of action and diagnosis of pyroptosis associated in SONFH.
Collapse
Affiliation(s)
- Jin-Lian Chai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Bo-Wen Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Hai-Tao Du
- Shandong Provincial Research Institute of Traditional Chinese Medicine, Yanzi Shanxi Road No.7, Jinan, 250014, Shandong, China
| | - Ming-Tao Wen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Shandong, 250355, Jinan, China
| | - Xue-Zhen Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Shandong, 250355, Jinan, China.
- Orthopaedic Microsurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| | - Ping Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Shandong Provincial Research Institute of Traditional Chinese Medicine, Yanzi Shanxi Road No.7, Jinan, 250014, Shandong, China.
| |
Collapse
|
5
|
Dai C, Lin Y. Comprehensive analysis of the diagnostic and therapeutic value of the hypoxia-related gene PLAUR in the progression of atherosclerosis. Sci Rep 2023; 13:8533. [PMID: 37237021 DOI: 10.1038/s41598-023-35548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis (AS) is a major contributor to a variety of negative clinical outcomes, including stroke and myocardial infarction. However, the role and therapeutic value of hypoxia-related genes in AS development has been less discussed. In this study, Plasminogen activator, urokinase receptor (PLAUR) was identified as an effective diagnostic marker for AS lesion progression by combining WGCNA and random forest algorithm. We validated the stability of the diagnostic value on multiple external datasets including humans and mice. We identified a significant correlation between PLAUR expression and lesion progression. We mined multiple single cell-RNA sequencing (sc-RNA seq) data to nominate macrophage as the key cell cluster for PLAUR mediated lesion progression. We combined cross-validation results from multiple databases to predict that HCG17-hsa-miR-424-5p-HIF1A, a competitive endogenous RNA (ceRNA) network, may regulate hypoxia inducible factor 1 subunit alpha (HIF1A) expression. The DrugMatrix database was used to predict alprazolam, valsartan, biotin A, lignocaine, and curcumin as potential drugs to delay lesion progression by antagonizing PLAUR, and AutoDock was used to verify the binding ability of drugs and PLAUR. Overall, this study provides the first systematic identification of the diagnostic and therapeutic value of PLAUR in AS and offers multiple treatment options with potential applications.
Collapse
Affiliation(s)
- Chengyi Dai
- The First People's Hospital of Xiaoshan District, Xiaoshan First Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China.
| | - Yuhang Lin
- Department of Neurology, Wenling First People's Hospital, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, Zhejiang, China
| |
Collapse
|
6
|
Saaoud F, Martinez L, Lu Y, Xu K, Shao Y, Zhuo JL, Gillespie A, Wang H, Tabbara M, Salama A, Yang X, Vazquez-Padron RI. Chronic Kidney Disease Transdifferentiates Veins into a Specialized Immune-Endocrine Organ with Increased MYCN-AP1 Signaling. Cells 2023; 12:1482. [PMID: 37296603 PMCID: PMC10252601 DOI: 10.3390/cells12111482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Most patients with end-stage renal disease (ESRD) and advanced chronic kidney disease (CKD) choose hemodialysis as their treatment of choice. Thus, upper-extremity veins provide a functioning arteriovenous access to reduce dependence on central venous catheters. However, it is unknown whether CKD reprograms the transcriptome of veins and primes them for arteriovenous fistula (AVF) failure. To examine this, we performed transcriptomic analyses of bulk RNA sequencing data of veins isolated from 48 CKD patients and 20 non-CKD controls and made the following findings: (1) CKD converts veins into immune organs by upregulating 13 cytokine and chemokine genes, and over 50 canonical and noncanonical secretome genes; (2) CKD increases innate immune responses by upregulating 12 innate immune response genes and 18 cell membrane protein genes for increased intercellular communication, such as CX3CR1 chemokine signaling; (3) CKD upregulates five endoplasmic reticulum protein-coding genes and three mitochondrial genes, impairing mitochondrial bioenergetics and inducing immunometabolic reprogramming; (4) CKD reprograms fibrogenic processes in veins by upregulating 20 fibroblast genes and 6 fibrogenic factors, priming the vein for AVF failure; (5) CKD reprograms numerous cell death and survival programs; (6) CKD reprograms protein kinase signal transduction pathways and upregulates SRPK3 and CHKB; and (7) CKD reprograms vein transcriptomes and upregulates MYCN, AP1, and 11 other transcription factors for embryonic organ development, positive regulation of developmental growth, and muscle structure development in veins. These results provide novel insights on the roles of veins as immune endocrine organs and the effect of CKD in upregulating secretomes and driving immune and vascular cell differentiation.
Collapse
Affiliation(s)
- Fatma Saaoud
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yifan Lu
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jia L Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alghidak Salama
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xiaofeng Yang
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Section of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Drummer C, Saaoud F, Jhala NC, Cueto R, Sun Y, Xu K, Shao Y, Lu Y, Shen H, Yang L, Zhou Y, Yu J, Wu S, Snyder NW, Hu W, Zhuo J‘J, Zhong Y, Jiang X, Wang H, Yang X. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front Immunol 2023; 14:1113883. [PMID: 36776889 PMCID: PMC9909353 DOI: 10.3389/fimmu.2023.1113883] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of 25% of the population and is a leading cause of cirrhosis and hepatocellular carcinoma. NAFLD ranges from simple steatosis (non-alcoholic fatty liver) to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs) and monocyte-derived macrophages, act as key players in the progression of NAFLD. Caspases are a family of endoproteases that provide critical connections to cell regulatory networks that sense disease risk factors, control inflammation, and mediate inflammatory cell death (pyroptosis). Caspase-11 can cleave gasdermin D (GSDMD) to induce pyroptosis and specifically defends against bacterial pathogens that invade the cytosol. However, it's still unknown whether high fat diet (HFD)-facilitated gut microbiota-generated cytoplasmic lipopolysaccharides (LPS) activate caspase-11 and promote NAFLD. Methods To examine this hypothesis, we performed liver pathological analysis, RNA-seq, FACS, Western blots, Seahorse mitochondrial stress analyses of macrophages and bone marrow transplantation on HFD-induced NAFLD in WT and Casp11-/- mice. Results and Discussion Our results showed that 1) HFD increases body wight, liver wight, plasma cholesterol levels, liver fat deposition, and NAFLD activity score (NAS score) in wild-type (WT) mice; 2) HFD increases the expression of caspase-11, GSDMD, interleukin-1β, and guanylate-binding proteins in WT mice; 3) Caspase-11 deficiency decreases fat liver deposition and NAS score; 4) Caspase-11 deficiency decreases bone marrow monocyte-derived macrophage (MDM) pyroptosis (inflammatory cell death) and inflammatory monocyte (IM) surface GSDMD expression; 5) Caspase-11 deficiency re-programs liver transcriptomes and reduces HFD-induced NAFLD; 6) Caspase-11 deficiency decreases extracellular acidification rates (glycolysis) and oxidative phosphorylation (OXPHOS) in inflammatory fatty acid palmitic acid-stimulated macrophages, indicating that caspase-11 significantly contributes to maintain dual fuel bioenergetics-glycolysis and OXPHOS for promoting pyroptosis in macrophages. These results provide novel insights on the roles of the caspase-11-GSDMD pathway in promoting hepatic macrophage inflammation and pyroptosis and novel targets for future therapeutic interventions involving the transition of NAFLD to NASH, hyperlipidemia, type II diabetes, metabolic syndrome, metabolically healthy obesity, atherosclerotic cardiovascular diseases, autoimmune diseases, liver transplantation, and hepatic cancers.
Collapse
Affiliation(s)
- Charles Drummer
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nirag C. Jhala
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Huimin Shen
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jia ‘Joe’ Zhuo
- Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Lu Y, Sun Y, Xu K, Shao Y, Saaoud F, Snyder NW, Yang L, Yu J, Wu S, Hu W, Sun J, Wang H, Yang X. Editorial: Endothelial cells as innate immune cells. Front Immunol 2022; 13:1035497. [PMID: 36268030 PMCID: PMC9577408 DOI: 10.3389/fimmu.2022.1035497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ying Shao
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Simmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
9
|
Xu K, Khan M, Yu J, Snyder NW, Wu S, Vazquez-Padron RI, Wang H, Yang X. Editorial: Insights in cardiovascular therapeutics: 2021 - cell death, cardiovascular injuries, and novel targets of cardiovascular therapeutics. Front Cardiovasc Med 2022; 9:981544. [PMID: 35958425 PMCID: PMC9361401 DOI: 10.3389/fcvm.2022.981544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Keman Xu
- Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Lu Y, Sun Y, Xu K, Saaoud F, Shao Y, Drummer C, Wu S, Hu W, Yu J, Kunapuli SP, Bethea JR, Vazquez-Padron RI, Sun J, Jiang X, Wang H, Yang X. Aorta in Pathologies May Function as an Immune Organ by Upregulating Secretomes for Immune and Vascular Cell Activation, Differentiation and Trans-Differentiation-Early Secretomes may Serve as Drivers for Trained Immunity. Front Immunol 2022; 13:858256. [PMID: 35320939 PMCID: PMC8934864 DOI: 10.3389/fimmu.2022.858256] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023] Open
Abstract
To determine whether aorta becomes immune organ in pathologies, we performed transcriptomic analyses of six types of secretomic genes (SGs) in aorta and vascular cells and made the following findings: 1) 53.7% out of 21,306 human protein genes are classified into six secretomes, namely, canonical, caspase 1, caspase 4, exosome, Weibel-Palade body, and autophagy; 2) Atherosclerosis (AS), chronic kidney disease (CKD) and abdominal aortic aneurysm (AAA) modulate six secretomes in aortas; and Middle East Respiratory Syndrome Coronavirus (MERS-CoV, COVID-19 homologous) infected endothelial cells (ECs) and angiotensin-II (Ang-II) treated vascular smooth muscle cells (VSMCs) modulate six secretomes; 3) AS aortas upregulate T and B cell immune SGs; CKD aortas upregulate SGs for cardiac hypertrophy, and hepatic fibrosis; and AAA aorta upregulate SGs for neuromuscular signaling and protein catabolism; 4) Ang-II induced AAA, canonical, caspase 4, and exosome SGs have two expression peaks of high (day 7)-low (day 14)-high (day 28) patterns; 5) Elastase induced AAA aortas have more inflammatory/immune pathways than that of Ang-II induced AAA aortas; 6) Most disease-upregulated cytokines in aorta may be secreted via canonical and exosome secretomes; 7) Canonical and caspase 1 SGs play roles at early MERS-CoV infected ECs whereas caspase 4 and exosome SGs play roles in late/chronic phases; and the early upregulated canonical and caspase 1 SGs may function as drivers for trained immunity (innate immune memory); 8) Venous ECs from arteriovenous fistula (AVF) upregulate SGs in five secretomes; and 9) Increased some of 101 trained immunity genes and decreased trained tolerance regulator IRG1 participate in upregulations of SGs in atherosclerotic, Ang-II induced AAA and CKD aortas, and MERS-CoV infected ECs, but less in SGs upregulated in AVF ECs. IL-1 family cytokines, HIF1α, SET7 and mTOR, ROS regulators NRF2 and NOX2 partially regulate trained immunity genes; and NRF2 plays roles in downregulating SGs more than that of NOX2 in upregulating SGs. These results provide novel insights on the roles of aorta as immune organ in upregulating secretomes and driving immune and vascular cell differentiations in COVID-19, cardiovascular diseases, inflammations, transplantations, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Yifan Lu
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jun Yu
- Center for Metabolic Disease Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - John R. Bethea
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Liu M, Xu K, Saaoud F, Shao Y, Zhang R, Lu Y, Sun Y, Drummer C, Li L, Wu S, Kunapuli SP, Criner GJ, Sun J, Shan H, Jiang X, Wang H, Yang X. 29 m 6A-RNA Methylation (Epitranscriptomic) Regulators Are Regulated in 41 Diseases including Atherosclerosis and Tumors Potentially via ROS Regulation - 102 Transcriptomic Dataset Analyses. J Immunol Res 2022; 2022:1433323. [PMID: 35211628 PMCID: PMC8863469 DOI: 10.1155/2022/1433323] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
We performed a database mining on 102 transcriptomic datasets for the expressions of 29 m6A-RNA methylation (epitranscriptomic) regulators (m6A-RMRs) in 41 diseases and cancers and made significant findings: (1) a few m6A-RMRs were upregulated; and most m6A-RMRs were downregulated in sepsis, acute respiratory distress syndrome, shock, and trauma; (2) half of 29 m6A-RMRs were downregulated in atherosclerosis; (3) inflammatory bowel disease and rheumatoid arthritis modulated m6A-RMRs more than lupus and psoriasis; (4) some organ failures shared eight upregulated m6A-RMRs; end-stage renal failure (ESRF) downregulated 85% of m6A-RMRs; (5) Middle-East respiratory syndrome coronavirus infections modulated m6A-RMRs the most among viral infections; (6) proinflammatory oxPAPC modulated m6A-RMRs more than DAMP stimulation including LPS and oxLDL; (7) upregulated m6A-RMRs were more than downregulated m6A-RMRs in cancer types; five types of cancers upregulated ≥10 m6A-RMRs; (8) proinflammatory M1 macrophages upregulated seven m6A-RMRs; (9) 86% of m6A-RMRs were differentially expressed in the six clusters of CD4+Foxp3+ immunosuppressive Treg, and 8 out of 12 Treg signatures regulated m6A-RMRs; (10) immune checkpoint receptors TIM3, TIGIT, PD-L2, and CTLA4 modulated m6A-RMRs, and inhibition of CD40 upregulated m6A-RMRs; (11) cytokines and interferons modulated m6A-RMRs; (12) NF-κB and JAK/STAT pathways upregulated more than downregulated m6A-RMRs whereas TP53, PTEN, and APC did the opposite; (13) methionine-homocysteine-methyl cycle enzyme Mthfd1 downregulated more than upregulated m6A-RMRs; (14) m6A writer RBM15 and one m6A eraser FTO, H3K4 methyltransferase MLL1, and DNA methyltransferase, DNMT1, regulated m6A-RMRs; and (15) 40 out of 165 ROS regulators were modulated by m6A eraser FTO and two m6A writers METTL3 and WTAP. Our findings shed new light on the functions of upregulated m6A-RMRs in 41 diseases and cancers, nine cellular and molecular mechanisms, novel therapeutic targets for inflammatory disorders, metabolic cardiovascular diseases, autoimmune diseases, organ failures, and cancers.
Collapse
Affiliation(s)
- Ming Liu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ruijing Zhang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Sheng Wu
- Metabolic Disease Research; Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Satya P. Kunapuli
- Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gerard J. Criner
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Huimin Shan
- Metabolic Disease Research; Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research; Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research; Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research; Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
12
|
Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. J Immunol Res 2021; 2021:3928323. [PMID: 34859106 PMCID: PMC8632388 DOI: 10.1155/2021/3928323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
We performed a panoramic analysis on both human nonalcoholic steatohepatitis (NASH) microarray data and microarray/RNA-seq data from various mouse models of nonalcoholic fatty liver disease NASH/NAFLD with total 4249 genes examined and made the following findings: (i) human NASH and NAFLD mouse models upregulate both cytokines and chemokines; (ii) pathway analysis indicated that human NASH can be classified into metabolic and immune NASH; methionine- and choline-deficient (MCD)+high-fat diet (HFD), glycine N-methyltransferase deficient (GNMT-KO), methionine adenosyltransferase 1A deficient (MAT1A-KO), and HFCD (high-fat-cholesterol diet) can be classified into inflammatory, SAM accumulation, cholesterol/mevalonate, and LXR/RXR-fatty acid β-oxidation NAFLD, respectively; (iii) canonical and noncanonical inflammasomes play differential roles in the pathogenesis of NASH/NAFLD; (iv) trained immunity (TI) enzymes are significantly upregulated in NASH/NAFLD; HFCD upregulates TI enzymes more than cytokines, chemokines, and inflammasome regulators; (v) the MCD+HFD is a model with the upregulation of proinflammatory cytokines and canonical and noncanonical inflammasomes; however, the HFCD is a model with upregulation of TI enzymes and lipid peroxidation enzymes; and (vi) caspase-11 and caspase-1 act as upstream master regulators, which partially upregulate the expressions of cytokines, chemokines, canonical and noncanonical inflammasome pathway regulators, TI enzymes, and lipid peroxidation enzymes. Our findings provide novel insights on the synergies between hyperlipidemia and hypomethylation in establishing TI and promoting inflammation in NASH and NAFLD progression and novel targets for future therapeutic interventions for NASH and NAFLD, metabolic diseases, transplantation, and cancers.
Collapse
|
13
|
Xu K, Shao Y, Saaoud F, Gillespie A, Drummer C, Liu L, Lu Y, Sun Y, Xi H, Tükel Ç, Pratico D, Qin X, Sun J, Choi ET, Jiang X, Wang H, Yang X. Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Front Cardiovasc Med 2021; 8:773473. [PMID: 34912867 PMCID: PMC8668339 DOI: 10.3389/fcvm.2021.773473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
To determine whether pro-inflammatory lipid lysophosphatidylinositols (LPIs) upregulate the expressions of membrane proteins for adhesion/signaling and secretory proteins in human aortic endothelial cell (HAEC) activation, we developed an EC biology knowledge-based transcriptomic formula to profile RNA-Seq data panoramically. We made the following primary findings: first, G protein-coupled receptor 55 (GPR55), the LPI receptor, is expressed in the endothelium of both human and mouse aortas, and is significantly upregulated in hyperlipidemia; second, LPIs upregulate 43 clusters of differentiation (CD) in HAECs, promoting EC activation, innate immune trans-differentiation, and immune/inflammatory responses; 72.1% of LPI-upregulated CDs are not induced in influenza virus-, MERS-CoV virus- and herpes virus-infected human endothelial cells, which hinted the specificity of LPIs in HAEC activation; third, LPIs upregulate six types of 640 secretomic genes (SGs), namely, 216 canonical SGs, 60 caspase-1-gasdermin D (GSDMD) SGs, 117 caspase-4/11-GSDMD SGs, 40 exosome SGs, 179 Human Protein Atlas (HPA)-cytokines, and 28 HPA-chemokines, which make HAECs a large secretory organ for inflammation/immune responses and other functions; fourth, LPIs activate transcriptomic remodeling by upregulating 172 transcription factors (TFs), namely, pro-inflammatory factors NR4A3, FOS, KLF3, and HIF1A; fifth, LPIs upregulate 152 nuclear DNA-encoded mitochondrial (mitoCarta) genes, which alter mitochondrial mechanisms and functions, such as mitochondrial organization, respiration, translation, and transport; sixth, LPIs activate reactive oxygen species (ROS) mechanism by upregulating 18 ROS regulators; finally, utilizing the Cytoscape software, we found that three mechanisms, namely, LPI-upregulated TFs, mitoCarta genes, and ROS regulators, are integrated to promote HAEC activation. Our results provide novel insights into aortic EC activation, formulate an EC biology knowledge-based transcriptomic profile strategy, and identify new targets for the development of therapeutics for cardiovascular diseases, inflammatory conditions, immune diseases, organ transplantation, aging, and cancers.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Aria Gillespie
- Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Lu Liu
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Hang Xi
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Çagla Tükel
- Center for Microbiology & Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Domenico Pratico
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eric T. Choi
- Surgery (Division of Vascular and Endovascular Surgery), Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| |
Collapse
|
14
|
Liu M, Wu N, Xu K, Saaoud F, Vasilopoulos E, Shao Y, Zhang R, Wang J, Shen H, Yang WY, Lu Y, Sun Y, Drummer C, Liu L, Li L, Hu W, Yu J, Praticò D, Sun J, Jiang X, Wang H, Yang X. Organelle Crosstalk Regulators Are Regulated in Diseases, Tumors, and Regulatory T Cells: Novel Classification of Organelle Crosstalk Regulators. Front Cardiovasc Med 2021; 8:713170. [PMID: 34368262 PMCID: PMC8339352 DOI: 10.3389/fcvm.2021.713170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
To examine whether the expressions of 260 organelle crosstalk regulators (OCRGs) in 16 functional groups are modulated in 23 diseases and 28 tumors, we performed extensive -omics data mining analyses and made a set of significant findings: (1) the ratios of upregulated vs. downregulated OCRGs are 1:2.8 in acute inflammations, 1:1 in metabolic diseases, 1:1.2 in autoimmune diseases, and 1:3.8 in organ failures; (2) sepsis and trauma-upregulated OCRG groups such as vesicle, mitochondrial (MT) fission, and mitophagy but not others, are termed as the cell crisis-handling OCRGs. Similarly, sepsis and trauma plus organ failures upregulated seven OCRG groups including vesicle, MT fission, mitophagy, sarcoplasmic reticulum–MT, MT fusion, autophagosome–lysosome fusion, and autophagosome/endosome–lysosome fusion, classified as the cell failure-handling OCRGs; (3) suppression of autophagosome–lysosome fusion in endothelial and epithelial cells is required for viral replications, which classify this decreased group as the viral replication-suppressed OCRGs; (4) pro-atherogenic damage-associated molecular patterns (DAMPs) such as oxidized low-density lipoprotein (oxLDL), lipopolysaccharide (LPS), oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC), and interferons (IFNs) totally upregulated 33 OCRGs in endothelial cells (ECs) including vesicle, MT fission, mitophagy, MT fusion, endoplasmic reticulum (ER)–MT contact, ER– plasma membrane (PM) junction, autophagosome/endosome–lysosome fusion, sarcoplasmic reticulum–MT, autophagosome–endosome/lysosome fusion, and ER–Golgi complex (GC) interaction as the 10 EC-activation/inflammation-promoting OCRG groups; (5) the expression of OCRGs is upregulated more than downregulated in regulatory T cells (Tregs) from the lymph nodes, spleen, peripheral blood, intestine, and brown adipose tissue in comparison with that of CD4+CD25− T effector controls; (6) toll-like receptors (TLRs), reactive oxygen species (ROS) regulator nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammasome-activated regulator caspase-1 regulated the expressions of OCRGs in diseases, virus-infected cells, and pro-atherogenic DAMP-treated ECs; (7) OCRG expressions are significantly modulated in all the 28 cancer datasets, and the upregulated OCRGs are correlated with tumor immune infiltrates in some tumors; (8) tumor promoter factor IKK2 and tumor suppressor Tp53 significantly modulate the expressions of OCRGs. Our findings provide novel insights on the roles of upregulated OCRGs in the pathogenesis of inflammatory diseases and cancers, and novel pathways for the future therapeutic interventions for inflammations, sepsis, trauma, organ failures, autoimmune diseases, metabolic cardiovascular diseases (CVDs), and cancers.
Collapse
Affiliation(s)
- Ming Liu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Na Wu
- Departments of Endocrinology and Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eleni Vasilopoulos
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Jirong Wang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Haitao Shen
- Departments of Endocrinology and Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Wenhui Hu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Domenico Praticò
- Alzheimer's Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, Jiang X, Wang H, Yang X. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front Immunol 2021; 12:653110. [PMID: 34248940 PMCID: PMC8269631 DOI: 10.3389/fimmu.2021.653110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jin J Luo
- Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Psychiatry and Behavioral Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
16
|
Ni D, Tang T, Lu Y, Xu K, Shao Y, Saaoud F, Saredy J, Liu L, Drummer C, Sun Y, Hu W, Lopez-Pastrana J, Luo JJ, Jiang X, Choi ET, Wang H, Yang X. Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Front Immunol 2021; 12:678201. [PMID: 34084175 PMCID: PMC8168470 DOI: 10.3389/fimmu.2021.678201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
We performed a transcriptomic analyses using the strategies we pioneered and made the following findings: 1) Normal lymphoid Tregs, diseased kidney Tregs, splenic Tregs from mice with injured muscle have 3, 17 and 3 specific (S-) pathways, respectively; 2) Tumor splenic Tregs share 12 pathways with tumor Tregs; tumor splenic Tregs and tumor Tregs have 11 and 8 S-pathways, respectively; 3) Normal and non-tumor disease Tregs upregulate some of novel 2641 canonical secretomic genes (SGs) with 24 pathways, and tumor Tregs upregulate canonical secretomes with 17 pathways; 4) Normal and non-tumor disease tissue Tregs upregulate some of novel 6560 exosome SGs with 56 exosome SG pathways (ESP), tumor Treg ESP are more focused than other Tregs; 5) Normal, non-tumor diseased Treg and tumor Tregs upregulate some of novel 961 innate immune caspase-1 SGs and 1223 innate immune caspase-4 SGs to fulfill their tissue/SG-specific and shared functions; 6) Most tissue Treg transcriptomes are controlled by Foxp3; and Tumor Tregs had increased Foxp3 non-collaboration genes with ROS and 17 other pathways; 7) Immune checkpoint receptor PD-1 does, but CTLA-4 does not, play significant roles in promoting Treg upregulated genes in normal and non-tumor disease tissue Tregs; and tumor splenic and tumor Tregs have certain CTLA-4-, and PD-1-, non-collaboration transcriptomic changes with innate immune dominant pathways; 8) Tumor Tregs downregulate more immunometabolic and innate immune memory (trained immunity) genes than Tregs from other groups; and 11) ROS significantly regulate Treg transcriptomes; and ROS-suppressed genes are downregulated more in tumor Tregs than Tregs from other groups. Our results have provided novel insights on the roles of Tregs in normal, injuries, regeneration, tumor conditions and some of canonical and innate immune non-canonical secretomes via ROS-regulatory mechanisms and new therapeutic targets for immunosuppression, tissue repair, cardiovascular diseases, chronic kidney disease, autoimmune diseases, transplantation, and cancers.
Collapse
Affiliation(s)
- Dong Ni
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - TingTing Tang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin J Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Yang Q, Zhang R, Tang P, Sun Y, Johnson C, Saredy J, Wu S, Wang J, Lu Y, Saaoud F, Shao Y, Drummer C, Xu K, Yu D, Li R, Ge S, Jiang X, Wang H, Yang X. Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance. J Immunol Res 2021; 2021:6664453. [PMID: 33628851 PMCID: PMC7889351 DOI: 10.1155/2021/6664453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The immune mechanisms underlying low-intensity ultrasound- (LIUS-) mediated suppression of inflammation and tumorigenesis remain poorly determined. METHODS We used microarray datasets from the NCBI GEO DataSet repository and conducted comprehensive data-mining analyses, where we examined the gene expression of 1376 innate immune regulators (innatome genes (IGs) in cells treated with LIUS. RESULTS We made the following findings: (1) LIUS upregulates proinflammatory IGs and downregulates metastasis genes in cancer cells, and LIUS upregulates adaptive immunity pathways but inhibits danger-sensing and inflammation pathways and promote tolerogenic differentiation in bone marrow (BM) cells. (2) LIUS upregulates IGs encoded for proteins localized in the cytoplasm, extracellular space, and others, but downregulates IG proteins localized in nuclear and plasma membranes, and LIUS downregulates phosphatases. (3) LIUS-modulated IGs act partially via several important pathways of reactive oxygen species (ROS), reverse signaling of immune checkpoint receptors B7-H4 and BTNL2, inflammatory cytokines, and static or oscillatory shear stress and heat generation, among which ROS is a dominant mechanism. (4) LIUS upregulates trained immunity enzymes in lymphoma cells and downregulates trained immunity enzymes and presumably establishes trained tolerance in BM cells. (5) LIUS modulates chromatin long-range interactions to differentially regulate IGs expression in cancer cells and noncancer cells. CONCLUSIONS Our analysis suggests novel molecular mechanisms that are utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.
Collapse
Affiliation(s)
- Qian Yang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Ultrasonic Diagnosis and Treatment Center, XiAn International Medical Center Hospital, XiAn, China
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ruijing Zhang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Peng Tang
- Department of Orthopedics, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing, China
| | - Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Susu Wu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jiwei Wang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rongshan Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Shuping Ge
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
18
|
Zhang R, Xu K, Shao Y, Sun Y, Saredy J, Cutler E, Yao T, Liu M, Liu L, Drummer Iv C, Lu Y, Saaoud F, Ni D, Wang J, Li Y, Li R, Jiang X, Wang H, Yang X. Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Front Immunol 2021; 11:632239. [PMID: 33613572 PMCID: PMC7892453 DOI: 10.3389/fimmu.2020.632239] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
We used functional -omics angles and examined transcriptomic heterogeneity in CD4+Foxp3+ regulatory T cells (Treg) from spleen (s-Treg), lymph nodes (LN-Treg), intestine (int-Treg), and visceral adipose tissue (VAT-Treg), and made significant findings: 1) Five new shared Treg genes including NIBAN, TNFRSF1b, DUSP4,VAV2, and KLRG1, and 68 new signatures are identified. Among 27 signaling pathways shared in four tissue Treg, 22 pathways are innate immune pathways (81.5%); 2) s-Treg, LN-Treg, int-Treg, and VAT-Treg have zero, 49, 45, and 116 upregulated pathways, respectively; 3) 12, 7, and 15 out of 373 CD markers are identified as specific for LN-Treg, int-Treg, and VAT-Treg, respectively, which may initiate innate immune signaling; 4) 7, 49, 44, and 79 increased cytokines out of 1176 cytokines are identified for four Treg, respectively, suggesting that Treg have much more secretory proteins/cytokines than IL-10, TGF-β, and IL-35; 5) LN-Treg, int-Treg, and VAT-Treg have 13 additional secretory functions more than s-Treg, found by analyzing 1,706 secretomic genes; 6) 2, 20, 25, and 43 increased transcription factors (TFs) out of 1,496 TFs are identified four Treg, respectively; 7) LN-Treg and int-Treg have increased pyroptosis regulators but VAT-Treg have increased apoptosis regulators; 8) 1, 15, 19, and 31 increased kinases out of 661 kinome are identified for s-Treg, LN-Treg, int-Treg, and VAT-Treg, respectively; 9) comparing with that of s-Treg, LN-Treg, int-Treg, and VAT-Treg increase activated cluster (clusters 1–3) markers; and decrease resting cluster (clusters 4–6) markers; and 10) Treg promote tissue repair by sharing secretomes and TFs AHR, ETV5, EGR1, and KLF4 with stem cells, which partially promote upregulation of all the groups of Treg genes. These results suggest that stem cell-shared master genes make tissue Treg as the first T cell type using a Treg niche to maintain their Treg-ness with 80% innate immune pathways, and triple functions of immunosuppression, tissue repair, and homeostasis maintenance. Our results have provided novel insights on the roles of innate immune pathways on Treg heterogeneity and new therapeutic targets for immunosuppression, tissue repair, cardiovascular diseases, chronic kidney disease, autoimmune diseases, transplantation, and cancers.
Collapse
Affiliation(s)
- Ruijing Zhang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Second Hospital of Shanxi Medical University, Shanxi, China.,Shanxi Medical University, Shanxi, China.,Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Elizabeth Cutler
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Tian Yao
- Shanxi Medical University, Shanxi, China
| | - Ming Liu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Shanxi Medical University, Shanxi, China
| | - Lu Liu
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer Iv
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Dong Ni
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jirong Wang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol Ther 2020; 220:107715. [PMID: 33141028 DOI: 10.1016/j.pharmthera.2020.107715] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs characterized by a covalently closed-loop structure generated through a special type of alternative splicing termed back-splicing. Currently, an increasing body of evidence has demonstrated that 1) majority of circRNAs are evolutionarily conserved across species, stable, and resistant to RNase R degradation, and often exhibit cell-specific, and tissue-specific/developmental-stage-specific expression and can be largely independent of the expression levels of the linear host gene-encoded linear RNAs; 2) the biogenesis of circRNAs via back-splicing is different from the canonical splicing of linear RNAs; 3) circRNA biogenesis is regulated by specific cis-acting elements and trans-acting factors; 4) circRNAs regulate biological and pathological processes by sponging miRNAs, binding to RNA-binding protein (RBP), regulators of splicing and transcription, modifiers of parental gene expression, and regulators of protein translation or being translated into peptides in various diseases; 5) circRNAs have been identified for their enrichment and stability in exosomes and detected in body fluids such as human blood, saliva, and cerebrospinal fluids, suggesting that these exo-circRNAs have potential applications as disease biomarkers and novel therapeutic targets; 6) several circRNAs are regulated by oxidative stress and mediate reactive oxygen species (ROS) production as well as promote ROS-induced cellular death, cell apoptosis, and inflammation; 7) circRNAs have also emerged as important regulators in atherosclerotic cardiovascular disease, metabolic disease, and cancers; 8) the potential mechanisms of several circRNAs have been described in diseases, hinting at their potential applications as novel therapeutic targets. In this highlight, we summarized the current understandings of the biogenesis and functions of circRNAs and their roles in ROS regulation and vascular inflammation-associated with cardiovascular and metabolic disease. (Word count: 272).
Collapse
|
20
|
Fagenson AM, Xu K, Saaoud F, Nanayakkara G, Jhala NC, Liu L, Drummer C, Sun Y, Lau KN, Di Carlo A, Jiang X, Wang H, Karhadkar SS, Yang X. Liver Ischemia Reperfusion Injury, Enhanced by Trained Immunity, Is Attenuated in Caspase 1/Caspase 11 Double Gene Knockout Mice. Pathogens 2020; 9:pathogens9110879. [PMID: 33114395 PMCID: PMC7692674 DOI: 10.3390/pathogens9110879] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemia reperfusion injury (IRI) during liver transplantation increases morbidity and contributes to allograft dysfunction. There are no therapeutic strategies to mitigate IRI. We examined a novel hypothesis: caspase 1 and caspase 11 serve as danger-associated molecular pattern (DAMPs) sensors in IRI. By performing microarray analysis and using caspase 1/caspase 11 double-knockout (Casp DKO) mice, we show that the canonical and non-canonical inflammasome regulators are upregulated in mouse liver IRI. Ischemic pre (IPC)- and post-conditioning (IPO) induce upregulation of the canonical and non-canonical inflammasome regulators. Trained immunity (TI) regulators are upregulated in IPC and IPO. Furthermore, caspase 1 is activated during liver IRI, and Casp DKO attenuates liver IRI. Casp DKO maintained normal liver histology via decreased DNA damage. Finally, the decreased TUNEL assay-detected DNA damage is the underlying histopathological and molecular mechanisms of attenuated liver pyroptosis and IRI. In summary, liver IRI induces the upregulation of canonical and non-canonical inflammasomes and TI enzyme pathways. Casp DKO attenuate liver IRI. Development of novel therapeutics targeting caspase 1/caspase 11 and TI may help mitigate injury secondary to IRI. Our findings have provided novel insights on the roles of caspase 1, caspase 11, and inflammasome in sensing IRI derived DAMPs and TI-promoted IRI-induced liver injury.
Collapse
Affiliation(s)
- Alexander M. Fagenson
- Department of Surgery, Division of Abdominal Organ Transplant, Lewis Katz School of Medicine, Temple University, 3401 N. Broad Street, Philadelphia, PA 19140, USA; (K.N.L.); (A.D.C.); (S.S.K.)
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
- Correspondence: (A.M.F.); (X.Y.)
| | - Keman Xu
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (L.L.); (H.W.)
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Nirag C. Jhala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (L.L.); (H.W.)
| | - Charles Drummer
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
| | - Yu Sun
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
| | - Kwan N. Lau
- Department of Surgery, Division of Abdominal Organ Transplant, Lewis Katz School of Medicine, Temple University, 3401 N. Broad Street, Philadelphia, PA 19140, USA; (K.N.L.); (A.D.C.); (S.S.K.)
| | - Antonio Di Carlo
- Department of Surgery, Division of Abdominal Organ Transplant, Lewis Katz School of Medicine, Temple University, 3401 N. Broad Street, Philadelphia, PA 19140, USA; (K.N.L.); (A.D.C.); (S.S.K.)
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (L.L.); (H.W.)
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (L.L.); (H.W.)
| | - Sunil S. Karhadkar
- Department of Surgery, Division of Abdominal Organ Transplant, Lewis Katz School of Medicine, Temple University, 3401 N. Broad Street, Philadelphia, PA 19140, USA; (K.N.L.); (A.D.C.); (S.S.K.)
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Inflammation, Translational and Clinical Lung Research, Metabolic Disease Research, Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (K.X.); (F.S.); (G.N.); (C.D.); (Y.S.); (X.J.)
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (L.L.); (H.W.)
- Correspondence: (A.M.F.); (X.Y.)
| |
Collapse
|
21
|
Liu M, Saredy J, Zhang R, Shao Y, Sun Y, Yang WY, Wang J, Liu L, Drummer C, Johnson C, Saaoud F, Lu Y, Xu K, Li L, Wang X, Jiang X, Wang H, Yang X. Approaching Inflammation Paradoxes-Proinflammatory Cytokine Blockages Induce Inflammatory Regulators. Front Immunol 2020; 11:554301. [PMID: 33193322 PMCID: PMC7604447 DOI: 10.3389/fimmu.2020.554301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that underlie various inflammation paradoxes, metabolically healthy obesity, and increased inflammations after inflammatory cytokine blockades and deficiencies remain poorly determined. We performed an extensive -omics database mining, determined the expressions of 1367 innate immune regulators in 18 microarrays after deficiencies of 15 proinflammatory cytokines/regulators and eight microarray datasets of patients receiving Mab therapies, and made a set of significant findings: 1) proinflammatory cytokines/regulators suppress the expressions of innate immune regulators; 2) upregulations of innate immune regulators in the deficiencies of IFNγ/IFNγR1, IL-17A, STAT3 and miR155 are more than that after deficiencies of TNFα, IL-1β, IL-6, IL-18, STAT1, NF-kB, and miR221; 3) IFNγ, IFNγR and IL-17RA inhibit 10, 59 and 39 proinflammatory cytokine/regulator pathways, respectively; in contrast, TNFα, IL-6 and IL-18 each inhibits only four to five pathways; 4) The IFNγ-promoted and -suppressed innate immune regulators have four shared pathways; the IFNγR1-promoted and -suppressed innate immune regulators have 11 shared pathways; and the miR155-promoted and -suppressed innate immune regulators have 13 shared pathways, suggesting negative-feedback mechanisms in their conserved regulatory pathways for innate immune regulators; 5) Deficiencies of proinflammatory cytokine/regulator-suppressed, promoted programs share signaling pathways and increase the likelihood of developing 11 diseases including cardiovascular disease; 6) There are the shared innate immune regulators and pathways between deficiency of TNFα in mice and anti-TNF therapy in clinical patients; 7) Mechanistically, up-regulated reactive oxygen species regulators such as myeloperoxidase caused by suppression of proinflammatory cytokines/regulators can drive the upregulation of suppressed innate immune regulators. Our findings have provided novel insights on various inflammation paradoxes and proinflammatory cytokines regulation of innate immune regulators; and may re-shape new therapeutic strategies for cardiovascular disease and other inflammatory diseases.
Collapse
Affiliation(s)
- Ming Liu
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Shao
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Rutgers University, New Brunswick, NJ, United States
| | - Jirong Wang
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Xin Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Sun Y, Lu Y, Saredy J, Wang X, Drummer Iv C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X, Wang H, Yang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 2020; 37:101696. [PMID: 32950427 PMCID: PMC7767745 DOI: 10.1016/j.redox.2020.101696] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are critical for the progression of cardiovascular diseases, inflammations and tumors. However, the mechanisms of how ROS sense metabolic stress, regulate metabolic pathways and initiate proliferation, inflammation and cell death responses remain poorly characterized. In this analytic review, we concluded that: 1) Based on different features and functions, eleven types of ROS can be classified into seven functional groups: metabolic stress-sensing, chemical connecting, organelle communication, stress branch-out, inflammasome-activating, dual functions and triple functions ROS. 2) Among the ROS generation systems, mitochondria consume the most amount of oxygen; and nine types of ROS are generated; thus, mitochondrial ROS systems serve as the central hub for connecting ROS with inflammasome activation, trained immunity and immunometabolic pathways. 3) Increased nuclear ROS production significantly promotes cell death in comparison to that in other organelles. Nuclear ROS systems serve as a convergent hub and decision-makers to connect unbearable and alarming metabolic stresses to inflammation and cell death. 4) Balanced ROS levels indicate physiological homeostasis of various metabolic processes in subcellular organelles and cytosol, while imbalanced ROS levels present alarms for pathological organelle stresses in metabolic processes. Based on these analyses, we propose a working model that ROS systems are a new integrated network for sensing homeostasis and alarming stress in metabolic processes in various subcellular organelles. Our model provides novel insights on the roles of the ROS systems in bridging metabolic stress to inflammation, cell death and tumorigenesis; and provide novel therapeutic targets for treating those diseases. (Word count: 246).
Collapse
Affiliation(s)
- Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Jason Saredy
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xianwei Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer Iv
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ming Liu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - William Y Yang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
23
|
Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, Drummer C, Johnson C, Xu K, Jiang X, Wang H, Yang X. Vascular Endothelial Cells and Innate Immunity. Arterioscler Thromb Vasc Biol 2020; 40:e138-e152. [PMID: 32459541 PMCID: PMC7263359 DOI: 10.1161/atvbaha.120.314330] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the roles of endothelial cells (ECs) in physiological processes, ECs actively participate in both innate and adaptive immune responses. We previously reported that, in comparison to macrophages, a prototypic innate immune cell type, ECs have many innate immune functions that macrophages carry out, including cytokine secretion, phagocytic function, antigen presentation, pathogen-associated molecular patterns-, and danger-associated molecular patterns-sensing, proinflammatory, immune-enhancing, anti-inflammatory, immunosuppression, migration, heterogeneity, and plasticity. In this highlight, we introduce recent advances published in both ATVB and many other journals: (1) several significant characters classify ECs as novel immune cells not only in infections and allograft transplantation but also in metabolic diseases; (2) several new receptor systems including conditional danger-associated molecular pattern receptors, nonpattern receptors, and homeostasis associated molecular patterns receptors contribute to innate immune functions of ECs; (3) immunometabolism and innate immune memory determine the innate immune functions of ECs; (4) a great induction of the immune checkpoint receptors in ECs during inflammations suggests the immune tolerogenic functions of ECs; and (5) association of immune checkpoint inhibitors with cardiovascular adverse events and cardio-oncology indicates the potential contributions of ECs as innate immune cells.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - William Y. Yang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yu Sun
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yifan Lu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Fatma Saaoud
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Charles Drummer
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Candice Johnson
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Keman Xu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaohua Jiang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaofeng Yang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| |
Collapse
|
24
|
Zhang R, Saredy J, Shao Y, Yao T, Liu L, Saaoud F, Yang WY, Sun Y, Johnson C, Drummer C, Fu H, Lu Y, Xu K, Liu M, Wang J, Cutler E, Yu D, Jiang X, Li Y, Li R, Wang L, Choi ET, Wang H, Yang X. End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biol 2020; 34:101460. [PMID: 32179051 PMCID: PMC7327976 DOI: 10.1016/j.redox.2020.101460] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background The molecular mechanisms underlying chronic kidney disease (CKD) transition to end-stage renal disease (ESRD) and CKD acceleration of cardiovascular and other tissue inflammations remain poorly determined. Methods We conducted a comprehensive data analyses on 7 microarray datasets in peripheral blood mononuclear cells (PBMCs) from patients with CKD and ESRD from NCBI-GEO databases, where we examined the expressions of 2641 secretome genes (SG). Results 1) 86.7% middle class (molecular weight >500 Daltons) uremic toxins (UTs) were encoded by SGs; 2) Upregulation of SGs in PBMCs in patients with ESRD (121 SGs) were significantly higher than that of CKD (44 SGs); 3) Transcriptomic analyses of PBMC secretome had advantages to identify more comprehensive secretome than conventional secretomic analyses; 4) ESRD-induced SGs had strong proinflammatory pathways; 5) Proinflammatory cytokines-based UTs such as IL-1β and IL-18 promoted ESRD modulation of SGs; 6) ESRD-upregulated co-stimulation receptors CD48 and CD58 increased secretomic upregulation in the PBMCs, which were magnified enormously in tissues; 7) M1-, and M2-macrophage polarization signals contributed to ESRD- and CKD-upregulated SGs; 8) ESRD- and CKD-upregulated SGs contained senescence-promoting regulators by upregulating proinflammatory IGFBP7 and downregulating anti-inflammatory TGF-β1 and telomere stabilizer SERPINE1/PAI-1; 9) ROS pathways played bigger roles in mediating ESRD-upregulated SGs (11.6%) than that in CKD-upregulated SGs (6.8%), and half of ESRD-upregulated SGs were ROS-independent. Conclusions Our analysis suggests novel secretomic upregulation in PBMCs of patients with CKD and ESRD, act synergistically with uremic toxins, to promote inflammation and potential disease progression. Our findings have provided novel insights on PBMC secretome upregulation to promote disease progression and may lead to the identification of new therapeutic targets for novel regimens for CKD, ESRD and their accelerated cardiovascular disease, other inflammations and cancers. (Total words: 279).
Collapse
Affiliation(s)
- Ruijing Zhang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China; Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tian Yao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Yu Sun
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yifan Lu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keman Xu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ming Liu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jirong Wang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Elizabeth Cutler
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Lihua Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
25
|
Wang J, Lai B, Nanayakkara G, Yang Q, Sun Y, Lu Y, Shao Y, Yu D, Yang WY, Cueto R, Fu H, Zeng H, Shen W, Wu S, Zhang C, Liu Y, Choi ET, Wang H, Yang X. Experimental Data-Mining Analyses Reveal New Roles of Low-Intensity Ultrasound in Differentiating Cell Death Regulatome in Cancer and Non-cancer Cells via Potential Modulation of Chromatin Long-Range Interactions. Front Oncol 2019; 9:600. [PMID: 31355136 PMCID: PMC6640725 DOI: 10.3389/fonc.2019.00600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background: The mechanisms underlying low intensity ultrasound (LIUS) mediated suppression of inflammation and tumorigenesis remain poorly determined. Methods: We used microarray datasets from NCBI GEO Dataset databases and conducted a comprehensive data mining analyses, where we studied the gene expression of 299 cell death regulators that regulate 13 different cell death types (cell death regulatome) in cells treated with LIUS. Results: We made the following findings: (1) LIUS exerts a profound effect on the expression of cell death regulatome in cancer cells and non-cancer cells. Of note, LIUS has the tendency to downregulate the gene expression of cell death regulators in non-cancer cells. Most of the cell death regulator genes downregulated by LIUS in non-cancer cells are responsible for mediating inflammatory signaling pathways; (2) LIUS activates different cell death transcription factors in cancer and non-cancer cells. Transcription factors TP-53 and SRF- were induced by LIUS exposure in cancer cells and non-cancer cells, respectively; (3) As two well-accepted mechanisms of LIUS, mild hyperthermia and oscillatory shear stress induce changes in the expression of cell death regulators, therefore, may be responsible for inducing LIUS mediated changes in gene expression patterns of cell death regulators in cells; (4) LIUS exposure may change the redox status of the cells. LIUS may induce more of antioxidant effects in non-cancer cells compared to cancer cells; and (5) The genes modulated by LIUS in cancer cells have distinct chromatin long range interaction (CLRI) patterns to that of non-cancer cells. Conclusions: Our analysis suggests novel molecular mechanisms that may be utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Lai
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gayani Nanayakkara
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Qian Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yu Sun
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yifan Lu
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Ying Shao
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y. Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Ramon Cueto
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Hangfei Fu
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Huihong Zeng
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Wen Shen
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Susu Wu
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanna Liu
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Eric T. Choi
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| |
Collapse
|
26
|
Li A, Sun Y, Drummer C, Lu Y, Yu D, Zhou Y, Li X, Pearson SJ, Johnson C, Yu C, Yang WY, Mastascusa K, Jiang X, Sun J, Rogers T, Hu W, Wang H, Yang X. Increasing Upstream Chromatin Long-Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Front Physiol 2019; 10:433. [PMID: 31057422 PMCID: PMC6482593 DOI: 10.3389/fphys.2019.00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that form covalently closed continuous loops, and act as gene regulators in physiological and disease conditions. To test our hypothesis that proatherogenic lipid lysophosphatidylcholine (LPC) induce a set of circRNAs in human aortic endothelial cell (HAEC) activation, we performed circRNA analysis by searching our RNA-Seq data from LPC-activated HAECs, and found: (1) LPC induces significant modulation of 77 newly characterized cirRNAs, among which 47 circRNAs (61%) are upregulated; (2) 34 (72%) out of 47 upregulated circRNAs are upregulated when the corresponding mRNAs are downregulated, suggesting that the majority of circRNAs are upregulated presumably via LPC-induced “abnormal splicing” when the canonical splicing for generation of corresponding mRNAs is suppressed; (3) Upregulation of 47 circRNAs is temporally associated with mRNAs-mediated LPC-upregulated cholesterol synthesis-SREBP2 pathway and LPC-downregulated TGF-β pathway; (4) Increase in upstream chromatin long-range interaction sites to circRNA related genes is associated with preferred circRNA generation over canonical splicing for mRNAs, suggesting that shifting chromatin long-range interaction sites from downstream to upstream may promote induction of a list of circRNAs in lysoPC-activated HAECs; (5) Six significantly changed circRNAs may have sponge functions for miRNAs; and (6) 74% significantly changed circRNAs contain open reading frames, suggesting that putative short proteins may interfere with the protein interaction-based signaling. Our findings have demonstrated for the first time that a new set of LPC-induced circRNAs may contribute to homeostasis in LPC-induced HAEC activation. These novel insights may lead to identifications of new therapeutic targets for treating metabolic cardiovascular diseases, inflammations, and cancers.
Collapse
Affiliation(s)
- Angus Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Xinyuan Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Simone J Pearson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine Yu
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Philadelphia University - Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Li X, Wang L, Fang P, Sun Y, Jiang X, Wang H, Yang XF. Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. J Biol Chem 2018; 293:11033-11045. [PMID: 29769317 DOI: 10.1074/jbc.ra118.002752] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells express danger-associated molecular pattern (DAMP) receptors, T-cell costimulation/coinhibition receptors, and major histocompatibility complex II (MHC-II). We have recently proposed that endothelial cells can serve as innate immune cells, but the molecular mechanisms involved still await discovery. Here, we investigated whether human aortic endothelial cells (HAECs) could be transdifferentiated into innate immune cells by exposing them to hyperlipidemia-up-regulated DAMP molecules, i.e. lysophospholipids. Performing RNA-seq analysis of lysophospholipid-treated HAECs, we found that lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) regulate largely distinct gene programs as revealed by principal component analysis. Metabolically, LPC up-regulated genes that are involved in cholesterol biosynthesis, presumably through sterol regulatory element-binding protein 2 (SREBP2). By contrast, LPI up-regulated gene transcripts critical for the metabolism of glucose, lipids, and amino acids. Of note, we found that LPC and LPI both induce adhesion molecules, cytokines, and chemokines, which are all classic markers of endothelial cell activation, in HAECs. Moreover, LPC and LPI shared the ability to transdifferentiate HAECs into innate immune cells, including induction of potent DAMP receptors, such as CD36 molecule, T-cell costimulation/coinhibition receptors, and MHC-II proteins. The induction of these innate-immunity signatures by lysophospholipids correlated with their ability to induce up-regulation of cytosolic calcium and mitochondrial reactive oxygen species. In conclusion, lysophospholipids such as LPC and LPI induce innate immune cell transdifferentiation in HAECs. The concept of prolonged endothelial activation, discovered here, is relevant for designing new strategies for managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Luqiao Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Department of Cardiovascular Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China
| | - Pu Fang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Yu Sun
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Xiao-Feng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and .,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|
28
|
Zeng H, Nanayakkara GK, Shao Y, Fu H, Sun Y, Cueto R, Yang WY, Yang Q, Sheng H, Wu N, Wang L, Yang W, Chen H, Shao L, Sun J, Qin X, Park JY, Drosatos K, Choi ET, Zhu Q, Wang H, Yang X. DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks. Front Physiol 2018; 9:516. [PMID: 29867559 PMCID: PMC5958474 DOI: 10.3389/fphys.2018.00516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Gayani K Nanayakkara
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qian Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Ultrasound, Xijing Hospital, Shaanxi, China
| | - Haitao Sheng
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Emergency Medicine, Shengjing Hospital, Liaoning, China
| | - Na Wu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Endocrinology, Shengjing Hospital, Liaoning, China
| | - Luqiao Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wuping Yang
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jianxin Sun
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joon Y Park
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Departments of Pharmacology, and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qingxian Zhu
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Li X, Shao Y, Sha X, Fang P, Kuo YM, Andrews AJ, Li Y, Yang WY, Maddaloni M, Pascual DW, Luo JJ, Jiang X, Wang H, Yang X. IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler Thromb Vasc Biol 2018; 38:599-609. [PMID: 29371247 DOI: 10.1161/atvbaha.117.310626] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE IL-35 (interleukin-35) is an anti-inflammatory cytokine, which inhibits immune responses by inducing regulatory T cells and regulatory B cells and suppressing effector T cells and macrophages. It remains unknown whether atherogenic stimuli induce IL-35 and whether IL-35 inhibits atherogenic lipid-induced endothelial cell (EC) activation and atherosclerosis. EC activation induced by hyperlipidemia stimuli, including lysophosphatidylcholine is considered as an initiation step for monocyte recruitment and atherosclerosis. In this study, we examined the expression of IL-35 during early atherosclerosis and the roles and mechanisms of IL-35 in suppressing lysophosphatidylcholine-induced EC activation. APPROACH AND RESULTS Using microarray and ELISA, we found that IL-35 and its receptor are significantly induced during early atherosclerosis in the aortas and plasma of ApoE (apolipoprotein E) knockout mice-an atherosclerotic mouse model-and in the plasma of hypercholesterolemic patients. In addition, we found that IL-35 suppresses lysophosphatidylcholine-induced monocyte adhesion to human aortic ECs. Furthermore, our RNA-sequencing analysis shows that IL-35 selectively inhibits lysophosphatidylcholine-induced EC activation-related genes, such as ICAM-1 (intercellular adhesion molecule-1). Mechanistically, using flow cytometry, mass spectrometry, electron spin resonance analyses, and chromatin immunoprecipitation-sequencing analyses, we found that IL-35 blocks lysophosphatidylcholine-induced mitochondrial reactive oxygen species, which are required for the induction of site-specific H3K14 (histone 3 lysine 14) acetylation, increased binding of proinflammatory transcription factor AP-1 in the promoter of ICAM-1, and induction of ICAM-1 transcription in human aortic EC. Finally, IL-35 cytokine therapy suppresses atherosclerotic lesion development in ApoE knockout mice. CONCLUSIONS IL-35 is induced during atherosclerosis development and inhibits mitochondrial reactive oxygen species-H3K14 acetylation-AP-1-mediated EC activation.
Collapse
Affiliation(s)
- Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Ying Shao
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Xiaojin Sha
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Pu Fang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Yin-Ming Kuo
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Andrew J Andrews
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Yafeng Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - William Y Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Massimo Maddaloni
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - David W Pascual
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Jin J Luo
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Xiaofeng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.).
| |
Collapse
|
30
|
Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T, Li YF, Johnson C, Yang WY, Yang F, Xu Y, Xi H, Liu W, Yu J, Choi ET, Cheng X, Wang H, Yang X. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 2017; 10:168. [PMID: 29065888 PMCID: PMC5655880 DOI: 10.1186/s13045-017-0526-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. Methods To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. Results We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Conclusions Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Yang
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Charles Drummer
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ya-Feng Li
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Weiqing Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Yu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
31
|
Thrombus leukocytes exhibit more endothelial cell-specific angiogenic markers than peripheral blood leukocytes do in acute coronary syndrome patients, suggesting a possibility of trans-differentiation: a comprehensive database mining study. J Hematol Oncol 2017; 10:74. [PMID: 28335793 PMCID: PMC5364721 DOI: 10.1186/s13045-017-0440-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Current angiogenic therapies for cancers and cardiovascular diseases have not yet achieved expected benefits, which reflects the need for improved understanding of angiogenesis. In this study, we focused on solving the problem of whether tissues have different angiogenic potentials (APs) in physiological conditions and how angiogenesis is regulated in various disease conditions. Methods In healthy and diseased human and mouse tissues, we profiled the expression of 163 angiogenic genes, including transcription regulators (TRs), growth factors and receptors (GF/Rs), cytokines and chemokines (C/Cs), and proteases and inhibitors (P/Is). TRs were categorized as inflammatory, homeostatic, and endothelial cell-specific TRs, and C/Cs were categorized as pro-angiogenic, anti-angiogenic, and bi-functional C/Cs. Results We made the following findings: (1) the human heart, muscle, eye, pancreas, and lymph node are among the tissues with the highest APs; (2) tissues with high APs have more active angiogenic pathways and angiogenic C/C responses; (3) inflammatory TRs dominate regulation of all angiogenic C/Cs; homeostatic TRs regulate all to a lower extent, while endothelial cell-specific TRs mainly regulate pro-angiogenic and bi-functional C/Cs; (4) tissue AP is positively correlated with the expression of oxygen sensors PHD2 and HIF1B, VEGF pathway gene VEGFB, and stem cell gene SOX2; (5) cancers of the digestive system tend to have increased angiogenesis dominated by endothelial cell-specific pro-angiogenic pathways, while lung cancer and prostate cancer have significantly decreased angiogenesis; and (6) endothelial cell-specific pro-angiogenic pathways are significantly increased in thrombus-derived leukocytes in patients with acute coronary artery disease. Conclusions Our results demonstrate that thrombus-derived leukocytes express more endothelial cell-specific angiogenic markers to directly promote angiogenesis after myocardial infarction and that certain solid tumors may be more sensitive to anti-angiogenic therapies than others. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0440-0) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Li YF, Nanayakkara G, Sun Y, Li X, Wang L, Cueto R, Shao Y, Fu H, Johnson C, Cheng J, Chen X, Hu W, Yu J, Choi ET, Wang H, Yang XF. Analyses of caspase-1-regulated transcriptomes in various tissues lead to identification of novel IL-1β-, IL-18- and sirtuin-1-independent pathways. J Hematol Oncol 2017; 10:40. [PMID: 28153032 PMCID: PMC5290602 DOI: 10.1186/s13045-017-0406-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND It is well established that caspase-1 exerts its biological activities through its downstream targets such as IL-1β, IL-18, and Sirt-1. The microarray datasets derived from various caspase-1 knockout tissues indicated that caspase-1 can significantly impact the transcriptome. However, it is not known whether all the effects exerted by caspase-1 on transcriptome are mediated only by its well-known substrates. Therefore, we hypothesized that the effects of caspase-1 on transcriptome may be partially independent from IL-1β, IL-18, and Sirt-1. METHODS To determine new global and tissue-specific gene regulatory effects of caspase-1, we took novel microarray data analysis approaches including Venn analysis, cooperation analysis, and meta-analysis methods. We used these statistical methods to integrate different microarray datasets conducted on different caspase-1 knockout tissues and datasets where caspase-1 downstream targets were manipulated. RESULTS We made the following important findings: (1) Caspase-1 exerts its regulatory effects on the majority of genes in a tissue-specific manner; (2) Caspase-1 regulatory genes partially cooperates with genes regulated by sirtuin-1 during organ injury and inflammation in adipose tissue but not in the liver; (3) Caspase-1 cooperates with IL-1β in regulating less than half of the genes involved in cardiovascular disease, organismal injury, and cancer in mouse liver; (4) The meta-analysis identifies 40 caspase-1 globally regulated genes across tissues, suggesting that caspase-1 globally regulates many novel pathways; and (5) The meta-analysis identified new cooperatively and non-cooperatively regulated genes in caspase-1, IL-1β, IL-18, and Sirt-1 pathways. CONCLUSIONS Our findings suggest that caspase-1 regulates many new signaling pathways potentially via its known substrates and also via transcription factors and other proteins that are yet to be identified.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,The Shanxi Provincial People's Hospital, an Affiliate Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Luqiao Wang
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jiali Cheng
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Xiongwen Chen
- Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research and Cardiovascular Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
33
|
Wang L, Fu H, Nanayakkara G, Li Y, Shao Y, Johnson C, Cheng J, Yang WY, Yang F, Lavallee M, Xu Y, Cheng X, Xi H, Yi J, Yu J, Choi ET, Wang H, Yang X. Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study. J Hematol Oncol 2016; 9:122. [PMID: 27842563 PMCID: PMC5109738 DOI: 10.1186/s13045-016-0351-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Background Caspase-1 is present in the cytosol as an inactive zymogen and requires the protein complexes named “inflammasomes” for proteolytic activation. However, it remains unclear whether the proteolytic activity of caspase-1 is confined only to the cytosol where inflammasomes are assembled to convert inactive pro-caspase-1 to active caspase-1. Methods We conducted meticulous data analysis methods on proteomic, protein interaction, protein intracellular localization, and gene expressions of 114 experimentally identified caspase-1 substrates and 38 caspase-1 interaction proteins in normal physiological conditions and in various pathologies. Results We made the following important findings: (1) Caspase-1 substrates and interaction proteins are localized in various intracellular organelles including nucleus and secreted extracellularly; (2) Caspase-1 may get activated in situ in the nucleus in response to intra-nuclear danger signals; (3) Caspase-1 cleaves its substrates in exocytotic secretory pathways including exosomes to propagate inflammation to neighboring and remote cells; (4) Most of caspase-1 substrates are upregulated in coronary artery disease regardless of their subcellular localization but the majority of metabolic diseases cause no significant expression changes in caspase-1 nuclear substrates; and (5) In coronary artery disease, majority of upregulated caspase-1 extracellular substrate-related pathways are involved in induction of inflammation; and in contrast, upregulated caspase-1 nuclear substrate-related pathways are more involved in regulating cell death and chromatin regulation. Conclusions Our identification of novel caspase-1 trafficking sites, nuclear and extracellular inflammasomes, and extracellular caspase-1-based inflammation propagation model provides a list of targets for the future development of new therapeutics to treat cardiovascular diseases, inflammatory diseases, and inflammatory cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0351-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Hangfei Fu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jiali Cheng
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Muriel Lavallee
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jonathan Yi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Department of Physiology, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.
| |
Collapse
|
34
|
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H, Yang X. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol 2016; 95:247-252. [PMID: 27925481 DOI: 10.1139/cjpp-2016-0515] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share a common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light on this important question and found that, during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage or death. Mapping the connections among mitochondrial metabolism, physiological EC activation, patrolling cell migration, and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Xinyuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kylie Chan
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tracy Gao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
35
|
Ferrer LM, Monroy AM, Lopez-Pastrana J, Nanayakkara G, Cueto R, Li YF, Li X, Wang H, Yang XF, Choi ET. Caspase-1 Plays a Critical Role in Accelerating Chronic Kidney Disease-Promoted Neointimal Hyperplasia in the Carotid Artery. J Cardiovasc Transl Res 2016; 9:135-44. [PMID: 26928596 DOI: 10.1007/s12265-016-9683-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
To determine whether caspase-1 is critical in chronic kidney disease (CKD)-mediated arterial neointimal hyperplasia (NH), we utilized caspase(-/-) mice and induced NH in carotid artery in a CKD environment, and uremic sera-stimulated human vascular smooth muscle cells (VSMC). We made the following findings: (1) Caspase-1 inhibition corrected uremic sera-mediated downregulation of VSMC contractile markers, (2) CKD-promoted NH was attenuated in caspase(-/-) mice, (3) CKD-mediated downregulation of contractile markers was rescued in caspase null mice, and (4) expression of VSMC migration molecule αvβ3 integrin was reduced in caspase(-/-) tissues. Our results suggested that caspase-1 pathway senses CKD metabolic danger signals. Further, CKD-mediated increase of contractile markers in VSMC and increased expression of VSMC migration molecule αvβ3 integrin in NH formation were caspase-1 dependent. Therefore, caspase-1 is a novel therapeutic target for the suppression of CKD-promoted NH.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Blood Urea Nitrogen
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/pathology
- Carotid Artery Diseases/prevention & control
- Carotid Artery, Common/enzymology
- Carotid Artery, Common/pathology
- Carotid Artery, Common/physiopathology
- Caspase 1/deficiency
- Caspase 1/genetics
- Caspase 1/metabolism
- Caspase Inhibitors/pharmacology
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Genotype
- Humans
- Hyperplasia
- Integrin alphaVbeta3/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Contraction
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/genetics
Collapse
Affiliation(s)
- Lucas M Ferrer
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
- Department of Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Alexandra M Monroy
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
- Department of Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
| | - Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA.
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Eric T Choi
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine, Temple University, 3500, North Broad Street, Philadelphia, PA, 19140, USA.
- Department of Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
36
|
Shao Y, Chernaya V, Johnson C, Yang WY, Cueto R, Sha X, Zhang Y, Qin X, Sun J, Choi ET, Wang H, Yang XF. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets--"Sand Out and Gold Stays". J Cardiovasc Transl Res 2016; 9:49-66. [PMID: 26746407 DOI: 10.1007/s12265-015-9664-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.
Collapse
Affiliation(s)
- Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Valeria Chernaya
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaojin Sha
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yi Zhang
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xuebin Qin
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Jianxin Sun
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Department of Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiao-feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research & Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Centers for Metabolic Disease Research and Cardiovascular Research, Temple University School of Medicine, 3500 North Broad Street, MERB 1059, Philadelphia, PA, 19140, USA.
| |
Collapse
|