1
|
Barta BA, Radovits T, Dobos AB, Tibor Kozma G, Mészáros T, Berényi P, Facskó R, Fülöp T, Merkely B, Szebeni J. Comirnaty-induced cardiopulmonary distress and other symptoms of complement-mediated pseudo-anaphylaxis in a hyperimmune pig model: Causal role of anti-PEG antibodies. Vaccine X 2024; 19:100497. [PMID: 38933697 PMCID: PMC11201123 DOI: 10.1016/j.jvacx.2024.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Background Comirnaty, Pfizer-BioNTech's polyethylene-glycol (PEG)-containing Covid-19 vaccine, can cause hypersensitivity reactions (HSRs), or rarely, life-threatening anaphylaxis in a small fraction of immunized people. A causal role of anti-PEG antibodies (Abs) has been proposed, but causality has not yet proven in an animal model. The aim of this study was to provide such evidence using pigs immunized against PEG, which displayed very high levels of anti-PEG antibodies (Abs). We also aimed to find evidence for a role of complement activation and thromboxane A2 release in blood to explore the mechanism of anaphylaxis. Methods Pigs (n = 6) were immunized with 0.1 mg/kg PEGylated liposome (Doxebo) i.v., and the rise of anti-PEG IgG and IgM were measured in serial blood samples with ELISA. After ∼2-3 weeks the animals were injected i.v. with 1/3 human dose of the PEGylated mRNA vaccine, Comirnaty, and the hemodynamic (PAP, SAP) cardiopulmonary (HR, EtCO2,), hematological (WBC, granulocyte, lymphocyte and platelet counts) parameters and blood immune mediators (anti-PEG IgM and IgG antibodies, thromboxane B2, C3a) were measured as endpoints of HSRs (anaphylaxis). Results The level of anti-PEG IgM and IgG rose 5-10-thousand-fold in all of 6 pigs immunized with Doxebo by day 6, after which time all animals developed anaphylactic shock to i.v. injection of 1/3 human dose of Comirnaty. The reaction, starting within 1 min involved maximal pulmonary hypertension and decreased systemic pulse pressure amplitude, tachycardia, granulo- and thrombocytopenia, and skin reactions (flushing or rash). These physiological changes or their absence were paralleled by C3a and TXB2 rises in blood. Conclusions Consistent with previous studies, these data show a causal role of anti-PEG Abs in the anaphylaxis to Comirnaty, which involves complement activation, and, hence, it represents C activation-related pseudo-anaphylaxis. The setup provides the first large-animal model for mRNA-vaccine-induced anaphylaxis in humans.
Collapse
Affiliation(s)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Petra Berényi
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Réka Facskó
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | | | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Sciences, Miskolc University, Miskolc 2880, Hungary
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
2
|
Szebeni J. Evaluation of the Acute Anaphylactoid Reactogenicity of Nanoparticle-Containing Medicines and Vaccines Using the Porcine CARPA Model. Methods Mol Biol 2024; 2789:229-243. [PMID: 38507008 DOI: 10.1007/978-1-0716-3786-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A small fraction, up to 10%, of people treated intravenously with state-of-the-art nanoparticulate drugs or diagnostic agents develop an acute infusion reaction which can be severe or even lethal. Activation of the complement (C) system can play a causal, or contributing role in these atypical, "pseudoallergic" reactions, hence their name, C activation-related pseudoallergy (CARPA). Intravenous (i.v.) administration of the human reaction-triggering (very small) dose of a test sample in pigs triggers a symptom tetrad (characteristic hemodynamic, hematological, skin, and laboratory changes) that correspond to the major human symptoms. Quantitating these changes provides a highly sensitive and reproducible method for assessing the risk of CARPA, enabling the implementation of appropriate preventive measures. Accordingly, the porcine CARPA model has been increasingly used for the safety evaluation of therapeutic and diagnostic nanomedicines and, recently, mRNA-lipid nanoparticle vaccines. This chapter provides details of the experimental procedure followed upon using the model.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
3
|
Moghimi SM, Haroon HB, Yaghmur A, Hunter AC, Papini E, Farhangrazi ZS, Simberg D, Trohopoulos PN. Perspectives on complement and phagocytic cell responses to nanoparticles: From fundamentals to adverse reactions. J Control Release 2023; 356:115-129. [PMID: 36841287 PMCID: PMC11000211 DOI: 10.1016/j.jconrel.2023.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
The complement system, professional phagocytes and other cells such as Natural killer cells and mast cells are among the important components of the innate arm of the immune system. These constituents provide an orchestrated array of defences and responses against tissue injury and foreign particles, including nanopharmaceuticals. While interception of nanopharmaceuticals by the immune system is beneficial for immunomodulation and treatment of phagocytic cell disorders, it is imperative to understand the multifaceted mechanisms by which nanopharmaceuticals interacts with the immune system and evaluate the subsequent balance of beneficial versus adverse reactions. An example of the latter is adverse infusion reactions to regulatory-approved nanopharmaceuticals seen in human subjects. Here, we discuss collective opinions and findings from our laboratories in mapping nanoparticle-mediated complement and leucocyte/macrophage responses.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - A Christy Hunter
- School of Pharmacy, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Centennial, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
4
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
5
|
Zymosan Particle-Induced Hemodynamic, Cytokine and Blood Cell Changes in Pigs: An Innate Immune Stimulation Model with Relevance to Cytokine Storm Syndrome and Severe COVID-19. Int J Mol Sci 2023; 24:ijms24021138. [PMID: 36674654 PMCID: PMC9863690 DOI: 10.3390/ijms24021138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Hemodynamic disturbance, a rise in neutrophil-to-lymphocyte ratio (NLR) and release of inflammatory cytokines into blood, is a bad prognostic indicator in severe COVID-19 and other diseases involving cytokine storm syndrome (CSS). The purpose of this study was to explore if zymosan, a known stimulator of the innate immune system, could reproduce these changes in pigs. Pigs were instrumented for hemodynamic analysis and, after i.v. administration of zymosan, serial blood samples were taken to measure blood cell changes, cytokine gene transcription in PBMC and blood levels of inflammatory cytokines, using qPCR and ELISA. Zymosan bolus (0.1 mg/kg) elicited transient hemodynamic disturbance within minutes without detectable cytokine or blood cell changes. In contrast, infusion of 1 mg/kg zymosan triggered maximal pulmonary hypertension with tachycardia, lasting for 30 min. This was followed by a transient granulopenia and then, up to 6 h, major granulocytosis, resulting in a 3-4-fold increase in NLR. These changes were paralleled by massive transcription and/or rise in IL-6, TNF-alpha, CCL-2, CXCL-10, and IL-1RA in blood. There was significant correlation between lymphopenia and IL-6 gene expression. We conclude that the presented model may enable mechanistic studies on late-stage COVID-19 and CSS, as well as streamlined drug testing against these conditions.
Collapse
|
6
|
Self-regulating novel iron oxide nanoparticle-based magnetic hyperthermia in swine: biocompatibility, biodistribution, and safety assessments. Arch Toxicol 2022; 96:2447-2464. [DOI: 10.1007/s00204-022-03314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
7
|
A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: complement activation as a possible contributing factor. GeroScience 2022; 44:597-618. [PMID: 35146583 PMCID: PMC8831099 DOI: 10.1007/s11357-021-00495-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A tiny fraction of people immunized with lipid nanoparticle (LNP)-enclosed mRNA (LNP-mRNA) vaccines develop allergic symptoms following their first or subsequent vaccinations, including anaphylaxis. These reactions resemble complement (C) activation-related pseudoallergy (CARPA) to i.v. administered liposomes, for which pigs provide a naturally oversensitive model. Using this model, we injected i.v. the human vaccination dose (HVD) of BNT162b2 (Comirnaty, CMT) or its 2-fold (2x) or 5-fold (5x) amounts and measured the hemodynamic changes and other parameters of CARPA. We observed in 6 of 14 pigs transient pulmonary hypertension along with thromboxane A2 release into the blood and other hemodynamic and blood cell changes, including hypertension, granulocytosis, lymphopenia, and thrombocytopenia. One pig injected with 5x CMT developed an anaphylactic shock requiring resuscitation, while a repeat dose failed to induce the reaction, implying tachyphylaxis. These typical CARPA symptoms could not be linked to animal age, sex, prior immune stimulation with zymosan, immunization of animals with Comirnaty i.v., or i.m. 2 weeks before the vaccine challenge, and anti-PEG IgM levels in Comirnaty-immunized pigs. Nevertheless, IgM binding to the whole vaccine, used as antigen in an ELISA, was significantly higher in reactive animals compared to non-reactive ones. Incubation of Comirnaty with pig serum in vitro showed significant elevations of C3a anaphylatoxin and sC5b-9, the C-terminal complex. These data raise the possibility that C activation plays a causal or contributing role in the rare HSRs to Comirnaty and other vaccines with similar side effects. Further studies are needed to uncover the factors controlling these vaccine reactions in pigs and to understand their translational value to humans.
Collapse
|
8
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
9
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
10
|
Namdari R, Jones K, Chuang SS, Van Cruchten S, Dincer Z, Downes N, Mikkelsen LF, Harding J, Jäckel S, Jacobsen B, Kinyamu-Akunda J, Lortie A, Mhedhbi S, Mohr S, Schmitt MW, Prior H. Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice. Regul Toxicol Pharmacol 2021; 126:105029. [PMID: 34455009 DOI: 10.1016/j.yrtph.2021.105029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
In drug development, nonclinical safety assessment is pivotal for human risk assessment and support of clinical development. Selecting the relevant/appropriate animal species for toxicity testing increases the likelihood of detecting potential effects in humans, and although recent regulatory guidelines state the need to justify or dis-qualify animal species for toxicity testing, individual companies have developed decision-processes most appropriate for their molecules, experience and 3Rs policies. These generally revolve around similarity of metabolic profiles between toxicology species/humans and relevant pharmacological activity in at least one species for New Chemical Entities (NCEs), whilst for large molecules (biologics) the key aspect is similarity/presence of the intended human target epitope. To explore current industry practice, a questionnaire was developed to capture relevant information around process, documentation and tools/factors used for species selection. Collated results from 14 companies (Contract Research Organisations and pharmaceutical companies) are presented, along with some case-examples or over-riding principles from individual companies. As the process and justification of species selection is expected to be a topic for continued emphasis, this information could be adapted towards a harmonized approach or best practice for industry consideration.
Collapse
Affiliation(s)
| | | | | | | | - Zuhal Dincer
- Labcorp Early Development Laboratories Ltd, Harrogate, UK
| | | | | | | | | | - Björn Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | | | | | | | - Susanne Mohr
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | | | - Helen Prior
- National Centre for the Replacement Refinement & Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
11
|
Hoogevest P, Tiemessen H, Metselaar JM, Drescher S, Fahr A. The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Hoogevest
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg 69120D‐69120 Germany
| | - Harry Tiemessen
- Technical & Research Development PHAD PDU Specialty Novartis Campus Physical Garden (WSJ 177) 2.14 Basel CH‐4002 Switzerland
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Aachen D‐52074 Germany
- Institute for Biomedical Engineering, Faculty of Medicine RWTH Aachen University Aachen D‐52074 Germany
| | - Simon Drescher
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg D‐69120 Germany
| | - Alfred Fahr
- Professor Emeritus, Pharmaceutical Technology Friedrich‐Schiller‐University Jena Jena Germany
| |
Collapse
|
12
|
Bedőcs P, Szebeni J. The Critical Choice of Animal Models in Nanomedicine Safety Assessment: A Lesson Learned From Hemoglobin-Based Oxygen Carriers. Front Immunol 2020; 11:584966. [PMID: 33193403 PMCID: PMC7649120 DOI: 10.3389/fimmu.2020.584966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Intravenous injection of nanopharmaceuticals can induce severe hypersensitivity reactions (HSRs) resulting in anaphylactoid shock in a small percentage of patients, a phenomenon explicitly reproducible in pigs. However, there is a debate in the literature on whether the pig model of HSRs can be used as a safety test for the prediction of severe adverse reactions in humans. Given the importance of using appropriate animal models for toxicity/safety testing, the choice of the right species and model is a critical decision. In order to facilitate the decision process and to expand the relevant information regarding the pig or no pig dilemma, this review examines an ill-fated clinical development program conducted by Baxter Corporation in the United States 24 years ago, when HemeAssist, an αα (diaspirin) crosslinked hemoglobin-based O2 carrier (HBOC) was tested in trauma patients. The study showed increased mortality in the treatment group relative to controls and had to be stopped. This disappointing result had far-reaching consequences and contributed to the setback in blood substitute research ever since. Importantly, the increased mortality of trauma patients was predicted in pig experiments conducted by US Army scientists, yet they were considered irrelevant to humans. Here we draw attention to that the underlying cause of hemoglobin-induced aggravation of hemorrhagic shock and severe HSRs have a common pathomechanism: cardiovascular distress due to vasoconstrictive effects of hemoglobin (Hb) and reactogenic nanomedicines, manifested, among others, in pulmonary hypertension. The main difference is that in the case of Hb this effect is due to NO-binding, while nanomedicines can trigger the release of proinflammatory mediators. Because of the higher sensitivity of cloven-hoof animals to this kind of cardiopulmonary distress compared to rodents, these reactions can be better reproduced in pigs than in murine or rat models. When deciding on the battery of tests and the appropriate models to identify the potential hazard for nanomedicine-induced severe HSR, the pros and cons of the various species must be considered carefully.
Collapse
Affiliation(s)
- Peter Bedőcs
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Defense and Veterans Center for Integrative Pain Management, Rockville, MD, United States
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.,SeroScience Ltd., Budapest, Hungary.,Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
13
|
Maisha N, Coombs T, Lavik E. Development of a Sensitive Assay to Screen Nanoparticles in vitro for Complement Activation. ACS Biomater Sci Eng 2020; 6:4903-4915. [PMID: 33313396 DOI: 10.1021/acsbiomaterials.0c00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomedicines are often recognized by the innate immune system as a threat, leading to unwanted clearance due to complement activation. This adverse reaction not only alters the bioavailability of the therapeutic but can also cause cardiopulmonary complications and death in a portion of the population. There is a need for tools for assessing complement response in the early stage of development of nanomedicines. Currently, quantifying complement-mediated response in vitro is limited due to differences between in vitro and in vivo responses for the same precursors, differences in the complement systems in different species, and lack of highly sensitive tools for quantifying the changes. Hence, we have worked on developing complement assay conditions and sample preparation techniques that can be highly sensitive in assessing the complement-mediated response in vitro mimicking the in vivo activity. We are screening the impact of incubation time, nanoparticle dosage, anticoagulants, and species of the donor in both blood and blood components. We have validated the optimal assay conditions by replicating the impact of zeta potential seen in vivo on complement activation in vitro. As observed in our previous in vivo studies, where nanoparticles with neutral zeta-potential were able to suppress complement response, the change in the complement biomarker was least for the neutral nanoparticles as well through our developed guidelines. These assay conditions provide a vital tool for assessing the safety of intravenously administered nanomedicines.
Collapse
Affiliation(s)
- Nuzhat Maisha
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Tobias Coombs
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Erin Lavik
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| |
Collapse
|
14
|
Human Clinical Relevance of the Porcine Model of Pseudoallergic Infusion Reactions. Biomedicines 2020; 8:biomedicines8040082. [PMID: 32276476 PMCID: PMC7235862 DOI: 10.3390/biomedicines8040082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Pigs provide a highly sensitive animal model for pseudoallergic infusion reactions, which are mild-to-severe hypersensitivity reactions (HSRs) that arise following intravenous administration of certain nanoparticulate drugs (nanomedicines) and other macromolecular structures. This model has been used in research for three decades and was also proposed by regulatory bodies for preclinical assessment of the risk of HSRs in the clinical stages of nano-drug development. However, there are views challenging the human relevance of the model and its utility in preclinical safety evaluation of nanomedicines. The argument challenging the model refers to the “global response” of pulmonary intravascular macrophages (PIM cells) in the lung of pigs, preventing the distinction of reactogenic from non-reactogenic particles, therefore overestimating the risk of HSRs relative to its occurrence in the normal human population. The goal of this review is to present the large body of experimental and clinical evidence negating the “global response” claim, while also showing the concordance of symptoms caused by different reactogenic nanoparticles in pigs and hypersensitive man. Contrary to the model’s demotion, we propose that the above features, together with the high reproducibility of quantifiable physiological endpoints, validate the porcine “complement activation-related pseudoallergy” (CARPA) model for safety evaluations. However, it needs to be kept in mind that the model is a disease model in the context of hypersensitivity to certain nanomedicines. Rather than toxicity screening, its main purpose is specific identification of HSR hazard, also enabling studies on the mechanism and mitigation of potentially serious HSRs.
Collapse
|
15
|
Vigne J, Cabella C, Dézsi L, Rustique E, Couffin AC, Aid R, Anizan N, Chauvierre C, Letourneur D, Le Guludec D, Rouzet F, Hyafil F, Mészáros T, Fülöp T, Szebeni J, Cordaro A, Oliva P, Mourier V, Texier I. Nanostructured lipid carriers accumulate in atherosclerotic plaques of ApoE -/- mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102157. [PMID: 31982616 DOI: 10.1016/j.nano.2020.102157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/04/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nanostructured lipid carriers (NLC) might represent an interesting approach for the identification and targeting of rupture-prone atherosclerotic plaques. In this study, we evaluated the biodistribution, targeting ability and safety of 64Cu-fonctionalized NLC in atherosclerotic mice. 64Cu-chelating-NLC (51.8±3.1 nm diameter) with low dispersity index (0.066±0.016) were produced by high pressure homogenization at tens-of-grams scale. 24 h after injection of 64Cu-chelated particles in ApoE-/- mice, focal regions of the aorta showed accumulation of particles on autoradiography that colocalized with Oil Red O lipid mapping. Signal intensity was significantly greater in aortas isolated from ApoE-/- mice compared to wild type (WT) control (8.95 [7.58, 10.16]×108 vs 4.59 [3.11, 5.03]×108 QL/mm2, P < 0.05). Moreover, NLC seemed safe in relevant biocompatibility studies. NLC could constitute an interesting platform with high clinical translation potential for targeted delivery and imaging purposes in atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Vigne
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - László Dézsi
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | - Rachida Aid
- Université de Paris, UMS34 FRIM, Paris, France
| | | | | | | | - Dominique Le Guludec
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - François Rouzet
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Fabien Hyafil
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Fülöp
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - Paolo Oliva
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
16
|
Liposome-induced hypersensitivity reactions: Risk reduction by design of safe infusion protocols in pigs. J Control Release 2019; 309:333-338. [DOI: 10.1016/j.jconrel.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/29/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023]
|
17
|
Kozma GT, Mészáros T, Vashegyi I, Fülöp T, Örfi E, Dézsi L, Rosivall L, Bavli Y, Urbanics R, Mollnes TE, Barenholz Y, Szebeni J. Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions. ACS NANO 2019; 13:9315-9324. [PMID: 31348638 DOI: 10.1021/acsnano.9b03942] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Polyethylene glycol (PEG)-coated nanopharmaceuticals can cause mild to severe hypersensitivity reactions (HSRs), which can occasionally be life threatening or even lethal. The phenomenon represents an unsolved immune barrier to the use of these drugs, yet its mechanism is poorly understood. This study showed that a single i.v. injection in pigs of a low dose of PEGylated liposomes (Doxebo) induced a massive rise of anti-PEG IgM in blood, peaking at days 7-9 and declining over 6 weeks. Bolus injections of PEG-liposomes during seroconversion resulted in anaphylactoid shock (pseudo-anaphylaxis) within 2-3 min, although similar treatments of naı̈ve animals led to only mild hemodynamic disturbance. Parallel measurement of pulmonary arterial pressure (PAP) and sC5b-9 in blood, taken as measures of HSR and complement activation, respectively, showed a concordant rise of the two variables within 3 min and a decline within 15 min, suggesting a causal relationship between complement activation and pulmonary hypertension. We also observed a rapid decline of anti-PEG IgM in the blood within minutes, increased binding of PEGylated liposomes to IgM+ B cells in the spleen of immunized animals compared to control, and increased C3 conversion by PEGylated liposomes in the serum of immunized pigs. These observations taken together suggest rapid binding of anti-PEG IgM to PEGylated liposomes, leading to complement activation via the classical pathway, entailing anaphylactoid shock and accelerated blood clearance of liposome-IgM complexes. These data suggest that complement activation plays a causal role in severe HSRs to PEGylated nanomedicines and that pigs can be used as a hazard identification model to assess the risk of HSRs in preclinical safety studies.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
| | - Tamás Mészáros
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - Ildikó Vashegyi
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
| | - Tamás Fülöp
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - Erik Örfi
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - László Rosivall
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
- Department of Pathophysiology, International Nephrology Research and Training Center , Semmelweis University , Budapest 1089 , Hungary
| | - Yaelle Bavli
- Laboratory of Membrane and Liposome Research, IMRIC , Hebrew University-Hadassah Medical School , Jerusalem 9112102 , Israel
| | - Rudolf Urbanics
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
| | - Tom Eirik Mollnes
- Department of Immunology , Oslo University Hospital , Rikshospitalet , Oslo 0372 , Norway
- Research Laboratory, Nordland Hospital Bodø, and Faculty of Health Sciences and TREC , University of Tromsø , Tromsø 9019 , Norway
- Centre of Molecular Inflammation Research , Norwegian University of Science and Technology , Trondheim 7012 , Norway
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC , Hebrew University-Hadassah Medical School , Jerusalem 9112102 , Israel
| | - János Szebeni
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health , Miskolc University , Miskolc 3515 , Hungary
| |
Collapse
|
18
|
Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. NATURE NANOTECHNOLOGY 2018; 13:1100-1108. [PMID: 30348955 PMCID: PMC6320688 DOI: 10.1038/s41565-018-0273-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/03/2018] [Indexed: 05/20/2023]
Abstract
Infusion reactions (IRs) are complex, immune-mediated side effects that mainly occur within minutes to hours of receiving a therapeutic dose of intravenously administered pharmaceutical products. These products are diverse and include both traditional pharmaceuticals (for example biological agents and small molecules) and new ones (for example nanotechnology-based products). Although IRs are not unique to nanomedicines, they represent a hurdle for the translation of nanotechnology-based drug products. This Perspective offers a big picture of the pharmaceutical field and examines current understanding of mechanisms responsible for IRs to nanomedicines. We outline outstanding questions, review currently available experimental evidence to provide some answers and highlight the gaps. We review advantages and limitations of the in vitro tests and animal models used for studying IRs to nanomedicines. Finally, we propose a roadmap to improve current understanding, and we recommend a strategy for overcoming the problem.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
- SeroScience Ltd, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - África González-Fernández
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Centro de Investigación Singular de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), University of Vigo, Vigo, Spain
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
19
|
Precision Nanomedicine Volume 1 Issue 1 Table of Contents. PRECISION NANOMEDICINE 2018. [DOI: 10.33218/prnano1(1).toc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The inaugural issue is introduced by several editorials:
"The Story of Precision Nanomedicine-the Journal", "Balancing Interests of Science, Scientists, and the Publishing Business", and "Improving Innovation in Nano-Healthcare Funding".
The Clinical Editor's comments on research papers:
Prec. Nanomed. 2018, Apr; 1(1):18-42.
Extracellular vesicles (EVs) are involved in various biological processes such as cargo trafficking, cell-cell communication, and signal transduction. The advances in nanotechnology have enabled researchers to utilize EVs for potential use in clinical applications, within the so-called precision medicine approach. In this review article, the authors discuss the techniques used in EV isolation in length, together with their applications in clinical diagnosis and therapeutics.
Prec. Nanomed. 2018 Apr;1(1):63-75.
Due to potential hypersensitivity reactions to nanodrugs, thorough testing is required before these drugs can be used in the clinical setting. Here the authors provide a succinct review on the use of pigs as a reliable in-vivo model for pre-clinical drug testing.
Prec. Nanomed. 2018 Apr;1(1):76-85.
One of the ways that nanoparticles are cleared in the body is via Kupffer cells. The authors of the next paper tested the role of scavenger receptor SR-AI/II in the clearance of dextran superparamagnetic iron oxide (SPIO) Feridex-IV® and dextran-coated SPIO nanoworms (SPIO NWs). Results here show that multiple pathways and mechanisms exist in nanoparticle clearance. Thus, further understanding of nanoparticle clearance would be required to prolong in vivo half-life.
Prec. Nanomed. 2018 Apr;1(1):43-62.
Liposomes have been used in clinical practice for some years, this delivery system often result in significant systemic effects due to hypersensitivity reactions, via the activation of the complement system. The authors here show good biocompatibility of Rad-PC-Rad liposomes in terms of complement activation and pro-inflammatory cytokines production in-vitro.
Collapse
|