1
|
Peter R, Bidkar AP, Bobba KN, Zerefa L, Dasari C, Meher N, Wadhwa A, Oskowitz A, Liu B, Miller BW, Vetter K, Flavell RR, Seo Y. 3D small-scale dosimetry and tumor control of 225Ac radiopharmaceuticals for prostate cancer. Sci Rep 2024; 14:19938. [PMID: 39198676 PMCID: PMC11358493 DOI: 10.1038/s41598-024-70417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Radiopharmaceutical therapy using α -emitting225 Ac is an emerging treatment for patients with advanced metastatic cancers. Measurement of the spatial dose distribution in organs and tumors is needed to inform treatment dose prescription and reduce off-target toxicity, at not only organ but also sub-organ scales. Digital autoradiography with α -sensitive detection devices can measure radioactivity distributions at 20-40 μ m resolution, but anatomical characterization is typically limited to 2D. We collected digital autoradiographs across whole tissues to generate 3D dose volumes and used them to evaluate the simultaneous tumor control and regional kidney dosimetry of a novel therapeutic radiopharmaceutical for prostate cancer, [225Ac]Ac-Macropa-PEG4-YS5, in mice. 22Rv1 xenograft-bearing mice treated with 18.5 kBq of [225Ac]Ac-Macropa-PEG4-YS5 were sacrificed at 24 h and 168 h post-injection for quantitative α -particle digital autoradiography and hematoxylin and eosin staining. Gamma-ray spectroscopy of biodistribution data was used to determine temporal dynamics and213 Bi redistribution. Tumor control probability and sub-kidney dosimetry were assessed. Heterogeneous225 Ac spatial distribution was observed in both tumors and kidneys. Tumor control was maintained despite heterogeneity if cold spots coincided with necrotic regions.225 Ac dose-rate was highest in the cortex and renal vasculature. Extrapolation of tumor control suggested that kidney absorbed dose could be reduced by 41% while maintaining 90% TCP. The 3D dosimetry methods described allow for whole tumor and organ dose measurements following225 Ac radiopharmaceutical therapy, which correlate to tumor control and toxicity outcomes.
Collapse
Affiliation(s)
- Robin Peter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Adam Oskowitz
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, CA, USA
| | - Brian W Miller
- Departments of Radiation Oncology and Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Kai Vetter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| | - Youngho Seo
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Adam DP, Grudzinski JJ, Marsh IR, Hill PM, Cho SY, Bradshaw TJ, Longcor J, Burr A, Bruce JY, Harari PM, Bednarz BP. Voxel-Level Dosimetry for Combined Iodine 131 Radiopharmaceutical Therapy and External Beam Radiation Therapy Treatment Paradigms for Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2024; 119:1275-1284. [PMID: 38367914 DOI: 10.1016/j.ijrobp.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
PURPOSE Targeted radiopharmaceutical therapy (RPT) in combination with external beam radiation therapy (EBRT) shows promise as a method to increase tumor control and mitigate potential high-grade toxicities associated with re-treatment for patients with recurrent head and neck cancer. This work establishes a patient-specific dosimetry framework that combines Monte Carlo-based dosimetry from the 2 radiation modalities at the voxel level using deformable image registration (DIR) and radiobiological constructs for patients enrolled in a phase 1 clinical trial combining EBRT and RPT. METHODS AND MATERIALS Serial single-photon emission computed tomography (SPECT)/computed tomography (CT) patient scans were performed at approximately 24, 48, 72, and 168 hours postinjection of 577.2 MBq/m2 (15.6 mCi/m2) CLR 131, an iodine 131-containing RPT agent. Using RayStation, clinical EBRT treatment plans were created with a treatment planning CT (TPCT). SPECT/CT images were deformably registered to the TPCT using the Elastix DIR module in 3D Slicer software and assessed by measuring mean activity concentrations and absorbed doses. Monte Carlo EBRT dosimetry was computed using EGSnrc. RPT dosimetry was conducted using RAPID, a GEANT4-based RPT dosimetry platform. Radiobiological metrics (biologically effective dose and equivalent dose in 2-Gy fractions) were used to combine the 2 radiation modalities. RESULTS The DIR method provided good agreement for the activity concentrations and calculated absorbed dose in the tumor volumes for the SPECT/CT and TPCT images, with a maximum mean absorbed dose difference of -11.2%. Based on the RPT absorbed dose calculations, 2 to 4 EBRT fractions were removed from patient EBRT treatments. For the combined treatment, the absorbed dose to target volumes ranged from 57.14 to 75.02 Gy. When partial volume corrections were included, the mean equivalent dose in 2-Gy fractions to the planning target volume from EBRT + RPT differed -3.11% to 1.40% compared with EBRT alone. CONCLUSIONS This work demonstrates the clinical feasibility of performing combined EBRT + RPT dosimetry on TPCT scans. Dosimetry guides treatment decisions for EBRT, and this work provides a bridge for the same paradigm to be implemented within the rapidly emerging clinical RPT space.
Collapse
Affiliation(s)
- David P Adam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph J Grudzinski
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian R Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steve Y Cho
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Tyler J Bradshaw
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Adam Burr
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Bryan P Bednarz
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
3
|
Zanzonico P. The MIRD Schema for Radiopharmaceutical Dosimetry: A Review. J Nucl Med Technol 2024; 52:74-85. [PMID: 38839128 DOI: 10.2967/jnmt.123.265668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Indexed: 06/07/2024] Open
Abstract
Internal dosimetry evaluates the amount and spatial and temporal distributions of radiation energy deposited in tissue from radionuclides within the body. Historically, nuclear medicine had been largely a diagnostic specialty, and the implicitly performed risk-benefit analyses have been straightforward, with relatively low administered activities yielding important diagnostic information whose benefit far outweighs any potential risk associated with the attendant normal-tissue radiation doses. Although dose estimates based on anatomic models and population-average kinetics in this setting may deviate rather significantly from the actual normal-organ doses for individual patients, the large benefit-to-risk ratios are very forgiving of any such inaccuracies. It is in this context that the MIRD schema was originally developed and has been largely applied. The MIRD schema, created and maintained by the MIRD committee of the Society of Nuclear Medicine and Molecular Imaging, comprises the notation, terminology, mathematic formulas, and reference data for calculating tissue radiation doses from radiopharmaceuticals administered to patients. However, with the ongoing development of new radiopharmaceuticals and the increasing therapeutic application of such agents, internal dosimetry in nuclear medicine and the MIRD schema continue to evolve-from population-average and organ-level to patient-specific and suborgan to voxel-level to cell-level dose estimation. This article will review the basic MIRD schema, relevant quantities and units, reference anatomic models, and its adaptation to small-scale and patient-specific dosimetry.
Collapse
Affiliation(s)
- Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Yilidir G, Demir M. Determination of Critical Organ Doses with 177Lu Prostate-specific Membrane Antigen Dosimetry in Metastatic Prostate Cancer Treatment. J Med Phys 2024; 49:304-310. [PMID: 39131436 PMCID: PMC11309138 DOI: 10.4103/jmp.jmp_12_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 08/13/2024] Open
Abstract
Aim This study aimed to perform dosimetry in patients with metastatic prostate cancer treated with 177Lutetium (Lu) prostate-specific membrane antigen (PSMA)-617 radiopharmaceutical, calculating organ blood clearance and consequently determining the maximum tolerable treatment activity. Materials and Methods Eighteen patients with metastatic prostate cancer were enrolled in the study. Patients were administered 5.55 gigabecquerel (GBq) of 177Lu-PSMA-617 radiopharmaceutical per treatment cycle through infusion. Blood samples (2 mL each) were collected at 2, 4, 6, 8, 18, 24, 36, and 44 h postinjection to assess the bone marrow absorbed dose. Organ doses were calculated using the OLINDA/EXM software based on scintigraphic images of the 18 patients who received 177Lu-PSMA-617. Results The blood clearance of 177Lu-PSMA-617 radiopharmaceutical was determined to be bi-exponential. The mean absorbed doses for the parotid glands, kidneys, bone marrow, and liver were found to be 1.18 ± 0.27, 1.05 ± 0.3, 0.07 ± 0.05, and 0.31 ± 0.2 Gy/GBq, respectively. The radiation dose to the bone marrow was significantly lower than that to the kidneys and parotid glands. No dose limitations were necessary for kidneys and bone marrow in any of the patients. Conclusions Our dosimetry results indicate that 177Lu-PSMA-617 therapy is safe in terms of radiation toxicity.
Collapse
Affiliation(s)
- Gulcihan Yilidir
- Department of Nuclear Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mustafa Demir
- Department of Nuclear Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
5
|
Strosberg J, Hofman MS, Al-Toubah T, Hope TA. Rethinking Dosimetry: The Perils of Extrapolated External-Beam Radiotherapy Constraints to Radionuclide Therapy. J Nucl Med 2024; 65:362-364. [PMID: 38212065 DOI: 10.2967/jnumed.123.267167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Affiliation(s)
- Jonathan Strosberg
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida;
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Taymeyah Al-Toubah
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
6
|
Kayal G, Barbosa N, Marín CC, Ferrer L, Fragoso-Negrín JA, Grosev D, Gupta SK, Hidayati NR, Moalosi TCG, Poli GL, Thakral P, Tsapaki V, Vauclin S, Vergara-Gil A, Knoll P, Hobbs RF, Bardiès M. Quality Assurance Considerations in Radiopharmaceutical Therapy Dosimetry Using PLANETDose: An International Atomic Energy Agency Study. J Nucl Med 2024; 65:125-131. [PMID: 37884334 PMCID: PMC10755524 DOI: 10.2967/jnumed.122.265340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/25/2023] [Indexed: 10/28/2023] Open
Abstract
Implementation of radiopharmaceutical therapy dosimetry varies depending on the clinical application, dosimetry protocol, software, and ultimately the operator. Assessing clinical dosimetry accuracy and precision is therefore a challenging task. This work emphasizes some pitfalls encountered during a structured analysis, performed on a single-patient dataset consisting of SPECT/CT images by various participants using a standard protocol and clinically approved commercial software. Methods: The clinical dataset consisted of the dosimetric study of a patient administered with [177Lu]Lu-DOTATATE at Tygerberg Hospital, South Africa, as a part of International Atomic Energy Agency-coordinated research project E23005. SPECT/CT images were acquired at 5 time points postinjection. Patient and calibration images were reconstructed on a workstation, and a calibration factor of 122.6 Bq/count was derived independently and provided to the participants. A standard dosimetric protocol was defined, and PLANETDose (version 3.1.1) software was installed at 9 centers to perform the dosimetry of 3 treatment cycles. The protocol included rigid image registration, segmentation (semimanual for organs, activity threshold for tumors), and dose voxel kernel convolution of activity followed by absorbed dose (AD) rate integration to obtain the ADs. Iterations of the protocol were performed by participants individually and within collective training, the results of which were analyzed for dosimetric variability, as well as for quality assurance and error analysis. Intermediary checkpoints were developed to understand possible sources of variation and to differentiate user error from legitimate user variability. Results: Initial dosimetric results for organs (liver and kidneys) and lesions showed considerable interoperator variability. Not only was the generation of intermediate checkpoints such as total counts, volumes, and activity required, but also activity-to-count ratio, activity concentration, and AD rate-to-activity concentration ratio to determine the source of variability. Conclusion: When the same patient dataset was analyzed using the same dosimetry procedure and software, significant disparities were observed in the results despite multiple sessions of training and feedback. Variations due to human error could be minimized or avoided by performing intensive training sessions, establishing intermediate checkpoints, conducting sanity checks, and cross-validating results across physicists or with standardized datasets. This finding promotes the development of quality assurance in clinical dosimetry.
Collapse
Affiliation(s)
- Gunjan Kayal
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
- SCK CEN, Belgian Nuclear Research Centre, Mol, Belgium
| | | | | | - Ludovic Ferrer
- Medical Physics Department, ICO René Gauducheau, Nantes, France
- CRCINA, UMR 1232, INSERM, France
| | - José-Alejandro Fragoso-Negrín
- DOSIsoft SA, Cachan, France
- IRCM, UMR 1194 INSERM, Universite de Montpellier and Institut Regional du Cancer de Montpellier, Montpellier, France
| | - Darko Grosev
- Department of Nuclear Medicine and Radiation Protection, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Santosh Kumar Gupta
- Department of Nuclear Medicine and PET, Mahamana Pandit Madanmohan Malviya Cancer Centre and Homi Bhabha Cancer Centre, Varanasi, India
| | - Nur Rahmah Hidayati
- Research Center and Technology for Radiation Safety and Metrology-National Research and Innovation Agency, Jakarta, Indonesia
| | - Tumelo C G Moalosi
- Department of Medical Imaging and Clinical Oncology, Medical Physics, Nuclear Medicine Division, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Gian Luca Poli
- Department of Medical Physics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Virginia Tsapaki
- Dosimetry and Medical Radiation Physics, International Atomic Energy Agency, Vienna, Austria
| | | | - Alex Vergara-Gil
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics, International Atomic Energy Agency, Vienna, Austria
| | - Robert F Hobbs
- Johns Hopkins Medical Institute, Baltimore, Maryland; and
| | - Manuel Bardiès
- IRCM, UMR 1194 INSERM, Universite de Montpellier and Institut Regional du Cancer de Montpellier, Montpellier, France;
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Cicone F, Sjögreen Gleisner K, Sarnelli A, Indovina L, Gear J, Gnesin S, Kraeber-Bodéré F, Bischof Delaloye A, Valentini V, Cremonesi M. The contest between internal and external-beam dosimetry: The Zeno's paradox of Achilles and the tortoise. Phys Med 2024; 117:103188. [PMID: 38042710 DOI: 10.1016/j.ejmp.2023.103188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023] Open
Abstract
Radionuclide therapy, also called molecular radiotherapy (MRT), has come of age, with several novel radiopharmaceuticals being approved for clinical use or under development in the last decade. External beam radiotherapy (EBRT) is a well-established treatment modality, with about half of all oncologic patients expected to receive at least one external radiation treatment over their disease course. The efficacy and the toxicity of both types of treatment rely on the interaction of radiation with biological tissues. Dosimetry played a fundamental role in the scientific and technological evolution of EBRT, and absorbed doses to the target and to the organs at risk are calculated on a routine basis. In contrast, in MRT the usefulness of internal dosimetry has long been questioned, and a structured path to include absorbed dose calculation is missing. However, following a similar route of development as EBRT, MRT treatments could probably be optimized in a significant proportion of patients, likely based on dosimetry and radiobiology. In the present paper we describe the differences and the similarities between internal and external-beam dosimetry in the context of radiation treatments, and we retrace the main stages of their development over the last decades.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy; Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy.
| | | | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luca Indovina
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland; University of Lausanne, Lausanne, Switzerland
| | - Françoise Kraeber-Bodéré
- Nantes Université, Université Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Médecine Nucléaire, F-44000 Nantes, France
| | | | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
8
|
Grkovski M, O'Donoghue JA, Imber BS, Andl G, Tu C, Lafontaine D, Schwartz J, Thor M, Zelefsky MJ, Humm JL, Bodei L. Lesion Dosimetry for [ 177Lu]Lu-PSMA-617 Radiopharmaceutical Therapy Combined with Stereotactic Body Radiotherapy in Patients with Oligometastatic Castration-Sensitive Prostate Cancer. J Nucl Med 2023; 64:1779-1787. [PMID: 37652541 PMCID: PMC10626375 DOI: 10.2967/jnumed.123.265763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
A single-institution prospective pilot clinical trial was performed to demonstrate the feasibility of combining [177Lu]Lu-PSMA-617 radiopharmaceutical therapy (RPT) with stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic castration-sensitive prostate cancer. Methods: Six patients with 9 prostate-specific membrane antigen (PSMA)-positive oligometastases received 2 cycles of [177Lu]Lu-PSMA-617 RPT followed by SBRT. After the first intravenous infusion of [177Lu]Lu-PSMA-617 (7.46 ± 0.15 GBq), patients underwent SPECT/CT at 3.2 ± 0.5, 23.9 ± 0.4, and 87.4 ± 12.0 h. Voxel-based dosimetry was performed with calibration factors (11.7 counts per second/MBq) and recovery coefficients derived from in-house phantom experiments. Lesions were segmented on baseline PSMA PET/CT (50% SUVmax). After a second cycle of [177Lu]Lu-PSMA-617 (44 ± 3 d; 7.50 ± 0.10 GBq) and an interim PSMA PET/CT scan, SBRT (27 Gy in 3 fractions) was delivered to all PSMA-avid oligometastatic sites, followed by post-PSMA PET/CT. RPT and SBRT voxelwise dose maps were scaled (α/β = 3 Gy; repair half-time, 1.5 h) to calculate the biologically effective dose (BED). Results: All patients completed the combination therapy without complications. No grade 3+ toxicities were noted. The median of the lesion SUVmax as measured on PSMA PET was 16.8 (interquartile range [IQR], 11.6) (baseline), 6.2 (IQR, 2.7) (interim), and 2.9 (IQR, 1.4) (post). PET-derived lesion volumes were 0.4-1.7 cm3 The median lesion-absorbed dose (AD) from the first cycle of [177Lu]Lu-PSMA-617 RPT (ADRPT) was 27.7 Gy (range, 8.3-58.2 Gy; corresponding to 3.7 Gy/GBq, range, 1.1-7.7 Gy/GBq), whereas the median lesion AD from SBRT was 28.1 Gy (range, 26.7-28.8 Gy). Spearman rank correlation, ρ, was 0.90 between the baseline lesion PET SUVmax and SPECT SUVmax (P = 0.005), 0.74 (P = 0.046) between the baseline PET SUVmax and the lesion ADRPT, and -0.81 (P = 0.022) between the lesion ADRPT and the percent change in PET SUVmax (baseline to interim). The median for the lesion BED from RPT and SBRT was 159 Gy (range, 124-219 Gy). ρ between the BED from RPT and SBRT and the percent change in PET SUVmax (baseline to post) was -0.88 (P = 0.007). Two cycles of [177Lu]Lu-PSMA-617 RPT contributed approximately 40% to the maximum BED from RPT and SBRT. Conclusion: Lesional dosimetry in patients with oligometastatic castration-sensitive prostate cancer undergoing [177Lu]Lu-PSMA-617 RPT followed by SBRT is feasible. Combined RPT and SBRT may provide an efficient method to maximize the delivery of meaningful doses to oligometastatic disease while addressing potential microscopic disease reservoirs and limiting the dose exposure to normal tissues.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - George Andl
- Varian Medical Systems Inc., Palo Alto, California; and
| | - Cheng Tu
- Varian Medical Systems Inc., Palo Alto, California; and
| | - Daniel Lafontaine
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Burkett BJ, Bartlett DJ, McGarrah PW, Lewis AR, Johnson DR, Berberoğlu K, Pandey MK, Packard AT, Halfdanarson TR, Hruska CB, Johnson GB, Kendi AT. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol Imaging Cancer 2023; 5:e220157. [PMID: 37477566 PMCID: PMC10413300 DOI: 10.1148/rycan.220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Theranostics is the combination of two approaches-diagnostics and therapeutics-applied for decades in cancer imaging using radiopharmaceuticals or paired radiopharmaceuticals to image and selectively treat various cancers. The clinical use of theranostics has increased in recent years, with U.S. Food and Drug Administration (FDA) approval of lutetium 177 (177Lu) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) and 177Lu-prostate-specific membrane antigen vector-based radionuclide therapies. The field of theranostics has imminent potential for emerging clinical applications. This article reviews critical areas of active clinical advancement in theranostics, including forthcoming clinical trials advancing FDA-approved and emerging radiopharmaceuticals, approaches to dosimetry calculations, imaging of different radionuclide therapies, expanded indications for currently used theranostic agents to treat a broader array of cancers, and emerging ideas in the field. Keywords: Molecular Imaging, Molecular Imaging-Cancer, Molecular Imaging-Clinical Translation, Molecular Imaging-Target Development, PET/CT, SPECT/CT, Radionuclide Therapy, Dosimetry, Oncology, Radiobiology © RSNA, 2023.
Collapse
Affiliation(s)
- Brian J. Burkett
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - David J. Bartlett
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Patrick W. McGarrah
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Akeem R. Lewis
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Derek R. Johnson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Kezban Berberoğlu
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Mukesh K. Pandey
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Annie T. Packard
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Thorvardur R. Halfdanarson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Carrie B. Hruska
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Geoffrey B. Johnson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - A. Tuba Kendi
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| |
Collapse
|
10
|
Pirozzi Palmese V, D'Ambrosio L, Di Gennaro F, Maisto C, de Marino R, Morisco A, Coluccia S, Di Gennaro P, De Lauro F, Raddi M, Gaballo P, Tafuto S, Celentano E, Lastoria S. A comparison of simplified protocols of personalized dosimetry in NEN patients treated by radioligand therapy (RLT) with [ 177Lu]Lu-DOTATATE to favor its use in clinical practice. Eur J Nucl Med Mol Imaging 2023; 50:1753-1764. [PMID: 36688980 PMCID: PMC10119237 DOI: 10.1007/s00259-023-06112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
The role of internal dosimetry is usually proposed for investigational purposes in patients treated by RLT, even if its application is not yet the standard method in clinical practice. This limited use is partially justified by several concomitant factors that make calculations a complex process. Therefore, simplified dosimetry protocols are required. METHODS In our study, dosimetric evaluations were performed in thirty patients with NENs who underwent RLT with [177Lu]Lu-DOTATATE. The reference method (M0) calculated the cumulative absorbed dose performing dosimetry after each of the four cycles. Obtained data were employed to assess the feasibility of simplified protocols: defining the dosimetry only after the first cycle (M1) and after the first and last one (M2). RESULTS The mean differences of the cumulative absorbed doses between M1 and M0 were - 10% for kidney, - 5% for spleen, + 34% for liver, + 13% for red marrow, and + 37% for tumor lesions. Conversely, differences lower than ± 10% were measured between M2 and M0. CONCLUSION Cumulative absorbed doses obtained with the M2 protocol resembled the doses calculated by M0, while the M1 protocol overestimated the absorbed doses in all organs at risk, except for the spleen.
Collapse
Affiliation(s)
| | - Laura D'Ambrosio
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Francesca Di Gennaro
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Costantina Maisto
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Roberta de Marino
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Anna Morisco
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Sergio Coluccia
- S.C. Epidemiologia E Biostatistica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | | | - Francesco De Lauro
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Marco Raddi
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Paolo Gaballo
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Salvatore Tafuto
- S.C. Sarcomi E Tumori Rari, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Egidio Celentano
- S.C. Epidemiologia E Biostatistica, INT IRCCS Fondazione G. Pascale, Naples, Italy
| | - Secondo Lastoria
- S.C. Medicina Nucleare E Terapia Radiometabolica, INT IRCCS Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
11
|
O'Donoghue J, Zanzonico P, Humm J, Kesner A. Dosimetry in Radiopharmaceutical Therapy. J Nucl Med 2022; 63:1467-1474. [PMID: 36192334 DOI: 10.2967/jnumed.121.262305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
The application of radiopharmaceutical therapy for the treatment of certain diseases is well established, and the field is expanding. New therapeutic radiopharmaceuticals have been developed in recent years, and more are in the research pipeline. Concurrently, there is growing interest in the use of internal dosimetry as a means of personalizing, and potentially optimizing, such therapy for patients. Internal dosimetry is multifaceted, and the current state of the art is discussed in this continuing education article. Topics include the context of dosimetry, internal dosimetry methods, the advantages and disadvantages of incorporating dosimetry calculations in radiopharmaceutical therapy, a description of the workflow for implementing patient-specific dosimetry, and future prospects in the field.
Collapse
Affiliation(s)
- Joe O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
12
|
Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys 2022; 9:52. [PMID: 35925521 PMCID: PMC9352840 DOI: 10.1186/s40658-022-00481-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Lead-212 (212Pb) is a promising radionuclide for targeted therapy, as it decays to α-particle emitter bismuth-212 (212Bi) via β-particle emission. This extends the problematic short half-life of 212Bi. In preparation for upcoming clinical trials with 212Pb, the feasibility of quantitative single photon-emission computed tomography/computed tomography (SPECT/CT) imaging of 212Pb was studied, with the purpose to explore the possibility of individualised patient dosimetric estimation. Results Both acquisition parameters (combining two different energy windows and two different collimators) and iterative reconstruction parameters (varying the iterations x subsets between 10 × 1, 15 × 1, 30 × 1, 30 × 2, 30 × 3, 30 × 4, and 30 × 30) were investigated to evaluate visual quality and quantitative uncertainties based on phantom images. Calibration factors were determined using a homogeneous phantom and were stable when the total activity imaged exceeded 1 MBq for all the imaging protocols studied, but they increased sharply as the activity decayed below 1 MBq. Both a 20% window centred on 239 keV and a 40% window on 79 keV, with dual scatter windows of 5% and 20%, respectively, could be used. Visual quality at the lowest activity concentrations was improved with the High Energy collimator and the 79 keV energy window. Fractional uncertainty in the activity quantitation, including uncertainties from calibration factors and small volume effects, in spheres of 2.6 ml in the NEMA phantom was 16–21% for all protocols with the 30 × 4 filtered reconstruction except the High Energy collimator with the 239 keV energy window. Quantitative analysis was possible both with and without filters, but the visual quality of the images improved with a filter. Conclusions Only minor differences were observed between the imaging protocols which were all determined suitable for quantitative imaging of 212Pb. As uncertainties generally decreased with increasing iterative updates in the reconstruction and recovery curves did not converge with few iterations, a high number of reconstruction updates are recommended for quantitative imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00481-z.
Collapse
Affiliation(s)
- Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Personalized Dosimetry in the Context of Radioiodine Therapy for Differentiated Thyroid Cancer. Diagnostics (Basel) 2022; 12:diagnostics12071763. [PMID: 35885666 PMCID: PMC9320760 DOI: 10.3390/diagnostics12071763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
The most frequent thyroid cancer is Differentiated Thyroid Cancer (DTC) representing more than 95% of cases. A suitable choice for the treatment of DTC is the systemic administration of 131-sodium or potassium iodide. It is an effective tool used for the irradiation of thyroid remnants, microscopic DTC, other nonresectable or incompletely resectable DTC, or all the cited purposes. Dosimetry represents a valid tool that permits a tailored therapy to be obtained, sparing healthy tissue and so minimizing potential damages to at-risk organs. Absorbed dose represents a reliable indicator of biological response due to its correlation to tissue irradiation effects. The present paper aims to focus attention on iodine therapy for DTC treatment and has developed due to the urgent need for standardization in procedures, since no unique approaches are available. This review aims to summarize new proposals for a dosimetry-based therapy and so explore new alternatives that could provide the possibility to achieve more tailored therapies, minimizing the possible side effects of radioiodine therapy for Differentiated Thyroid Cancer.
Collapse
|
14
|
Kiess AP, Hobbs RF, Bednarz B, Knox SJ, Meredith R, Escorcia FE. ASTRO's Framework for Radiopharmaceutical Therapy Curriculum Development for Trainees. Int J Radiat Oncol Biol Phys 2022; 113:719-726. [PMID: 35367328 DOI: 10.1016/j.ijrobp.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
In 2017, the American Society for Radiation Oncology (ASTRO) board of directors prioritized radiopharmaceutical therapy (RPT) as a leading area for new therapeutic development, and the ASTRO RPT workgroup was created. Herein, the workgroup has developed a framework for RPT curriculum development upon which education leaders can build to integrate this modality into radiation oncology resident education. Through this effort, the workgroup aims to provide a guide to ensure robust training in an emerging therapeutic area within the context of existing radiation oncology training in radiation biology, medical physics, and clinical radiation oncology. The framework first determines the core RPT knowledge required to select patients, prescribe, safely administer, and manage related adverse events. Then, it defines the most important topics for preparing residents for clinical RPT planning and delivery. This framework is designed as a tool to supplement the current training that exists for radiation oncology residents. The final document was approved by the ASTRO board of directors in the fall of 2021.
Collapse
Affiliation(s)
- Ana P Kiess
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland.
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Bryan Bednarz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Ruby Meredith
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Freddy E Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Gear J. Milestones in dosimetry for nuclear medicine therapy. Br J Radiol 2022; 95:20220056. [PMID: 35451857 PMCID: PMC10996314 DOI: 10.1259/bjr.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Nuclear Medicine therapy has reached a critical juncture with an unprecedented number of patients being treated and an extensive list of new radiopharmaceuticals under development. Since the early applications of these treatments dosimetry has played a vital role in their development, in both aiding optimisation and enhancing safety and efficacy. To inform the future direction of this field, it is useful to reflect on the scientific and technological advances that have occurred since those early uses. In this review, we explore how dosimetry has evolved over the years and discuss why such initiatives were conceived and the importance of maintaining standards within our practise. Specific milestones and landmark publications are highlighted and a thematic review and significant outcomes during each decade are presented.
Collapse
Affiliation(s)
- Jonathan Gear
- The Joint Department of Physics, The Royal Marsden NHS
Foundation Trust & Institute of Cancer Research,
Sutton, United Kingdom
| |
Collapse
|
16
|
Haghbin A, Mostaar A, Paydar R, Bakhshandeh M, Nikoofar A, Houshyari M, Cheraghi S. Prediction of chronic kidney disease in abdominal cancers radiation therapy using the functional assays of normal tissue complication probability models. J Cancer Res Ther 2022; 18:718-724. [PMID: 35900545 DOI: 10.4103/jcrt.jcrt_179_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aim The purpose of this study is to predict chronic kidney disease (CKD) in the radiotherapy of abdominal cancers by evaluating clinical and functional assays of normal tissue complication probability (NTCP) models. Materials and Methods Radiation renal damage was analyzed in 50 patients with abdominal cancers 12 months after radiotherapy through a clinical estimated glomerular filtration rate (eGFR). According to the common terminology criteria for the scoring system of adverse events, Grade 2 CKD (eGFR ≤30-59 ml/min/1.73 m2) was considered as the radiation therapy endpoint. Modeling and parameter estimation of NTCP models were performed for the Lyman-equivalent uniform dose (EUD), the logit-EUD critical volume (CV), the relative seriality, and the mean dose model. Results The confidence interval of the fitted parameters was 95%. The parameter value of D50 was obtained 22-38 Gy, and the n and s parameters were equivalent to 0.006 -3 and 1, respectively. According to the Akaike's information criterion, the mean dose model predicts radiation-induced CKD more accurately than the other models. Conclusion Although the renal medulla consists of many nephrons arranged in parallel, each nephron has a seriality architecture as renal functional subunits. Therefore, based on this principle and modeling results in this study, the whole kidney organs may have a serial-parallel combination or a secret architecture.
Collapse
Affiliation(s)
- Ameneh Haghbin
- Department of Radiation Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Mostaar
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical, Tehran, Iran
| | - Reza Paydar
- Department of Radiation Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nikoofar
- Department of Radiation Oncology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Department of Radiation Oncology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Cheraghi
- Department of Radiation Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging 2022; 49:1778-1809. [PMID: 35284969 PMCID: PMC9015994 DOI: 10.1007/s00259-022-05727-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Collapse
|
18
|
Dosimetry in radionuclide therapy: the clinical role of measuring radiation dose. Lancet Oncol 2022; 23:e75-e87. [DOI: 10.1016/s1470-2045(21)00657-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
|
19
|
Auditore L, Pistone D, Amato E, Italiano A. Monte Carlo methods in nuclear medicine. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Peptide Receptor Radionuclide Therapy Targeting the Somatostatin Receptor: Basic Principles, Clinical Applications and Optimization Strategies. Cancers (Basel) 2021; 14:cancers14010129. [PMID: 35008293 PMCID: PMC8749814 DOI: 10.3390/cancers14010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Peptide receptor radionuclide therapy (PRRT) is a systemic treatment consisting of the administration of a tumor-targeting radiopharmaceutical into the circulation of a patient. The radiopharmaceutical will bind to a specific peptide receptor leading to tumor-specific binding and retention. This will subsequently cause lethal DNA damage to the tumor cell. The only target that is currently used in widespread clinical practice is the somatostatin receptor, which is overexpressed on a range of tumor cells, including neuroendocrine tumors and neural-crest derived tumors. Academia played an important role in the development of PRRT, which has led to heterogeneous literature over the last two decades, as no standard radiopharmaceutical or regimen has been available for a long time. This review focuses on the basic principles and clinical applications of PRRT, and discusses several PRRT-optimization strategies. Abstract Peptide receptor radionuclide therapy (PRRT) consists of the administration of a tumor-targeting radiopharmaceutical into the circulation of a patient. The radiopharmaceutical will bind to a specific peptide receptor leading to tumor-specific binding and retention. The only target that is currently used in clinical practice is the somatostatin receptor (SSTR), which is overexpressed on a range of tumor cells, including neuroendocrine tumors and neural-crest derived tumors. Academia played an important role in the development of PRRT, which has led to heterogeneous literature over the last two decades, as no standard radiopharmaceutical or regimen has been available for a long time. This review provides a summary of the treatment efficacy (e.g., response rates and symptom-relief), impact on patient outcome and toxicity profile of PRRT performed with different generations of SSTR-targeting radiopharmaceuticals, including the landmark randomized-controlled trial NETTER-1. In addition, multiple optimization strategies for PRRT are discussed, i.e., the dose–effect concept, dosimetry, combination therapies (i.e., tandem/duo PRRT, chemoPRRT, targeted molecular therapy, somatostatin analogues and radiosensitizers), new radiopharmaceuticals (i.e., SSTR-antagonists, Evans-blue containing vector molecules and alpha-emitters), administration route (intra-arterial versus intravenous) and response prediction via molecular testing or imaging. The evolution and continuous refinement of PRRT resulted in many lessons for the future development of radionuclide therapy aimed at other targets and tumor types.
Collapse
|
21
|
Graves SA, Bageac A, Crowley JR, Merlino DAM. Reimbursement Approaches for Radiopharmaceutical Dosimetry: Current Status and Future Opportunities. J Nucl Med 2021; 62:48S-59S. [PMID: 34857622 DOI: 10.2967/jnumed.121.262752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Interest in performing dosimetry for clinical radiopharmaceutical therapy procedures has grown in recent years. Several approved therapies include dosimetry in the Food and Drug Administration-approved label instructions, and other therapies are best used under a patient-tailored paradigm. This paper, which is a product of the Society of Nuclear Medicine and Molecular Imaging Dosimetry Task Force, presents motivations and general workflows for radiopharmaceutical therapy dosimetry, as well as existing strategies for obtaining reimbursement for clinical activities related to dosimetry. Several specific patient examples are provided, including suggested codes for reimbursement. In addition to current reimbursement approaches, key dosimetry services that are not supported under the current coding structure are presented and suggested as areas of focus in the coming years.
Collapse
Affiliation(s)
| | | | - James R Crowley
- Diagnostic Radiology, Carilion Clinic, Roanoke, Virginia; and
| | | |
Collapse
|
22
|
Wahl RL, Sgouros G, Iravani A, Jacene H, Pryma D, Saboury B, Capala J, Graves SA. Normal-Tissue Tolerance to Radiopharmaceutical Therapies, the Knowns and the Unknowns. J Nucl Med 2021; 62:23S-35S. [PMID: 34857619 DOI: 10.2967/jnumed.121.262751] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - George Sgouros
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Amir Iravani
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | | | - Daniel Pryma
- Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jacek Capala
- National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
23
|
Staanum PF, Frellsen AF, Olesen ML, Iversen P, Arveschoug AK. Practical kidney dosimetry in peptide receptor radionuclide therapy using [ 177Lu]Lu-DOTATOC and [ 177Lu]Lu-DOTATATE with focus on uncertainty estimates. EJNMMI Phys 2021; 8:78. [PMID: 34773508 PMCID: PMC8590641 DOI: 10.1186/s40658-021-00422-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Kidney dosimetry after peptide receptor radionuclide therapy using 177Lu-labelled somatostatin analogues is a procedure with multiple steps. We present the SPECT/CT-based implementation at Aarhus University Hospital and evaluate the uncertainty of the various steps in order to estimate the total uncertainty and to identify the major sources of uncertainty. Absorbed dose data from 115 treatment fractions are reported.
Results The total absorbed dose with uncertainty is presented for 59 treatments with [177Lu]Lu-DOTATOC and 56 treatments with [177Lu]Lu-DOTATATE. For [177Lu]Lu-DOTATOC the mean and median specific absorbed dose (dose per injected activity) is 0.37 Gy/GBq and 0.38 Gy/GBq, respectively, while for [177Lu]Lu-DOTATATE the median and mean are 0.47 Gy/GBq and 0.46 Gy/GBq, respectively. The uncertainty of the procedure is estimated to be about 13% for a single treatment fraction, where the absorbed dose calculation is based on three SPECT/CT scans 1, 4 and 7 days post-injection, while it increases to about 19% if only a single SPECT/CT scan is performed 1 day post-injection. Conclusions The specific absorbed dose values obtained with the described procedure are comparable to those from other treatment sites for both [177Lu]Lu-DOTATOC and [177Lu]Lu-DOTATATE, but towards the lower end of the range of reported values. The estimated uncertainty is also comparable to that from other reports and judged acceptable for clinical and research use, thus proving the kidney dosimetry procedure a useful tool. The greatest reduction in uncertainty can be obtained by improved activity determination, partial volume correction and additional SPECT/CT scans.
Collapse
Affiliation(s)
- Peter Frøhlich Staanum
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.
| | - Anders Floor Frellsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Marie Louise Olesen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Anne Kirstine Arveschoug
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| |
Collapse
|
24
|
Geenen L, Nonnekens J, Konijnenberg M, Baatout S, De Jong M, Aerts A. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [ 177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nucl Med Biol 2021; 102-103:1-11. [PMID: 34242948 DOI: 10.1016/j.nucmedbio.2021.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) is used for the treatment of patients with unresectable or metastasized somatostatin receptor type 2 (SSTR2)-expressing gastroenteropancreatic neuroendocrine tumours (GEP-NETs). The radiolabelled somatostatin analogue [177Lu]Lu-DOTA-TATE delivers its radiation dose to SSTR2-overexpressing tumour cells, resulting in selective cell killing during radioactive decay. While tumour control can be achieved in many patients, complete remissions remain rare, causing the majority of patients to relapse after a certain period of time. This raises the question whether the currently fixed treatment regime (4 × 7.4 GBq) leaves room for dose escalation as a means of improving therapy efficacy. The kidneys have shown to play an important role in defining a patient's tolerability to PRRT. As a consequence of the proximal tubular reabsorption of [177Lu]Lu-DOTA-TATE, via the endocytic megalin/cubilin receptor complex, the radionuclides are retained in the renal interstitium. This results in extended retention of radioactivity in the kidneys, generating a risk for the development of radiation nephropathy. In addition, a decreased kidney function has shown to be associated with a prolonged circulation of [177Lu]Lu-DOTA-TATE, causing increased irradiation to the bone marrow. This can on its turn lead to myelosuppression and haematological toxicity, owing to the marked radio sensitivity of the rapidly proliferating cells in the bone marrow. In contrast to external beam radiotherapy (EBRT), the exact absorbed dose limits for these critical organs (kidneys and bone marrow) in PRRT with [177Lu]Lu-DOTA-TATE are still unclear. Better insights into these uncertainties, can help in optimizing PRRT to reach its maximum therapeutic potential, while avoiding severe adverse events, like nephropathy and hematologic toxicities. In this review we focus on the nephrotoxic effects of PRRT with [177Lu]Lu-DOTA-TATE for the treatment of GEP-NETs. If the absorbed dose to the kidneys can be lowered, higher activities can be administered, enlarging the therapeutic window for PRRT. Therefore, we evaluated the renal protective potential of current and promising future strategies and discuss the importance of (renal) dosimetry in PRRT.
Collapse
Affiliation(s)
- Lorain Geenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Julie Nonnekens
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; Oncode Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Medical Imaging, Radboud UMC, Nijmegen, the Netherlands
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Faculty of Bioengineering Sciences, Ghent University, Belgium.
| | - Marion De Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
25
|
Aerts A, Eberlein U, Holm S, Hustinx R, Konijnenberg M, Strigari L, van Leeuwen FWB, Glatting G, Lassmann M. EANM position paper on the role of radiobiology in nuclear medicine. Eur J Nucl Med Mol Imaging 2021; 48:3365-3377. [PMID: 33912987 PMCID: PMC8440244 DOI: 10.1007/s00259-021-05345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.
Collapse
Affiliation(s)
- An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Sören Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lidia Strigari
- Medical Physics Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Prasad V, Prasad S, Lehnert W, Brenner W, Kai H, Bronzel M, Kluge A. Effect of Peptide Dose on Radiation Dosimetry for Peptide Receptor Radionuclide Therapy with 177Lu-DOTATOC: A Pilot Study. Indian J Nucl Med 2021; 36:412-421. [PMID: 35125759 PMCID: PMC8771073 DOI: 10.4103/ijnm.ijnm_15_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Optimal peptide concentration in treatment with 177Lu-DOTATOC/DOTATATE is a matter of debate. Most of the studies with peptide receptor radionuclide therapy mention peptide dose ranging between 100 and 250 μg. The aim of this is to identify possible differences in radiation-absorbed doses (D/Gy) to tumor and kidney as a function of the peptide mass dose in order to identify the most suitable peptide dose for treatment. The therapeutic index (Dtumor/Dkidneys) was assessed as a key parameter for the treatment response. Materials and Methods: Five patients with metastasized Grade 1 to Grade 2 neuroendocrine tumor were analyzed in this study. Patients (n = 4) received two cycles of treatment with intravenously injected 177Lu-DOTATOC containing peptide mass doses of 200 μg and 90 μg, alternatively; one patient was treated with 90 μg peptide mass in both the therapy cycles. Whole-body (head to mid-thigh) three-dimensional single-photon emission computerized tomography (3D SPECT)/CT images were acquired at 1, 4, 24, 48, and 72 h following the injection of 177Lu-DOTATOC. Attenuation correction for 3D SPECT images was performed using CT data acquired and fused with the SPECT data (SPECT/CT). Results: Overall, 28 target lesions (liver n = 17, lung n = 4, lymph nodes n = 1, and bone n = 2) were analyzed after 1st and 2nd therapy cycles. Tumor normalized absorbed doses varied by a factor of 74 between 0.35 and 26 mGy/MBq. Averaged over all patients, a higher normalized mean tumor dose (10.51 mGy/MBq) was achieved for a peptide dose of 200 μg compared to 90 μg (4.58 mGy/MBq). Kidneys doses varied by a factor of up to 4 between patients (0.25–1.0 mGy/MBq) (independent of dose cycle and peptide dose) and by a factor of up to 2 between dose cycles. The mean kidney dose was 13.7% higher for the 90 μg peptide dose compared to 200 μg. Given the higher tumor dose, the mean therapeutic index of a 200 μg mass dose was considerably higher (16.95), compared to a 90 μg mass dose (9.63). This coincided with the observation, that lesion volume reduction was more pronounced after an initial treatment with a 200 μg mass dose. Biologically effective dose was only 5. 1%–19.3% higher than the absorbed dose for individual dose cycles. Conclusions: Higher peptide dose of 200 μg appears to be more suitable than 90 μg in terms of tumor dose, kidney dose, and therapeutic index for treatment with 177Lu-DOTATOC.
Collapse
Affiliation(s)
- Vikas Prasad
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Nuclear Medicine, University Hospital Ulm, Ulm, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Sonal Prasad
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Experimental Radionuclide Imaging Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wencke Lehnert
- ABX - CRO Advanced Pharmaceutical Services, Dresden, Germany.,Department of Nuclear Medicine, University Hospital Hamburg Eppendorf, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,Berlin Experimental Radionuclide Imaging Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Huang Kai
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Bronzel
- ABX - CRO Advanced Pharmaceutical Services, Dresden, Germany
| | - Andreas Kluge
- ABX - CRO Advanced Pharmaceutical Services, Dresden, Germany
| |
Collapse
|
27
|
Chiesa C, Strigari L, Pacilio M, Richetta E, Cannatà V, Stasi M, Marzola MC, Schillaci O, Bagni O, Maccauro M. Dosimetric optimization of nuclear medicine therapy based on the Council Directive 2013/59/EURATOM and the Italian law N. 101/2020. Position paper and recommendations by the Italian National Associations of Medical Physics (AIFM) and Nuclear Medicine (AIMN). Phys Med 2021; 89:317-326. [PMID: 34583307 DOI: 10.1016/j.ejmp.2021.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
This recommendation by the Italian Associations of Nuclear Medicine (AIMN) and Medical Physics (AIFM) focuses on the dosimetric optimization of Nuclear Medicine Therapy (NMT) as clearly requested by the article 56 of the EURATOM Directive 2013/59 and its consequent implementation in article 158 in the Italian Law n. 101/2020. However, this statement must deal with scientific and methodological limits that still exist and, above all, with the currently available limited resources. This paper addresses these specific issues. It distinguishes among many possible kinds of NMT. For each type, dosimetric optimization is recommended or considered optional, according to the general criteria adopted in any human choice, i.e. a check of technical feasibility first, followed by a cost/benefit argument. The classification of therapies as standardized or non-standardized is presented. This is based on the complexity of the type of pathology, on the variability of the treatment outcome, and on the risks involved. According to the present document, which was officially delivered to Italian Health Ministry as necessary interpretation of the law, a therapeutic team can, in science and consciousness, overcome the indications of posology, to optimize and tailoring a treatment with dosimetry, on the basis of published national or international data or guidelines, without need of an Ethics Committee approval. Data collected in this way will provide additional evidence about optimal dosimetric reference values. As conclusion, a formal appeal is made to the European and National regulatory agencies for pharmaceuticals to obtain the official acknowledgment of this principle.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Lidia Strigari
- Director of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Pacilio
- Director of Medical Physics, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Elisa Richetta
- Medical Physics, Azienda Ospedaliera Ordine Mauriziano, Turin, Italy
| | - Vittorio Cannatà
- Director of Medical Physics Unit, Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Stasi
- Medical Physics, Azienda Ospedaliera Ordine Mauriziano, Turin, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Orazio Schillaci
- Dean of University Tor Vergata, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Oreste Bagni
- Director of Nuclear Medicine, S. Maria Goretti Hospital, Latina, Italy
| | - Marco Maccauro
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
28
|
Murray I, Flux G. Applying radiobiology to clinical molecular radiotherapy. Nucl Med Biol 2021; 100-101:1-3. [PMID: 34091132 DOI: 10.1016/j.nucmedbio.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Iain Murray
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom.
| | - Glenn Flux
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
29
|
Walrand S, Jamar F. Renal and Red Marrow Dosimetry in Peptide Receptor Radionuclide Therapy: 20 Years of History and Ahead. Int J Mol Sci 2021; 22:ijms22158326. [PMID: 34361092 PMCID: PMC8347073 DOI: 10.3390/ijms22158326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
The development of dosimetry and studies in peptide receptor radionuclide therapy (PRRT) over the past two decades are reviewed. Differences in kidney and bone marrow toxicity reported between 90Y, 177Lu and external beam radiotherapy (EBRT) are discussed with regard to the physical properties of these beta emitter radionuclides. The impact of these properties on the response to small and large tumors is also considered. Capacities of the imaging modalities to assess the dosimetry to target tissues are evaluated. Studies published in the past two years that confirm a red marrow uptake in 177Lu-DOTATATE therapy, as already observed 20 years ago in 86Y-DOTATOC PET studies, are analyzed in light of the recent developments in the transferrin transport mechanism. The review enlightens the importance (i) of using state-of-the-art imaging modalities, (ii) of individualizing the activity to be injected with regard to the huge tissue uptake variability observed between patients, (iii) of challenging the currently used but inappropriate blood-based red marrow dosimetry and (iv) of considering individual tandem therapy. Last, a smart individually optimized tandem therapy taking benefit of the bi-orthogonal toxicity-response pattern of 177Lu-DOTATATE and of 90Y-DOTATOC is proposed.
Collapse
|
30
|
Peters SMB, Privé BM, de Bakker M, de Lange F, Jentzen W, Eek A, Muselaers CHJ, Mehra N, Witjes JA, Gotthardt M, Nagarajah J, Konijnenberg MW. Intra-therapeutic dosimetry of [ 177Lu]Lu-PSMA-617 in low-volume hormone-sensitive metastatic prostate cancer patients and correlation with treatment outcome. Eur J Nucl Med Mol Imaging 2021; 49:460-469. [PMID: 34218300 PMCID: PMC8803803 DOI: 10.1007/s00259-021-05471-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 12/09/2022]
Abstract
Introduction While [177Lu]Lu-PSMA radioligand therapy is currently only applied in end-stage metastatic castrate-resistant prostate cancer (mCRPC) patients, also low-volume hormone-sensitive metastatic prostate cancer (mHSPC) patients can benefit from it. However, there are toxicity concerns related to the sink effect in low-volume disease. This prospective study aims to determine the kinetics of [177Lu]Lu-PSMA in mHSPC patients, analyzing the doses to organs at risk (salivary glands, kidneys, liver, and bone marrow) and tumor lesions < 1 cm diameter. Methods Ten mHSPC patients underwent two cycles of [177Lu]Lu-PSMA therapy. Three-bed position SPECT/CT was performed at 5 time points after each therapy. Organ dosimetry and lesion dosimetry were performed using commercial software and a manual approach, respectively. Correlation between absorbed index lesion dose and treatment response (PSA drop of > 50% at the end of the study) was calculated and given as Spearman’s r and p-values. Results Kinetics of [177Lu]Lu-PSMA in mHSPC patients are comparable to those in mCRPC patients. Lesion absorbed dose was high (3.25 ± 3.19 Gy/GBq) compared to organ absorbed dose (salivary glands: 0.39 ± 0.17 Gy/GBq, kidneys: 0.49 ± 0.11 Gy/GBq, liver: 0.09 ± 0.01 Gy/GBq, bone marrow: 0.017 ± 0.008 Gy/GBq). A statistically significant correlation was found between treatment response and absorbed index lesion dose (p = 0.047). Conclusions We successfully performed small lesion dosimetry and showed that the tumor sink effect in mHSPC patients is of less concern than was expected. Tumor-to-organ ratio of absorbed dose was high and tumor uptake correlates with PSA response. Additional treatment cycles are legitimate in terms of organ toxicity and could lead to better tumor response. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05471-4.
Collapse
Affiliation(s)
- Steffie M B Peters
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Bastiaan M Privé
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten de Bakker
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Walter Jentzen
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Annemarie Eek
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Abstract
Radiopharmaceutical therapy (RPT) has grown rapidly over the last decade for treatment of numerous cancer types. Dosimetric guidance, as with other radiotherapy modalities, has benefitted patients by reducing the incidence of side effects and improving overall survival in populations treated under this paradigm. Development of tools and techniques for dosimetry-guided therapy is ongoing, with numerous the Food and Drug Administration-cleared products reaching the U.S. market in 2019. Safe use of commercial dosimetry platforms requires a deep understanding of the underlying physical principles and thoroughly vetted input data. Likewise, interpretation of dosimetry results relies on an understanding of radiobiological principles, and the principles of uncertainty propagation. In this article, we review strategies commonly employed for dosimetry-guided RPT - including quantitative imaging, dose calculation methods, and modeling of dose across time-points. Additionally, we review recent literature evidence (2013-2020) demonstrating the efficacy of personalized RPT.
Collapse
Affiliation(s)
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
32
|
Konijnenberg M, Herrmann K, Kobe C, Verburg F, Hindorf C, Hustinx R, Lassmann M. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur J Nucl Med Mol Imaging 2021; 48:67-72. [PMID: 33057773 PMCID: PMC7835146 DOI: 10.1007/s00259-020-05038-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022]
Abstract
The EC Directive 2013/59/Euratom states in article 56 that exposures of target volumes in nuclear medicine treatments shall be individually planned and their delivery appropriately verified. The Directive also mentions that medical physics experts should always be appropriately involved in those treatments. Although it is obvious that, in nuclear medicine practice, every nuclear medicine physician and physicist should follow national rules and legislation, the EANM considered it necessary to provide guidance on how to interpret the Directive statements for nuclear medicine treatments.For this purpose, the EANM proposes to distinguish three levels in compliance to the optimization principle in the directive, inspired by the indication of levels in prescribing, recording and reporting of absorbed doses after radiotherapy defined by the International Commission on Radiation Units and Measurements (ICRU): Most nuclear medicine treatments currently applied in Europe are standardized. The minimum requirement for those treatments is ICRU level 1 ("activity-based prescription and patient-averaged dosimetry"), which is defined by administering the activity within 10% of the intended activity, typically according to the package insert or to the respective EANM guidelines, followed by verification of the therapy delivery, if applicable. Non-standardized treatments are essentially those in developmental phase or approved radiopharmaceuticals being used off-label with significantly (> 25% more than in the label) higher activities. These treatments should comply with ICRU level 2 ("activity-based prescription and patient-specific dosimetry"), which implies recording and reporting of the absorbed dose to organs at risk and optionally the absorbed dose to treatment regions. The EANM strongly encourages to foster research that eventually leads to treatment planning according to ICRU level 3 ("dosimetry-guided patient-specific prescription and verification"), whenever possible and relevant. Evidence for superiority of therapy prescription on basis of patient-specific dosimetry has not been obtained. However, the authors believe that a better understanding of therapy dosimetry, i.e. how much and where the energy is delivered, and radiobiology, i.e. radiation-related processes in tissues, are keys to the long-term improvement of our treatments.
Collapse
Affiliation(s)
- Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frederik Verburg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Cecilia Hindorf
- Department of Nuclear Medicine Physics, Skåne University Hospital, Lund, Sweden
| | - Roland Hustinx
- Service de Médecine Nucléaire et d'Imagerie Oncologique, Département de Physique médicale, Université de Liège - GIGA-CRC in vivo imaging, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Michael Lassmann
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Klinik und Poliklinik für Nuklearmedizin, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
33
|
Buatti JM, Pryma DA, Kiess AP, Mailman J, Ennis RD, Menda Y, White GA, Pandit-Taskar N. A Framework for Patient-Centered Pathways of Care for Radiopharmaceutical Therapy: An ASTRO Consensus Document. Int J Radiat Oncol Biol Phys 2020; 109:913-922. [PMID: 33249143 DOI: 10.1016/j.ijrobp.2020.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Radiopharmaceutical therapy (RPT) is an area of projected growth and importance with several agents in clinical use, new agents in late-phase clinical trials, and many others under testing and development. This article proposes a framework for developing pathways of care that can be broadly applied to all RPTs, representing the current status of RPT. It suggests foundational elements for many pathways of care for patients with cancer and concludes with areas in active development and the future horizon for RPT treatment centers. Developing a framework for patient-centered pathways of care is a critical step in establishing RPT as standard therapy for patients with a diverse spectrum of cancers. This expected increase in RPT treatment options will affect a much larger population of patients with complex cancer. It will also require enhanced coordination and collaboration among appropriately qualified personnel with diverse expertise in image acquisition, image interpretation, quantitative imaging, dosimetry calculation, radiation quality assurance and safety as well as oncology care and RPT-induced sequelae and response assessment. The essential role of this evolving RPT care team within multidisciplinary oncology care is a cornerstone of this framework for a patient-centered pathway of care for RPT. Given the status of current RPT practice and the horizon for future applications, this patient-centered pathway of care guidance is timely and should help inform future clinical RPT practice paradigms. A task force was recruited from the Theranostic Working Group of the American Society for Radiation Oncology (ASTRO) in May 2019 with equal representation from the nuclear medicine community. The task force expanded on a framework that was originally conceived by the Working Group for patient-centered care. This framework was developed to incorporate the strengths of both radiation oncologists and nuclear medicine physicians. The manuscript was then developed by the task force and posted on the ASTRO website for a 6-week public comment period ending in July 2020. Comments were adjudicated, and the draft was sent to external organizations for potential endorsement. This document was sent to the ASTRO Board of Directors in October 2020 for approval.
Collapse
Affiliation(s)
- John M Buatti
- Department of Radiation Oncology, University of Iowa Carver School of Medicine, Iowa City, Iowa.
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ana P Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - Ronald D Ennis
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Yusuf Menda
- Department of Radiology, University of Iowa Carver School of Medicine, Iowa City, Iowa
| | - Gerald A White
- Colorado Associates in Medical Physics, Colorado Springs, Colorado
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
A microdosimetry model of kidney by GATE Monte Carlo simulation using a nonuniform activity distribution in digital phantom of nephron. Nucl Med Commun 2020; 41:110-119. [PMID: 31764596 DOI: 10.1097/mnm.0000000000001112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES As the main pathway for the clearance of radiopharmaceutical from the body, kidney is a dose-limiting organ in medical application of radionuclides. Because of its unique physiology, radioactivity is seen to concentrate on kidney nonuniformly. This nonuniformity can be considered in nephron microstructures. A microdosimetry model of kidney is necessary to include the nonuniform distribution in internal radiation dosimetry. METHOD Implementing the microdosimetry model requires, first, a geometry phantom of nephrons. Stylized phantoms cannot distribute activities inside nephron compartments nonuniformly. A phantom of nephron was generated by a preliminary three-dimensional graphic model and was converted to a proper format of digital phantom. The phantom was fed to GATE Monte Carlo toolkits. Simulations were performed and S-values for five radionuclides (Tc-99m, In-111, Lu-177, Ac-225 and Bi-212) were calculated and compared with corresponding results published in the literature derived with a stylized phantom of nephron. Activity was distributed nonuniformly according to the kinetics of two mainly used diagnostic tracers (diethylenetriaminepetaacetate and ethylenedicysteine) and absorbed dose of nephron cells were calculated. RESULTS A good correlation was shown between the generated phantom microdosimetry model and stylized model and revealed the phantom can be used for future microdosimetry studies of kidney to evaluate radiobiological effects of internal radiation from various diagnostic and therapeutic radiopharmaceuticals. Absorbed dose of cells for nonuniform distribution showed that some cells in a nephron compartment receive higher dose than (more than two-fold) that of compartment average dose. CONCLUSION Average dose of nephron is not a reliable parameter for nephrotoxicity evaluation.
Collapse
|
35
|
Successful and Safe Treatment With 177Lu-DOTATATE (Lutathera) of Progressive Metastatic Pancreatic Neuroendocrine Tumor Under Hemodialysis. Clin Nucl Med 2020; 45:e400-e402. [PMID: 32701804 DOI: 10.1097/rlu.0000000000003202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lu-DOTATATE is an effective treatment for inoperable metastatic well-differentiated pancreatic neuroendocrine tumors. There are no guidelines for patients with terminal renal failure. We present the case of a 74-year-old woman who received different lines of treatment: analogs of somatostatin, chemotherapy, a first series of peptide receptor radionuclide therapy (PRRT), and finally chemoembolization. Because of persistent hepatic progression, a safe and successful administration of 4 cycles of a second series of PRRT under hemodialysis was administered. Patient was in scintigraphic complete remission at 12 months with normal hematological parameters at 12 and 30 months after PRRT.
Collapse
|
36
|
Dose Calculations and Dose-Effect Relationships in 177Lu-PSMA I&T Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Clin Nucl Med 2020; 45:661-667. [PMID: 32604113 DOI: 10.1097/rlu.0000000000003157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dose response of 22 patients experiencing mCRPC (metastatic castration-resistant prostate cancer) to Lu-PSMA I&T radionuclide therapy was investigated. Dosimetry calculations are used to assess correlations between dosimetric quantities and biomarker values. METHODS The patients' age range was 74 ± 7 years at the time of the investigated treatment cycle, and the mean injected activity was 7416 ± 218 MBq. Planar images at several time points postinjection were used for evaluation of absorbed doses to organs and lesion. Ga-PSMA PET/CT follow-up imaging enabled the determination of individual tumor molecular volume (TMV) shrinkage. Changes in 7 different biomarkers after the first treatment cycle were correlated with the calculated absorbed organ and TMV doses, resulting in a total number of 259 investigated correlations. RESULTS Sixty-three TMVs were identified in the bone, lymph node, and liver tissue with an average reduction of 32.3%, 84.7%, and 72.9%, respectively. Absorbed doses per unit of administered activity for organs and lesions show good agreement with previous works (0.77, 0.71, and 0.27 mGy/MBq for parotid gland, kidneys, and liver as well as 4.38, 5.47, and 4.95 mGy/MBq for bone, lymph node, and liver malignancies, respectively). Only 37 of 259 possible correlations turned out to be statistically significant, 26 of which are associated with the absorbed dose of an organ and the decrease of alkaline phosphatases. CONCLUSIONS Although treatment with Lu-PSMA I&T leads to a big reduction of TMV in patients with mCRPC, the lack of correlations calls for studies using voxel-wise dosimetry based on SPECT/CTs.
Collapse
|
37
|
Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 2020; 19:589-608. [PMID: 32728208 PMCID: PMC7390460 DOI: 10.1038/s41573-020-0073-9] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Radiopharmaceutical therapy (RPT) is emerging as a safe and effective targeted approach to treating many types of cancer. In RPT, radiation is systemically or locally delivered using pharmaceuticals that either bind preferentially to cancer cells or accumulate by physiological mechanisms. Almost all radionuclides used in RPT emit photons that can be imaged, enabling non-invasive visualization of the biodistribution of the therapeutic agent. Compared with almost all other systemic cancer treatment options, RPT has shown efficacy with minimal toxicity. With the recent FDA approval of several RPT agents, the remarkable potential of this treatment is now being recognized. This Review covers the fundamental properties, clinical development and associated challenges of RPT.
Collapse
Affiliation(s)
- George Sgouros
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jessie R Nedrow
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
St James S, Bednarz B, Benedict S, Buchsbaum JC, Dewaraja Y, Frey E, Hobbs R, Grudzinski J, Roncali E, Sgouros G, Capala J, Xiao Y. Current Status of Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys 2020; 109:891-901. [PMID: 32805300 DOI: 10.1016/j.ijrobp.2020.08.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 02/02/2023]
Abstract
In radiopharmaceutical therapy (RPT), a radionuclide is systemically or locally delivered with the goal of targeting and delivering radiation to cancer cells while minimizing radiation exposure to untargeted cells. Examples of current RPTs include thyroid ablation with the administration of 131I, treatment of liver cancer with 90Y microspheres, the treatment of bony metastases with 223Ra, and the treatment of neuroendocrine tumors with 177Lu-DOTATATE. New RPTs are being developed where radionuclides are incorporated into systemic targeted therapies. To assure that RPT is appropriately implemented, advances in targeting need to be matched with advances in quantitative imaging and dosimetry methods. Currently, radiopharmaceutical therapy is administered by intravenous or locoregional injection, and the treatment planning has typically been implemented like chemotherapy, where the activity administered is either fixed or based on a patient's body weight or body surface area. RPT pharmacokinetics are measurable by quantitative imaging and are known to vary across patients, both in tumors and normal tissues. Therefore, fixed or weight-based activity prescriptions are not currently optimized to deliver a cytotoxic dose to targets while remaining within the tolerance dose of organs at risk. Methods that provide dose estimates to individual patients rather than to reference geometries are needed to assess and adjust the injected RPT dose. Accurate doses to targets and organs at risk will benefit the individual patients and decrease uncertainties in clinical trials. Imaging can be used to measure activity distribution in vivo, and this information can be used to determine patient-specific treatment plans where the dose to the targets and organs at risk can be calculated. The development and adoption of imaging-based dosimetry methods is particularly beneficial in early clinical trials. In this work we discuss dosimetric accuracy needs in modern radiation oncology, uncertainties in the dosimetry in RPT, and best approaches for imaging and dosimetry of internal radionuclide therapy.
Collapse
Affiliation(s)
- Sara St James
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
| | - Bryan Bednarz
- Department of Medical Physics and Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Stanley Benedict
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Yuni Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Eric Frey
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Robert Hobbs
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Emilie Roncali
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| | - George Sgouros
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Jacek Capala
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Ying Xiao
- Hospital of the University of Pennsylvania
| |
Collapse
|
39
|
Huizing DMV, Peters SMB, Versleijen MWJ, Martens E, Verheij M, Sinaasappel M, Stokkel MPM, de Wit-van der Veen BJ. A head-to-head comparison between two commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy. EJNMMI Phys 2020; 7:36. [PMID: 32488632 PMCID: PMC7266908 DOI: 10.1186/s40658-020-00308-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Dosimetry after peptide receptor radionuclide therapy (PRRT) is increasing; however, comparing or pooling of dosimetric results can be challenging since different approaches are used. The aim of this study was to perform a head-to-head comparison of post-PRRT curve fitting and dosimetry obtained from two commercial software Hybrid Viewer Dosimetry and PLANET Dose. Methods Post-therapy imaging included planar scintigraphy at 0.5, 4, 24 and 72 h post-injection of [177Lu]Lu-DOTA-TATE for kinetics and SPECT/CT at 24 h for quantification. On planar imaging, 2 cm regions-of-interest were positioned within the inferior pole of the kidneys and kidney cortex was segmented on low-dose CT. On both planar and SPECT/CT, 2 cm spheres were positioned in the proximal humerus (red marrow equivalent) and in the region with the highest uptake in tumour lesions. TACs were estimated with mono- and bi-exponential fits in both software systems, after which tissue absorbed (kidney, red marrow, tumour) and biological effective doses (kidney) were calculated. Agreement-ICC, Spearman correlation and Bland-Altman plots were used to compare results. Results Mono-exponential fits showed the most comparable correlation between the measured and fitted data between both software. The ICC between absorbed dose outcomes was > 0.7 in tumour lesions and kidneys, but negative for the red marrow. Spearman correlation was > 0.9 for mono-exponential fits in kidneys and tumour lesions, and −0.7 in red marrow. Bi-exponential fits resulted in lower correlations and agreement values. Concordance between both software packages concerning the number of PRRT cycles with 7.4 GBq was observed based on a biological effective dose limit of 27 Gy to the kidneys. Conclusion [177Lu]Lu-DOTA-TATE dosimetry results of two software packages were comparable in the same dataset, despite the limited number of imaging time-points. However, these results should be verified in a larger cohort before pooling of clinical data, as the obtained results will depend on acquisition protocol, timing and lesions definition.
Collapse
Affiliation(s)
- Daphne M V Huizing
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| | - Steffie M B Peters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle W J Versleijen
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Esther Martens
- Department of Clinical Physics and Instrumentation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Sinaasappel
- Department of Clinical Physics and Instrumentation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
Chicheportiche A, Ben-Haim S, Grozinsky-Glasberg S, Oleinikov K, Meirovitz A, Gross DJ, Godefroy J. Dosimetry after peptide receptor radionuclide therapy: impact of reduced number of post-treatment studies on absorbed dose calculation and on patient management. EJNMMI Phys 2020; 7:5. [PMID: 31975156 PMCID: PMC6977807 DOI: 10.1186/s40658-020-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background After each cycle of [177Lu]-DOTA-TATE peptide receptor radionuclide therapy (PRRT) dosimetry is performed to enable precise calculation of the radiation-absorbed dose to tumors and normal organs. Absorbed doses are routinely calculated from three quantitative single-photon emission computed tomography (SPECT) studies corrected by computed tomography (CT) acquired at t1 = 24 h, t2 = 96 h, and t3 = 168 h after the first cycle of treatment. After following cycles, a single SPECT/CT study is performed. The aim of the present study is to assess the feasibility of a “two time point” quantitative SPECT/CT protocol after the first PRRT cycle and its impact on patient management. Quantitative SPECT/CT data of 25 consecutive patients with metastatic neuroendocrine tumors after PRRT were retrospectively analyzed. Radiation-absorbed doses calculated using the standard protocol with three SPECT/CT studies acquired at (t1, t2, t3) were compared to those obtained from three different “two time point” protocols with SPECT/CT studies performed at (t1, t2), (t1, t3), or (t2, t3). Results The best agreement for the cumulative doses absorbed by the kidneys, bone marrow, liver, spleen, and tumors with the conventional protocol was obtained with the (t1, t3) protocol with mean relative differences of − 1.0% ± 2.4%, 0.4% ± 3.1%, − 0.9% ± 4.0%, − 0.8% ± 1.1%, and − 0.5% ± 2.0%, respectively, and correlation coefficients of r = 0.99 for all. In all patients, there was no difference in the management decision of whether or not to stop PRRT because of unsafe absorbed dose to risk organs using either the standard protocol or the (t1, t3) protocol. Conclusion These preliminary results demonstrate that dosimetry calculations using two quantitative SPECT/CT studies acquired at 24 and 168 h after the first PRRT cycle are feasible and are in good agreement with the standard imaging protocol with no change in patient management decisions, while enabling improved patient comfort and reduced scanner and staff time.
Collapse
Affiliation(s)
- Alexandre Chicheportiche
- Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.
| | - Simona Ben-Haim
- Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.,Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Simona Grozinsky-Glasberg
- Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Kira Oleinikov
- Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Amichay Meirovitz
- Oncology Department and Radiation Therapy Unit, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - David J Gross
- Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Jeremy Godefroy
- Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| |
Collapse
|
41
|
Yonekura Y, Mattsson S, Flux G, Bolch WE, Dauer LT, Fisher DR, Lassmann M, Palm S, Hosono M, Doruff M, Divgi C, Zanzonico P. ICRP Publication 140: Radiological Protection in Therapy with Radiopharmaceuticals. Ann ICRP 2019; 48:5-95. [PMID: 31565950 DOI: 10.1177/0146645319838665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiopharmaceuticals are increasingly used for the treatment of various cancers with novel radionuclides, compounds, tracer molecules, and administration techniques. The goal of radiation therapy, including therapy with radiopharmaceuticals, is to optimise the relationship between tumour control probability and potential complications in normal organs and tissues. Essential to this optimisation is the ability to quantify the radiation doses delivered to both tumours and normal tissues. This publication provides an overview of therapeutic procedures and a framework for calculating radiation doses for various treatment approaches. In radiopharmaceutical therapy, the absorbed dose to an organ or tissue is governed by radiopharmaceutical uptake, retention in and clearance from the various organs and tissues of the body, together with radionuclide physical half-life. Biokinetic parameters are determined by direct measurements made using techniques that vary in complexity. For treatment planning, absorbed dose calculations are usually performed prior to therapy using a trace-labelled diagnostic administration, or retrospective dosimetry may be performed on the basis of the activity already administered following each therapeutic administration. Uncertainty analyses provide additional information about sources of bias and random variation and their magnitudes; these analyses show the reliability and quality of absorbed dose calculations. Effective dose can provide an approximate measure of lifetime risk of detriment attributable to the stochastic effects of radiation exposure, principally cancer, but effective dose does not predict future cancer incidence for an individual and does not apply to short-term deterministic effects associated with radiopharmaceutical therapy. Accident prevention in radiation therapy should be an integral part of the design of facilities, equipment, and administration procedures. Minimisation of staff exposures includes consideration of equipment design, proper shielding and handling of sources, and personal protective equipment and tools, as well as education and training to promote awareness and engagement in radiological protection. The decision to hold or release a patient after radiopharmaceutical therapy should account for potential radiation dose to members of the public and carers that may result from residual radioactivity in the patient. In these situations, specific radiological protection guidance should be provided to patients and carers.
Collapse
|
42
|
Kristiansson A, Ahlstedt J, Holmqvist B, Brinte A, Tran TA, Forssell-Aronsson E, Strand SE, Gram M, Åkerström B. Protection of Kidney Function with Human Antioxidation Protein α 1-Microglobulin in a Mouse 177Lu-DOTATATE Radiation Therapy Model. Antioxid Redox Signal 2019; 30:1746-1759. [PMID: 29943622 PMCID: PMC6477591 DOI: 10.1089/ars.2018.7517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Peptide receptor radionuclide therapy (PRRT) is in clinical use today to treat metastatic neuroendocrine tumors. Infused, radiolabeled, somatostatin analog peptides target tumors that are killed by irradiation damage. The peptides, however, are also retained in kidneys due to glomerular filtration, and the administered doses must be limited to avoid kidney damage. The human radical scavenger and antioxidant, α1-microglobulin (A1M), has previously been shown to protect bystander tissue against irradiation damage and has pharmacokinetic and biodistribution properties similar to somatostatin analogs. In this study, we have investigated if A1M can be used as a renal protective agent in PRRT. RESULTS We describe nephroprotective effects of human recombinant A1M on the short- and long-term renal damage observed following lutetium 177 (177Lu)-DOTATATE (150 MBq) exposure in BALB/c mice. After 1, 4, and 8 days (short term), 177Lu-DOTATATE injections resulted in increased formation of DNA double-strand breaks in the renal cortex, upregulated expression of apoptosis and stress response-related genes, and proteinuria (albumin in urine), all of which were significantly suppressed by coadministration of A1M (7 mg/kg). After 6, 12, and 24 weeks (long term), 177Lu-DOTATATE injections resulted in increased animal death, kidney lesions, glomerular loss, upregulation of stress genes, proteinuria, and plasma markers of reduced kidney function, all of which were suppressed by coadministration of A1M. Innovation and Conclusion: This study demonstrates that A1M effectively inhibits radiation-induced renal damage. The findings suggest that A1M may be used as a radioprotector during clinical PRRT, potentially facilitating improved tumor control and enabling more patients to receive treatment.
Collapse
Affiliation(s)
- Amanda Kristiansson
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | - Jonas Ahlstedt
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | | | | | - Thuy A Tran
- 3 Lund University Bioimaging Center , Lund, Sweden .,4 Department of Clinical Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Eva Forssell-Aronsson
- 5 Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, University of Gothenburg , Sweden
| | - Sven-Erik Strand
- 6 Medical Radiation Physics, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | - Magnus Gram
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden .,7 Pediatrics, Department of Clinical Sciences in Lund, Skane University Hospital, Lund University , Lund, Sweden
| | - Bo Åkerström
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| |
Collapse
|
43
|
Santoro L, Mora-Ramirez E, Trauchessec D, Chouaf S, Eustache P, Pouget JP, Kotzki PO, Bardiès M, Deshayes E. Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [ 177Lu-[DOTA0, Tyr3]-octreotate. EJNMMI Res 2018; 8:103. [PMID: 30498938 PMCID: PMC6265360 DOI: 10.1186/s13550-018-0459-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background This study’s aim was to develop our dosimetric methodology using a commercial workstation for the routine evaluation of the organs at risk during peptide receptor radionuclide therapy (PRRT) with 177Lu. Methods First, planar and SPECT sensitivity factors were determined on phantoms. The reconstruction parameters were optimized by SPECT/CT image acquisition using a NEMA IEC phantom containing a 500 ml bottle of 177Lu, to simulate a kidney. The recovery coefficients were determined on various phantoms. For the red marrow, this was calculated using a NEMA IEC phantom that contained a centrally placed bottle of 80 ml of 177Lu (to model the L2-L4 red marrow) flanked by two 200 ml bottles with 177Lu to simulate the kidneys. Then, SPECT/CT images were acquired at 4, 24, 72, and 192 h after injection in 12 patients with neuroendocrine tumors who underwent PRRT with 177Lu-DOTATATE. SPECT data were reconstructed using the iterative ordered subset expectation maximization (OSEM) method, with six iterations and ten subsets, attenuation, scatter, recovery resolution corrections, and a Gaussian post-filter of 0.11 cm. The liver, spleen, kidneys, and red marrow dose per administered activity (AD/A admin) values were calculated with the Medical Internal Radiation Dose (MIRD) formalism and the residence times (Dosimetry toolkit® application) using standard and CT imaging-based organ masses (OLINDA/EXM® V1.0 software). Results Sensitivity factors of 6.11 ± 0.01 and 5.67 ± 0.08 counts/s/MBq were obtained with planar and SPECT/CT acquisitions, respectively. A recovery coefficient of 0.78 was obtained for the modeled L2–L4 red marrow. The mean AD/A admin values were 0.43 ± 0.13 mGy/MBq [0.27–0.91] for kidneys, 0.54 ± 0.58 mGy/MBq [0.12–2.26] for liver, 0.61 ± 0.13 mGy/MBq [0.42–0.89] for spleen, and 0.04 ± 0.02 mGy/MBq [0.01–0.09] for red marrow. The AD/A admin values varied when calculated using the personalized and standard organ mass, particularly for kidneys (p = 1 × 10−7), spleen (p = 0.0069), and red marrow (p = 0.0027). Intra-patient differences were observed especially in organs close to or including tumor cells or metastases. Conclusions The obtained AD/A admin values were in agreement with the literature data. This study shows the technical feasibility of patient dosimetry in clinical practice and the need to obtain patient-specific information.
Collapse
Affiliation(s)
- Lore Santoro
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex5, France.
| | - Erick Mora-Ramirez
- Centre de Recherche en Cancérologie de Toulouse, Toulouse, France.,INSERM, UMR 1037, Toulouse III Paul Sabatier University, Toulouse, France.,University of Costa Rica, Physics School, CICANUM, San Jose, Costa Rica
| | - Dorian Trauchessec
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex5, France
| | - Soufiane Chouaf
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex5, France
| | - Pierre Eustache
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex5, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Pierre-Olivier Kotzki
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex5, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Manuel Bardiès
- Centre de Recherche en Cancérologie de Toulouse, Toulouse, France.,INSERM, UMR 1037, Toulouse III Paul Sabatier University, Toulouse, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex5, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
44
|
Roth D, Gustafsson J, Sundlöv A, Sjögreen Gleisner K. A method for tumor dosimetry based on hybrid planar-SPECT/CT images and semiautomatic segmentation. Med Phys 2018; 45:5004-5018. [PMID: 30199102 DOI: 10.1002/mp.13178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE A hybrid planar-SPECT/CT method for tumor dosimetry in 177 Lu-DOTATATE therapy, applicable to datasets consisting of multiple conjugate-view images and one SPECT/CT, is developed and evaluated. METHODS The imaging protocol includes conjugate-view imaging at 1, 24, 96, and 168 h post infusion (p.i.) and a SPECT/CT acquisition 24 h p.i. The dosimetry method uses the planar images to estimate the shape of the time-activity concentration curve, which is then rescaled to absolute units using the SPECT-derived activity concentration. The resulting time-integrated activity concentration coefficient (TIACC) is used to calculate the tumor-absorbed dose. Semiautomatic segmentation techniques are applied for tumor delineation in both planar and SPECT images, where the planar image segmentation is accomplished using an active-rays-based technique. The selection of tumors is done by visual inspection of planar and SPECT images and applying a set of criteria concerning the tumor visibility and possible interference from superimposed activity uptakes in the planar images. Five different strategies for determining values from planar regions of interest (ROIs), based on entire or partial ROIs, and with and without background correction, are evaluated. Evaluation is performed against a SPECT/CT-based method on data from six patients where sequential conjugate-view and SPECT/CT imaging have been performed in parallel and against ground truths in Monte Carlo simulated images. The patient data are also used to evaluate the interoperator variability and to assess the validity of the developed criteria for tumor selection. RESULTS For patient images, the hybrid method produces TIACCs that are on average 6% below those of the SPECT/CT only method, with standard deviations for the relative TIACC differences of 8%-11%. Simulations show that the hybrid and SPECT-based methods estimate the TIACCs to within approximately 10% for tumors larger than around 10 ml, while for smaller tumors, all methods underestimate the TIACCs due to underestimations of the activity concentrations in the SPECT images. The planar image segmentation has a low operator dependence, with a median Dice similarity coefficient of 0.97 between operators. The adopted criteria for tumor selection manage to discriminate the tumors for which the absorbed-dose deviations between the hybrid and SPECT methods are the highest. CONCLUSIONS The hybrid method is found suitable for studies of tumor-absorbed doses in radionuclide therapy, provided that selection criteria regarding the visibility and overlapping activities in the planar images are applied.
Collapse
Affiliation(s)
- Daniel Roth
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Gustafsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna Sundlöv
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Huizing DMV, de Wit-van der Veen BJ, Verheij M, Stokkel MPM. Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI Res 2018; 8:89. [PMID: 30159614 PMCID: PMC6115319 DOI: 10.1186/s13550-018-0443-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022] Open
Abstract
Background The main challenge for systemic radiation therapy using radiopharmaceuticals (SRT) is to optimise the dose delivered to the tumour, while minimising normal tissue irradiation. Dosimetry could help to increase therapy response and decrease toxicity after SRT by individual treatment planning. Peptide receptor radionuclide therapy (PRRT) is an accepted SRT treatment option for irresectable and metastatic neuroendocrine tumours (NET). However, dosimetry in PRRT is not routinely performed, mainly due to the lack of evidence in literature and clinical implementation difficulties. The goal of this review is to provide insight in dosimetry methods and requirements and to present an overview of clinical aspects of dosimetry in PRRT for NET. Methods A PubMed query including the search criteria dosimetry, radiation dose, peptide receptor radionuclide therapy, and radionuclide therapy was performed. Articles were selected based on title and abstract, and description of dosimetric approach. Results A total of 288 original articles were included. The most important dosimetry methods, their main advantages and limitations, and implications in the clinical setting are discussed. An overview of dosimetry in clinical studies regarding PRRT treatment for NET is provided. Conclusion Clinical dosimetry in PRRT is feasible and can result in improved treatment outcomes. Current clinical dosimetry studies focus on safety and apply non-voxel-based dosimetry methods. Personalised treatment using sophisticated dosimetry methods to assess tumour and normal tissue uptake in clinical trials is the next step towards routine dosimetry in PRRT for NET. Electronic supplementary material The online version of this article (10.1186/s13550-018-0443-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daphne Merel Valerie Huizing
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | - Marcel Verheij
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Lassmann M, Eberlein U. The Relevance of Dosimetry in Precision Medicine. J Nucl Med 2018; 59:1494-1499. [PMID: 30002109 DOI: 10.2967/jnumed.117.206649] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this review is to provide an overview of the most recent technologic developments in state-of-the-art equipment and tools for dosimetry in radionuclide therapies. This includes, but is not restricted to, calibration methods for imaging systems. In addition, a summary of new developments that consider the influence of small-scale dosimetry and of biologic effects on radionuclide therapies is given. Finally, the current limitations of patient-specific dosimetry such as bone-marrow dosimetry or dosimetry of α-emitters are discussed.
Collapse
Affiliation(s)
- Michael Lassmann
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Correlation of dose with toxicity and tumour response to 90Y- and 177Lu-PRRT provides the basis for optimization through individualized treatment planning. Eur J Nucl Med Mol Imaging 2018; 45:2426-2441. [PMID: 29785514 DOI: 10.1007/s00259-018-4044-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Peptide receptor radionuclide therapy (PRRT) with 90Y-labelled and 177Lu-labelled peptides is an effective strategy for the treatment of metastatic/nonresectable neuroendocrine tumours (NETs). Dosimetry provides important information useful for optimizing PRRT with individualized regimens to reduce toxicity and increase tumour responses. However, this strategy is not applied in routine clinical practice, despite the fact that several dosimetric studies have demonstrated significant dose-effect correlations for normal organ toxicity and tumour response that can better guide therapy planning. The present study reviews the key relationships and the radiobiological models available in the literature with the aim of providing evidence that optimization of PRRT is feasible through the implementation of dosimetry. METHODS The MEDLINE database was searched combining specific keywords. Original studies published in the English language reporting dose-effect outcomes in patients treated with PRRT were chosen. RESULTS Nine of 126 studies were selected from PubMed, and a further five were added manually, reporting on 590 patients. The studies were analysed and are discussed in terms of weak and strong elements of correlations. CONCLUSION Several studies provided evidence of clinical benefit from the implementation of dosimetry in PRRT, indicating the potential contribution of this approach to reducing severe toxicity and/or reducing undertreatment that commonly occurs. Prospective trials, possibly multicentre, with larger numbers of patients undergoing quantitative dosimetry and with standardized methodologies should be carried out to definitively provide robust predictive paradigms to establish effective tailored PRRT.
Collapse
|
48
|
Abstract
BACKGROUND The kidneys are the dose-limiting organ in lutetium-177 DOTATATE therapy. Therefore, it is advisable to perform critical organ dosimetry focussed on renal dose in treated patients. A key uncertainty in such dose estimates is the use of standard phantoms to represent the individual patient. The primary aim of this study was to investigate the accuracy of methods for estimating kidney size, and hence absorbed kidney dose, by comparison with individual measurements from computed tomography (CT) imaging. MATERIALS AND METHODS Kidney volume was measured using diagnostic CT images for 57 patients who underwent lutetium-177 DOTATATE therapy. Kidney mass was also estimated in two ways: using the standard adult phantoms, as well as through the application of a weight scaling factor to these phantoms and their organs. Dose calculations were performed for each of the three methods using OLINDA/EXM software. RESULTS Scaling of the phantom by patient weight gave a more accurate result when compared with the CT gold standard than the standard phantom. The dose difference from the CT method had mean values of 1.4% (SD=22.6%) and 8.4% (SD=21.5%) for scaled and unscaled, respectively. Patient weight was not found to be a good predictor of kidney mass in these patients (r of 0.12 from linear regression analysis). CONCLUSION The most accurate method of organ volume estimation would be individual measurements from CT imaging; however, where this is not possible, scaling of organ masses by weight ratio is more accurate than the use of the standard phantom.
Collapse
|
49
|
Abstract
A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.
Collapse
Affiliation(s)
- Roger G Dale
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
50
|
Eberlein U, Cremonesi M, Lassmann M. Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive? J Nucl Med 2017; 58:97S-103S. [PMID: 28864620 DOI: 10.2967/jnumed.116.186841] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022] Open
Abstract
In 2005, the term theragnostics (theranostics) was introduced for describing the use of imaging for therapy planning in radiation oncology. In nuclear medicine, this expression describes the use of tracers for predicting the absorbed doses in molecular radiotherapy and, thus, the safety and efficacy of a treatment. At present, the most successful groups of isotopes for this purpose are 123I/124I/131I, 68Ga/177Lu, and 111In/86Y/90Y. The purpose of this review is to summarize available data on the dosimetry and dose-response relationships of several theranostic compounds, with a special focus on radioiodine therapy for differentiated thyroid cancer and peptide receptor radionuclide therapy. These are treatment modalities for which dose-response relationships for healthy tissues and tumors have been demonstrated. In addition, available data demonstrate that posttherapeutic dosimetry after a first treatment cycle predicts the absorbed doses in further cycles. Both examples show the applicability of the concept of theranostics in molecular radiotherapies. Nevertheless, unanswered questions need to be addressed in clinical trials incorporating dosimetry-related concepts for determining the amount of therapeutic activity to be administered.
Collapse
Affiliation(s)
- Uta Eberlein
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany; and
| | - Marta Cremonesi
- Radiation Research Unit, Istituto Europeo di Oncologia, Milano, Italy
| | - Michael Lassmann
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany; and
| |
Collapse
|