1
|
Dehghanbanadaki H, Jimbo M, Fendereski K, Kunisaki J, Horns JJ, Ramsay JM, Gross KX, Pastuszak AW, Hotaling JM. Transgenerational effects of paternal exposures: the role of germline de novo mutations. Andrology 2025; 13:101-118. [PMID: 38396220 DOI: 10.1111/andr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Germline de novo mutations (DNMs) refer to spontaneous mutations arising during gametogenesis, resulting in genetic changes within germ cells that are subsequently transmitted to the next generation. While the impact of maternal exposures on germline DNMs has been extensively studied, more recent studies have begun to highlight the increasing importance of the effects of paternal factors. In this review, we have summarized the existing literature on how various exposures experienced by fathers affect the germline DNM burden in their spermatozoa, as well as their consequences for semen analysis parameters, pregnancy outcomes, and offspring health. A growing body of literature supports the conclusion that advanced paternal age (APA) correlates with a higher germline DNM rate in offspring. Furthermore, lifestyle choices, environmental toxins, assisted reproductive techniques (ART), and chemotherapy are associated with the accumulation of paternal DNMs in spermatozoa, with deleterious consequences for pregnancy outcomes and offspring health. Ultimately, our review highlights the clear importance of the germline DNM mode of inheritance, and the current understanding of how this is affected by various paternal factors. In addition, we explore conflicting reports or gaps of knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Jason Kunisaki
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Horns
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Joemy M Ramsay
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kelli X Gross
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Urrutia K, Chen YH, Tang J, Hung TI, Zhang G, Xu W, Zhao W, Tonthat D, Chang CEA, Zhao L. DNA sequence and lesion-dependent mitochondrial transcription factor A (TFAM)-DNA-binding modulates DNA repair activities and products. Nucleic Acids Res 2024; 52:14093-14111. [PMID: 39607700 DOI: 10.1093/nar/gkae1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Mitochondrial DNA (mtDNA) is indispensable for mitochondrial function and is maintained by DNA repair, turnover, mitochondrial dynamics and mitophagy, along with the inherent redundancy of mtDNA. Base excision repair (BER) is a major DNA repair mechanism in mammalian mitochondria. Mitochondrial BER enzymes are implicated in mtDNA-mediated immune response and inflammation. mtDNA is organized into mitochondrial nucleoids by mitochondrial transcription factor A (TFAM). The regulation of DNA repair activities by TFAM-DNA interactions remains understudied. Here, we demonstrate the modulation of DNA repair enzymes by TFAM concentrations, DNA sequences and DNA modifications. Unlike previously reported inhibitory effects, we observed that human uracil-DNA glycosylase 1 (UNG1) and AP endonuclease I (APE1) have optimal activities at specific TFAM/DNA molar ratios. High TFAM/DNA ratios inhibited other enzymes, OGG1 and AAG. In addition, TFAM reduces the accumulation of certain repair intermediates. Molecular dynamics simulations and DNA-binding experiments demonstrate that the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in certain sequence motifs enhances TFAM-DNA binding, partially explaining the inhibition of OGG1 activity. Bioinformatic analysis of published 8-oxodG, dU, and TFAM-footprint maps reveals a correlation between 8-oxodG and TFAM locations in mtDNA. Collectively, these results highlight the complex regulation of mtDNA repair by DNA sequence, TFAM concentrations, lesions and repair enzymes.
Collapse
Affiliation(s)
- Kathleen Urrutia
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Ta I Hung
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Guodong Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Wenxin Zhao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Dylan Tonthat
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Neto IVDS, Pinto AP, de Andrade RV, de Souza FHV, de Souza PEN, Assis V, Tibana RA, Neves RVP, Rosa TS, Prestes J, da Silva ASR, Marqueti RDC. Paternal exercise induces antioxidant defenses by α-Klotho/Keap1 pathways in the skeletal muscle of offspring exposed to a high fat-diet without changing telomere length. J Nutr Biochem 2024; 134:109747. [PMID: 39197728 DOI: 10.1016/j.jnutbio.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Although previous studies demonstrated that the ancestral lifestyle can enhance the metabolic health of offspring exposed to an obesogenic diet, the specific connections between these positive effects in redox state and telomere length are unknown. We investigated the impact of paternal resistance training (RT) on stress-responsive signaling and the pathways involved in telomere homeostasis in skeletal muscle. This investigation encompassed both the fathers and first-generation litter exposed to a long-term standard diet (24 weeks) and high fat diet (HFD). Wistar rats were randomized into sedentary or trained fathers (8 weeks of resistance training). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups: offspring of sedentary or trained fathers exposed to either a control diet or HFD. The gastrocnemius was prepared for reverse transcription-quantitative polymerase chain reaction, immunoblotting, ELISA, and electron paramagnetic resonance spectroscopy. RT upregulated shelterin mRNA levels and antioxidant protein, preserving muscle telomere in fathers. Conversely, HFD induced a disturbance in the redox balance, which may have contributed to the offspring telomere shortening from sedentary fathers. Preconceptional paternal RT downregulates Kelch-like ECH-associated protein 1 (Keap1) mRNA levels in the skeletal muscle of progeny exposed to HFD, driving an increase in Glutathione reductase mRNA levels, Sod1 and Catalase protein levels to mitigate ROS production. Also, paternal exercise upregulates α-Klotho protein levels, mediating antioxidative responses without altering shelterin mRNA levels and telomere length. We provide the first in-depth analysis that the offspring's redox state seems to be directly associated with the beneficial effects of paternal exercise.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Taguatinga, Distrito Federal, Brazil
| | | | - Paulo Eduardo Narcizo de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Victória Assis
- Molecular of Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | | | - Thiago Santos Rosa
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Taguatinga, Distrito Federal, Brazil; Graduate Program in Physical Education, Universidade Católica de Brasilia, Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program in Physical Education, Universidade Católica de Brasilia, Brasília, Distrito Federal, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Molecular of Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
4
|
Bulygin AA, Kuznetsov NA. The Trajectory of Damaged-Base Eversion into the Active Site of Apurinic/Apyrimidinic Endonuclease APE1 Regulates This Enzyme's Substrate Specificity. Int J Mol Sci 2024; 25:12287. [PMID: 39596352 PMCID: PMC11595180 DOI: 10.3390/ijms252212287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is responsible for the hydrolysis of the phosphodiester bond on the 5' side of an apurinic/apyrimidinic site during base excision repair. Moreover, in DNA, this enzyme can recognize nucleotides containing such damaged bases as 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), and 1,N6-ethenoadenosine (εA). Previously, by pulsed electron-electron double resonance spectroscopy and pre-steady-state kinetic analysis, we have revealed multistep DNA rearrangements during the formation of the catalytic complex. In the present study, the modeling of the eversion trajectory of nucleotides with various damaged bases was performed by directed molecular dynamics simulations. It was found that each damaged base at the beginning of the eversion interacts with protein loop Val196-Arg201, which should be moved to enable further nucleotide eversion. This movement involves a shift in loop Val196-Arg201 away from loop Asn253-Thr257 and requires the disruption of contacts between these loops. The Glu260Ala substitution facilitates the separation of the two loops. Moreover, conformational changes in the Asn253-Thr257 loop should occur in the second half of the lesion eversion trajectory. All these perturbations within the protein globule tend to reduce steric interactions of each damaged base with the protein during the eversion of the nucleotide from DNA and movement to the active site. These perturbations are important determinants of substrate specificity of endonuclease APE1.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Xue CY, Liu YH, Yu Y, Liu Y, Zhou YL, Zhang XX. Ultrasensitive mass spectrometric quantitation of apurinic/apyrimidinic sites in genomic DNA of mammalian cell lines exposed to genotoxic reagents. Anal Chim Acta 2024; 1329:343238. [PMID: 39396301 DOI: 10.1016/j.aca.2024.343238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The apurinic/apyrimidinic (AP) site is an important intermediate in the DNA base excision repair (BER) pathway, having the potential of being a biomarker for DNA damage. AP sites could lead to the stalling of polymerases, the misincorporation of bases and DNA strand breaks, which might affect physiological function of cells. However, the abundance of AP sites in genomic DNA is very low (less than 2 AP sites/106 nts), which requires a sensitive and accurate method to meet its detection requirements. Here, we described an ultrasensitive quantification method based on a hydrazine-s-triazine reagent (i-Pr2N) labeling for AP sites combining with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limit of detection reached an ultralow level (40 amol), realizing the most sensitive MS-based quantification for the AP site. To guarantee the accuracy of the quantitative results, the labeling reaction was carried out directly on DNA strands instead of labeling after DNA enzymatic digestion to reduce artifacts that might be produced during the enzymatic process of DNA strands. And selective detection was realized by MS to avoid introducing the false-positive signals from other aldehyde species, which could also react with i-Pr2N. Genomic DNA samples from different mammalian cell lines were successfully analyzed using this method. There were 0.4-0.8 AP sites per 106 nucleotides, and the values would increase 16.1 and 2.75 times when cells were treated with genotoxic substances methyl methanesulfonate and 5-fluorouracil, respectively. This method has good potential in the analysis of a small number of cell samples and clinical samples, is expected to be useful for evaluating the damage level of DNA bases, the genotoxicity of compounds and the drug resistance of cancer cells, and provides a new tool for cell function research and clinical precise treatment.
Collapse
Affiliation(s)
- Chen-Yu Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100191, China
| | - Ya-Hong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Yu
- Qilu Pharmaceutical Co., Ltd, Jinan, 250104, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Schnable BL, Schaich MA, Roginskaya V, Leary LP, Weaver TM, Freudenthal BD, Drohat AC, Van Houten B. Thymine DNA glycosylase combines sliding, hopping, and nucleosome interactions to efficiently search for 5-formylcytosine. Nat Commun 2024; 15:9226. [PMID: 39455577 PMCID: PMC11512004 DOI: 10.1038/s41467-024-53497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Base excision repair is the main pathway involved in active DNA demethylation. 5-formylcytosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we study TDG in the presence and absence of 5-formylcytosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of base modifications. TDG active site variants and truncated N-terminus, reveals these variants alter base modification search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG is found to either bypass, colocalize with, or encounter but not bypass the nucleosome. Truncating the N-terminus reduces the number of interactions with the nucleosome. Our findings provide mechanistic insights into how TDG searches for modified DNA bases in chromatin.
Collapse
Affiliation(s)
- Brittani L Schnable
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liam P Leary
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bennett Van Houten
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Zhao H, Richardson C, Marriott I, Yang IH, Yan S. APE1 is a master regulator of the ATR-/ATM-mediated DNA damage response. DNA Repair (Amst) 2024; 144:103776. [PMID: 39461278 DOI: 10.1016/j.dnarep.2024.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and 3'-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christine Richardson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - In Hong Yang
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
8
|
Velaiyan M, Muthusamy R, Kativa M, Annamalai A, Govindhan A, Punniyakotti P, Balupillai A. Gallic acid-loaded chitosan nanoparticles enhance the DNA damage and apoptotic features through inhibiting flap endonuclease-1 in triple-negative breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4171-4183. [PMID: 38666519 DOI: 10.1002/tox.24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 07/14/2024]
Abstract
This study investigated the fabrication of gallic acid-loaded chitosan nanoparticles (Gal-Chi-NPs) that enhanced the DNA damage and apoptotic features by inhibiting FEN-1 expressions in MDA-MB 231 cells. Gal-Chi-NPs were fabricated by the ionic gelation method, and it was characterized by several studies such as dynamic light spectroscopy, Fourier-transforms infrared spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy, and thermogravimetric analysis. We have obtained that Gal-Chi-NPs displayed 182.2 nm with crystal, smooth surface, and heat stability in nature. Gal-Chi-NPs induce significant toxicity in MDA-MB-231 cells that compared with normal NIH-3T3 cells. A significant reactive oxygen species (ROS) overproduction was observed in Gal-Chi-NPs treated MDA-MB-231. Flap endonuclease-1 (FEN-1) is a crucial protein involved in long patch base excision repair that is involved in repairing the chemotherapeutic mediated DNA-damaged base. Therefore, inhibition of FEN-1 protein expression is a crucial target for enhancing chemotherapeutical efficacy. In this study, we have obtained that Gal-Chi-NPs treatment enhanced the DNA damage by observing increased p-H2AX, PARP1; and suppressed the expression of FEN-1 in MDA-MB-231 cells. Moreover, Gal-Chi-NPs inhibited the expression of tumor proliferating markers p-PI3K, AKT, cyclin-D1, PCNA, and BCL-2; induced proapoptotic proteins (Bax and caspase-3) in MDA-MB 231 cells. Thus, Gal-Chi-NPs induce DNA damage and apoptotic features and inhibit tumor proliferation by suppressing FEN-1 expression in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Monica Velaiyan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajasekar Muthusamy
- Central Research Laboratory, Vinayaka Mission's Kirupananda Variyar Medical College and Hospitals, Salem, Tamil Nadu, India
| | - Miguel Kativa
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Govindhan
- Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Parthipan Punniyakotti
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Agilan Balupillai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Mrozińska Z, Kaczmarek A, Świerczyńska M, Juszczak M, Kudzin MH. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool-Copper Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2878. [PMID: 38930247 PMCID: PMC11204859 DOI: 10.3390/ma17122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| |
Collapse
|
10
|
Kang S, Yoo J, Myung K. PCNA cycling dynamics during DNA replication and repair in mammals. Trends Genet 2024; 40:526-539. [PMID: 38485608 DOI: 10.1016/j.tig.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is a eukaryotic replicative DNA clamp. Furthermore, DNA-loaded PCNA functions as a molecular hub during DNA replication and repair. PCNA forms a closed homotrimeric ring that encircles the DNA, and association and dissociation of PCNA from DNA are mediated by clamp-loader complexes. PCNA must be actively released from DNA after completion of its function. If it is not released, abnormal accumulation of PCNA on chromatin will interfere with DNA metabolism. ATAD5 containing replication factor C-like complex (RLC) is a PCNA-unloading clamp-loader complex. ATAD5 deficiency causes various DNA replication and repair problems, leading to genome instability. Here, we review recent progress regarding the understanding of the action mechanisms of PCNA unloading complex in DNA replication/repair pathways.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
11
|
Soumya K, Haridas KR, James J, Sudheesh S. Isolation of a novel quercetin derivative from Terminalia chebula and RT-PCR-assisted probing to investigate its DNA repair in hepatoma cells. Res Pharm Sci 2024; 19:303-318. [PMID: 39035817 PMCID: PMC11257194 DOI: 10.4103/rps.rps_56_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose DNA damage can lead to carcinogenesis if replication proceeds without proper repair. This study focused on the purification of a novel quercetin derivative present in Terminalia chebula fruit and studied its protective role in hepatoma cells due to H2O2-DNA damage. Experimental approach The pure compound obtained from the silica gel column was subjected to structural characterization using spectroscopic techniques. MTT assay was employed to select a non-toxic concentration of the isolated compounds on HepG2 and Chang liver cells. The antigenotoxic property of the compound on HepG2 and Chang liver cells was carried out by alkaline comet assay. Analyses of expression levels of mRNA for two DNA repair enzymes, OGG1 and NEIL1, in HepG2 and Chang liver cells, were carried out using the RT-PCR method. Findings/Results The pure compound obtained from the fraction-5 of diethyl ether extract was identified as a novel quercetin derivative and named 7-(but-2-en-1-yloxy)-2-(4(but-2-en-1-yloxy)-3-hydroxyphenyl)-3- (hexa-2,4-dien-1-yloxy)-6-hydroxy-4H-chromen-4-one. This compound recorded modest toxicity at the highest concentration tested (percentage cell viability at 100 μg/mL was 64.71 ± 0.38 for HepG2 and 45.32 ± 0.07 for Chang liver cells). The compound has demonstrated noteworthy protection against H2O2-induced DNA damage in both cell lines. Analyses of mRNA expression levels for enzymes OGGI and NEIL1 enzymes in HepG2 and Chang liver cells asserted the protective role of the isolated compound against H2O2-induced DNA damage. Conclusion and implication The protective effect of a novel quercetin derivative isolated from T. chebula in the hepatoma cells is reported here for the first time.
Collapse
Affiliation(s)
- Kallyadan Soumya
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| | - Karickal Raman Haridas
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| | - Jesna James
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| | - Sudhakaran Sudheesh
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| |
Collapse
|
12
|
Castejón-Griñán M, Cerdido S, Sánchez-Beltrán J, Lambertos A, Abrisqueta M, Herraiz C, Jiménez-Cervantes C, García-Borrón JC. Melanoma-associated melanocortin 1 receptor variants confer redox signaling-dependent protection against oxidative DNA damage. Redox Biol 2024; 72:103135. [PMID: 38565069 PMCID: PMC11002308 DOI: 10.1016/j.redox.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Cutaneous melanoma, a lethal skin cancer, arises from malignant transformation of melanocytes. Solar ultraviolet radiation (UVR) is a major environmental risk factor for melanoma since its interaction with the skin generates DNA damage, either directly or indirectly via oxidative stress. Pheomelanin pigments exacerbate oxidative stress in melanocytes by UVR-dependent and independent mechanisms. Thus, oxidative stress is considered to contribute to melanomagenesis, particularly in people with pheomelanic pigmentation. The melanocortin 1 receptor gene (MC1R) is a major melanoma susceptibility gene. Frequent MC1R variants (varMC1R) associated with fair skin and red or yellow hair color display hypomorphic signaling to the cAMP pathway and are associated with higher melanoma risk. This association is thought to be due to production of photosensitizing pheomelanins as well as deficient induction of DNA damage repair downstream of varMC1R. However, the data on modulation of oxidative DNA damage repair by MC1R remain scarce. We recently demonstrated that varMC1R accelerates clearance of reactive oxygen species (ROS)-induced DNA strand breaks in an AKT-dependent manner. Here we show that varMC1R also protects against ROS-dependent formation of 8-oxodG, the most frequent oxidative DNA lesion. Since the base excision repair (BER) pathway mediates clearance of these DNA lesions, we analyzed induction of BER enzymes in human melanoma cells of varMC1R genotype. Agonist-mediated activation of both wildtype (wtMC1R) and varMC1R significantly induced OGG and APE-1/Ref1, the rate-limiting BER enzymes responsible for repair of 8-oxodG. Moreover, we found that NADPH oxidase (NOX)-dependent generation of ROS was responsible for AKT activation and oxidative DNA damage repair downstream of varMC1R. These observations provide a better understanding of the functional properties of melanoma-associated MC1R alleles and may be useful for the rational development of strategies to correct defective varMC1R responses for efficient photoprotection and melanoma prevention in fair-skinned individuals.
Collapse
Affiliation(s)
- María Castejón-Griñán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - Sonia Cerdido
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - José Sánchez-Beltrán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - Ana Lambertos
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - Marta Abrisqueta
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - Cecilia Herraiz
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - Celia Jiménez-Cervantes
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| | - José Carlos García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Biomedical Research Institute of Murcia (Instituto Murciano de Investigación Biosanitaria, IMIB), El Palmar, Murcia, Spain.
| |
Collapse
|
13
|
Kladova OA, Tyugashev TE, Miroshnikov AA, Novopashina DS, Kuznetsov NA, Kuznetsova AA. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity. Biomolecules 2024; 14:547. [PMID: 38785954 PMCID: PMC11117729 DOI: 10.3390/biom14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
In the cell, DNA polymerase β (Polβ) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polβ can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polβ variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polβ functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | | | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| |
Collapse
|
14
|
Zhao W, Hussen AS, Freudenthal BD, Suo Z, Zhao L. Mitochondrial transcription factor A (TFAM) has 5'-deoxyribose phosphate lyase activity in vitro. DNA Repair (Amst) 2024; 137:103666. [PMID: 38492429 PMCID: PMC11056281 DOI: 10.1016/j.dnarep.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase β, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) β, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.
Collapse
Affiliation(s)
- Wenxin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, United States
| | - Adil S Hussen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States; University of Kansas Cancer Center, Kansas City, KS 66160, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, United States
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, United States; Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
15
|
Ginno PA, Borgers H, Ernst C, Schneider A, Behm M, Aitken SJ, Taylor MS, Odom DT. Single-mitosis dissection of acute and chronic DNA mutagenesis and repair. Nat Genet 2024; 56:913-924. [PMID: 38627597 PMCID: PMC11096113 DOI: 10.1038/s41588-024-01712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/08/2024] [Indexed: 04/24/2024]
Abstract
How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.
Collapse
Affiliation(s)
- Paul Adrian Ginno
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Helena Borgers
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Christina Ernst
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anja Schneider
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Mikaela Behm
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Sarah J Aitken
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany.
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Hua AB, Sweasy JB. Functional roles and cancer variants of the bifunctional glycosylase NEIL2. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:40-56. [PMID: 37310399 DOI: 10.1002/em.22555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Over 70,000 DNA lesions occur in the cell every day, and the inability to properly repair them can lead to mutations and destabilize the genome, resulting in carcinogenesis. The base excision repair (BER) pathway is critical for maintaining genomic integrity by repairing small base lesions, abasic sites and single-stranded breaks. Monofunctional and bifunctional glycosylases initiate the first step of BER by recognizing and excising specific base lesions, followed by DNA end processing, gap filling, and finally nick sealing. The Nei-like 2 (NEIL2) enzyme is a critical bifunctional DNA glycosylase in BER that preferentially excises cytosine oxidation products and abasic sites from single-stranded, double-stranded, and bubble-structured DNA. NEIL2 has been implicated to have important roles in several cellular functions, including genome maintenance, participation in active demethylation, and modulation of the immune response. Several germline and somatic variants of NEIL2 with altered expression and enzymatic activity have been reported in the literature linking them to cancers. In this review, we provide an overview of NEIL2 cellular functions and summarize current findings on NEIL2 variants and their relationship to cancer.
Collapse
Affiliation(s)
- Anh B Hua
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
17
|
Moor NA, Vasil'eva IA, Lavrik OI. Human DNA ligases I and IIIα as determinants of accuracy and efficiency of base excision DNA repair. Biochimie 2024; 219:84-95. [PMID: 37573020 DOI: 10.1016/j.biochi.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Mammalian Base Excision Repair (BER) DNA ligases I and IIIα (LigI, LigIIIα) are major determinants of DNA repair fidelity, alongside with DNA polymerases. Here we compared activities of human LigI and LigIIIα on specific and nonspecific substrates representing intermediates of distinct BER sub-pathways. The enzymes differently discriminate mismatches in the nicked DNA, depending on their identity and position, but are both more selective against the 3'-end non-complementarity. LigIIIα is less active than LigI in premature ligation of one-nucleotide gapped DNA and more efficiently discriminates misinsertion products of DNA polymerase β-catalyzed gap filling, that reinforces a leading role of LigIIIα in the accuracy of short-patch BER. LigI and LigIIIα reseal the intermediate of long-patch BER containing an incised synthetic AP site (F) with different efficiencies, depending on the DNA sequence context, 3'-end mismatch presence and coupling of the ligation reaction with DNA repair synthesis. Processing of this intermediate in the absence of flap endonuclease 1 generates non-canonical DNAs with bulged F site, which are very inefficiently repaired by AP endonuclease 1 and represent potential mutagenic repair products. The extent of conversion of the 5'-adenylated intermediates of specific and nonspecific substrates is revealed to depend on the DNA sequence context; a higher sensitivity of LigI to the sequence is in line with the enzyme structural feature of DNA binding. LigIIIα exceeds LigI in generation of potential abortive ligation products, justifying importance of XRCC1-mediated coordination of LigIIIα and aprataxin activities for the efficient DNA repair.
Collapse
Affiliation(s)
- Nina A Moor
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Inna A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia.
| |
Collapse
|
18
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
19
|
Alomair A, Alamri A, Shaik J, Aljafari S, Ba Abdullah M, Alanazi M. Association between polymorphisms of the DNA repair genes RAD51 and OGG1 and risk of cardiovascular disease. Mol Med Rep 2024; 29:53. [PMID: 38334141 PMCID: PMC10865073 DOI: 10.3892/mmr.2024.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide, and multiple single‑nucleotide polymorphisms of DNA repair genes have been found to be associated with CVD. The aim of the present study was to assess the effects of the genetic variants of RAD51 recombinase (RAD51) and 8‑oxoguanine DNA glycosylase (OGG1) on CVD through genotyping and statistical analysis. Regardless of whether there is a significant association or not, the genotyping data on these two polymorphisms are valuable, because there is limited availability of it in certain populations. A total of 240 blood samples were analyzed and genotyped using TaqMan genotyping; 120 were obtained from cases with a history of CVD, and 120 from cases with no history of CVD. A questionnaire was administered to gather information on age, demographics, sex and clinical features, and confirmation was carried out using medical records. The results of the present study confirmed that the polymorphism rs1052133 in OGG1 had no significant association with CVD. On the other hand, the polymorphism rs1801321 in RAD51 exhibited a significant association with CVD. Collectively, the results of the present study revealed that the polymorphism rs1801321 in RAD51 exhibited a significant association with CVD, however a larger sample size to confirm the present findings, may allow for the early identification of CVD and may aid in the decision‑making process concerning treatments for CVD.
Collapse
Affiliation(s)
- Amar Alomair
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Abdullah Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Jilani Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Salman Aljafari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Kingdom of Saudi Arabia
| | - Mohammed Ba Abdullah
- Department of Biological Sciences, College of Science, King Faisal University, Al‑Ahsa 31982, Kingdom of Saudi Arabia
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Schaich MA, Weaver TM, Roginskaya V, Freudenthal BD, Van Houten B. Single-molecule analysis of purified proteins and nuclear extracts: Insights from 8-oxoguanine glycosylase 1. DNA Repair (Amst) 2024; 134:103625. [PMID: 38237481 PMCID: PMC11287474 DOI: 10.1016/j.dnarep.2024.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
By observing one molecule at a time, single-molecule studies can offer detailed insights about biomolecular processes including on rates, off rates, and diffusivity of molecules on strands of DNA. A recent technological advance (Single-molecule Analysis of DNA-binding proteins from Nuclear Extracts, SMADNE) has lowered the barrier to entry for single-molecule studies, and single-molecule dynamics can now be determined directly out of nuclear extracts, providing information in an intermediate environment between purified proteins in isolation and the heterogeneity of a nucleus. To compare and contrast the single-molecule DNA binding dynamics in nuclear extracts versus purified proteins, combined optical tweezers and fluorescence microscopy experiments were performed with purified GFP-tagged 8-oxoguanine glycosylase 1 (OGG1), purified GFP-OGG1 spiked into nuclear extracts, and nuclear extracts from human cells overexpressing GFP-OGG1. We observed differences in undamaged DNA binding during DNA damage search in each of the three conditions. Purified GFP-OGG1 engaged undamaged DNA for a weighted average lifetime of 5.7 s and 21% of these events underwent DNA diffusion after binding. However, unlike other glycosylases studied by SMADNE, OGG1 does not bind non-damaged DNA efficiently in nuclear extracts. In contrast, GFP-OGG1 binding dynamics on DNA substrates containing oxidative damage were relatively similar in all three conditions, with the weighted average binding lifetimes varying from 2.2 s in nuclear extracts to 7.8 s with purified GFP-OGG1 in isolation. Finally, we compared the purified protein and nuclear extract approaches for a catalytically dead OGG1 variant (GFP-OGG1-K249Q). This variant greatly increased the binding lifetime for oxidative DNA damage, with the weighted average lifetime for GFP-OGG1-249Q in nuclear extracts at 15.4 s vs 10.7 s for the purified protein. SMADNE will provide a new window of observation into the behavior of nucleic acid binding proteins only accessible by biophysicists trained in protein purification and protein labeling.
Collapse
Affiliation(s)
- Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC-Hillman Cancer Center, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC-Hillman Cancer Center, USA.
| |
Collapse
|
21
|
Kushwah AS, Masood S, Mishra R, Banerjee M. Genetic and epigenetic alterations in DNA repair genes and treatment outcome of chemoradiotherapy in cervical cancer. Crit Rev Oncol Hematol 2024; 194:104240. [PMID: 38122918 DOI: 10.1016/j.critrevonc.2023.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cervical cancer (CaCx) is the deadliest malignancy among women which is caused by human papillomavirus (HPV) and anthro-demographical/clinicopathological factors. HPV oncoproteins E6 and E7 target p53 and RB (retinoblastoma) protein degradation, Ataxia telangiectasia mutated (ATM), ATM-RAD3-related (ATR) inactivation and subsequent impairment of non-homologous end joining (NHEJ), homologous recombination, and base excision repair pathways. There is also an accumulation of genetic and epigenetic alterations in Tumor Growth Suppressors (TGS), oncogenes, and DNA repair genes leading to increased genome instability and CaCx development. These alterations might be responsible for differential clinical response to Cisplatin-based chemoradiotherapy (CRT) in patients. This review explores HPV-mediated DNA damage as a risk factor in CaCx development, the mechanistic role of genetic and epigenetic alterations in DNA repair genes and their association with CRT and outcome, It also explores new possibilities for the development of genetic and epigenetic-based biomarkers for diagnostic, prognostic, and molecular therapeutic interventions.
Collapse
Affiliation(s)
- Atar Singh Kushwah
- Department of Urology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York 10029, NY, USA; Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shireen Masood
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| |
Collapse
|
22
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
23
|
Xie Q, Liao Q, Wang L, Zhang Y, Chen J, Bai H, Li K, Ai J. The Dominant Mechanism of Cyclophosphamide-Induced Damage to Ovarian Reserve: Premature Activation or Apoptosis of Primordial Follicles? Reprod Sci 2024; 31:30-44. [PMID: 37486531 DOI: 10.1007/s43032-023-01294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphamide (CPM), a part of most cancer treatment regimens, has demonstrated high gonadal toxicity in females. Initially, CPM is believed to damage the ovarian reserve by premature activation of primordial follicles, for the fact that facing CPM damage, primordial oocytes show the activation of PTEN/PI3K/AKT pathways, accompanied by accelerated activation of follicle developmental waves. Meanwhile, primordial follicles are dormant and not considered the target of CPM. However, many researchers have found DNA DSBs and apoptosis within primordial oocytes under CPM-induced ovarian damage instead of premature accelerated activation. A stricter surveillance system of DNA damage is also thought to be in primordial oocytes. So far, the apoptotic death mechanism is considered well-proved, but the premature activation theory is controversial and unacceptable. The connection between the upregulation of PTEN/PI3K/AKT pathways and DNA DSBs and apoptosis within primordial oocytes is also unclear. This review aims to highlight the flaw and/or support of the disputed premature activation theory and the apoptosis mechanism to identify the underlying mechanism of CPM's injury on ovarian reserve, which is crucial to facilitate the discovery and development of effective ovarian protectants. Ultimately, this review finds no good evidence for follicle activation and strong consistent evidence for apoptosis.
Collapse
Affiliation(s)
- Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangcheng District, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Qiuyue Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hualin Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
25
|
Schaich MA, Weaver TM, Roginskaya V, Freudenthal BD, Van Houten B. Single-molecule analysis of purified proteins and nuclear extracts: insights from 8-oxoguanine glycosylase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565178. [PMID: 37961208 PMCID: PMC10635064 DOI: 10.1101/2023.11.01.565178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
By observing one molecule at a time, single-molecule studies can offer detailed insights about biomolecular processes including on rates, off rates, and diffusivity of molecules on strands of DNA. A recent technological advance (Single-molecule Analysis of DNA-binding proteins from Nuclear Extracts, SMADNE) has lowered the barrier to entry for single-molecule studies, and single-molecule dynamics can now be determined directly out of nuclear extracts, providing information in an intermediate environment between purified proteins in isolation and the heterogeneity of a nucleus. To compare and contrast the single-molecule DNA binding dynamics in nuclear extracts versus purified proteins, combined optical tweezers and fluorescence microscopy experiments were performed with purified GFP-tagged 8-oxoguanine glycosylase 1 (OGG1), purified GFP-OGG1 spiked into nuclear extracts, and nuclear extracts from human cells overexpressing GFP-OGG1. We observed differences in undamaged DNA binding during DNA damage search in each of the three conditions. Purified GFP-OGG1 engaged undamaged DNA for a weighted average lifetime of 5.7 s and 21% of these events underwent DNA diffusion after binding. However, unlike other glycosylases studied by SMADNE, OGG1 does not bind non-damaged DNA efficiently in nuclear extracts. In contrast, GFP-OGG1 binding dynamics on DNA substrates containing oxidative damage were relatively similar in all three conditions, with the weighted average binding lifetimes varying from 2.2 s in nuclear extracts to 7.8 s with purified GFP-OGG1 in isolation. Finally, we compared the purified protein and nuclear extract approaches for a catalytically dead OGG1 variant (GFP-OGG1-K249Q). This variant greatly increased the binding lifetime for oxidative DNA damage, with the weighted average lifetime for GFP-OGG1-249Q in nuclear extracts at 15.4 s vs 10.7 s for the purified protein. SMADNE will provide a new window of observation into the behavior of nucleic acid binding proteins only accessible by biophysicists trained in protein purification and protein labeling.
Collapse
|
26
|
Li L, Zhang H, Meng D, Yin H. Transcriptomics of Lactobacillus paracasei: metabolism patterns and cellular responses under high-density culture conditions. Front Bioeng Biotechnol 2023; 11:1274020. [PMID: 37901845 PMCID: PMC10601642 DOI: 10.3389/fbioe.2023.1274020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Lactobacillus paracasei has significant potential for development and application in the environmental field, particularly in addressing malodor pollution. This study aims to investigate the cellular response of L. paracasei B1 under high-density culture conditions. The selected strain has previously shown effective deodorizing and bacteriostatic abilities. Transcriptomics techniques are employed to dissect the nutrient metabolism pattern of L. paracasei B1 and its response mechanism under environmental stress. The study characterizes the functions of key differentially expressed genes during growth before and after optimizing the culture conditions. The optimization of fermentation culture conditions provides a suitable growth environment for L. paracasei B1, inducing an enhancement of its phosphotransferase system for sugar source uptake and maintaining high levels of glycolysis and pyruvate metabolism. Consequently, the strain is able to grow and multiply rapidly. Under acid stress conditions, glycolysis and pyruvate metabolism are inhibited, and L. paracasei B1 generates additional energy through aerobic respiration to meet the energy demand. The two-component system and quorum sensing play roles in the response and regulation of L. paracasei B1 to adverse environments. The strain mitigates oxygen stress damage through glutathione metabolism, cysteine and methionine metabolism, base excision repair, and purine and pyrimidine metabolism. Additionally, the strain enhances lysine synthesis, the alanine, aspartate, and glutamate metabolic pathways, and relies on the ABC transport system to accumulate amino acid-compatible solutes to counteract acid stress and osmotic stress during pH regulation. These findings establish a theoretical basis for the further development and application of L. paracasei B1 for its productive properties.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hetian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
27
|
Moreli JB, Santos MRD, Calderon IDMP, Hebeda CB, Farsky SHP, Bevilacqua E, Oliani SM. The Role of Annexin A1 in DNA Damage Response in Placental Cells: Impact on Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:10155. [PMID: 37373303 DOI: 10.3390/ijms241210155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The functions of annexin A1 (ANXA1), which is expressed on membranes and in cytoplasmic granules, have been fully described. Nonetheless, the role of this protein in protecting against DNA damage in the nucleus is still emerging and requires further investigation. Here, we investigated the involvement of ANXA1 in the DNA damage response in placental cells. Placenta was collected from ANXA1 knockout mice (AnxA1-/-) and pregnant women with gestational diabetes mellitus (GDM). The placental morphology and ANXA1 expression, which are related to the modulation of cellular response markers in the presence of DNA damage, were analyzed. The total area of AnxA1-/- placenta was smaller due to a reduced labyrinth zone, enhanced DNA damage, and impaired base excision repair (BER) enzymes, which resulted in the induction of apoptosis in the labyrinthine and junctional layers. The placentas of pregnant women with GDM showed reduced expression of AnxA1 in the villous compartment, increased DNA damage, apoptosis, and a reduction of enzymes involved in the BER pathway. Our translational data provide valuable insights into the possible involvement of ANXA1 in the response of placental cells to oxidative DNA damage and represent an advancement in investigations into the mechanisms involved in placental biology.
Collapse
Affiliation(s)
- Jusciele Brogin Moreli
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
- Faceres School of Medicine (FACERES), São José do Rio Preto 15090-305, Brazil
| | - Mayk Ricardo Dos Santos
- Department of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Iracema de Mattos Paranhos Calderon
- Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo 05508-000, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo 05508-000, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
| | - Sonia Maria Oliani
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
- Department of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
- Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto 15030-070, Brazil
| |
Collapse
|
28
|
Raja SJ, Van Houten B. UV-DDB as a General Sensor of DNA Damage in Chromatin: Multifaceted Approaches to Assess Its Direct Role in Base Excision Repair. Int J Mol Sci 2023; 24:10168. [PMID: 37373320 PMCID: PMC10298998 DOI: 10.3390/ijms241210168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Base excision repair (BER) is a cellular process that removes damaged bases arising from exogenous and endogenous sources including reactive oxygen species, alkylation agents, and ionizing radiation. BER is mediated by the actions of multiple proteins which work in a highly concerted manner to resolve DNA damage efficiently to prevent toxic repair intermediates. During the initiation of BER, the damaged base is removed by one of 11 mammalian DNA glycosylases, resulting in abasic sites. Many DNA glycosylases are product-inhibited by binding to the abasic site more avidly than the damaged base. Traditionally, apurinic/apyrimidinic endonuclease 1, APE1, was believed to help turn over the glycosylases to undergo multiple rounds of damaged base removal. However, in a series of papers from our laboratory, we have demonstrated that UV-damaged DNA binding protein (UV-DDB) stimulates the glycosylase activities of human 8-oxoguanine glycosylase (OGG1), MUTY DNA glycosylase (MUTYH), alkyladenine glycosylase/N-methylpurine DNA glycosylase (AAG/MPG), and single-strand selective monofunctional glycosylase (SMUG1), between three- and five-fold. Moreover, we have shown that UV-DDB can assist chromatin decompaction, facilitating access of OGG1 to 8-oxoguanine damage in telomeres. This review summarizes the biochemistry, single-molecule, and cell biology approaches that our group used to directly demonstrate the essential role of UV-DDB in BER.
Collapse
Affiliation(s)
- Sripriya J. Raja
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Jang S, Raja SJ, Roginskaya V, Schaich MA, Watkins S, Van Houten B. UV-DDB stimulates the activity of SMUG1 during base excision repair of 5-hydroxymethyl-2'-deoxyuridine moieties. Nucleic Acids Res 2023; 51:4881-4898. [PMID: 36971122 PMCID: PMC10250209 DOI: 10.1093/nar/gkad206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 11/15/2023] Open
Abstract
UV-damaged DNA-binding protein (UV-DDB) is a heterodimeric protein, consisting of DDB1 and DDB2 subunits, that works to recognize DNA lesions induced by UV damage during global genome nucleotide excision repair (GG-NER). Our laboratory previously discovered a non-canonical role for UV-DDB in the processing of 8-oxoG, by stimulating 8-oxoG glycosylase, OGG1, activity 3-fold, MUTYH activity 4-5-fold, and APE1 (apurinic/apyrimidinic endonuclease 1) activity 8-fold. 5-hydroxymethyl-deoxyuridine (5-hmdU) is an important oxidation product of thymidine which is removed by single-strand selective monofunctional DNA glycosylase (SMUG1). Biochemical experiments with purified proteins indicated that UV-DDB stimulates the excision activity of SMUG1 on several substrates by 4-5-fold. Electrophoretic mobility shift assays indicated that UV-DDB displaced SMUG1 from abasic site products. Single-molecule analysis revealed that UV-DDB decreases the half-life of SMUG1 on DNA by ∼8-fold. Immunofluorescence experiments demonstrated that cellular treatment with 5-hmdU (5 μM for 15 min), which is incorporated into DNA during replication, produces discrete foci of DDB2-mCherry, which co-localize with SMUG1-GFP. Proximity ligation assays supported a transient interaction between SMUG1 and DDB2 in cells. Poly(ADP)-ribose accumulated after 5-hmdU treatment, which was abrogated with SMUG1 and DDB2 knockdown. These data support a novel role for UV-DDB in the processing of the oxidized base, 5-hmdU.
Collapse
Affiliation(s)
- Sunbok Jang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sripriya J Raja
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Fairlamb MS, Spies M, Washington MT, Freudenthal BD. Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair. J Biol Chem 2023; 299:104636. [PMID: 36963489 PMCID: PMC10148159 DOI: 10.1016/j.jbc.2023.104636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Base excision repair (BER) is carried out by a series of proteins that function in a step-by-step process to identify, remove, and replace DNA damage. During BER, the DNA transitions through various intermediate states as it is processed by each DNA repair enzyme. Left unrepaired, these BER intermediates can transition into double-stranded DNA breaks and promote genome instability. Previous studies have proposed a short-lived complex consisting of the BER intermediate, the incoming enzyme, and the outgoing enzyme at each step of the BER pathway to protect the BER intermediate. The transfer of BER intermediates between enzymes, known as BER coordination or substrate channeling, remains poorly understood. Here, we utilize single-molecule total internal reflection fluorescence microscopy to investigate the mechanism of BER coordination between apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase β (Pol β). When preformed complexes of APE1 and the incised abasic site product (APE1 product and Pol β substrate) were subsequently bound by Pol β, the Pol β enzyme dissociated shortly after binding in most of the observations. In the events where Pol β binding was followed by APE1 dissociation during substrate channeling, Pol β remained bound for a longer period of time to allow disassociation of APE1. Our results indicate that transfer of the BER intermediate from APE1 to Pol β during BER is dependent on the dissociation kinetics of APE1 and the duration of the ternary complex on the incised abasic site.
Collapse
Affiliation(s)
- Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - M Todd Washington
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; University of Kansas Cancer Center, Kansas City, Kansas, USA.
| |
Collapse
|
31
|
Jaiswal AS, Kim HS, Schärer OD, Sharma N, Williamson E, Srinivasan G, Phillips L, Kong K, Arya S, Misra A, Dutta A, Gupta Y, Walter C, Burma S, Narayan S, Sung P, Nickoloff J, Hromas R. EEPD1 promotes repair of oxidatively-stressed replication forks. NAR Cancer 2023; 5:zcac044. [PMID: 36683914 PMCID: PMC9846428 DOI: 10.1093/narcan/zcac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Gayathri Srinivasan
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Linda Phillips
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kimi Kong
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Shailee Arya
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Anurag Misra
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yogesh Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Christi A Walter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
32
|
Moon J, Kitty I, Renata K, Qin S, Zhao F, Kim W. DNA Damage and Its Role in Cancer Therapeutics. Int J Mol Sci 2023; 24:4741. [PMID: 36902170 PMCID: PMC10003233 DOI: 10.3390/ijms24054741] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
DNA damage is a double-edged sword in cancer cells. On the one hand, DNA damage exacerbates gene mutation frequency and cancer risk. Mutations in key DNA repair genes, such as breast cancer 1 (BRCA1) and/or breast cancer 2 (BRCA2), induce genomic instability and promote tumorigenesis. On the other hand, the induction of DNA damage using chemical reagents or radiation kills cancer cells effectively. Cancer-burdening mutations in key DNA repair-related genes imply relatively high sensitivity to chemotherapy or radiotherapy because of reduced DNA repair efficiency. Therefore, designing specific inhibitors targeting key enzymes in the DNA repair pathway is an effective way to induce synthetic lethality with chemotherapy or radiotherapy in cancer therapeutics. This study reviews the general pathways involved in DNA repair in cancer cells and the potential proteins that could be targeted for cancer therapeutics.
Collapse
Affiliation(s)
- Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Kusuma Renata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
33
|
Chen YH, Kuo YY, You YQ, Lin YT, Chen PC. Endonuclease VIII-like 1 deficiency potentiates nigrostriatal dopaminergic neuron degeneration in a male mouse model of Parkinson's disease. J Neurochem 2023; 165:741-755. [PMID: 36840377 DOI: 10.1111/jnc.15794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Parkinson's disease (PD) is a common movement disorder caused by a characteristic loss of dopaminergic neurons in the substantia nigra and degeneration of dopamine terminals in the dorsal striatum. Previous studies have suggested that oxidative stress-induced DNA damage may be involved in PD pathogenesis, as steady-state levels of several types of oxidized nucleobases were shown to be elevated in PD brain tissues. These DNA lesions are normally removed from the genome by base excision repair, which is initiated by DNA glycosylase enzymes such as endonuclease VIII-like 1 (Neil1). In this study, we show that Neil1 plays an important role in limiting oxidative stress-induced degeneration of dopaminergic neurons. In particular, Neil1-deficient male mice exhibited enhanced sensitivity to nigrostriatal degeneration after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, and Neil1-deficient animals had higher levels of γH2AX-marked DNA damage than wild-type (WT) controls, regardless of treatment status. Moreover, MPTP-treated Neil1-/- male mice had slightly elevated expression of genes related to the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant pathway. Treatment with the Nrf2 activator, monomethyl fumarate, reduced PD-like behaviors and pathology in Neil1-/- male mice, suggesting that Neil1 is an important defense molecule in an oxidative cellular environment. Taken together, these results suggest that Neil1 DNA glycosylase may play an important role in limiting oxidative stress-mediated PD pathogenesis.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Qian You
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
35
|
Lazzarin MC, Dos Santos JF, Quintana HT, Pidone FAM, de Oliveira F. Duchenne muscular dystrophy progression induced by downhill running is accompanied by increased endomysial fibrosis and oxidative damage DNA in muscle of mdx mice. J Mol Histol 2023; 54:41-54. [PMID: 36348131 DOI: 10.1007/s10735-022-10109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle necrosis. One of the major challenges for prescribing physical rehabilitation exercises for DMD patients is associated with the lack of a thorough knowledge of dystrophic muscle responsiveness to exercise. This study aims to understand the relationship between myogenic regulation, inflammation and oxidative stress parameters, and disease progression induced by downhill running in the skeletal muscle of an experimental model of DMD. Six-month-old C57BL/10 and C57BL/10-DMDmdx male mice were distributed into three groups: Control (C), mdx, and mdx + Exercise (mdx + Ex). Animals were trained in a downhill running protocol for seven weeks. The gastrocnemius muscle was subjected to histopathology, muscle regeneration (myoD and myogenin), inflammation (COX-2), oxidative stress (8-OHdG) immunohistochemistry markers, and gene expression (qPCR) of NF-kB and NADP(H)Oxidase 2 (NOX-2) analysis. In the mdx + Ex group, the gastrocnemius muscle showed a higher incidence of endomysial fibrosis and a lower myonecrosis percentage area. Immunohistochemical analysis revealed decreased myogenin immunoexpression in the mdx group, as well as accentuated immunoexpression of nuclear 8-OHdG in both mdx groups and increase in cytoplasmic 8-OHdG only in the mdx + Ex. COX-2 immunoexpression was related to areas of regeneration process and inflammatory infiltrate in the mdx group, while associated with areas of muscle fibrosis in the mdx + Ex. Moreover, the NF-kB gene expression was not influenced by exercise; however, a NAD(P)HOxidase 2 increase was observed. Oxidative stress and oxidative DNA damage play a significant role in the DMD phenotype progression induced by exercise, compromising cellular patterns resulting in increased endomysial fibrosis.
Collapse
Affiliation(s)
- Mariana Cruz Lazzarin
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.,Laboratory of Pathophysiology, Institute Butantan, São Paulo, SP, Brazil
| | - José Fontes Dos Santos
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Hananiah Tardivo Quintana
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia Andressa Mazzuco Pidone
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.
| |
Collapse
|
36
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Fu Y, Li X, Pan B, Niu Y, Zhang B, Zhao X, Nie J, Yang J. Effects of H19/SAHH/DNMT1 on the oxidative DNA damage related to benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11706-11718. [PMID: 36098921 DOI: 10.1007/s11356-022-22936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms that long noncoding RNA (lncRNA) H19 binding to S-adenosylhomocysteine hydrolase (SAHH) interacted with DNA methyltransferase 1 (DNMT1) and then regulated DNA damage caused by polycyclic aromatic hydrocarbons (PAHs) remain unclear. A total of 146 occupational workers in a Chinese coke-oven plant in 2014 were included in the final analyses. We used high-performance liquid chromatography mass spectrometry (HPLC-MS) equipped to detect urine biomarkers of PAHs exposure, including 2-hydroxynaphthalene (2-NAP), 2-hydroxyfluorene (2-FLU), 9-hydroxyphenanthrene (9-PHE) and 1-hydroxypyrene (1-OHP). The levels of SAM and SAH in plasma were detected by HPLC-ultraviolet. By constructing various BEAS-2B cell models exposed to 16 μM benzo[a]pyrene (BaP) for 24 h, toxicological parameters reflecting distinct mechanisms were evaluated. We documented that urinary 1-hydroxypyrene (1-OHP) levels were positively associated with blood H19 RNA expression (OR: 1.51, 95% CI: 1.03-2.19), but opposite to plasma SAHH activity (OR: 0.63, 95% CI: 0.41-0.98) in coke oven workers. Moreover, by constructing various BEAS-2B cell models exposed to benzo[a]pyrene (BaP), we investigated that H19 binding to SAHH exaggerated DNMT1 expressions and activity. Suppression of H19 enhanced the interaction of SAHH and DNMT1 in BaP-treated cells, decreased eight-oxoguanine DNA glycosylase 1 (OGG1) methylation, reduced oxidative DNA damage and lessened S phase arrest. However, SAHH or DNMT1 single knockdown and SAHH/DNMT1 double knockdown showed the opposite trend. A H19/SAHH/DNMT1 axis was involved in OGG1 methylation, oxidative DNA damage and cell cycle arrest by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| |
Collapse
|
38
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
39
|
Jaiswal AS, Williamson EA, Jaiswal AS, Kong K, Hromas RA. In Vitro Reconstitutive Base Excision Repair (BER) Assay. Methods Mol Biol 2023; 2701:91-112. [PMID: 37574477 DOI: 10.1007/978-1-0716-3373-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The mammalian cell genome is continuously exposed to endogenous and exogenous insults that modify its DNA. These modifications can be single-base lesions, bulky DNA adducts, base dimers, base alkylation, cytosine deamination, nitrosation, or other types of base alteration which interfere with DNA replication. Mammalian cells have evolved with a robust defense mechanism to repair these base modifications (damages) to preserve genomic stability. Base excision repair (BER) is the major defense mechanism for cells to remove these oxidative or alkylated single-base modifications. The base excision repair process involves replacement of a single-nucleotide residue by two sub-pathways, the single-nucleotide (SN) and the multi-nucleotide or long-patch (LP) base excision repair pathways. These reactions have been reproduced in vitro using cell free extracts or purified recombinant proteins involved in the base excision repair pathway. In the present chapter, we describe the detailed methodology to reconstitute base excision repair assay systems. These reconstitutive BER assay systems use artificially synthesized and modified DNA. These reconstitutive assay system will be a true representation of biologically occurring damages and their repair.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arunima S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kimi Kong
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert A Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
40
|
Ryan BJ, Weaver TM, Spencer JJ, Freudenthal BD. Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage. Methods Mol Biol 2023; 2701:55-76. [PMID: 37574475 PMCID: PMC10794041 DOI: 10.1007/978-1-0716-3373-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic DNA exists in chromatin, where the genomic DNA is packaged into a fundamental repeating unit known as the nucleosome. In this chromatin environment, our genomic DNA is constantly under attack by exogenous and endogenous stressors that can lead to DNA damage. Importantly, this DNA damage must be repaired to prevent the accumulation of mutations and ensure normal cellular function. To date, most in-depth biochemical studies of DNA repair proteins have been performed in the context of free duplex DNA. However, chromatin can serve as a barrier that DNA repair enzymes must navigate in order find, access, and process DNA damage in the cell. To facilitate future studies of DNA repair in chromatin, we describe a protocol for generating nucleosome containing site-specific DNA damage that can be utilized for a variety of in vitro applications. This protocol describes several key steps including how to generate damaged DNA oligonucleotides, the expression and purification of recombinant histones, the refolding of histone complexes, and the reconstitution of nucleosomes containing site-specific DNA damage. These methods will enable researchers to generate nucleosomes containing site-specific DNA damage for extensive biochemical and structural studies of DNA repair in the nucleosome.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonah J Spencer
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
41
|
Maynard S, Hall A, Galanos P, Rizza S, Yamamoto T, Gram H, Munk SHN, Shoaib M, Sørensen CS, Bohr V, Lerdrup M, Maya-Mendoza A, Bartek J. Lamin A/C impairments cause mitochondrial dysfunction by attenuating PGC1α and the NAMPT-NAD+ pathway. Nucleic Acids Res 2022; 50:9948-9965. [PMID: 36099415 PMCID: PMC9508839 DOI: 10.1093/nar/gkac741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.
Collapse
Affiliation(s)
- Scott Maynard
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | - Salvatore Rizza
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Tatsuro Yamamoto
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | | | - Muhammad Shoaib
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mads Lerdrup
- The DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
42
|
Whitaker AM, Stark WJ, Freudenthal B. Processing oxidatively damaged bases at DNA strand breaks by APE1. Nucleic Acids Res 2022; 50:9521-9533. [PMID: 36018803 PMCID: PMC9458457 DOI: 10.1093/nar/gkac695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species attack the structure of DNA, thus altering its base-pairing properties. Consequently, oxidative stress-associated DNA lesions are a major source of the mutation load that gives rise to cancer and other diseases. Base excision repair (BER) is the pathway primarily tasked with repairing DNA base damage, with apurinic/apyrimidinic endonuclease (APE1) having both AP-endonuclease and 3' to 5' exonuclease (exo) DNA cleavage functions. The lesion 8-oxo-7,8-dihydroguanine (8-oxoG) can enter the genome as either a product of direct damage to the DNA, or through polymerase insertion at the 3'-end of a DNA strand during replication or repair. Importantly, 3'-8-oxoG impairs the ligation step of BER and therefore must be removed by the exo activity of a surrogate enzyme to prevent double stranded breaks and cell death. In the present study, we use X-ray crystallography to characterize the exo activity of APE1 on 3'-8-oxoG substrates. These structures support a unified APE1 exo mechanism that differs from its more canonical AP-endonuclease activity. In addition, through complementation of the structural data with enzyme kinetics and binding studies employing both wild-type and rationally designed APE1 mutants, we were able to identify and characterize unique protein: DNA contacts that specifically mediate 8-oxoG removal by APE1.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wesley J Stark
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Cancer Center, Kansas City, Kansas, USA
| |
Collapse
|
43
|
Matzaraki V, Beno A, Jaeger M, Gresnigt MS, Keur N, Boahen C, Cunha C, Gonçalves SM, Leite L, Lacerda JF, Campos A, van de Veerdonk FL, Joosten L, Netea MG, Carvalho A, Kumar V. Genetic determinants of fungi-induced ROS production are associated with the risk of invasive pulmonary aspergillosis. Redox Biol 2022; 55:102391. [PMID: 35834984 PMCID: PMC9283926 DOI: 10.1016/j.redox.2022.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) are an essential component of the host defense against fungal infections. However, little is known about how common genetic variation affects ROS-mediated antifungal host defense. In the present study, we investigated the genetic factors that regulate ROS production capacity in response to the two human fungal pathogens: Candida albicans and Aspergillus fumigatus. We investigated fungal-stimulated ROS production by immune cells isolated from a population-based cohort of approximately 200 healthy individuals (200FG cohort), and mapped ROS-quantitative trait loci (QTLs). We identified several genetic loci that regulate ROS levels (P < 9.99 × 10-6), with some of these loci being pathogen-specific, and others shared between the two fungi. These ROS-QTLs were investigated for their influence on the risk of invasive pulmonary aspergillosis (IPA) in a disease relevant context. We stratified hematopoietic stem-cell transplant (HSCT) recipients based on the donor's SNP genotype and tested their impact on the risk of IPA. We identified rs4685368 as a ROS-QTL locus that was significantly associated with an increased risk of IPA after controlling for patient age and sex, hematological malignancy, type of transplantation, conditioning regimen, acute graft-versus-host-disease grades III-IV, and antifungal prophylaxis. Collectively, this data provides evidence that common genetic variation can influence ROS production capacity, and, importantly, the risk of developing IPA among HSCT recipients. This evidence warrants further research for patient stratification based on the genetic profiling that would allow the identifications of patients at high-risk for an invasive fungal infection, and who would benefit the most from a preventive strategy.
Collapse
Affiliation(s)
- Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands.
| | - Alexandra Beno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Collins Boahen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Luis Leite
- Serviço de Transplantação de Medula Óssea (STMO), Instituto Português de Oncologia do Porto, Porto, Portugal
| | - João F Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea (STMO), Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Leo Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700RB, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Medical Sciences Complex, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
44
|
Komaniecka N, Porras M, Cairn L, Santas JA, Ferreiro N, Penedo JC, Bañuelos S. Conformational Rearrangements Regulating the DNA Repair Protein APE1. Int J Mol Sci 2022; 23:ijms23148015. [PMID: 35887361 PMCID: PMC9324194 DOI: 10.3390/ijms23148015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Apurinic apyrimidinic endonuclease 1 (APE1) is a key enzyme of the Base Excision Repair (BER) pathway, which primarily manages oxidative lesions of DNA. Once the damaged base is removed, APE1 recognises the resulting abasic site and cleaves the phosphodiester backbone to allow for the correction by subsequent enzymes of the BER machinery. In spite of a wealth of information on APE1 structure and activity, its regulation mechanism still remains to be understood. Human APE1 consists of a globular catalytic domain preceded by a flexible N-terminal extension, which might be involved in the interaction with DNA. Moreover, the binding of the nuclear chaperone nucleophosmin (NPM1) to this region has been reported to impact APE1 catalysis. To evaluate intra- and inter-molecular conformational rearrangements upon DNA binding, incision, and interaction with NPM1, we used Förster resonance energy transfer (FRET), a fluorescence spectroscopy technique sensitive to molecular distances. Our results suggest that the N-terminus approaches the DNA at the downstream side of the abasic site and enables the building of a predictive model of the full-length APE1/DNA complex. Furthermore, the spatial configuration of the N-terminal tail is sensitive to NPM1, which could be related to the regulation of APE1.
Collapse
Affiliation(s)
- Nina Komaniecka
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Marta Porras
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Louis Cairn
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Jon Ander Santas
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Ferreiro
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Juan Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Scottish Universities Physics Alliance (SUPA) School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK;
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-94-601-3347
| |
Collapse
|
45
|
Abstract
Diabetic nephropathy (DN) is the primary cause of end-stage renal disease. Accumulating studies have implied a critical role for the gut microbiota in diabetes mellitus (DM) and DN. However, the precise roles and regulatory mechanisms of the gut microbiota in the pathogenesis of DN remain largely unclear. In this study, metagenomics sequencing was performed using fecal samples from healthy controls (CON) and type 2 diabetes mellitus (T2DM) patients with or without DN. Fresh fecal samples from 15 T2DM patients without DN, 15 DN patients, and 15 age-, gender-, and body mass index (BMI)-matched healthy controls were collected. The compositions and potential functions of the gut microbiota were estimated. Although no difference of gut microbiota α and β diversity was observed between the CON, T2DM, and DN groups, the relative abundances of butyrate-producing bacteria (Clostridium, Eubacterium, and Roseburia intestinalis) and potential probiotics (Lachnospira and Intestinibacter) were significantly reduced in T2DM and DN patients. Besides, Bacteroides stercoris was significantly enriched in fecal samples from patients with DN. Moreover, Clostridium sp. 26_22 was negatively associated with serum creatinine (P < 0.05). DN patients could be accurately distinguished from CON by Clostridium sp. CAG_768 (area under the curve [AUC] = 0.941), Bacteroides propionicifaciens (AUC = 0.905), and Clostridium sp. CAG_715 (AUC = 0.908). DN patients could be accurately distinguished from T2DM patients by Pseudomonadales, Fusobacterium varium, and Prevotella sp. MSX73 (AUC = 0.889). Regarding the potential bacterial functions of the gut microbiota, the citrate cycle, base excision repair, histidine metabolism, lipoic acid metabolism, and bile acid biosynthesis were enriched in DN patients, while selenium metabolism and branched-chain amino acid biosynthesis were decreased in DN patients. IMPORTANCE Gut microbiota imbalance is found in fecal samples from DN patients, in which Roseburia intestinalis is significantly decreased, while Bacteroides stercoris is increased. There is a significant correlation between gut microbiota imbalance and clinical indexes related to lipid metabolism, glucose metabolism, and renal function. The gut microbiota may be predictive factors for the development and progression of DN, although further studies are warranted to illustrate their regulatory mechanisms.
Collapse
|
46
|
Rong Y, Mi X, Ni C, Liu T, Yang N, Hong J, Li Y, Li Z, Han D, Guo X. Protective effect of vitamin C on DNA damage in surgery-induced cognitive dysfunction in APP/PS1 mice. Neurosci Lett 2022; 784:136740. [PMID: 35738457 DOI: 10.1016/j.neulet.2022.136740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
Postoperative cognitive impairment is more likely to occur in elderly patients and in those with neurodegenerative diseases. The mechanisms underlying this impairment include neuroinflammation and oxidative stress. The increase in reactive oxygen species during oxidative stress causes cellular and molecular injury to neurons, including DNA damage, which aggravate brain dysfunction. Vitamin C has antioxidant effects and improves cognitive function in patients with Alzheimer's disease. However, it is unclear whether it can ameliorate surgery-induced cognitive impairment by inhibiting oxidative stress. In this study, 6-month-old mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were subjected to laparotomy. The open field and fear conditioning tests were used to assess cognitive function. Mice that underwent surgery showed cognitive impairment without changes in spontaneous locomotor activity. Oxidative stress, DNA damage and inflammatory mediators were increased in the hippocampus after surgery. The expression levels of non-homologous end-joining DNA repair-associated proteins, including Ku heterodimer, DNA-dependent protein kinase catalytic subunit, X-ray repair cross complementing 4 (XRCC4) and XRCC4-like factor, were increased after surgery. Vitamin C pretreatment effectively attenuated cognitive dysfunction induced by surgery and reduced oxidative stress and DNA damage. Our findings suggest that DNA damage plays an important role in surgery-induced cognitive dysfunction, and that vitamin C pretreatment may have therapeutic potential as a preventative approach for the cognitive impairment.
Collapse
Affiliation(s)
- Yulan Rong
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing 100191, China.
| |
Collapse
|
47
|
Elsakrmy N, Aouida M, Hindi N, Moovarkumudalvan B, Mohanty A, Ali R, Ramotar D. C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair (Amst) 2022; 117:103359. [DOI: 10.1016/j.dnarep.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
48
|
Zhang X, Yin M, Hu J. Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 2022; 54:807-819. [PMID: 35975604 PMCID: PMC9828404 DOI: 10.3724/abbs.2022054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops are discussed.
Collapse
Affiliation(s)
| | | | - Jinchuan Hu
- Correspondence address. Tel: +86-21-54237702; E-mail:
| |
Collapse
|
49
|
The Role of DNA Repair in Genomic Instability of Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23105688. [PMID: 35628498 PMCID: PMC9144728 DOI: 10.3390/ijms23105688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a B cell malignancy marked by genomic instability that arises both through pathogenesis and during disease progression. Despite recent advances in therapy, MM remains incurable. Recently, it has been reported that DNA repair can influence genomic changes and drug resistance in MM. The dysregulation of DNA repair function may provide an alternative explanation for genomic instability observed in MM cells and in cells derived from MM patients. This review provides an overview of DNA repair pathways with a special focus on their involvement in MM and discusses the role they play in MM progression and drug resistance. This review highlights how unrepaired DNA damage due to aberrant DNA repair response in MM exacerbates genomic instability and chromosomal abnormalities, enabling MM progression and drug resistance.
Collapse
|
50
|
Ryan BJ, Yang H, Bacurio JHT, Smith MR, Basu AK, Greenberg MM, Freudenthal BD. Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. J Am Chem Soc 2022; 144:8054-8065. [PMID: 35499923 PMCID: PMC9097547 DOI: 10.1021/jacs.2c00193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N6-(2-Deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase β (Pol β). Fapy•dG adopts the β-anomer when base paired with cytosine but exists as a mixture of α- and β-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol β knockdown HEK 293T cells indicates that Pol β contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the β-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Henric T Bacurio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|