1
|
Quinteira S, Dantas R, Pinho L, Campos C, Freitas AR, Brito NV, Miranda C. Dairy Cattle and the Iconic Autochthonous Cattle in Northern Portugal Are Reservoirs of Multidrug-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:1208. [PMID: 39766598 PMCID: PMC11672626 DOI: 10.3390/antibiotics13121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Animals destined for human consumption play a key role in potentially transmitting bacteria carrying antibiotic resistance genes. However, there is limited knowledge about the carriage of antibiotic-resistant bacteria in native breeds. We aimed to characterize the phenotypic profiles and antibiotic resistance genes in Escherichia coli isolated from bovines, including three native Portuguese bovine breeds. Methods: Forty-nine E. coli isolates were selected from 640 fecal samples pooled by age group (eight adult or eight calf samples) from each farm, representing both dairy cattle raised in intensive systems and meat cattle raised in extensive systems in Northern Portugal. The presumptive E. coli colonies plated onto MacConkey agar were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The antibiotic resistance profiles were screened by antimicrobial susceptibility testing (EUCAST/CLSI guidelines), and the antibiotic resistance genes by PCR. Results: Most isolates showed resistance to ampicillin (69%), tetracycline (57%), gentamicin (55%), and trimethoprim + sulfamethoxazole (53%), with no resistance to imipenem. Resistance to at least one antibiotic was found in 92% of isolates, while 59% exhibited multidrug resistance. Most calf isolates, including those from native breeds, showed a multidrug-resistant phenotype. Among the adults, this was only observed in Holstein-Friesian and Barrosã cattle. None of the Holstein-Friesian isolates were susceptible to all the tested antibiotics. ESBL-producing E. coli was identified in 39% of isolates, including those from Holstein-Friesian calves and adults, Cachena calves and Minhota adults. The sul2 gene was detected in 69% of isolates, followed by blaCTX-M (45%), aac(3')-IV (41%), and aac(6')-Ib-cr (31%), with a higher prevalence in adults. Conclusions: This pioneering study highlights the concerning presence of multidrug-resistant E. coli in native Portuguese cattle breeds.
Collapse
Affiliation(s)
- Sandra Quinteira
- CIBIO—Research Center in Biodiversity and Genetic Resources, InBIO, Research Network in Biodiversity and Evolutionary Biology, Associated Laboratory, University of Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal;
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
| | - Rui Dantas
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- ACRC—Associação Criadores da Raça Cachena, Parque Empresarial de Paçô, Rua da Roca 107, 4970-249 Arcos de Valdevez, Portugal
| | - Luís Pinho
- Department of Veterinary Clinics, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Carla Campos
- Instituto Português de Oncologia do Porto Francisco Gentil, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana R. Freitas
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- UCIBIO—Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno V. Brito
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Higher Agricultural School, Polytechnic Institute of Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Miranda
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University NOVA of Lisbon, Campus da Caparica, 1099-085 Caparica, Portugal
| |
Collapse
|
2
|
Iraguha B, Mpatswenumugabo JPM, Gasana MN, Åsbjer E. Mitigating antibiotics misuse in dairy farming systems and milk value chain market: Insights into practices, factors, and farmers education in Nyabihu district, Rwanda. One Health 2024; 19:100843. [PMID: 39026544 PMCID: PMC11255097 DOI: 10.1016/j.onehlt.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The widespread misuse of antibiotics to combat bacterial infections in dairy farming is a global concern contributing to antimicrobial resistance (AMR). To gain insights within small-scale dairy farming, a study was conducted in Nyabihu district of Rwanda from September 2021 to April 2023 to assess practices and factors associated with antibiotic use, investigate antibiotic residues in cow milk and undertake a comprehensive training program to improve quality milk production. A mixed-methods approach, combining cross-sectional and longitudinal intervention studies, involved 42 regular dairy farmers from both open and zero-grazing systems delivering milk to the Union pour la Promotion des Cooperatives des Eleveurs en Nyabihu (UPROCENYA) milk collection center (MCC). Standardized questionnaires and farm interviews were conducted to assess antibiotic use practices while bulk tank milk samples from the same farmers were collected and tested for antibiotic residues using rapid tests over 16 months (8 months before and 8 months after training). Out of 451 bulk tank milk samples tested, 27 samples (6%) contained antibiotic residues, primarily tetracyclines (55.3%) and beta-lactams (44.7%). Before farmers training, 5182.75 l of milk were rejected monthly due to antibiotic residues. Following training, milk rejections decreased to 3192.75 l per month, reflecting 38.35% monthly decrease. However, no statistically significant difference was found by independent t-test (t = 1.441; p = 0.173) between milk rejected before and after training. 97.6% of interviewed farmers reported using antibiotics within six months preceding data collection, with 71.4% primarily used for disease treatment, notably targeting tick-borne diseases (34.0%). Alarming practices included administering antibiotics without referring samples for laboratory examination (100%), disregarding withdrawal periods (88.1%) and administering antibiotics without a veterinary doctor's prescription (85.7%). Factors contributing to these practices included limited farmer's knowledge on antibiotics, easy access to antibiotics in local agro-veterinary shops, and insufficient veterinary services. Antibiotic-laden milk was used to feed calves (38.6%), consumed at home (26.5%), and sold (12.0%). The observed misuse of antibiotics and disregard for antibiotic withdrawal periods pose significant threats to both milk quality and human health. The authors recommend that dairy farmers prioritize animal health monitoring and implementing biosecurity measures to prevent diseases and thus reduce antibiotic usage. Collaborative efforts among stakeholders are highly recommended to enhance capacity building for dairy farmers and support research initiatives. Furthermore, it is strongly suggested to strengthen regulations on the prudent use of antibiotics within the Rwandan food production system to curb antimicrobial resistance across both animal and human populations.
Collapse
Affiliation(s)
- Blaise Iraguha
- Heifer International Rwanda, Rwanda Dairy Development Project (RDDP), Rwanda
| | - Jean Pierre M. Mpatswenumugabo
- University of Rwanda/College of Agriculture, Animal Sciences and Veterinary Medicine, Rwanda
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Sweden
| | | | - Elina Åsbjer
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences (SLU), Sweden
| |
Collapse
|
3
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Liu J, Brightwell G, Cookson AL. Assessing antimicrobial resistance in pasture-based dairy farms: a 15-month surveillance study in New Zealand. Appl Environ Microbiol 2024; 90:e0139024. [PMID: 39440981 DOI: 10.1128/aem.01390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance is a global public and animal health concern. Antimicrobial resistance genes (ARGs) have been detected in dairy farm environments globally; however, few longitudinal studies have utilized shotgun metagenomics for ARG surveillance in pasture-based systems. This 15-month study aimed to undertake a baseline survey using shotgun metagenomics to assess the relative abundance and diversity of ARGs in two pasture-based dairy farm environments in New Zealand with different management practices. There was no statistically significant difference in overall ARG relative abundance between the two dairy farms (P = 0.321) during the study period. Compared with overseas data, the relative abundance of ARG copies per 16S rRNA gene in feces (0.08-0.17), effluent (0.03-0.37), soil (0.20-0.63), and bulk tank milk (0.0-0.12) samples was low. Models comparing the presence or absence of resistance classes found in >10% of all feces, effluent, and soil samples demonstrated no statistically significant associations (P > 0.05) with "season," and only multi-metal (P = 0.020) and tetracycline (P = 0.0003) resistance were significant at the "farm" level. Effluent samples harbored the most diverse ARGs, some with a recognized public health risk, whereas soil samples had the highest ARG relative abundance but without recognized health risks. This highlights the importance of considering the genomic context and risk of ARGs in metagenomic data sets. This study suggests that antimicrobial resistance on pasture-based dairy farms is low and provides essential baseline ARG surveillance data for such farming systems.IMPORTANCEAntimicrobial resistance is a global threat to human and animal health. Despite the detection of antimicrobial resistance genes (ARGs) in dairy farm environments globally, longitudinal surveillance in pasture-based systems remains limited. This study assessed the relative abundance and diversity of ARGs in two New Zealand dairy farms with different management practices and provided important baseline ARG surveillance data on pasture-based dairy farms. The overall ARG relative abundance on these two farms was low, which provides further evidence for consumers of the safety of New Zealand's export products. Effluent samples harbored the most diverse range of ARGs, some of which were classified with a recognized risk to public health, whereas soil samples had the highest ARG relative abundance; however, the soil ARGs were not classified with a recognized public health risk. This emphasizes the need to consider genomic context and risk as well as ARG relative abundance in resistome studies.
Collapse
Affiliation(s)
- Rose M Collis
- Food System Integrity, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A Burgess
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C Midwinter
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gale Brightwell
- Food System Integrity, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Ulloa F, Penati M, Naegel C, Tejeda C, Hernández-Agudelo M, Steuer P, Salgado M. Efficacy of Copper Ion Treatment on Bacteria and Antibiotic Residues Contained in Bovine Waste Milk. Antibiotics (Basel) 2024; 13:1085. [PMID: 39596778 PMCID: PMC11591319 DOI: 10.3390/antibiotics13111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Waste milk harbors many bacteria and antibiotic residues. Calves fed with untreated waste milk have a higher incidence of scours and an increased risk of developing antimicrobial-resistant bacteria. This study aimed to evaluate the efficacy of treatment with copper ions on bacteria and antibiotics contained in bovine waste milk. Methods: Waste milk samples were collected from a dairy farm for seven weeks and were subjected to treatment with copper ions. Total bacterial counts, coliforms, Streptococcus, and Staphylococcus were assessed before and after treatment. Additionally, metagenomic analysis was performed to determine microbial diversity. Results: Before treatment, the total bacterial count average was 4.0 × 106 CFU/mL, 1.7 × 104 CFU/mL for coliforms, 2.6 × 106 CFU/mL for Streptococcus, and 5.4 × 102 CFU/mL for Staphylococcus Copper treatment significantly reduced bacterial counts within 15 min. Total bacteria decreased from 4.0 × 106 CFU/mL to 1.1 × 102 CFU/mL after 30 min; meanwhile, other groups were not detected. The most abundant groups were Lactococcus (29.94%), Pseudomonas (28.89%), and Enterobacteriaceae (21.19%). Beta-lactams were detected in five-sevenths samples, and in one sample they were detected before and at 15 min of treatment but not after 30 min. Conclusions: The effect of treatment with copper ions on the different bacterial groups was significantly effective but showed limited effect on the detection of antibiotics.
Collapse
Affiliation(s)
- Fernando Ulloa
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.U.); (M.H.-A.)
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.N.); (C.T.); (P.S.)
| | - Martina Penati
- Department of Veterinary Medicine and Animal Science—DIVAS, University of Milan, 26900 Lodi, Italy;
| | - Constanza Naegel
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.N.); (C.T.); (P.S.)
| | - Carlos Tejeda
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.N.); (C.T.); (P.S.)
| | - Miguel Hernández-Agudelo
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.U.); (M.H.-A.)
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.N.); (C.T.); (P.S.)
| | - Pamela Steuer
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.N.); (C.T.); (P.S.)
| | - Miguel Salgado
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.N.); (C.T.); (P.S.)
| |
Collapse
|
5
|
Liza NA, Hossain H, Rahman Chowdhury MS, Al Naser J, Lasker RM, Rahman A, Haque MA, Al Mamun M, Hossain MM, Rahman MM. Molecular Epidemiology and Antimicrobial Resistance of Extended-Spectrum β-Lactamase (ESBL)-Producing Klebsiella pneumoniae in Retail Cattle Meat. Vet Med Int 2024; 2024:3952504. [PMID: 39346972 PMCID: PMC11438512 DOI: 10.1155/2024/3952504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Enterobacteriaceae that produce extended-spectrum β-lactamases (ESBLs) can result in severe human infections, contributing to the development of complex diseases. Klebsiella pneumoniae is one of the ESBL-producing pathogens that helps to set antimicrobial resistance as a major public health problem worldwide. The current study aimed to isolate, identify, and characterize ESBL-producing K. pneumoniae and their antimicrobial resistance pattern in retail cattle meat samples. A comprehensive set of 225 cattle meat samples was gathered from 13 upazilas within the Sylhet district of Bangladesh. The bacterial isolates were obtained through biochemical and cultural techniques, and the identification of K. pneumoniae was accomplished using polymerase chain reactions (PCRs). Antimicrobial susceptibilities were assessed using disk diffusion in accordance with the Clinical and Laboratory Standards Institute (CLSI, 2020) guidelines. Genes encoding ESBL enzymes were detected by the double-disk synergy test (DDST) and multiplex PCR. The overall prevalence of Klebsiella spp. was 28.89% (65/225), whereas the positive percentage of K. pneumoniae was 59.2% (29/49) confirmed by PCR. Antimicrobial resistance was observed against 12 antibiotics. According to the phenotypic resistance pattern determined through the disk diffusion method, all isolates (100%) were resistant to ampicillin, amoxicillin, cefuroxime, cefotaxime, and colistin. On the other hand, the highest susceptibility was observed towards gentamicin (97.95%), followed by ciprofloxacin (85.71%), tetracycline (83.67%), and trimethoprim-sulfamethoxazole (81.63%). Out of the total K. pneumoniae isolates analyzed, ESBL genes were present, and the highest percentage, 82.8% (24/29), tested positive for bla TEM genes. Interestingly, among the nine ESBL genes, six were identified in K. pneumoniae isolates, except for bla OXA, bla CTX-M-grp2, and MultiCase DHA. The study's results reveal the presence of extended-spectrum β-lactamase (ESBL)-producing multidrug-resistant (MDR) K. pneumoniae in retail cattle meat samples posing a substantial public health threat.
Collapse
Affiliation(s)
- Nasrin Akter Liza
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hemayet Hossain
- Department of Anatomy and HistologyFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Shahidur Rahman Chowdhury
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jarin Al Naser
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rayhan Mahmud Lasker
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Asikur Rahman
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Ariful Haque
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Al Mamun
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Mukter Hossain
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Mahfujur Rahman
- Department of MedicineFaculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
6
|
Antimicrobial consumption and resistance in bacteria from humans and food-producing animals: Fourth joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA JIACRA IV - 2019-2021. EFSA J 2024; 22:e8589. [PMID: 38405113 PMCID: PMC10885775 DOI: 10.2903/j.efsa.2024.8589] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The fourth joint inter-agency report on integrated analysis of antimicrobial consumption (AMC) and the occurrence of antimicrobial resistance (AMR) in bacteria from humans and food-producing animals (JIACRA) addressed data obtained by the Agencies' EU-wide surveillance networks for 2019-2021. The analysis also sought to identify whether significant trends in AMR and AMC were concomitant over 2014-2021. AMC in both human and animal sectors, expressed in mg/kg of estimated biomass, was compared at country and European level. In 2021, the total AMC was assessed at 125.0 mg/kg of biomass for humans (28 EU/EEA countries, range 44.3-160.1) and 92.6 mg/kg of biomass for food-producing animals (29 EU/EEA countries, range 2.5-296.5). Between 2014 and 2021, total AMC in food-producing animals decreased by 44%, while in humans, it remained relatively stable. Univariate and multivariate analyses were performed to study associations between AMC and AMR for selected combinations of bacteria and antimicrobials. Positive associations between consumption of certain antimicrobials and resistance to those substances in bacteria from both humans and food-producing animals were observed. For certain combinations of bacteria and antimicrobials, AMR in bacteria from humans was associated with AMR in bacteria from food-producing animals which, in turn, was related to AMC in animals. The relative strength of these associations differed markedly between antimicrobial class, microorganism and sector. For certain antimicrobials, statistically significant decreasing trends in AMC and AMR were concomitant for food-producing animals and humans in several countries over 2014-2021. Similarly, a proportion of countries that significantly reduced total AMC also registered increasing susceptibility to antimicrobials in indicator E. coli from food-producing animals and E. coli originating from human invasive infections (i.e., exhibited 'complete susceptibility' or 'zero resistance' to a harmonised set of antimicrobials). Overall, the findings suggest that measures implemented to reduce AMC in food-producing animals and in humans have been effective in many countries. Nevertheless, these measures need to be reinforced so that reductions in AMC are retained and further continued, where necessary. This also highlights the importance of measures that promote human and animal health, such as vaccination and better hygiene, thereby reducing the need for use of antimicrobials.
Collapse
|
7
|
Caterino C, Della Valle G, Aragosa F, Cavalli S, Guccione J, Lamagna F, Fatone G. Clinical Application of Platelet Concentrates in Bovine Practice: A Systematic Review. Vet Sci 2023; 10:686. [PMID: 38133237 PMCID: PMC10747389 DOI: 10.3390/vetsci10120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Platelet concentrates (PCs) have become widely used in veterinary and human medicine. The PCs consist mainly of supraphysiological concentrations of platelets and, therefore, growth factors (GFs) which are stored within platelet α-granules. Among PCs, Platelet-Rich Plasma (PRP) is characterised by low-density fibrin. Research on the effect of PCs in cattle has surged in recent years; in particular, evidence has shown the positive use of PRP for treating reproductive problems, in vitro production of bovine embryos, sole ulcers and udder diseases. The aim of this report is to critically review, in accordance with the PRISMA guidelines, the available literature reporting clinical application in the bovine practice of PRP. Three bibliographic databases PubMed, Web of Science and Scopus were used for a broad search of "platelet concentrates" OR "PRP" OR "platelet-rich plasma" OR "PRF" OR "platelet-rich fibrin" AND "cows" OR "cattle". From 1196 papers, only six met the inclusion criteria. Two papers described the use of PRP in mastitis, two papers in uterine dysfunction and two papers in ovarian dysfunction. PRP offered a low-cost, easily obtained therapeutic option and showed positive results for these patients. However, given the different pathologies and definitions involved, further studies are necessary to assess its full clinical potential.
Collapse
Affiliation(s)
| | | | - Federica Aragosa
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy; (C.C.); (G.D.V.); (S.C.); (J.G.); (F.L.); (G.F.)
| | | | | | | | | |
Collapse
|
8
|
Malavez Y, Nieves-Miranda SM, Loperena Gonzalez PN, Padin-Lopez AF, Xiaoli L, Dudley EG. Exploring Antimicrobial Resistance Profiles of E. coli Isolates in Dairy Cattle: A Baseline Study across Dairy Farms with Varied Husbandry Practices in Puerto Rico. Microorganisms 2023; 11:2879. [PMID: 38138023 PMCID: PMC10745463 DOI: 10.3390/microorganisms11122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial treatment in livestock can contribute to the emergence and spread of antimicrobial-resistant (AMR) microorganisms. Despite substantial surveillance of AMR bacteria in the continental United States, the prevalence of these AMR organisms in U.S. territories, such as Puerto Rico, remains understudied. The goals of this research included obtaining baseline data on the antimicrobial profile of E. coli isolates from Puerto Rico dairy farms with different husbandry practices. Seventy-nine fecal samples were collected from two types of conventional dairy farms: those that fed calves with tank milk and those that fed calves with waste milk. These samples were collected from the animals' rectums, culture, and subsequently confirmed through biochemical tests. Out of these samples, 32 isolates were analyzed phenotypically and genotypically to elucidate their AMR profiles. The results underscore a discrepancy in the occurrence of antimicrobial resistance genes between calves and adult cattle. Notably, waste milk-fed calves exhibited a significantly higher prevalence of antibiotic-resistant E. coli when compared to their tank milk-fed counterparts. These disparities emphasize the need for more comprehensive investigations to determine causative factors. These results underscore the urgency of comprehensive strategies to raise awareness about how management practices influence antimicrobial resistance, shifting the focus from treatment to prevention.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
- Department of Biology, Industrial Biotechnology Program, University of Puerto Rico, Mayagüez, PR 00681, USA
- Department of Animal Sciences, Agricultural Experimental Station, University of Puerto Rico, Mayagüez, PR 00681, USA
| | - Sharon M. Nieves-Miranda
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Paola N. Loperena Gonzalez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Adrian F. Padin-Lopez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA (E.G.D.)
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA (E.G.D.)
- E. coli Reference Center, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Wörmann ME, Bhatte A, Wichmann-Schauer H, Tenhagen BA, Lienen T. Heat Inactivation of Methicillin-Resistant Staphylococcus aureus Strains from German Dairy farms in Colostrum and Raw Milk. Animals (Basel) 2023; 13:3549. [PMID: 38003166 PMCID: PMC10668672 DOI: 10.3390/ani13223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) may cause difficult-to-treat infections in dairy cattle. One possible route of MRSA transmission into calves is via the feeding of contaminated waste milk. We tested the heat resistance of 17 MRSA strains isolated from German dairy farms in colostrum and raw milk in a laboratory approach. Heating colostrum or raw milk at 60 °C for 30 min eliminated all viable MRSA in the milk, provided the MRSA inoculation rate is low (103 cfu mL-1). In contrast, raw milk highly inoculated with MRSA (106 cfu mL-1) required a holding time of at least 30 min at 70 °C to fully eliminate MRSA from it. However, quantitative analysis showed that a heat treatment for 10 min at 60 °C already significantly reduced the number of viable MRSA in highly inoculated raw milk. Heating colostrum and raw milk above 60 °C may destroy immunoglobulins which are crucial for the calf's health. Therefore, we suggest that colostrum and raw milk that is to be fed to calves on MRSA-positive dairy farms is heated at 60 °C for at least 10 min to reduce the likelihood of transmitting MRSA. In addition, the 60 °C heat-treated colostrum/raw milk should be fed to the calves as soon as possible to avoid re-growth of viable MRSA.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Ashwini Bhatte
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Heidi Wichmann-Schauer
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Tobias Lienen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
10
|
Dey TK, Lindahl JF, Lundkvist Å, Grace D, Deka RP, Shome R, Bandyopadhyay S, Goyal NK, Sharma G, Shome BR. Analyses of Extended-Spectrum-β-Lactamase, Metallo-β-Lactamase, and AmpC-β-Lactamase Producing Enterobacteriaceae from the Dairy Value Chain in India. Antibiotics (Basel) 2023; 12:1449. [PMID: 37760745 PMCID: PMC10650101 DOI: 10.3390/antibiotics12091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of β-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified β-lactamase genes in isolates were blaCMY, blaMOX, blaFOX, blaEBC, and blaDHA, associated with AmpC production. Additionally, blaCTX-M1, blaSHV, and blaTEM were detected as ESBL producers, while blaVIM, blaIMP, blaSPM, blaSIM, and blaGIM were identified as MBL producers. Notably, Shigella spp. were the dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of β-lactam resistance.
Collapse
Affiliation(s)
- Tushar Kumar Dey
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Johanna Frida Lindahl
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Food and Markets Department, Natural Resources Institute, Chatham Maritime ME4 4TB, UK
| | - Ram Pratim Deka
- International Livestock Research Institute, Regional Office for South Asia, New Delhi 110012, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India
| | - Naresh Kumar Goyal
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | - Garima Sharma
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| |
Collapse
|
11
|
Patangia DV, Grimaud G, Linehan K, Ross RP, Stanton C. Microbiota and Resistome Analysis of Colostrum and Milk from Dairy Cows Treated with and without Dry Cow Therapies. Antibiotics (Basel) 2023; 12:1315. [PMID: 37627735 PMCID: PMC10451192 DOI: 10.3390/antibiotics12081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated the longitudinal impact of methods for the drying off of cows with and without dry cow therapy (DCT) on the microbiota and resistome profile in colostrum and milk samples from cows. Three groups of healthy dairy cows (n = 24) with different antibiotic treatments during DCT were studied. Colostrum and milk samples from Month 0 (M0), 2 (M2), 4 (M4) and 6 (M6) were analysed using whole-genome shotgun-sequencing. The microbial diversity from antibiotic-treated groups was different and higher than that of the non-antibiotic group. This difference was more evident in milk compared to colostrum, with increasing diversity seen only in antibiotic-treated groups. The microbiome of antibiotic-treated groups clustered separately from the non-antibiotic group at M2-, M4- and M6 milk samples, showing the effect of antibiotic treatment on between-group (beta) diversity. The non-antibiotic group did not show a high relative abundance of mastitis-causing pathogens during early lactation and was more associated with genera such as Psychrobacter, Serratia, Gordonibacter and Brevibacterium. A high relative abundance of antibiotic resistance genes (ARGs) was observed in the milk of antibiotic-treated groups with the Cephaguard group showing a significantly high abundance of genes conferring resistance to cephalosporin, aminoglycoside and penam classes. The data support the use of non-antibiotic alternatives for drying off in cows.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Ghjuvan Grimaud
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Kevin Linehan
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
12
|
Mwenifumbo M, Cookson AL, Zhao S, Fayaz A, Browne AS, Benschop J, Burgess SA. The characterisation of antimicrobial resistant Escherichia coli from dairy calves. J Med Microbiol 2023; 72. [PMID: 37578342 DOI: 10.1099/jmm.0.001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli.Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised.Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves.Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli.Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined.Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.
Collapse
Affiliation(s)
- Merning Mwenifumbo
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Present address: Faculty of Veterinary Medicine, Lilongwe University of Agriculture & Natural Resources, Lilongwe, Malawi
| | - Adrian L Cookson
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Food Systems Integrity, Hopkirk Research Institute, cnr University & Library Rds, AgResearch Ltd, Palmerston North 4442, New Zealand
| | - Shengguo Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ahmed Fayaz
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - A Springer Browne
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Jackie Benschop
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Sara A Burgess
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
13
|
Miranda C, Igrejas G, Poeta P. Bovine Colostrum: Human and Animal Health Benefits or Route Transmission of Antibiotic Resistance-One Health Perspective. Antibiotics (Basel) 2023; 12:1156. [PMID: 37508251 PMCID: PMC10376235 DOI: 10.3390/antibiotics12071156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
After calving, bovine colostrum is obtained from the mammary gland of the dam in the first days and fed to newborn ruminant to prevent microbial infections. Each bovine colostrum has a unique biochemical composition with high nutraceutical value compared to milk. However, bovine colostrum is influenced by various factors, such as environmental, individual, and genetic factors, as well as processing methods. Proper colostrum management is crucial for obtaining high-quality colostrum and mitigating bacterial contamination. This is important not only for the health and survival of calves but also for the health of humans who consume colostrum and its co-products. It is essential to ensure that the consumed colostrum is free of pathogens to reap its benefits. Health-promoting products based on colostrum have gained significant interest. However, colostrum can contain pathogens that, if not eliminated, can contribute to their transmission and spread, as well as antibiotic resistance. The aim of this review was to promote the animal and human health benefits of bovine colostrum by improving its microbial quality and highlighting potential routes of dissemination of antibiotic-resistant pathogens. Implementing hygienic measures is one of the key factors in mitigating colostrum bacterial contamination and obtaining safe and high-quality colostrum. This helps reduce the exposure of pathogens to newborn calves, other animals, and humans, in a One Health analysis.
Collapse
Affiliation(s)
- Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Toxicology Research Unit (TOXRUN), Advanced Polytechnic and University Cooperative (IUCS-CESPU), University Institute of Health Sciences, 4585-116 Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
14
|
Association of Mastitis and Farm Management with Contamination of Antibiotics in Bulk Tank Milk in Southwest, China. Animals (Basel) 2022; 12:ani12233392. [PMID: 36496914 PMCID: PMC9738700 DOI: 10.3390/ani12233392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Bovine mastitis could reduce the milk production and the quality of the bulk tank milk (BTM). Antibiotic treatments through intramammary or parenteral methods are being widely used in dairy farms. A cross-sectional study to investigate for general farm management and pre-test the questionnaire was performed in Southwestern Yunnan province, China. A total of 134 dairy farms were included. Milking cows of each farm were determined for the presence of clinical (CM) and sub-clinical (SCM) mastitis using the California Mastitis Test (CMT). Rates of CM and SCM in studied farms ranged from 2-11%, and 24-69%, respectively. The incidence of antibiotic residues in BTM of all farms was very high (32%, 44/134). All antibiotic contaminated samples were from smallholder dairy farms. Factors significantly associated with the presence of antibiotic contamination included farm region, antibiotics usage, persons performing mastitis treatment, and rates of CM. Rates of CM were significantly associated with the farm region, cleanliness of udders before milking, and the number of milking cows. Our results emphasize that the risk factors of dairy farm management should be paid attention, which can reduce mastitis prevalence and antibiotic contamination in BTM in Southwestern China.
Collapse
|
15
|
Abstract
Antibiotics have long been used for the prevention and treatment of common diseases and for prophylactic purposes in dairy animals. However, in recent decades it has become a matter of concern due to the widespread belief that there has been an abuse or misuse of these drugs in animals and that this misuse has led to the presence of residues in derived foods, such as milk and dairy products. Therefore, this review aims to compile the scientific literature published to date on the presence of antibiotic residues in these products worldwide. The focus is on the reasons that lead to their presence in food, on the potential problems caused by residues in the characteristics of dairy products and in their manufacturing process, on the development and spread of antibiotic-resistant bacteria, and on the effects that both residues and resistant bacteria can cause on human and environmental health.
Collapse
|
16
|
Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol. Antibiotics (Basel) 2022; 11:antibiotics11040443. [PMID: 35453195 PMCID: PMC9029715 DOI: 10.3390/antibiotics11040443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.
Collapse
|
17
|
Bernier Gosselin V, Visschers VHM, Bodmer M, Meylan M. Swiss Dairy Farmers' Perceptions Surrounding the Disposal of Waste Milk Containing Antibiotic Residues and Antibiotic Resistance. Front Vet Sci 2022; 8:787828. [PMID: 35155645 PMCID: PMC8825413 DOI: 10.3389/fvets.2021.787828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The feeding of waste milk containing antibiotic residues (WMA) to calves has been associated with the shedding of antibiotic-resistant bacteria by calves. However, little is known regarding farmers' intrinsic factors affecting this practice, and on which it would be relevant to intervene in order to change this practice. The objectives of this study were (1) to describe the farmers' intrinsic factors, such as perceived benefits, risks, and social norms related to the feeding of WMA to calves, antibiotic resistance, and antibiotic use, and (2) to evaluate how the feeding of WMA to calves is related to farmers' personal values and perceptions related to WMA feeding and antibiotic resistance. Answers to an online survey were collected from 233 Swiss dairy producers (38.3% response rate). The proportion of respondents who fed WMA to calves was 48.3%. In a hierarchical logistic regression model, only perception factors extracted by factor analysis were associated with the feeding of WMA to calves, namely (in decreasing order of magnitude): farm-level benefits of WMA feeding, the interaction of farm-level benefits with support from governmental authorities, and causes and threats of antibiotic resistance. The results suggest that, in order to reduce the feeding of WMA to calves, communications to dairy producers should focus on changing the perceived benefits of this practice in comparison to those of alternative WMA disposal methods carrying a lower risk of antibiotic resistance. The involvement of veterinarians and governmental authorities in these communications and in supporting producers may increase the successful adoption of alternative WMA disposal methods.
Collapse
Affiliation(s)
- Véronique Bernier Gosselin
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Véronique Bernier Gosselin
| | - Vivianne H. M. Visschers
- School of Applied Psychology, University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| | - Michèle Bodmer
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Prieto A, López-Novo C, Díaz P, Díaz-Cao JM, López-Lorenzo G, Antón C, Remesar S, García-Dios D, López C, Panadero R, Díez-Baños P, Morrondo P, Fernández G. Antimicrobial Susceptibility of Enterotoxigenic Escherichia coli from Diarrhoeic Neonatal Calves in Spain. Animals (Basel) 2022; 12:ani12030264. [PMID: 35158588 PMCID: PMC8833634 DOI: 10.3390/ani12030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neonatal calf diarrhoea, a worldwide concern for cattle production, can be caused by viral, bacterial and protozoan enteropathogens: the enterotoxigenic Escherichia coli (ETEC) is one of the most important. The use of antimicrobials for treating neonatal calf diarrhoea cases is still a common practice among veterinary surgeons, although its use is only justified in bacterial infections evolving towards a systemic disease. Since the indiscriminate use of antimicrobials for treating diarrhoeic calves increases the risk for the appearance of antimicrobial resistances, restrictions on the use of antimicrobials in veterinary practice were implemented. The aim of this study was to characterize the antimicrobial susceptibility of ETEC strains obtained from diarrhoeic calves. Our results are alarming since all ETEC strains were resistant to three or more families of antimicrobials; in addition, a high number of strains were resistant to most first-line antimicrobials used in veterinary practice. Only ceftiofur, cefoperazone, cefquinome and gentamicin presented efficacy against most ETEC strains. Thus, empirical treatment of calf scours caused by ETEC is usually ineffective. Our results reveal that performing antimicrobial susceptibility tests in each NCD outbreak is needed for establishing an effective treatment and avoiding the emergence of new resistance mechanisms. Abstract Enterotoxigenic Escherichia coli (ETEC) is one of the major pathogens involved in neonatal calf diarrhoea (NCD) causing high economic losses in dairy farms. Antibiotic treatment is common in cases of systemic illness caused by NCD, but antimicrobial susceptibility tests (AST) are usually not performed. Thus, the aim of this study was to characterize the antimicrobial susceptibility of ETEC strains obtained from calves with diarrhoea between 2018–2020. Faecal samples (n = 420) were analyzed to detect the typical ETEC virulence factors F5 and STa. Positive samples were cultured to identify and isolate ETEC strains (n = 41) and ASTs were performed. Our results are alarming since ETEC strains resistant to three or more families of antimicrobials were detected in all isolates. Only four antibiotics (ceftiofur, cefoperazone, cefquinome and gentamicin) presented efficacy against more than 90% of the ETEC strains, while the other ten antibiotics were effective against less than 40% of the strains. In addition, a high number of strains were resistant to most first-line antimicrobials used in veterinary practice. For this reason, when ETEC infection is suspected, an AST must always be performed to select the most appropriate antimicrobial in each case and to avoid the emergence of new resistance mechanisms.
Collapse
|
19
|
Safety Issues Regarding the Detection of Antibiotics Residues, Microbial Indicators and Somatic Cell Counts in Ewes’ and Goats’ Milk Reared in Two Different Farming Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Milk samples of ewes’ and goats’ unprocessed milk were collected from milk tanks from various farms in Epirus, Greece and classified in two groups according to the type of farming. Analyses of the samples included microbial inhibition assays to detect the presence of antibiotic residues, isolation of Staphylococcus aureus and Escherichia coli strains as microbiological indicators for susceptibility to antimicrobial medicines, Somatic Cells and Coagulase Negative Staphylococci (CNS) counts. These findings were correlated with each other as well as to the stage of the lactation period and to the type of the farming practices. Monitoring of bulk tank milk for residues of antibiotics should be performed after heating of the milk, on a regular basis, and should include at least two different tests. The results point out that the type of farming affects the CNS counts as well as the prevalence of residues in the milk. Furthermore, the inverse correlation between CNS counts and prevalence of residues of antibiotics suggests a possible protective role of CNS. Resistance of the bacterial indicators to antibiotics was random and relatively rare, perhaps acquired in past due to misuse of antibiotics, turning the indicator microorganisms to reservoir of resistance.
Collapse
|
20
|
Firth CL, Käsbohrer A, Pless P, Koeberl-Jelovcan S, Obritzhauser W. Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms-A Pilot Study. Antibiotics (Basel) 2022; 11:124. [PMID: 35203728 PMCID: PMC8868072 DOI: 10.3390/antibiotics11020124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
The assumed link between high levels of antimicrobial use on farms and selection for antimicrobial-resistant (AMR) bacteria on that farm remains difficult to prove. In the pilot study presented here, we analysed total antimicrobial use on 50 dairy farms in Austria and also collected environmental samples to ascertain whether specific AMR bacteria were present. Antimicrobial use (AMU) analysis was based on electronic veterinary treatment records over a one-year period. Faecal samples for the assessment of extended-spectrum beta-lactamase (ESBL)-producing E. coli were collected from cowsheds, calf pens, and youngstock housing areas, as well as dust samples from barns, to isolate methicillin-resistant Staphylococcus aureus (MRSA). Bacteriological cultures were carried out on selective agar. Farms were split into groups of 25 of the highest antimicrobial users and 25 of the lowest users. Overall, samples from 13/50 (26.0%) farms were found to be positive for the presence of ESBL-producing E. coli. Of these, eight farms were in the low user group and five were in the high user group. Only one farm was confirmed to harbour MRSA. Statistical analyses demonstrated that there was no significant difference in this study population between high or low antimicrobial use with respect to the presence of ESBL-producing E. coli on farms (p = 0.33). In conclusion, the presence of specific AMR bacteria on farms in this study population was not found to have a statistically proven relationship with their level of antimicrobial use.
Collapse
Affiliation(s)
- Clair L. Firth
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology & Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology & Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Peter Pless
- Veterinary Directorate and Administration, Styrian Provincial Government, 8010 Graz, Austria
| | - Sandra Koeberl-Jelovcan
- Institute for Medical Microbiology and Hygiene, Centre for Foodborne Infectious Diseases, Division for Public Health, Austrian Agency for Health and Food Safety (AGES GmbH), 8010 Graz, Austria
| | - Walter Obritzhauser
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology & Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Veterinary Practice, 8605 Parschlug, Austria
| |
Collapse
|
21
|
Penati M, Sala G, Biscarini F, Boccardo A, Bronzo V, Castiglioni B, Cremonesi P, Moroni P, Pravettoni D, Addis MF. Feeding Pre-weaned Calves With Waste Milk Containing Antibiotic Residues Is Related to a Higher Incidence of Diarrhea and Alterations in the Fecal Microbiota. Front Vet Sci 2021; 8:650150. [PMID: 34307516 PMCID: PMC8298036 DOI: 10.3389/fvets.2021.650150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023] Open
Abstract
The cows receiving antibiotics for intra-mammary infection (IMI) produce milk that cannot be marketed. This is considered waste milk (WM), and a convenient option for farmers is using it as calf food. However, adding to the risk of selecting resistant bacteria, residual antibiotics might interfere with the gut microbiome development and influence gastrointestinal health. We assessed the longitudinal effect of unpasteurized WM containing residual cefalexin on calf intestinal health and fecal microbiota in an 8-week trial. After 3 days of colostrum, six calves received WM and six calves received bulk tank milk (BM) for 2 weeks. For the following 6 weeks, all 12 calves received milk substitute and starter feed. Every week for the first 2 weeks and every 2 weeks for the remaining 6 weeks, we subjected all calves to clinical examination and collected rectal swabs for investigating the fecal microbiota composition. Most WM calves had diarrhea episodes in the first 2 weeks of the trial (5/6 WM and 1/6 BM), and their body weight was significantly lower than that of BM calves. Based on 16S rRNA gene analysis, WM calves had a lower fecal microbiota alpha diversity than that in BM calves, with the lowest p-value at Wk4 (p < 0.02), 2 weeks after exposure to WM. The fecal microbiota beta diversity of the two calf groups was also significantly different at Wk4 (p < 0.05). Numerous significant differences were present in the fecal microbiota taxonomy of WM and BM calves in terms of relative normalized operational taxonomic unit (OTU) levels, affecting five phyla, seven classes, eight orders, 19 families, and 47 genera. At the end of the trial, when 6 weeks had passed since exposure to WM, the phyla Bacteroidetes, Firmicutes, and Saccharibacteria were lower, while Chlamydiae were higher in WM calves. Notably, WM calves showed a decrease in beneficial taxa such as Faecalibacterium, with a concomitant increase in potential pathogens such as Campylobacter, Pseudomonas, and Chlamydophila spp. In conclusion, feeding pre-weaned calves with unpasteurized WM containing antibiotics is related to a higher incidence of neonatal diarrhea and leads to significant changes in the fecal microbiota composition, further discouraging this practice in spite of its short-term economic advantages.
Collapse
Affiliation(s)
- Martina Penati
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Giulia Sala
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Antonio Boccardo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, United States
| | - Davide Pravettoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
22
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
23
|
Massé J, Lardé H, Fairbrother JM, Roy JP, Francoz D, Dufour S, Archambault M. Prevalence of Antimicrobial Resistance and Characteristics of Escherichia coli Isolates From Fecal and Manure Pit Samples on Dairy Farms in the Province of Québec, Canada. Front Vet Sci 2021; 8:654125. [PMID: 34095273 PMCID: PMC8175654 DOI: 10.3389/fvets.2021.654125] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is an important burden for public health and veterinary medicine. For Québec (Canada) dairy farms, the prevalence of AMR is mostly described using passive surveillance, which may be misleading. In addition, the presence of extended spectrum β-lactamase (ESBL)/AmpC producing Escherichia coli is unknown. This observational cross-sectional study used random dairy farms (n = 101) to investigate AMR and extended spectrum β-lactamase (ESBL)/AmpC producing Escherichia coli. Twenty antimicrobials were tested on E. coli isolates (n = 593) recovered from fecal samples (n = 599) from calves, cows, and the manure pit. Isolates were mostly susceptible (3% AMR or less) to the highest priority critically important antimicrobials in humans. The highest levels of AMR were to tetracycline (26%), sulfisozaxole (23%) and streptomycin (19%). The resistance genes responsible for these resistances were, respectively: tet(A), tet(B), sul1, sul2, sul3, aph(3")-Ib (strA), aph(6)-Id (strB), aadA1, aadA2, and aadA5. ESBL analysis revealed two predominant phenotypes: AmpC (51%) and ESBL (46%) where bla CMY-2 and bla CTX-M ( bla CTX-M-1, bla CTX-M-15, and bla CTX-M-55) were the genes responsible for these phenotypes, respectively. During this study, 85% of farms had at least one ESBL/AmpC producing E. coli. Isolates from calves were more frequently resistant than those from cows or manure pits. Although prevalence of AMR was low for critically important antimicrobials, there was a high prevalence of ESBL/AmpC-producing E. coli on Quebec dairy farms, particularly in calves. Those data will help determine a baseline for AMR to evaluate impact of initiatives aimed at reducing AMR.
Collapse
Affiliation(s)
- Jonathan Massé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les maladies infectieuses en production animale, Saint-Hyacinthe, QC, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Hélène Lardé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - John M Fairbrother
- Groupe de Recherche sur les maladies infectieuses en production animale, Saint-Hyacinthe, QC, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Roy
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Francoz
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les maladies infectieuses en production animale, Saint-Hyacinthe, QC, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
24
|
Lienen T, Schnitt A, Cuny C, Maurischat S, Tenhagen BA. Phylogenetic Tracking of LA-MRSA ST398 Intra-Farm Transmission among Animals, Humans and the Environment on German Dairy Farms. Microorganisms 2021; 9:microorganisms9061119. [PMID: 34064246 PMCID: PMC8224388 DOI: 10.3390/microorganisms9061119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcusaureus (MRSA) are a major threat to human and animal health, causing difficult-to-treat infections. The aim of our study was to evaluate the intra-farm transmission of livestock-associated (LA) MRSA sequence type (ST) 398 isolates on German dairy farms. A total of 115 LA-MRSA ST398 isolates originating from animals, humans and the environment of six dairy farms were analyzed by whole-genome sequencing and core genome multilocus sequence typing. Phylogenetic clusters of high allelic similarity were detected on all dairy farms, suggesting a MRSA transmission across the different niches. On one farm, closely related isolates from quarter milk samples (QMS), suckers of calf feeders and nasal cavities of calves indicate that MRSA may be transferred by feeding contaminated milk to calves. Detection of related MRSA isolates in QMS and teat cups (4/6 farms) or QMS and human samples (3/4 farms) pointed out a transmission of MRSA between cows during the milking process and a potential zoonotic risk. In conclusion, LA-MRSA ST398 isolates may spread between animals, humans and the environment on dairy farms. Milking time hygiene and other internal biosecurity measures on farms and pre-treatment of milk before feeding it to calves may reduce the risk of MRSA transmission.
Collapse
Affiliation(s)
- Tobias Lienen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
- Correspondence: (T.L.); (B.-A.T.)
| | - Arne Schnitt
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
| | - Christiane Cuny
- Department Infectious Diseases, Robert-Koch Institute (RKI), 38855 Wernigerode, Germany;
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
- Correspondence: (T.L.); (B.-A.T.)
| |
Collapse
|
25
|
Okello E, Williams DR, ElAshmawy WR, Adams J, Pereira RV, Lehenbauer TW, Aly SS. Survey on Antimicrobial Drug Use Practices in California Preweaned Dairy Calves. Front Vet Sci 2021; 8:636670. [PMID: 33969034 PMCID: PMC8101284 DOI: 10.3389/fvets.2021.636670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
The California (CA) dairy industry was surveyed in July 2017 to evaluate producers' knowledge and perceptions and antimicrobial drug (AMD) use in preweaned dairy calves following the implementation of the nationwide veterinary feed directive final rule (VFD) in January 2017 and prior to statewide implementation of CA Senate Bill (SB) 27 in January 2018. Together, these regulations require veterinary oversight for all uses of medically important antimicrobial drugs (MIADs) administered to livestock in CA. Survey questionnaire was mailed to 1,361 CA Grade A milk producing dairies and calf ranches across CA resulting in a 12% (169) response. Most respondents (83%) were aware of the VFD and SB 27 changes. Use of antibiotics was perceived as important (77%) in raising preweaned dairy calves and judicious use of antibiotics was ranked as the most important antimicrobial stewardship practice, amongst record keeping, observing withdrawal periods, having a valid Veterinarian-Client-Patient-Relationship (VCPR), and use of alternatives to antibiotics. Treating sick calves was the major indication for AMD use (90.5%); however, few producers reported use of antibiotics to control (12.7%) or prevent disease (11%). Neomycin sulfate, chlortetracycline, oxytetracycline and sulfamethazine were the most used AMD. The respondents reported a decreased use of AMD in milk (10%) and in solid feed (5%), and discontinuation of one or more AMDs used in milk (18.6%) or in solid feed (5%) post-VFD rule implementation in 2017. Most respondents reported keeping treatment records and the information recorded included date (82%), dose (44%) and route (15%) of AMD used. A few respondents reported they had initiated use of alternatives to AMDs, such as vitamins (32.6%), minerals (25.6%), herbal remedies (11.6%) and pathogen specific antibodies (7%), post-VFD. The limited changes noted in AMD use could be attributed to the short period between the implementation of the VFD and the time of the survey. Our study outcomes identified opportunities to improve AMD use practices, including record keeping and use of AMD alternatives, and provides a baseline for future evaluation of the impact of these regulatory changes, as well as guidance for the future recommendations on best practices to promote judicious AMD use.
Collapse
Affiliation(s)
- Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Deniece R Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
| | - Wagdy R ElAshmawy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States.,Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Jaymes Adams
- Antimicrobial Use and Stewardship Program, California Department of Food and Agriculture, Sacramento, CA, United States
| | - Richard V Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Terry W Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sharif S Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries. Microorganisms 2021; 9:microorganisms9040678. [PMID: 33805983 PMCID: PMC8064350 DOI: 10.3390/microorganisms9040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
Livestock data on antimicrobial resistance (AMR) are commonly collected from bacterial populations of clinical and non-clinical isolates. In contrast to data on non-clinical isolates from livestock, data on clinical isolates are not harmonized in Europe. The Normalized Resistance Interpretation (NRI) method was applied to overcome the lack of harmonization of laboratory methods and interpretation rules between monitoring systems. Statistical analyses were performed to identify associations between the isolate type (clinical vs. non-clinical) and resistance to four antimicrobials (ampicillin, tetracycline, gentamicin, and nalidixic acid) per animal category in Germany and France. Additional statistical analyses comparing clinical and non-clinical isolates were performed with the available data on the same antimicrobial panel and animal categories from the UK and Norway. Higher resistance prevalence was found in clinical isolates compared to non-clinical isolates from calves to all antimicrobials included in Germany and France. It was also found for gentamicin in broilers from France. In contrast, in broilers and turkeys from Germany and France and in broilers from the UK, a higher resistance level to ampicillin and tetracycline in non-clinical isolates was encountered. This was also found in resistance to gentamicin in isolates from turkeys in Germany. Resistance differed within countries and across years, which was partially in line with differences in antimicrobial use patterns. Differences in AMR between clinical and non-clinical isolates of Escherichia coli are associated with animal category (broiler, calf, and turkey) and specific antimicrobials. The NRI method allowed comparing results of non-harmonized AMR systems and might be useful until international harmonization is achieved.
Collapse
|
27
|
Bastard J, Haenni M, Gay E, Glaser P, Madec JY, Temime L, Opatowski L. Drivers of ESBL-producing Escherichia coli dynamics in calf fattening farms: A modelling study. One Health 2021; 12:100238. [PMID: 33851002 PMCID: PMC8022845 DOI: 10.1016/j.onehlt.2021.100238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 01/30/2023] Open
Abstract
The contribution of bacteria in livestock to the global burden of antimicrobial resistance raises concerns worldwide. However, the dynamics of selection and diffusion of antimicrobial resistance in farm animals are not fully understood. Here, we used veal calf fattening farms as a model system, as they are a known reservoir of Extended Spectrum β-Lactamase-producing Escherichia coli (ESBL-EC). Longitudinal data of ESBL-EC carriage and antimicrobial use (AMU) were collected from three veal calf farms during the entire fattening process. We developed 18 agent-based mechanistic models to assess different hypotheses regarding the main drivers of ESBL-EC dynamics in calves. The models were independently fitted to the longitudinal data using Markov Chain Monte Carlo and the best model was selected. Within-farm transmission between individuals and sporadic events of contamination were found to drive ESBL-EC dynamics on farms. In the absence of AMU, the median carriage duration of ESBL-EC was estimated to be 19.6 days (95% credible interval: [12.7; 33.3]). In the best model, AMU was found to influence ESBL-EC dynamics, by affecting ESBL-EC clearance rather than acquisition. This effect of AMU was estimated to decrease gradually after the end of exposure and to disappear after 62.5 days [50.0; 76.9]. Moreover, using a simulation study, we quantified the efficacy of ESBL-EC mitigation strategies. Decreasing ESBL-EC prevalence by 50% on arrival at the fattening farm reduced prevalence at slaughter age by 33.3%. Completely eliminating the use of selective antibiotics on arrival had a strong effect on average ESBL-EC prevalence (relative reduction of 77.0%), but the effect was mild if this use was only decreased by 50% compared to baseline (relative reduction of 3.3%).
Collapse
Affiliation(s)
- Jonathan Bastard
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, F-78180 Montigny-le-Bretonneux, France
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion unit, F-75015 Paris, France
- MESuRS laboratory, Conservatoire national des arts et métiers, 292 rue Saint-Martin, 75003 Paris, France
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Corresponding author at: Institut Pasteur, EMEA unit, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Marisa Haenni
- Université de Lyon - Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Emilie Gay
- Université de Lyon - Anses, Laboratoire de Lyon, Unité EAS, Lyon, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotics Resistance (EERA) unit, CNRS UMR 3525, Institut Pasteur, AP-HP, Université Paris-Sud, Paris, France
| | - Jean-Yves Madec
- Université de Lyon - Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Laura Temime
- MESuRS laboratory, Conservatoire national des arts et métiers, 292 rue Saint-Martin, 75003 Paris, France
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| | - Lulla Opatowski
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, F-78180 Montigny-le-Bretonneux, France
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion unit, F-75015 Paris, France
| |
Collapse
|
28
|
Abstract
Research on calf health and welfare has intensified in the past decades. This is an update on a review series on calf health from birth to weaning published ten years ago. Good colostrum management is still recognised as the single most important factor to preventing calf morbidity and mortality, however, it is now known that immunoglobulins are only one of many components of colostrum that are vital for the calf’s development. Other non-nutrient factors like leucocytes, hormones and growth factors, oligosaccharides as well as microRNAs have significant effects on the development and maturation of the intestinal and systemic immune functions. They also promote the maturation and function of the intestine, thus enabling the calf to digest and absorb the nutrients provided with colostrum and milk. The improved energetic status of colostrum-fed neonates is reflected by an accelerated maturation of the somatotropic axis, which stimulates body growth and organ development. Colostrum oligosaccharides are presumed to play a major role in the development of a healthy intestinal flora. A biologically normal (intensive) milk-feeding programme is subsequently necessary for optimal body growth, organ development and resistance to infectious diseases. Ad-libitum or close to ad-libitum feeding in the first three to four weeks of life also leaves calves less hungry thus improving calf welfare. Only calves fed intensively with colostrum and milk are able to reach their full potential for performance throughout their life. Public interest in farm animal welfare is growing in past decades, which makes it necessary to have a closer look at contentious management practices in the dairy industry like early separation of the dairy calf from the dam with subsequent individual housing. Public objection to these practices cannot be mitigated through educational efforts. Contrary to common opinion there is no evidence that early cow-calf separation is beneficial for the health of calf or cow. There is evidence of behavioural and developmental harm associated with individual housing in dairy calves, social housing improves feed intake and weight gains, and health risks associated with grouping can be mitigated with appropriate management. In conclusion, there are still many management practices commonly applied, especially in the dairy industry, which are detrimental to health and welfare of calves.
Collapse
|
29
|
Amin N, Seifert J. Dynamic progression of the calf's microbiome and its influence on host health. Comput Struct Biotechnol J 2021; 19:989-1001. [PMID: 33613865 PMCID: PMC7868804 DOI: 10.1016/j.csbj.2021.01.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The first year of a calf's life is a critical phase as its digestive system and immunity are underdeveloped. A high level of stress caused by separation from mothers, transportation, antibiotic treatments, dietary shifts, and weaning can have long-lasting health effects, which can reduce future production parameters, such as milk yield and reproduction, or even increase the mortality of calves. The early succession of microbes throughout the gastrointestinal tract of neonatal calves follows a sequential pattern of colonisation and is greatly influenced by their physiological state, age, diet, and environmental factors; this leads to the establishment of region- and site-specific microbial communities. This review summarises the current information on the various potential factors that may affect the early life microbial colonisation pattern in the gastrointestinal tract of calves. The possible role of host-microbe interactions in the development and maturation of host gut, immune system, and health are described. Additionally, the possibility of improving the health of calves through gut microbiome modulation and using antimicrobial alternatives is discussed. Finally, the trends, challenges, and limitations of the current research are summarised and prospective directions for future studies are highlighted.
Collapse
Affiliation(s)
- Nida Amin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
30
|
The Effects of Feeding Waste Milk Containing Antimicrobial Residues on Dairy Calf Health. Pathogens 2021; 10:pathogens10020112. [PMID: 33499385 PMCID: PMC7911522 DOI: 10.3390/pathogens10020112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
A number of studies have reported that there is a high prevalence of antimicrobial-resistant faecal bacteria excreted by dairy calves. Although faecal shedding is influenced by a variety of factors, such as the environment and calf age, feeding milk with antimicrobial residues contributes significantly to an increased prevalence of antimicrobial-resistant (AMR) bacteria, such as extended spectrum beta-lactamase (ESBL)-producing E. coli. As a follow-up to the European Food Safety Authority (EFSA) Scientific Opinion on the risk of AMR development in dairy calves published in January 2017, this review aims to illustrate more recent research in this area, focusing on the period 2016 to 2020. A total of 19 papers are reviewed here. The vast majority assess the commensal faecal bacteria, E. coli, isolated from dairy calves, in particular its antimicrobial-resistant forms such as ESBL-producing E. coli and AmpC-producing E. coli. The effect of waste milk feeding on the prevalence of pathogens such as Salmonella spp. has also been investigated. Current research findings include positive effects on daily liveweight gain and other advantages for calf health from feeding waste milk compared to milk replacer. However, the negative effects, such as the demonstrable selection for antimicrobial-resistant bacteria, the shift in the intestinal microbiome and the possible negative consequences that these could have on global public health, should always be taken into consideration.
Collapse
|
31
|
Suwono B, Eckmanns T, Kaspar H, Merle R, Zacher B, Kollas C, Weiser AA, Noll I, Feig M, Tenhagen BA. Cluster analysis of resistance combinations in Escherichia coli from different human and animal populations in Germany 2014-2017. PLoS One 2021; 16:e0244413. [PMID: 33471826 PMCID: PMC7817003 DOI: 10.1371/journal.pone.0244413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Recent findings on Antibiotic Resistance (AR) have brought renewed attention to the comparison of data on AR from human and animal sectors. This is however a major challenge since the data is not harmonized. This study performs a comparative analysis of data on resistance combinations in Escherichia coli (E. coli) from different routine surveillance and monitoring systems for human and different animal populations in Germany. Data on E. coli isolates were collected between 2014 and 2017 from human clinical isolates, non-clinical animal isolates from food-producing animals and food, and clinical animal isolates from food-producing and companion animals from national routine surveillance and monitoring for AR in Germany. Sixteen possible resistance combinations to four antibiotics—ampicillin, cefotaxime, ciprofloxacin and gentamicin–for these populations were used for hierarchical clustering (Euclidian and average distance). All analyses were performed with the software R 3.5.1 (Rstudio 1.1.442). Data of 333,496 E. coli isolates and forty-one different human and animal populations were included in the cluster analysis. Three main clusters were detected. Within these three clusters, all human populations (intensive care unit (ICU), general ward and outpatient care) showed similar relative frequencies of the resistance combinations and clustered together. They demonstrated similarities with clinical isolates from different animal populations and most isolates from pigs from both non-clinical and clinical isolates. Isolates from healthy poultry demonstrated similarities in relative frequencies of resistance combinations and clustered together. However, they clustered separately from the human isolates. All isolates from different animal populations with low relative frequencies of resistance combinations clustered together. They also clustered separately from the human populations. Cluster analysis has been able to demonstrate the linkage among human isolates and isolates from various animal populations based on the resistance combinations. Further analyses based on these findings might support a better one-health approach for AR in Germany.
Collapse
Affiliation(s)
- Beneditta Suwono
- Department Biological Safety, Unit Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment, Berlin, Germany
- Department Infectious Disease Epidemiology, Unit Healthcare-associated Infections, Surveillance for Antibiotic Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Department Infectious Disease Epidemiology, Unit Healthcare-associated Infections, Surveillance for Antibiotic Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Heike Kaspar
- Unit Antibiotic Resistance Monitoring, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Working Group Applied Epidemiology, Free University Berlin, Berlin, Germany
| | - Benedikt Zacher
- Department Infectious Disease Epidemiology, Unit Healthcare-associated Infections, Surveillance for Antibiotic Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Chris Kollas
- Department Biological Safety, Unit Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Armin A. Weiser
- Department Biological Safety, Unit Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ines Noll
- Department Infectious Disease Epidemiology, Unit Healthcare-associated Infections, Surveillance for Antibiotic Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Marcel Feig
- Department Infectious Disease Epidemiology, Unit Healthcare-associated Infections, Surveillance for Antibiotic Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department Biological Safety, Unit Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment, Berlin, Germany
- * E-mail:
| |
Collapse
|
32
|
Jarrige N, Cazeau G, Bosquet G, Bastien J, Benoit F, Gay E. Effects of antimicrobial exposure on the antimicrobial resistance of Escherichia coli in the digestive flora of dairy calves. Prev Vet Med 2020; 185:105177. [PMID: 33181469 DOI: 10.1016/j.prevetmed.2020.105177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022]
Abstract
Veal calves are often identified as reservoirs for antimicrobial resistant Escherichia coli (E. coli). This production is closely linked with dairy production, as young calves - mostly males - are collected from dairy farms to enter the fattening process. The aim of this prospective study was to explore the factors on dairy farms that favour the selection of antimicrobial resistance (AMR) in the digestive E. coli strains of young calves and to assess whether the resistance levels and selection pressure were the same for males and females. The exposure of calves to antimicrobials was investigated through three factors: antimicrobial treatment of calves; feeding of calves with milk from cows treated with antimicrobials; and the consumption of colostrum from cows treated with antimicrobials at dry-off. The study design involved 100 dairy farms. A calf of each sex was selected from birth on each farm. Information on the calves' exposure to antimicrobials was collected daily and calves were sampled (rectal swab) two weeks after birth, then seven weeks after birth for females only. Laboratory analyses included culture on two distinct media: a non-selective medium (identifying dominant flora) and a medium containing ceftiofur to select the extended-spectrum beta-lactamase (ESBL) phenotype. Susceptibility testing was performed on an E. coli strain from each medium. Generalised linear models were used to assess associations between the resistance of E. coli strains and antimicrobial exposure. A set of 280 swabs from healthy calves were analysed. In dominant flora, high levels of resistance (>60 %) were identified for streptomycin, tetracycline and amoxicillin but AMR levels were low (3 %) for critically important antimicrobials (3rd- and 4th-generation cephalosporins and fluoroquinolones). For females staying in dairy farms, a marked decrease in resistance was observed for almost all antimicrobials between the age of 15 days and 7 weeks. A selective medium revealed an ESBL phenotype for 20.7 % of the calves. Whether for AMR or antimicrobial exposure, no significant difference was found between male and female calves. The antimicrobial treatment of calves was associated with an increased resistance of E. coli from dominant flora for amoxicillin (OR = 2.9), gentamicin (OR = 4.6), florfenicol (OR = 5.0) and trimethoprim-sulfonamide (OR = 5.6). The consumption by calves of milk from cows treated with antimicrobials was also associated with an increased resistance to amoxicillin (OR = 2.6), gentamicin (OR = 4.0), tetracycline (2.6) and trimethoprim-sulfonamide (OR = 2.2). In contrast, the models did not reveal any association between AMR and consumption of colostrum from cows treated with antimicrobials at dry-off.
Collapse
Affiliation(s)
- N Jarrige
- Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et appui à la surveillance, 31 Avenue Tony Garnier, 69364, Lyon Cedex 07, France.
| | - G Cazeau
- Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et appui à la surveillance, 31 Avenue Tony Garnier, 69364, Lyon Cedex 07, France
| | - G Bosquet
- SNGTV - Société nationale des groupements techniques vétérinaires, 5 rue Moufle, 75011, Paris, France
| | - J Bastien
- SNGTV - Société nationale des groupements techniques vétérinaires, 5 rue Moufle, 75011, Paris, France
| | - F Benoit
- Laboratoire Labéo-Manche, 1352 Avenue de Paris CS 33608, 50008, Saint-Lô Cedex, France
| | - E Gay
- Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et appui à la surveillance, 31 Avenue Tony Garnier, 69364, Lyon Cedex 07, France
| |
Collapse
|
33
|
Tenhagen BA, Käsbohrer A, Grobbel M, Hammerl J, Kaspar H. [Antimicrobial resistance in E. coli from different cattle populations in Germany]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:218-227. [PMID: 32823326 PMCID: PMC7655263 DOI: 10.1055/a-1197-5701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gegenstand und Ziel
Ziel dieser Arbeit ist, die Resistenzsituation bei
Escherichia
(
E.
)
coli
aus verschiedenen Rinderpopulationen zu beschreiben.
Material und Methoden
Dazu wurden die minimalen Hemmkonzentrationen (MHK) von Antibiotika gegen sowohl klinische als auch nicht klinische
E. coli
-Isolate von Milchkühen, Mastrindern, Mastkälbern und Kälbern ausgewertet. Diese Untersuchungen erfolgten im Rahmen des Monitoringprogramms GE
RM
-Vet (klinische Isolate) sowie im Rahmen des Zoonosen-Monitorings (nicht klinische Isolate) mithilfe der Bouillon-Mikrodilutionsmethode. Zur einheitlichen Bewertung der ermittelten MHK dienten die vom European Centre for Antimicrobial Susceptibility Testing (EUCAST) veröffentlichten epidemiologischen Grenzwerte.
Ergebnisse
In die Untersuchung wurden insgesamt 5127 Isolate einbezogen. Die höchsten Resistenzraten (RR) gegenüber den meisten Substanzen ergaben sich bei Isolaten von erkrankten Kälbern, gefolgt von solchen von Mastkälbern und Jungrindern unter 1 Jahr am Schlachthof. Die niedrigsten RR wiesen
E. coli
-Isolate aus Tankmilchproben von Milchviehbetrieben und von Mastrindern im Bestand auf. Die Resistenzraten bei Mastitisisolaten waren deutlich höher als bei den nicht klinischen Isolaten aus Tankmilch, aber niedriger als bei den Isolaten von Kälbern und Jungrindern.
Schlussfolgerungen und klinische Relevanz
Vor allem die RR gegenüber den besonders wichtigen Substanzklassen Cephalosporine der 3. Generation und Fluorchinolone lagen bei Kälbern mit Enteritis, aber auch bei Isolaten aus Mastitisproben höher als in anderen Tierpopulationen. Ein Zusammenhang mit dem relativ hohen Einsatz dieser Substanzen bei Milchkühen ist naheliegend, da die Kälber über die Vertränkung nicht vermarktungsfähiger Milch sowohl gegenüber Arzneimittelrückständen als auch gegenüber resistenten Bakterien exponiert sind. Der Einsatz dieser Substanzklassen in der Rinderhaltung muss auf ein Minimum reduziert werden, um die weitere Ausbreitung dieser Resistenzen gegen diese Substanzen in der Rinderhaltung einzudämmen.
Collapse
Affiliation(s)
| | | | - Mirjam Grobbel
- Bundesinstitut für Risikobewertung, Abteilung Biologische Sicherheit
| | - Jens Hammerl
- Bundesinstitut für Risikobewertung, Abteilung Biologische Sicherheit
| | - Heike Kaspar
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit
| |
Collapse
|
34
|
Lam TJGM, Heuvelink AE, Gonggrijp MA, Santman-Berends IMGA. Antimicrobial use in dairy cattle in the Netherlands. J Anim Sci 2020; 98:S9-S14. [PMID: 32810248 PMCID: PMC7433912 DOI: 10.1093/jas/skaa143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theo J G M Lam
- Department of Research & Development, Royal GD, AA Deventer, The Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Annet E Heuvelink
- Department of Research & Development, Royal GD, AA Deventer, The Netherlands
| | - Maaike A Gonggrijp
- Department of Research & Development, Royal GD, AA Deventer, The Netherlands
| | | |
Collapse
|
35
|
Garzon A, Pandey P, Tell L, Aly SS, Poppenga R, Pereira R. Evaluation of Heat and pH Treatments on Degradation of Ceftiofur in Whole Milk. Front Vet Sci 2020; 7:288. [PMID: 32528987 PMCID: PMC7256783 DOI: 10.3389/fvets.2020.00288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Waste milk feeding practices have been implicated as a potential source for disseminating antimicrobial resistant bacteria among animals and the environment. Two interventions that have shown potential for degrading antimicrobial drugs in milk are heat and pH treatment. The aim of this study was to evaluate the effect of heat and pH treatments on the degradation of ceftiofur and ceftiofur free acid equivalents in milk at concentrations previously found in waste milk on dairy farms by spiking saleable pasteurized whole milk with ceftiofur sodium. Three heat treatments of ceftiofur sodium spiked milk were evaluated for their ability to degrade ceftiofur: 63°C for 30 min (LTLT), 72°C for 15 s (HTST) and 92°C for 20 min (HTLT). Two pH treatments of ceftiofur sodium spiked milk were evaluated: pH 4.0 (LpH) and pH 10 (HpH). Control samples spiked with ceftiofur sodium were kept at room temperature and samples collected at corresponding times for heat and pH treatments. Four treatment replicates were performed for each treatment group. Ceftiofur was quantified in milk samples using liquid chromatography mass spectrometry (LC-MS/MS) and ceftiofur free acid equivalents (CFAE) were measured using high-performance liquid chromatography (HPLC). HTLT resulted in a degradation of 35.24% of the initial concentration of ceftiofur. Ceftiofur degradation did not differ between control and the remaining two heat treatment groups (LTLT and HTST). HpH resulted in degradation of the 95.72 and 96.28% of the initial concentration of ceftiofur and CFAE, respectively. No significant changes in degradation of ceftiofur or CFAE were observed for control or LpH treatments. In conclusion, our study results were that alkalinizing milk to pH 10 and heating milk to 92°C for 20 min degraded ceftiofur and CFAE in spiked simulated waste milk demonstrated promising potential as treatment options for degrading ceftiofur and CFAE in waste milk, and further research is needed to evaluate the viability for implementation of these treatments in dairy farms.
Collapse
Affiliation(s)
- Adriana Garzon
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pramod Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Lisa Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sharif S. Aly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Veterinary Medicine Teaching and Research Center, University of California, Davis, Tulare, CA, United States
| | - Robert Poppenga
- California Animal Health and Food Safety Laboratory, Davis, CA, United States
| | - Richard Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
36
|
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1699-1713. [PMID: 32777908 PMCID: PMC7649072 DOI: 10.5713/ajas.20.0156] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.
Collapse
Affiliation(s)
- Wei Nee Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
37
|
Silva DP, Pedroso AM, Pereira MC, Bertoldi GP, Watanabe DH, Melo AC, Millen DD. Survey of management practices used by Brazilian dairy farmers and recommendations provided by 43 dairy cattle nutritionists. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work aimed to survey management practices used by dairy farmers and to report nutritional recommendations adopted by 43 dairy cattle nutritionists in Brazil. The web-based survey consisted of 80 questions. Almost 50% of the participants had clients that produce <1000 kg of milk daily and 48.8% had clients who own fewer than 100 dairy cows. Corn was the primary source of grain (97.4%), and 43.9% of the nutritionists included from 41% to 50% concentrate in lactation diets. The mean roughage inclusion in lactation diets was 50.5% and 79% of the nutritionists reported corn silage as the primary roughage source. Average crude protein and rumen-degradable protein concentrations recommended by the nutritionists for lactation diets were 15.7% and 9%, respectively. Average Ca and P concentrations recommended for lactation diets were 0.70% and 0.41%, respectively. The major health problem reported by 83.9% of the nutritionists was mastitis. The present survey provides an overview of management practices adopted by dairy farmers and nutritional recommendations currently applied by dairy cattle nutritionists in Brazil. The most critical points identified were low milk yield, mastitis as the major health problem, lack of proper mixing and delivery of rations, and destination of male calves.
Collapse
Affiliation(s)
- Diego P. Silva
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, São Paulo 17900-000, Brazil
| | - Alexandre M. Pedroso
- Empresa Brasileira de Pesquisa Agropecuária, São Carlos, São Paulo 13560-970, Brazil
| | - Murillo C.S. Pereira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo 18618-000, Brazil
| | - Gustavo P. Bertoldi
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, São Paulo 17900-000, Brazil
| | - Daniel H.M. Watanabe
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, São Paulo 17900-000, Brazil
| | - Alan C.B. Melo
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, São Paulo 17900-000, Brazil
| | - Danilo D. Millen
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, São Paulo 17900-000, Brazil
| |
Collapse
|
38
|
Yousif MH, Li JH, Li ZQ, Maswayi Alugongo G, Ji SK, Li YX, Wang YJ, Li SL, Cao ZJ. Low Concentration of Antibiotics Modulates Gut Microbiota at Different Levels in Pre-Weaning Dairy Calves. Microorganisms 2018; 6:E118. [PMID: 30486334 PMCID: PMC6313529 DOI: 10.3390/microorganisms6040118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to investigate the effect of feeding milk replacer (MR) with two different antibiotics treatments on the gut microbiota of pre-weaning calves. Twelve (12) Holstein male calves at 1-day-old were randomly assigned to: milk replacer without antibiotics (CON), milk replacer plus low cocktail of antibiotics (LCA) concentration (penicillin 0.024 mg/L, streptomycin 0.025 mg/L, tetracycline 0.1 mg/L, ceftiofur 0.33 mg/L), and milk replacer plus a low concentration of single antibiotic (LSA; ceftiofur 0.33 mg/L). All the calves were harvested at 35-day-old, and the digesta from the ileum and colon was collected in addition to fecal samples. Samples were analyzed by 16S rRNA gene using Illumina MiSeq platform. Results showed that there were significant differences among treatments in the ileum, where LCA significantly reduced the relative abundance of Enterobacteriaceae (P = 0.02) especially Escherichia-coli (P = 0.02), while LSA significantly reduced the relative abundance of Comamonas (P = 0.02). In the colon and rectum, LSA treatment was significantly enriched with the class Bacilli, whereas the control group was significantly enriched with Alloprevotlla (P = 0.03). However, at the family level in the rectum LCA and LSA significantly reduced the relative abundance of Acidaminococcaceae (P = 0.01). Moreover, at the genera level in the colon, LSA significantly increased Prevotellaceae_Ga6A1_ group (P = 0.02), whereas in the rectum both of treatments reduced the relative abundance of Phascolarctobacterium (P = 0.01). In conclusion, the overall low cocktail of antibiotics concentration induced changes at different taxonomic levels; specifically the decrease in Escherichia-coli which might subsequently reduce the incidences of diarrhea in calves.
Collapse
Affiliation(s)
- Mohammed Husien Yousif
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jing-Hui Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zheng-Qian Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Kun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yuan-Xiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Ya-Jing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhi-Jun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Tempini PN, Aly SS, Karle BM, Pereira RV. Multidrug residues and antimicrobial resistance patterns in waste milk from dairy farms in Central California. J Dairy Sci 2018; 101:8110-8122. [PMID: 30126599 DOI: 10.3168/jds.2018-14398] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022]
Abstract
Waste milk (WM) is a common source of feed for preweaned calves in US dairy farms. However, limited information is available about characteristics of this product, including concentration of drug residues and potential hazards from antibiotic-resistant bacteria present in the milk. The aims of this cross-sectional study were to (1) identify and measure the concentration of antimicrobial residues in raw WM samples on dairy farms in the Central Valley of California, (2) survey farm management practices for factors associated with the occurrence of specific antimicrobial residues in raw WM, (3) characterize the antimicrobial resistance patterns of E. coli cultured from raw WM samples, and (4) evaluate the potential association between WM quality parameter and risk of identifying drug residues in milk. A single raw bulk tank WM sample was collected from dairy farms located in California's Central Valley (n = 25). A questionnaire was used to collect information about farm management practices. Waste milk samples were analyzed for a multidrug residue panel using liquid chromatography-tandem mass spectrometry. Bacteria were cultured and antimicrobial resistance was tested using standard techniques; milk quality parameters (fat, protein, lactose, solids-not-fat, somatic cell count, coliform count, and standard plate count) were also measured. Of the 25 samples collected, 15 (60%) contained detectable concentrations of at least 1 antimicrobial. Of the drug residue-positive samples, 44% (11/25) and 16% (4/25) had detectable concentrations of β-lactams and tetracycline, respectively. The most prevalent drug residues were ceftiofur (n = 7, 28%), oxytetracycline (n = 4, 16%), and cephapirin (n = 3, 12%). No significant associations were identified between farm characteristics or management practices and presence of drug residues in WM. In this study, 20% of farms did not pasteurize WM before feeding to calves. Two of the 10 Escherichia coli isolated from WM samples were multidrug resistant. Streptococcus spp. (n = 21, 84%) was the most common genus cultured from WM samples, followed by Staphylococcus spp. (n = 20, 80%) and E.coli (n = 10, 40%). Mycoplasma spp. was cultured from 2 WM samples (n = 2, 8%). The presence of drug residues in WM at concentrations that increase selection of resistant bacteria indicates the need for additional studies targeting on-farm milk treatments to degrade drug residues before feeding to calves. The presence of multidrug-resistant E. coli in WM urges the need for on-farm practices that reduce calf exposure to resistant bacteria, such as pasteurization.
Collapse
Affiliation(s)
- P N Tempini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis 95616
| | - S S Aly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis 95616; Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - B M Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland 95963
| | - R V Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis 95616.
| |
Collapse
|
40
|
Pereira RVV, Carroll LM, Lima S, Foditsch C, Siler JD, Bicalho RC, Warnick LD. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Sci Rep 2018; 8:554. [PMID: 29323259 PMCID: PMC5764986 DOI: 10.1038/s41598-017-19021-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
Feeding drug residue-containing milk to calves is common worldwide and no information is currently available on the impact on the functional profile of the fecal microbiota. Our objective was to characterize the functional profile of the fecal microbiota of preweaned dairy calves fed raw milk with residual concentrations of antimicrobials commonly found in waste milk from birth to weaning. Calves were assigned to a controlled feeding trial being fed milk with no drug residues or milk with antibiotic residues. Fecal samples collected from each calf once a week starting at birth, prior to the first feeding in the trial, until 6 weeks of age. Antibiotic residues resulted in a significant difference in relative abundance of microbial cell functions, especially with genes linked with stress response, regulation and cell signaling, and nitrogen metabolism. These changes could directly impacts selection and dissemination of virulence and antimicrobial. Our data also identified a strong association between age in weeks and abundance of Resistance to Antibiotics and Toxic Compounds. Findings from this study support the hypothesis that drug residues, even at very low concentrations, impact the gut microbiota of calves and result in changes in the functional profile of microbial populations.
Collapse
Affiliation(s)
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Svetlana Lima
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Carla Foditsch
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Julie D Siler
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rodrigo Carvalho Bicalho
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lorin D Warnick
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
41
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J 2017; 15:e04694. [PMID: 32625402 PMCID: PMC7009883 DOI: 10.2903/j.efsa.2017.4694] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The data on antimicrobial resistance in zoonotic and indicator bacteria in 2015, submitted by 28 EU Member States (MSs), were jointly analysed by EFSA and ECDC. Resistance in zoonotic Salmonella and Campylobacter from humans, animals and food, and resistance in indicator Escherichia coli as well as meticillin‐resistant Staphylococcus aureus in animals and food were addressed. ‘Microbiological’ resistance was assessed using epidemiological cut‐off (ECOFF) values; for some countries, qualitative data on human isolates were interpreted in a way which corresponds closely to the ECOFF‐defined ‘microbiological’ resistance. In Salmonella from humans, high proportions of isolates were resistant to ampicillin, sulfonamides and tetracyclines, whereas resistance to third‐generation cephalosporins was low. In Salmonella and Escherichia coli isolates from fattening pigs and calves under one year of age, resistance to ampicillin, tetracyclines and sulfonamides was frequently detected, whereas resistance to third‐generation cephalosporins was uncommon. For the first time, presumptive extended‐spectrum beta‐lactamase (ESBL)‐/AmpC‐/carbapenemase‐production in Salmonella and Escherichia coli was monitored in humans (Salmonella), meat (pork and beef), fattening pigs and calves. Varying occurrence/prevalence rates of ESBL‐/AmpC‐producers were observed between countries, and carbapenemase‐producing Escherichia coli were detected in single samples of pig meat and from fattening pigs from two MSs. Resistance to colistin was observed at low levels in Salmonella and Escherichia coli from fattening pigs and calves under one year of age and meat thereof. In Campylobacter from humans, high to extremely high proportions of isolates were resistant to ciprofloxacin and tetracyclines, particularly in C. coli. In a few countries, a third to half of C. coli in humans were resistant also to erythromycin, leaving few options for treatment of severe Campylobacter infections. High resistance to ciprofloxacin and tetracyclines was observed in C. coli isolates from fattening pigs, whereas much lower levels were recorded for erythromycin. Co‐resistance to critically important antimicrobials in both human and animal isolates was generally uncommon.
Collapse
|
42
|
Murphy D, Ricci A, Auce Z, Beechinor JG, Bergendahl H, Breathnach R, Bureš J, Duarte Da Silva JP, Hederová J, Hekman P, Ibrahim C, Kozhuharov E, Kulcsár G, Lander Persson E, Lenhardsson JM, Mačiulskis P, Malemis I, Markus-Cizelj L, Michaelidou-Patsia A, Nevalainen M, Pasquali P, Rouby JC, Schefferlie J, Schlumbohm W, Schmit M, Spiteri S, Srčič S, Taban L, Tiirats T, Urbain B, Vestergaard EM, Wachnik-Święcicka A, Weeks J, Zemann B, Allende A, Bolton D, Chemaly M, Fernandez Escamez PS, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Wahlström H, Baptiste K, Catry B, Cocconcelli PS, Davies R, Ducrot C, Friis C, Jungersen G, More S, Muñoz Madero C, Sanders P, Bos M, Kunsagi Z, Torren Edo J, Brozzi R, Candiani D, Guerra B, Liebana E, Stella P, Threlfall J, Jukes H. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 2017; 15:e04666. [PMID: 32625259 PMCID: PMC7010070 DOI: 10.2903/j.efsa.2017.4666] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA and EMA have jointly reviewed measures taken in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR). Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances. Recommended options (non-prioritised) include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk. A limited number of studies provide robust evidence of alternatives to antimicrobials that positively influence health parameters. Possible alternatives include probiotics and prebiotics, competitive exclusion, bacteriophages, immunomodulators, organic acids and teat sealants. Development of a legislative framework that permits the use of specific products as alternatives should be considered. Further research to evaluate the potential of alternative farming systems on reducing AMR is also recommended. Animals suffering from bacterial infections should only be treated with antimicrobials based on veterinary diagnosis and prescription. Options should be reviewed to phase out most preventive use of antimicrobials and to reduce and refine metaphylaxis by applying recognised alternative measures.
Collapse
|