1
|
Agüloğlu N, Aksu A, Unat DS, Selim Unat Ö. The value of PET/CT radiomic texture analysis of primary mass and mediastinal lymph node on survival in patients with non-small cell lung cancer. Rev Esp Med Nucl Imagen Mol 2024; 43:500027. [PMID: 39029620 DOI: 10.1016/j.remnie.2024.500027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE This study was designed to determine the potential prognostic value of radiomic texture analysis and metabolic-volumetric parameters obtained from positron emission tomography (PET) in primary mass and metastatic hilar/mediastinal lymph nodes in stage 2-3 non-small cell lung cancer (NSCLC). METHODS Images of patients diagnosed with stage 2-3 NSCLC who underwent 18F-FDG PET/CT imaging for staging up to 4 weeks before the start of treatment were evaluated using LIFEx software. Volume of interest (VOI) was generated from the primary tumor and metastatic lymph node separately, and volumetric and textural features were obtained from these VOIs. The relationship between the parameters obtained from PET of primary mass and the metastatic hilar/mediastinal lymph nodes with overall survival (OS) and progression-free survival (PFS) was analyzed. RESULTS When radiomic features, gender and stage obtained from lymph nodes were evaluated by Cox regression analysis; GLCM_correlation (p: 0.033, HR: 4,559, 1.660-12.521, 95% CI), gender and stage were determined as prognostic factors predicting OS. In predicting PFS; stage, smoking and lymph node MTV (p: 0.033, HR: 1.008, 1.001-1.016, 95% CI) were determined as prognostic factors. However, the radiomic feature of the primary tumor could not show a significant relationship with either OS or PFS. CONCLUSIONS In a retrospective cohort of NSCLC patients with Stage 2 and 3 disease, volumetric and radiomic texture characteristics obtained from metastatic lymph nodes were associated with PFS and OS. Tumor heterogeneity, defined by radiomic texture features of 18 F-FDG PET/CT images, may provide complementary prognostic value in NSCLC.
Collapse
Affiliation(s)
- N Agüloğlu
- Department of Nuclear Medicine, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir, Turkey.
| | - A Aksu
- Department of Nuclear Medicine, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey.
| | - D S Unat
- Giresun Dr. Ali Menekşe Chest Diseases Hospital, Giresun, Turkey.
| | - Ö Selim Unat
- Giresun Dr. Ali Menekşe Chest Diseases Hospital, Giresun, Turkey.
| |
Collapse
|
2
|
Inoue A, Nagao M, Kaneko K, Yamamoto A, Shirai Y, Toshihiro O, Sakai A, Imakado R, Sakai S. Glucose metabolic rate from four-dimensional [ 18F]FDG PET/CT to differentiate sarcoid lesions from malignant lesions. Eur Radiol 2024:10.1007/s00330-024-11022-w. [PMID: 39150487 DOI: 10.1007/s00330-024-11022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES On 18F-Fludeoxyglucose (FDG) PET/CT, active sarcoid lesions are often difficult to differentiate from malignant lesions. We investigated the potential of the glucose metabolic rate (MRglc, mg/min/100 mL), a new quantification of glucose metabolic kinetics derived from direct reconstruction based on linear Patlak analysis, to distinguish between sarcoidosis and malignant lesions. MATERIALS AND METHODS A total of 100 patients with cardiac sarcoidosis (CS) and 67 patients with cancer who underwent four-dimensional FDG PET/CT were enrolled. The lesions with a standardized uptake value (SUV) ≥ 2.7 on the standard scan were included as active lesions in the analysis. SUV and MRglc were derived using data acquired between 30 min and 50 min on four-dimensional FDG PET/CT. The mean value in the volume of interest (size 1.5 cm3) was measured. The diagnostic performance of sarcoidosis using MRglc and SUV was evaluated using receiver-operating-characteristic (ROC) analysis. RESULTS A total of 90 sarcoidosis lesions from 44 CS patients (18 males, 63.4 ± 12.2 years) and 87 malignant lesions from 57 cancer-bearing patients (32 males, 65 ± 14 years) were analyzed. SUV and MRglc for sarcoid lesions were significantly lower than those for malignant lesions (SUV, 4.98 ± 2.00 vs 6.21 ± 2.14; MRglc, 2.52 ± 1.39 vs 3.68 ± 1.61; p < 0.01). ROC analysis indicated that the ability to discriminate sarcoid patients from those with malignancy yielded areas under the curves of 0.703 and 0.754, with sensitivities of 64% and 77% and specificities of 75% and 72% for SUV 5.025 and MRglc 2.855, respectively. CONCLUSION MRglc was significantly lower in sarcoid lesions than malignant lesions, and improved sarcoid lesions identification over SUV alone. CLINICAL RELEVANCE STATEMENT MRglc improves sarcoid lymph node identification over SUV alone and is expected to shorten the examination time by eliminating delayed scans. KEY POINTS Active sarcoid lesions are sometimes associated with FDG accumulation and should be differentiated from malignant lesions. SUV and metabolic rate of glucose (MRglc) strongly positively correlated, and MRglc could differentiate sarcoid and malignant lesions. MRglc allows for accurate evaluation and staging of malignant lesions.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Koichiro Kaneko
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yurie Shirai
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Ohno Toshihiro
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Risa Imakado
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Liu XS, Chen YX, Wan HB, Wang YL, Wang YY, Gao Y, Wu LB, Pei ZJ. TRIP6 a potential diagnostic marker for colorectal cancer with glycolysis and immune infiltration association. Sci Rep 2024; 14:4042. [PMID: 38369589 PMCID: PMC10874967 DOI: 10.1038/s41598-024-54670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Thyroid hormone receptor interactor 6 (TRIP6) it is an adaptor protein belonging to the zyxin family of LIM proteins, participating in signaling events through interactions with various molecules. Despite this, TRIP6's role in colorectal cancer (CRC), particularly its correlation with glucose metabolism and immune cell infiltration, remains unclear. Through the TCGA and GEO databases, we obtained RNA sequencing data to facilitate our in-depth study and analysis of TRIP6 expression. To investigate the prognostic value of TRIP6 in CRC, we also used univariate Cox regression analysis. In addition, this study also covered a series of analyses, including clinicopathological analysis, functional enrichment analysis, glycolysis correlation analysis, immunoinfiltration analysis, immune checkpoint analysis, and angiogenesis correlation analysis, to gain a comprehensive and in-depth understanding of this biological phenomenon. It has been found that TRIP6 expression is significantly upregulated in CRC and correlates with the stage of the disease. Its overexpression portends a worse survival time. Functional enrichment analysis reveals that TRIP6 is associated with focal adhesion and glycolysis. Mechanistically, TRIP6 appears to exert its tumorigenic effect by regulating the glycolysis-related gene GPI. A higher level of expression of TRIP6 is associated with an increase in the number of iDC immune cells and a decrease in the number of Th1 immune cells. Also, TRIP6 may promote angiogenesis in tumor cells by promoting the expression of JAG2. Our study uncovers the upregulation of TRIP6 in CRC, illuminating its prognostic and diagnostic value within this context. Furthermore, we examine the relationship between TRIP6 expression levels, glycolysis, angiogenesis and immune cell infiltration. This underscores its potential as a biomarker for CRC treatment and as a therapeutic target.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Yu-Xuan Chen
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hua-Bing Wan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ya-Lan Wang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yang-Yang Wang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Li-Bing Wu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
| |
Collapse
|
4
|
Mirshahvalad SA, Kohan A, Metser U, Hinzpeter R, Ortega C, Farag A, Veit-Haibach P. Diagnostic performance of whole-body [ 18F]FDG PET/MR in cancer M staging: A systematic review and meta-analysis. Eur Radiol 2024; 34:673-685. [PMID: 37535156 DOI: 10.1007/s00330-023-10009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To calculate the pooled diagnostic performances of whole-body [18F]FDG PET/MR in M staging of [18F]FDG-avid cancer entities. METHODS A diagnostic meta-analysis was conducted on the [18F]FDG PET/MR in M staging, including studies: (1) evaluated [18F]FDG PET/MR in detecting distant metastasis; (2) compared[ 18F]FDG PET/MR with histopathology, follow-up, or asynchronous multimodality imaging as the reference standard; (3) provided data for the whole-body evaluation; (4) provided adequate data to calculate the meta-analytic performances. Pooled performances were calculated with their confidence interval. In addition, forest plots, SROC curves, and likelihood ratio scatterplots were drawn. All analyses were performed using STATA 16. RESULTS From 52 eligible studies, 2289 patients and 2072 metastases were entered in the meta-analysis. The whole-body pooled sensitivities were 0.95 (95%CI: 0.91-0.97) and 0.97 (95%CI: 0.91-0.99) at the patient and lesion levels, respectively. The pooled specificities were 0.99 (95%CI: 0.97-1.00) and 0.97 (95%CI: 0.90-0.99), respectively. Additionally, subgroup analyses were performed. The calculated pooled sensitivities for lung, gastrointestinal, breast, and gynecological cancers were 0.90, 0.93, 1.00, and 0.97, respectively. The pooled specificities were 1.00, 0.98, 0.97, and 1.00, respectively. Furthermore, the pooled sensitivities for non-small cell lung, colorectal, and cervical cancers were 0.92, 0.96, and 0.86, respectively. The pooled specificities were 1.00, 0.95, and 1.00, respectively. CONCLUSION [18F]FDG PET/MR was a highly accurate modality in M staging in the reported [18F]FDG-avid malignancies. The results showed high sensitivity and specificity in each reviewed malignancy type. Thus, our findings may help clinicians and patients to be confident about the performance of [18F]FDG PET/MR in the clinic. CLINICAL RELEVANCE STATEMENT Although [18F]FDG PET/MR is not a routine imaging technique in current guidelines, mostly due to its availability and logistic issues, our findings might add to the limited evidence regarding its performance, showing a sensitivity of 0.95 and specificity of 0.97. KEY POINTS • The whole-body [18F]FDG PET/MR showed high accuracy in detecting distant metastases at both patient and lesion levels. • The pooled sensitivities were 95% and 97% and pooled specificities were 99% and 97% at patient and lesion levels, respectively. • The results suggested that 18F-FDG PET/MR was a strong modality in the exclusion and confirmation of distant metastases.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada.
| | - Andres Kohan
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Ricarda Hinzpeter
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Adam Farag
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| |
Collapse
|
5
|
Tufail M. Unlocking the potential of the tumor microenvironment for cancer therapy. Pathol Res Pract 2023; 251:154846. [PMID: 37837860 DOI: 10.1016/j.prp.2023.154846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The tumor microenvironment (TME) holds a crucial role in the progression of cancer. Epithelial-derived tumors share common traits in shaping the TME. The Warburg effect is a notable phenomenon wherein tumor cells exhibit resistance to apoptosis and an increased reliance on anaerobic glycolysis for energy production. Recognizing the pivotal role of the TME in controlling tumor growth and influencing responses to chemotherapy, researchers have focused on developing potential cancer treatment strategies. A wide array of therapies, including immunotherapies, antiangiogenic agents, interventions targeting cancer-associated fibroblasts (CAF), and therapies directed at the extracellular matrix, have been under investigation and have demonstrated efficacy. Additionally, innovative techniques such as tumor tissue explants, "tumor-on-a-chip" models, and multicellular tumor spheres have been explored in laboratory research. This comprehensive review aims to provide insights into the intricate cross-talk between cancer-associated signaling pathways and the TME in cancer progression, current therapeutic approaches targeting the TME, the immune landscape within solid tumors, the role of the viral TME, and cancer cell metabolism.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Ruan M, Chang C, Sun J, Liu L, Wang L, Lei B, Yan H, Zhang H, Xie W, Wang Y. Exploring the correlation between HER2 alterations and 18F-FDG PET/CT metabolic parameters and their prognostic value in EGFR-negative non-small-cell lung cancer patients. J Cancer Res Clin Oncol 2023; 149:14493-14507. [PMID: 37572120 DOI: 10.1007/s00432-023-05218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Our study intended to explore the correlation between HER2 alterations and 18F-FDG PET/CT metabolic parameters and their prognostic value in EGFR-negative non-small-cell lung cancer (NSCLC) patients detected by next-generation sequencing (NGS). METHODS NGS assay was performed in 1737 NSCLC patients, a total of 88 HER2 alterations and 176 negative HER2 with EGFR-negative patients were randomly selected for this study. RESULTS When the HER2 status with EGFR-negative group was analyzed, multivariate analysis showed that smoking status, primary tumor SUVmax (pSUVmax) < 13.03 and stage were the independent deterministic factors of HER2 alterations. Multivariate cox regression analysis revealed that HER2 status, age, smoking status and stage were independent risk factors for overall survival (OS) in EGFR-negative NSCLC patients with different HER2 status. When the HER2 alterations group was separately analyzed, multivariate analysis demonstrated that low pSUVmax < 15.32 and histology were the independent deterministic factors of HER2 mutation. Multivariate cox regression analysis revealed that pSUVmax, smoking status, nodal involvement and treatment methods were independent risk factors for OS in EGFR-negative NSCLC patients with HER2 alterations. CONCLUSION The study revealed that low pSUVmax was associated with HER2 alterations in EGFR-negative NSCLC patients, moreover HER2 mutation and HER2 amplification exhibited distinct 18F-FDG metabolic and clinical characteristics. Furthermore, it explored the prognostic value of HER2 alterations and 18F-FDG PET/CT metabolic parameters of pSUVmax in EGFR-negative NSCLC patients.
Collapse
Affiliation(s)
- Maomei Ruan
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Jianwen Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - He Zhang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Liu XS, Yuan LL, Gao Y, Ming X, Zhang YH, Zhang Y, Liu ZY, Yang Y, Pei ZJ. DARS2 overexpression is associated with PET/CT metabolic parameters and affects glycolytic activity in lung adenocarcinoma. J Transl Med 2023; 21:574. [PMID: 37626419 PMCID: PMC10463715 DOI: 10.1186/s12967-023-04454-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND This study investigated the correlation between the expression of DARS2 and metabolic parameters of 18F-FDG PET/CT, and explored the potential mechanisms of DARS2 affecting the proliferation and glycolysis of lung adenocarcinoma (LUAD) cells. METHODS This study used genomics and proteomics to analyze the difference in DARS2 expression between LUAD samples and control samples. An analysis of 62 patients with LUAD who underwent 18F-FDG PET/CT examinations before surgery was conducted retrospectively. The correlation between DARS2 expression and PET/CT metabolic parameters, including SUVmax, SUVmean, MTV, and TLG, was examined by Spearman correlation analysis. In addition, the molecular mechanism of interfering with DARS2 expression in inhibiting LUAD cell proliferation and glycolysis was analyzed through in vitro cell experiments. RESULTS DARS2 expression was significantly higher in LUAD samples than in control samples (p < 0.001). DARS2 has high specificity (98.4%) and sensitivity (95.2%) in the diagnosis of LUAD. DARS2 expression was positively correlated with SUVmax, SUVmean, and TLG (p < 0.001). At the same time, the sensitivity and specificity of SUVmax in predicting DARS2 overexpression in LUAD were 88.9% and 65.9%, respectively. In vitro cell experiments have shown that interfering with DARS2 expression can inhibit the proliferation and migration of LUAD cells, promote cell apoptosis, and inhibit the glycolytic activity of tumor cells by inhibiting the expression of glycolytic related genes SLC2A1, GPI, ALDOA, and PGAM1. CONCLUSIONS Overexpression of DARS2 is associated with metabolic parameters on 18F-FDG PET/CT, which can improve LUAD diagnosis accuracy. DARS2 may be a useful biomarker to diagnose, prognosis, and target treatment of LUAD patients.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xing Ming
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zi-Yue Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yi Yang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
8
|
Lim CH, Choi JY, Choi JH, Lee JH, Lee J, Lim CW, Kim Z, Woo SK, Park SB, Park JM. Development and External Validation of 18F-FDG PET-Based Radiomic Model for Predicting Pathologic Complete Response after Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2023; 15:3842. [PMID: 37568658 PMCID: PMC10417050 DOI: 10.3390/cancers15153842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of our retrospective study is to develop and externally validate an 18F-FDG PET-derived radiomics model for predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. A total of 87 breast cancer patients underwent curative surgery after NAC at Soonchunhyang University Seoul Hospital and were randomly assigned to a training cohort and an internal validation cohort. Radiomic features were extracted from pretreatment PET images. A radiomic-score model was generated using the LASSO method. A combination model incorporating significant clinical variables was constructed. These models were externally validated in a separate cohort of 28 patients from Soonchunhyang University Buscheon Hospital. The model performances were assessed using area under the receiver operating characteristic (AUC). Seven radiomic features were selected to calculate the radiomic-score. Among clinical variables, human epidermal growth factor receptor 2 status was an independent predictor of pCR. The radiomic-score model achieved good discriminability, with AUCs of 0.963, 0.731, and 0.729 for the training, internal validation, and external validation cohorts, respectively. The combination model showed improved predictive performance compared to the radiomic-score model alone, with AUCs of 0.993, 0.772, and 0.906 in three cohorts, respectively. The 18F-FDG PET-derived radiomic-based model is useful for predicting pCR after NAC in breast cancer.
Collapse
Affiliation(s)
- Chae Hong Lim
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Joon Ho Choi
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Jun-Hee Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jihyoun Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Cheol Wan Lim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Sang-Keun Woo
- Division of Applied RI, Korea Institutes of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soo Bin Park
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Jung Mi Park
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
9
|
Chen F, Wu Y, Ma Y, Yin H, Su F, Huang R, Wu X, Liu Q. Synthesis, radiolabeling, and evaluation of 68Ga-labeled aminoquinoxaline derivative as a potent PFKFB3-targeted PET tracer. Front Chem 2023; 11:1158503. [PMID: 37035116 PMCID: PMC10073729 DOI: 10.3389/fchem.2023.1158503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Glycolysis, as a multi-step oxidation process, plays important roles in the energy supply for living cells, including malignant tumor cells. Recent studies have revealed that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (named PFKFB3), a bifunctional enzyme in glycolysis, is upregulated in a variety of malignant solid tumors and has been regarded as a potential biomarker for the diagnosis and treatment of tumor patients. Based on the structure of selective PFKFB3 inhibitors, we designed and synthesized a radio-metal radiolabeled small molecule, 68Ga-5, which also showed potent selectivity in enzymatic and biochemical tests (with an IC50 value of 12.5 nM). According to further in vitro and in vivo evaluations, 68Ga-5 showed promising properties as a PET ligand, and selective accumulation in PFKFB3-positive tumors was observed in PET images (with max SUV values of 0.60). Our results indicated that radio-metal radiolabeled aminoquinoxaline derivative, as represented by 68Ga-5, held the potential to be developed as selective PFKFB3-targeted PET tracers, and further investigation and optimization would also be required for this scaffold.
Collapse
Affiliation(s)
- Feng Chen
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- *Correspondence: Yi Wu, ; Qian Liu,
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Honghai Yin
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Feijing Su
- Core Facilities of West China Hospital, Sichuan University, Sichuan, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on Hemangioma, Nanchang, Jiangxi, China
- *Correspondence: Yi Wu, ; Qian Liu,
| |
Collapse
|
10
|
Agüloğlu N, Aksu A, Unat DS, Akyol M. The prognostic relationship of 18F-FDG PET/CT metabolic and volumetric parameters in metastatic ALK + NSCLC. Nucl Med Commun 2022; 43:1217-1224. [PMID: 36345766 DOI: 10.1097/mnm.0000000000001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of this study is to determine the role of metabolic and volumetric parameters obtained from 18Fluorine-Fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) imaging on progression-free survival (PFS) and overall survival (OS) in patients with advanced nonsquamous cell lung carcinoma (NSCLC) with anaplastic lymphoma kinase (ALK) rearrangement. METHODS Pre and post-treatment PET/CT images of the ALK + NSCLC patients between January 2015 and July 2020 were evaluated. The highest standardized uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) values were obtained from pre-tyrosine kinase inhibitor (TKI) basal PET/CT (PETpre) and post-TKI PET/CT (PETpost) images. Total MTV (tMTV) and total TLG (tTLG) values were calculated by summing MTV and TLG values in all tumor foci. The change (Δ) in pSUVmax, pMTV, pTLG, tMTV and tTLG before and after treatment was calculated.The relationship of these parameters with OS and PFS was analyzed. RESULTS tTLGpre, tMTVpre, pTLGpre, pMTVpre, ∆SUVmax, ∆tMTV and ∆tTLG values were found to be associated with OS; ∆tMTV, ∆tTLG, tTLGpre, tMTVpre, pTLGpre and pMTVpre were associated with PFS. The cutoff values in both predicting OS and PFS were calculated as -31.6 and 391.1 for ∆tMTV and tTLGpre, respectively. In Cox regression analysis, ∆tMTV and stage for OS and ∆tMTV and tTLGpre for PFS were obtained as prognostic factors. CONCLUSIONS Metabolic and volumetric parameters, especially TLG values in the whole body before treatment and change in whole body MTV value, obtained from PET/CT may be useful in predicting prognosis and determining treatment strategies for patients with advanced ALK + NSCLC.
Collapse
Affiliation(s)
- Nurşin Agüloğlu
- Department of Nuclear Medicine, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir
| | - Ayşegül Aksu
- Department of Nuclear Medicine, Başakşehir Çam and Sakura City Hospital, İstanbul
| | - Damla S Unat
- Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital İzmir, Turkey
| | - Murat Akyol
- Department of Medical Oncology, Bakirçay University Medical School İzmir, Turkey
| |
Collapse
|
11
|
Kilicoglu O, Sepay N, Ozgenc E, Gundogdu E, Kara U, Alomairy S, Al-Buriahi M. Evaluation of F-18 FDG radiopharmaceuticals through Molecular Docking and radiation effects. Appl Radiat Isot 2022; 191:110553. [DOI: 10.1016/j.apradiso.2022.110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
|
12
|
Bülbül O, Bülbül HM, Tertemiz KC, Çapa Kaya G, Gürel D, Ulukuş EÇ, Gezer NS. Contribution of F-18 fluorodeoxyglucose PET/CT and contrast-enhanced thoracic CT texture analyses to the differentiation of benign and malignant mediastinal lymph nodes. Acta Radiol 2022; 64:1443-1454. [PMID: 36259263 DOI: 10.1177/02841851221130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Texture analysis and machine learning methods are useful in distinguishing between benign and malignant tissues. PURPOSE To discriminate benign from malignant or metastatic mediastinal lymph nodes using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and contrast-enhanced computed tomography (CT) texture analyses with machine learning and determine lung cancer subtypes based on the analysis of lymph nodes. MATERIAL AND METHODS Suitable texture features were entered into the algorithms. Features that statistically significantly differed between the lymph nodes with small cell lung cancer (SCLC), adenocarcinoma (ADC), and squamous cell carcinoma (SCC) were determined. RESULTS The most successful algorithms were decision tree with the sensitivity, specificity, and area under the curve (AUC) values of 89%, 50%, and 0.692, respectively, and naive Bayes (NB) with the sensitivity, specificity, and AUC values of 50%, 81%, and 0.756, respectively, for PET/CT, and NB with the sensitivity, specificity, and AUC values of 10%, 96%, and 0.515, respectively, and logistic regression with the sensitivity, specificity, and AUC values of 21%, 83%, and 0.631, respectively, for CT. In total, 13 features were able to differentiate SCLC and ADC, two features SCLC and SCC, and 33 features ADC and SCC lymph node metastases in PET/CT. One feature differed between SCLC and ADC metastases in CT. CONCLUSION Texture analysis is beneficial to discriminate between benign and malignant lymph nodes and differentiate lung cancer subtypes based on the analysis of lymph nodes.
Collapse
Affiliation(s)
- Ogün Bülbül
- Department of Nuclear Medicine, 175650Ministry of Health Recep Tayyip Erdoğan University Education and Research Hospital, Rize, Turkey
| | - Hande Melike Bülbül
- Department of Radiology, 175650Ministry of Health Recep Tayyip Erdoğan University Education and Research Hospital, Rize, Turkey
| | - Kemal Can Tertemiz
- Department of Pneumology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gamze Çapa Kaya
- Department of Nuclear Medicine, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Duygu Gürel
- Department of Pathology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Emine Çağnur Ulukuş
- Department of Pathology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Naciye Sinem Gezer
- Department of Radiology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
13
|
Zhu J, Pan F, Cai H, Pan L, Li Y, Li L, Li Y, Wu X, Fan H. Positron emission tomography imaging of lung cancer: An overview of alternative positron emission tomography tracers beyond F18 fluorodeoxyglucose. Front Med (Lausanne) 2022; 9:945602. [PMID: 36275809 PMCID: PMC9581209 DOI: 10.3389/fmed.2022.945602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related mortality in China in recent decades. Positron emission tomography-computer tomography (PET/CT) has been established in the diagnosis of lung cancer. 18F-FDG is the most widely used PET tracer in foci diagnosis, tumor staging, treatment planning, and prognosis assessment by monitoring abnormally exuberant glucose metabolism in tumors. However, with the increasing knowledge on tumor heterogeneity and biological characteristics in lung cancer, a variety of novel radiotracers beyond 18F-FDG for PET imaging have been developed. For example, PET tracers that target cellular proliferation, amino acid metabolism and transportation, tumor hypoxia, angiogenesis, pulmonary NETs and other targets, such as tyrosine kinases and cancer-associated fibroblasts, have been reported, evaluated in animal models or under clinical investigations in recent years and play increasing roles in lung cancer diagnosis. Thus, we perform a comprehensive literature review of the radiopharmaceuticals and recent progress in PET tracers for the study of lung cancer biological characteristics beyond glucose metabolism.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YunChun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Nuclear Medicine, The Second People’s Hospital of Yibin, Yibin, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Xiaoai Wu,
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hong Fan,
| |
Collapse
|
14
|
Wolsztynski E, O’Sullivan F, Eary JF. Spatially coherent modeling of 3D FDG-PET data for assessment of intratumoral heterogeneity and uptake gradients. J Med Imaging (Bellingham) 2022; 9:045003. [PMID: 35915767 PMCID: PMC9334646 DOI: 10.1117/1.jmi.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose: Radiomics have become invaluable for non-invasive cancer patient risk prediction, and the community now turns to exogenous assessment, e.g., from genomics, for interpretability of these agnostic analyses. Yet, some opportunities for clinically interpretable modeling of positron emission tomography (PET) imaging data remain unexplored, that could facilitate insightful characterization at voxel level. Approach: Here, we present a novel deformable tubular representation of the distribution of tracer uptake within a volume of interest, and derive interpretable prognostic summaries from it. This data-adaptive strategy yields a 3D-coherent and smooth model fit, and a profile curve describing tracer uptake as a function of voxel location within the volume. Local trends in uptake rates are assessed at each voxel via the calculation of gradients derived from this curve. Intratumoral heterogeneity can also be assessed directly from it. Results: We illustrate the added value of this approach over previous strategies, in terms of volume rendering and coherence of the structural representation of the data. We further demonstrate consistency of the implementation via simulations, and prognostic potential of heterogeneity and statistical summaries of the uptake gradients derived from the model on a clinical cohort of 158 sarcoma patients imaged withF 18 -fluorodeoxyglucose-PET, in multivariate prognostic models of patient survival. Conclusions: The proposed approach captures uptake characteristics consistently at any location, and yields a description of variations in uptake that holds prognostic value complementarily to structural heterogeneity. This creates opportunities for monitoring of local areas of greater interest within a tumor, e.g., to assess therapeutic response in avid locations.
Collapse
Affiliation(s)
- Eric Wolsztynski
- University College Cork, Statistics Department, Cork, Ireland
- Insight SFI Research Centre for Data Analytics, Cork, Ireland
| | - Finbarr O’Sullivan
- University College Cork, Statistics Department, Cork, Ireland
- Insight SFI Research Centre for Data Analytics, Cork, Ireland
| | - Janet F. Eary
- National Cancer Institute, Bethesda, Maryland, United States
| |
Collapse
|
15
|
Iravani A, Parihar AS, Akhurst T, Hicks RJ. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022; 22:25. [PMID: 35659779 PMCID: PMC9164531 DOI: 10.1186/s40644-022-00465-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroendocrine neoplasia (NEN) is an umbrella term that includes a widely heterogeneous disease group including well-differentiated neuroendocrine tumours (NETs), and aggressive neuroendocrine carcinomas (NECs). The site of origin of the NENs is linked to the intrinsic tumour biology and is predictive of the disease course. It is understood that NENs demonstrate significant biologic heterogeneity which ultimately translates to widely varying clinical presentations, disease course and prognosis. Thus, significant emphasis is laid on the pre-therapy evaluation of markers that can help predict tumour behavior and dynamically monitors the response during and after treatment. Most well-differentiated NENs express somatostatin receptors (SSTRs) which make them appropriate for peptide receptor radionuclide therapy (PRRT). However, the treatment outcomes of PRRT depend heavily on the adequacy of patient selection by molecular imaging phenotyping not only utilizing pre-treatment SSTR PET but 18F-Fluorodeoxyglucose (18F-FDG) PET to provide insights into the intra- or inter-tumoural heterogeneity of the metastatic disease. Molecular imaging phenotyping may go beyond patient selection and provide useful information during and post-treatment for monitoring of temporal heterogeneity of the disease and dynamically risk-stratify patients. In addition, advances in the understanding of genomic-phenotypic classifications of pheochromocytomas and paragangliomas led to an archetypical example in precision medicine by utilizing molecular imaging phenotyping to guide radioligand therapy. Novel non-SSTR based peptide receptors have also been explored diagnostically and therapeutically to overcome the tumour heterogeneity. In this paper, we review the current molecular imaging modalities that are being utilized for the characterization of the NENs with special emphasis on their role in patient selection for radioligand therapy.
Collapse
|
16
|
Ralli GP, Carter RD, McGowan DR, Cheng WC, Liu D, Teoh EJ, Patel N, Gleeson F, Harris AL, Lord SR, Buffa FM, Fenwick JD. Radiogenomic analysis of primary breast cancer reveals [18F]-fluorodeoxglucose dynamic flux-constants are positively associated with immune pathways and outperform static uptake measures in associating with glucose metabolism. Breast Cancer Res 2022; 24:34. [PMID: 35581637 PMCID: PMC9115966 DOI: 10.1186/s13058-022-01529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND PET imaging of 18F-fluorodeoxygucose (FDG) is used widely for tumour staging and assessment of treatment response, but the biology associated with FDG uptake is still not fully elucidated. We therefore carried out gene set enrichment analyses (GSEA) of RNA sequencing data to find KEGG pathways associated with FDG uptake in primary breast cancers. METHODS Pre-treatment data were analysed from a window-of-opportunity study in which 30 patients underwent static and dynamic FDG-PET and tumour biopsy. Kinetic models were fitted to dynamic images, and GSEA was performed for enrichment scores reflecting Pearson and Spearman coefficients of correlations between gene expression and imaging. RESULTS A total of 38 pathways were associated with kinetic model flux-constants or static measures of FDG uptake, all positively. The associated pathways included glycolysis/gluconeogenesis ('GLYC-GLUC') which mediates FDG uptake and was associated with model flux-constants but not with static uptake measures, and 28 pathways related to immune-response or inflammation. More pathways, 32, were associated with the flux-constant K of the simple Patlak model than with any other imaging index. Numbers of pathways categorised as being associated with individual micro-parameters of the kinetic models were substantially fewer than numbers associated with flux-constants, and lay around levels expected by chance. CONCLUSIONS In pre-treatment images GLYC-GLUC was associated with FDG kinetic flux-constants including Patlak K, but not with static uptake measures. Immune-related pathways were associated with flux-constants and static uptake. Patlak K was associated with more pathways than were the flux-constants of more complex kinetic models. On the basis of these results Patlak analysis of dynamic FDG-PET scans is advantageous, compared to other kinetic analyses or static imaging, in studies seeking to infer tumour-to-tumour differences in biology from differences in imaging. Trial registration NCT01266486, December 24th 2010.
Collapse
Affiliation(s)
- G P Ralli
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - R D Carter
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Doctoral Training Centre, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Road, Oxford, OX1 3PT, UK
| | - D R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK.
| | - W-C Cheng
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - D Liu
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - E J Teoh
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - N Patel
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
| | - F Gleeson
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
| | - A L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - S R Lord
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - F M Buffa
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - J D Fenwick
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| |
Collapse
|
17
|
Association between tumor 18F-fluorodeoxyglucose metabolism and survival in women with estrogen receptor-positive, HER2-negative breast cancer. Sci Rep 2022; 12:7858. [PMID: 35552460 PMCID: PMC9098458 DOI: 10.1038/s41598-022-11603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
We examined whether 18F-fluorodeoxyglucose metabolism is associated with distant relapse-free survival (DRFS) and overall survival (OS) in women with estrogen receptor (ER)-positive, HER2-negative breast cancer. This was a cohort study examining the risk factors for survival that had occurred at the start of the study. A cohort from Asan Medical Center, Korea, recruited between November 2007 and December 2014, was included. Patients received anthracycline-based neoadjuvant chemotherapy. The maximum standardized uptake value (SUV) of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) was measured. The analysis included 466 women. The median (interquartile range) follow-up period without distant metastasis or death was 6.2 (5.3-7.6) years. Multivariable analysis of hazard ratio (95% confidence interval [CI]) showed that the middle and high tertiles of SUV were prognostic for DRFS (2.93, 95% CI 1.62-5.30; P < 0.001) and OS (4.87, 95% CI 1.94-12.26; P < 0.001). The 8-year DRFS rates were 90.7% (95% CI 85.5-96.1%) for those in the low tertile of maximum SUV vs. 73.7% (95% CI 68.0-79.8%) for those in the middle and high tertiles of maximum SUV. 18F-fluorodeoxyglucose PET/CT may assess the risk of distant metastasis and death in ER-positive, HER2-negative patients.
Collapse
|
18
|
Salas JR, Clark PM. SIGNALING PATHWAYS THAT DRIVE 18F-FDG ACCUMULATION IN CANCER. J Nucl Med 2022; 63:659-663. [PMID: 35241480 DOI: 10.2967/jnumed.121.262609] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
2-18F-fluoro-2-deoxy-D-glucose (18F-FDG) measures glucose consumption and is an integral part of cancer management. Most cancer types upregulate their glucose consumption, yielding elevated 18F-FDG PET accumulation in those cancer cells. The biochemical pathway through which 18F-FDG accumulates in cancer cells is well-established. However, beyond well-known regulators such as c-Myc, PI3K/Akt, and HIF1α, the proteins and signaling pathways that cancer cells modulate to activate the facilitated glucose transporters (GLUTs) and hexokinase enzymes that drive elevated 18F-FDG accumulation are less well-understood. Understanding these signaling pathways could yield additional biological insights from 18F-FDG PET scans and could suggest new uses of 18F-FDG PET in the management of cancer. Work over the past five years, building on studies from years prior, has identified new proteins and signaling pathways that drive glucose consumption in cancer. Here we review these recent studies and discuss current limitations to our understanding of glucose consumption in cancer.
Collapse
Affiliation(s)
| | - Peter M Clark
- University of California, Los Angeles, United States
| |
Collapse
|
19
|
Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med 2022; 63:342-352. [PMID: 35232879 DOI: 10.2967/jnumed.121.263518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Learning Objectives: On successful completion of this activity, participants should be able to describe (1) describe principles of PET tracer kinetic analysis for oncologic applications; (2) list methods used for PET kinetic analysis for oncology; and (3) discuss application of kinetic modeling for cancer-specific diagnostic needs.Financial Disclosure: This work was supported by KL2 TR001879, R01 CA211337, R01 CA113941, R33 CA225310, Komen SAC130060, R50 CA211270, and K01 DA040023. Dr. Pantel is a consultant or advisor for Progenics and Blue Earth Diagnostics and is a meeting participant or lecturer for Blue Earth Diagnostics. Dr. Mankoff is on the scientific advisory boards of GE Healthcare, Philips Healthcare, Reflexion, and ImaginAb and is the owner of Trevarx; his wife is the chief executive officer of Trevarx. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through March 2025PET enables noninvasive imaging of regional in vivo cancer biology. By engineering a radiotracer to target specific biologic processes of relevance to cancer (e.g., cancer metabolism, blood flow, proliferation, and tumor receptor expression or ligand binding), PET can detect cancer spread, characterize the cancer phenotype, and assess its response to treatment. For example, imaging of glucose metabolism using the radiolabeled glucose analog 18F-FDG has widespread applications to all 3 of these tasks and plays an important role in cancer care. However, the current clinical practice of imaging at a single time point remote from tracer injection (i.e., static imaging) does not use all the information that PET cancer imaging can provide, especially to address questions beyond cancer detection. Reliance on tracer measures obtained only from static imaging may also lead to misleading results. In this 2-part continuing education paper, we describe the principles of tracer kinetic analysis for oncologic PET (part 1), followed by examples of specific implementations of kinetic analysis for cancer PET imaging that highlight the added benefits over static imaging (part 2). This review is designed to introduce nuclear medicine clinicians to basic concepts of kinetic analysis in oncologic imaging, with a goal of illustrating how kinetic analysis can augment our understanding of in vivo cancer biology, improve our approach to clinical decision making, and guide the interpretation of quantitative measures derived from static images.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Varsha Viswanath
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
20
|
An S, Zhang D, Zhang Y, Wang C, Shi L, Wei W, Huang G, Liu J. GPC3-targeted immunoPET imaging of hepatocellular carcinomas. Eur J Nucl Med Mol Imaging 2022; 49:2682-2692. [PMID: 35147737 DOI: 10.1007/s00259-022-05723-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Early detection of hepatocellular carcinoma (HCC) remains a clinical challenge. Glypican 3 (GPC3) is a proteoglycan highly specific for HCC and is a potential diagnostic and therapeutic target for HCC. This work aims to develop GPC3-targeted immuno-positron emission tomography (immunoPET) imaging strategies and to assess the diagnostic values in preclinical HCC models. METHODS Flow cytometry was used to screen GPC3-positive HCC cell lines. The expression of GPC3 in HCCs was detected by immunohistochemistry on tissue microarray. A novel GPC3-specific single domain antibody (sdAb) was produced and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) and fluorine-18 (18F, T1/2 = 1.8 h) to develop radiotracers with different half-lives. The diagnostic efficacies of the developed probes (i.e., [68Ga]Ga-NOTA-G2, [18F]F-G2, and [68Ga]Ga-NOTA-ABDG2) were interrogated in preclinical HCC models bearing varying GPC3 levels. RESULTS GPC3 was strongly expressed on HCC cell lines and patients with poorly differentiated HCC. [68Ga]Ga-NOTA-G2 immunoPET imaging specifically delineated the subcutaneous HCC lesions, outperforming the traditional 18F-fluorodeoxyglucose PET and the nonspecific [68Ga]Ga-NOTA-NbGFP immunoPET. ImmunoPET imaging with [18F]F-G2 also efficiently diagnosed the tumors with clarity. Moreover, the fusion of G2 to an albumin-binding domain (ABD) significantly increased the tumor uptake and decreased kidney accumulation of the radiotracer when compared to [68Ga]Ga-NOTA-G2. CONCLUSIONS In the work, we successfully developed sdAb-derived GPC3-targeted immunoPET imaging strategies and characterized the superior diagnostic accuracies in preclinical HCC models. Furthermore, we synthesized a fusion protein ABDG2 with improved targeting and pharmacokinetic properties, serving as a promising candidate for developing radioimmunotherapy agents.
Collapse
Affiliation(s)
- Shuxian An
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China
| | - Weijun Wei
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Gang Huang
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
21
|
Choi JU, Hwang S, Ahn CS, Moon DB, Ha TY, Song GW, Jung DH, Kim JS, Hong SM. Diagnostic and prognostic impact of fluorodeoxyglucose-positron emission tomography in diagnosing intraductal papillary neoplasms of the bile duct of the liver. Ann Surg Treat Res 2022; 102:335-341. [PMID: 35800995 PMCID: PMC9204025 DOI: 10.4174/astr.2022.102.6.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Malignant intraductal papillary neoplasm of the bile duct of the liver (IPNB-L) cannot readily be diagnosed through preoperative CT or MRI, but fluorodeoxyglucose (FDG)-PET is a viable alternative. This study evaluated the diagnostic and prognostic impacts of FDG-PET in patients with IPNB-L. Methods This was a retrospective single-center study of 101 IPNB-L patients who underwent hepatectomy between 2010 and 2019. Results Mean age was 64.4 ± 8.3 years and 76 (75.2%) were male. Anatomical hepatic resection was performed in 99 (98.0%). Concurrent bile duct resection and pancreaticoduodenectomy were performed in 41 (40.6%) and 1 (1.0%), respectively. R0 and R1 resections were performed in 88 (87.1%) and 13 (12.9%), respectively. Low-grade intraepithelial neoplasia and high-grade neoplasia/invasive carcinoma were diagnosed in 19 (18.8%) and 82 (81.2%), respectively. Median FDG-PET maximal standardized uptake values (SUVmax) in low-grade neoplasia and high-grade neoplasia/carcinoma were 3.6 (range, 1.7–7.6) and 5.2 (range, 1.5–18.7) (P = 0.019), respectively. Receiver operating characteristic curve analysis of SUVmax showed area under the curve of 0.674, with sensitivity of 84.2% and specificity of 47.4% at SUVmax cutoff of 3.0. This cutoff had no significant influence on tumor recurrence (P = 0.832) or patient survival (P = 0.996) in patients with IPNB-L of high-grade neoplasia or invasive carcinoma. Conclusion IPNB-L is a rare type of biliary neoplasm and encompasses a histological spectrum ranging from benign disease to invasive carcinoma. An FDG-PET SUVmax cutoff of 3.0 appears to effectively discern high-grade neoplasia/carcinoma from low-grade neoplasia, which will assist with the surgical strategy for these cases.
Collapse
Affiliation(s)
- Jin Uk Choi
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chul-Soo Ahn
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok-Bog Moon
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Yong Ha
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi-Won Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hwan Jung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Ahmed IS, El Gaafary SM, Elia RZ, Hussein RS. FDG-PET/CT in predicting aggressiveness of rectal cancer. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Treatment response varies significantly among rectal cancer patients. Tumor can show complete regression, stationary appearance, or even tumour progression during the treatment. It is also widely known that the rate of local recurrence is variable. Precise risk stratification of tumor aggressiveness is required for better per patient tailored treatment plan and predicting the overall prognosis of rectal cancer patients The aim of this study was to assess different parameters of baseline [18F] fluorodeoxyglucose positron emission tomography/computed tomography [(18F) FDG-PET/CT] as a non-invasive tool in predicting aggressiveness of the rectal cancer.
Results
Overall, 33 patients were included [19 moderately differentiated adenocarcinoma, 10 poorly differentiated adenocarcinoma and 4 mucinous adenocarcinomas (MAC)]. SUV estimates (SUV max, SUV mean) were greater in the moderately adenocarcinoma group (p = 0.003 and p = 0.019, respectively). MTV and TLG values were similar between the three histopathological groups (p = 0.763 and p = 0.701, respectively). There was no correlation between SUVmax of primary tumor and MTV (r = 0.034; p = 0.849). However, SUVmax and TLG were significantly correlated (r = 0.517; p = 0.002). Strong correlation between tumor size and MTV (r = 0.489; p = 0.003), and TLG (r = 0.506; p = 0.003) were observed. No significant association was found between MTV and TLG and the clinical stage of rectal cancer.
Conclusion
Baseline 18F-FDG PET/CT parameters cannot be used alone as a non-invasive diagnostic technique in assessing aggressiveness and prognosis in patients with primary rectal cancer, and further clinical studies are needed before considering the prognostic role of FDG-PET/CT in rectal cancer.
Collapse
|
23
|
Xu T, Liu J, Xia Y, Wang Z, Li X, Gao Q. Integrated analysis reveals the participation of IL4I1, ITGB7, and FUT7 in reshaping the TNBC immune microenvironment by targeting glycolysis. Ann Med 2021; 53:916-928. [PMID: 34134578 PMCID: PMC8604452 DOI: 10.1080/07853890.2021.1937694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The overall response rate of immunotherapy in triple-negative breast cancer (TNBC) remains unsatisfactory. Accumulating evidence indicated that glucose metabolic reprogramming could modulate immunotherapy efficacy. However, transcriptomic evidence remains insufficient. METHODS Genes' relationship with glucose metabolism and TNBC-specific immune was demonstrated by weighted gene co-expression network analysis (WGCNA). The glucose metabolic capability was estimated by standardised uptake value (SUV), an indicator of glucose uptake in 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET), and a reflection of cancer metabolic behaviour. PD-(L)1 expression was used to reflect the efficacy of immunotherapy. Additionally, immune infiltration, survival, and gene coexpression profiles were provided. RESULTS Comprehensive analysis revealing that IL4I1, ITGB7, and FUT7 hold the potential to reinforce immunotherapy by reshaping glucose metabolism in TNBC. These results were verified by functional enrichment analysis, which demonstrated their relationships with immune-related signalling pathways and extracellular microenvironment reprogramming. Their expressions have potent positive correlations with Treg and Macrophage cell infiltration and exhausted T cell markers. Meanwhile, their overexpression also lead to poor prognosis. CONCLUSION IL4I1, ITGB7, and FUT7 may be the hub genes that link glucose metabolism, and cancer-specific immunity. They may be potential targets for enhancing ICB treatment by reprogramming the tumour microenvironment and remodelling tumour metabolism.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Liu
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Li Y, Li Y, Huang Y, Wu X, Yang Z, Wu C, Jiang L. Usefulness of 18F-FDG PET/CT in treatment-naive patients with thymic squamous cell carcinoma. Ann Nucl Med 2021; 35:1048-1057. [PMID: 34101153 DOI: 10.1007/s12149-021-01640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Thymic squamous cell carcinoma (TSCC) is very rare. This study aims to investigate the clinical utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in treatment-naive patients with TSCC. METHODS The tumor metabolic parameters of 18F-FDG PET/CT, including maximum standard uptake value (SUVmax), metabolic tumor volume of primary lesion (MTV-P) and combination of primary lesion and metastases (MTV-C), and total lesion glycolysis of primary lesion (TLG-P) and combination of primary lesion and metastases (TLG-C) were collected. Age, sex, smoking, serum tumor markers, tumor size, Masaoka-Koga stage, TNM stage, contrast-enhanced CT scan, and tumor immunity were also reviewed. Moreover, progression-free survival (PFS) and overall survival (OS) of these patients were analyzed. RESULTS Forty-two treatment-naive patients with TSCC were enrolled in this study. All primary tumors were FDG-avid with the average SUVmax of 10.0 ± 4.5 (range, 1.5-20.4). Higher SUVmax, MTV-C, and TLG-C were observed in advanced Masaoka-Koga stage than early stage, and higher SUVmax was found in advanced TNM stage than early stage. Next, 36 out of 42 patients performed chest contrast-enhanced CT scan, which showed SUVmax associated with the enhancement degree of CT. Moreover, 27 out of 42 lesions were assessed tumor immunity, and the detective rates of PD-L1, PD-1, CD4, CD8, and Foxp3 were 59.3%, 37.0%, 59.3%, 100%, and 77.8%, respectively. Higher SUVmax was observed in lesions with lower CD4-positive tumor-infiltrating lymphocytes. Furthermore, 12- and 24-month PFS and OS rates were 62.0% vs 32.8% and 84.5% vs 68.9%, respectively. Multivariate Cox regression analysis showed that only MTV-C was an independent predictor of PFS. CONCLUSION 18F-FDG PET/CT is useful in evaluating tumor staging, assessing CT enhancement degree, and detecting tumor immunity of TSCC before treatment. 18F-FDG PET/CT could also be a promising tool to provide prognostic information for treatment-naive patients with TSCC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yi Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiaodong Wu
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Zi Yang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Lei Jiang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
25
|
Kobata T, Maeda Y, Morimoto M, Oishi A, Matsumoto K, Sasakawa Y, Monden T, Iwasaki T. [Investigation of the Administration Accuracy of an Auto Infusion Device in 18F-FDG PET]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:726-730. [PMID: 34305059 DOI: 10.6009/jjrt.2021_jsrt_77.7.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE The administration accuracy of the automated infusion device for the positron emission radiopharmaceutical affects to calculation of the standardized uptake value (SUV) in 18F-fluorodeoxyglucose (18F-FDG) PET examination. The purpose of this study was to investigate the administration error in the clinical use of an automated infusion device for quantitative management in PET examination. METHODS We assumed clinical use of the automated infusion device and investigated two types of administration errors. First, for investigating the administration error over time in a day (errorday), a total of 13 infusion works were performed every 30 minutes. Second, for investigating the long period administration error (errorperiod), the infusion work was performed once before clinical use of an automated infusion device. The dispensed radioactivity was set to 150 MBq. The administration error was calculated using output values from the automated infusion device and measured values from the dose calibrator. RESULTS The administration errorday was 0.9±1.3%, and the maximum error was 2.7%. The administration errorperiod was 1.1±2.0%, and the maximum error was 5.9%. CONCLUSION We investigated the administration error of the automated infusion device. We confirmed the approximately 1% administration error and high-accuracy injection in an automated-device method.
Collapse
Affiliation(s)
- Takuya Kobata
- Department of Clinical Radiology, Kagawa University Hospital
| | - Yukito Maeda
- Department of Clinical Radiology, Kagawa University Hospital
| | | | - Akihiro Oishi
- Department of Clinical Radiology, Kagawa University Hospital
| | | | | | | | | |
Collapse
|
26
|
Miranda-Gonçalves V, Gonçalves CS, Granja S, Vieira de Castro J, Reis RM, Costa BM, Baltazar F. MCT1 Is a New Prognostic Biomarker and Its Therapeutic Inhibition Boosts Response to Temozolomide in Human Glioblastoma. Cancers (Basel) 2021; 13:cancers13143468. [PMID: 34298681 PMCID: PMC8306807 DOI: 10.3390/cancers13143468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma, the brain tumour with highest prevalence and lethality, exhibits a characteristic glycolytic phenotype with increased lactate production. Recently, we reported a MCT1 overexpression in GBMs tumours, being associated to tumour growth and aggressiveness. Thus, we aimed to disclose the role of MCT1 in GBM prognosis and in vivo therapy response. Importantly, MCT1 overexpression is associated with poor prognosis of GBM. Moreover, MCT1 inhibition retards GBM tumour growth and boosts response to temozolomide treatment. Abstract Background: Glioblastomas (GBMs) present remarkable metabolism reprograming, in which many cells display the “Warburg effect”, with the production of high levels of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). We described previously that MCT1 is up-regulated in human GBM samples, and MCT1 inhibition decreases glioma cell viability and aggressiveness. In the present study, we aimed to unveil the role of MCT1 in GBM prognosis and to explore it as a target for GBM therapy in vivo. Methods: MCT1 activity and protein expression were inhibited by AR-C155858 and CHC compounds or stable knockdown with shRNA, respectively, to assess in vitro and in vivo the effects of MCT1 inhibition and on response of GBM to temozolomide. Survival analyses on GBM patient cohorts were performed using Cox regression and Log-rank tests. Results: High levels of MCT1 expression were revealed to be a predictor of poor prognosis in multiple cohorts of GBM patients. Functionally, in U251 GBM cells, MCT1 stable knockdown decreased glucose consumption and lactate efflux, compromising the response to the MCT1 inhibitors CHC and AR-C155858. MCT1 knockdown significantly increased the survival of orthotopic GBM intracranial mice models when compared to their control counterparts. Furthermore, MCT1 downregulation increased the sensitivity to temozolomide in vitro and in vivo, resulting in significantly longer mice survival. Conclusions: This work provides first evidence for MCT1 as a new prognostic biomarker of GBM survival and further supports MCT1 targeting, alone or in combination with classical chemotherapy, for the treatment of GBM.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Research Centre in Health and Environment (CISA), School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-604828
| |
Collapse
|
27
|
Ghergurovich JM, Lang JD, Levin MK, Briones N, Facista SJ, Mueller C, Cowan AJ, McBride MJ, Rodriguez ESR, Killian A, Dao T, Lamont J, Barron A, Su X, Hendricks WP, Espina V, Von Hoff DD, O’Shaughnessy J, Rabinowitz JD. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer. MED 2021; 2:736-754. [PMID: 34223403 PMCID: PMC8248508 DOI: 10.1016/j.medj.2021.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Upregulated glucose metabolism is a common feature of tumors. Glucose can be broken down by either glycolysis or the oxidative pentose phosphate pathway (oxPPP). The relative usage within tumors of these catabolic pathways remains unclear. Similarly, the extent to which tumors make biomass precursors from glucose, versus take them up from the circulation, is incompletely defined. METHODS We explore human triple negative breast cancer (TNBC) metabolism by isotope tracing with [1,2-13C]glucose, a tracer that differentiates glycolytic versus oxPPP catabolism and reveals glucose-driven anabolism. Patients enrolled in clinical trial NCT03457779 and received IV infusion of [1,2-13C]glucose during core biopsy of their primary TNBC. Tumor samples were analyzed for metabolite labeling by liquid chromatography-mass spectrometry (LC-MS). Genomic and proteomic analyses were performed and related to observed metabolic fluxes. FINDINGS TNBC ferments glucose to lactate, with glycolysis dominant over the oxPPP. Most ribose phosphate is nevertheless produced by oxPPP. Glucose also feeds amino acid synthesis, including of serine, glycine, aspartate, glutamate, proline and glutamine (but not asparagine). Downstream in glycolysis, tumor pyruvate and lactate labeling exceeds that found in serum, indicating that lactate exchange via monocarboxylic transporters is less prevalent in human TNBC compared with most normal tissues or non-small cell lung cancer. CONCLUSIONS Glucose directly feeds ribose phosphate, amino acid synthesis, lactate, and the TCA cycle locally within human breast tumors.
Collapse
Affiliation(s)
- Jonathan M. Ghergurovich
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jessica D. Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Maren K. Levin
- Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Natalia Briones
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Salvatore J. Facista
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Alexis J. Cowan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew J. McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | - Aaron Killian
- Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Tuoc Dao
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Jeffrey Lamont
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Alison Barron
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901 USA
| | - William P.D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Daniel D. Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Joyce O’Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
28
|
Choi YJ, Jo K, Hwang SH, Jeong Y, Lee JY, Kim S, Kim SW, Kim YT, Kang WJ. Association between PD-L1 expression and 18F-FDG uptake in ovarian cancer. Ann Nucl Med 2021; 35:415-420. [PMID: 33656683 DOI: 10.1007/s12149-020-01571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Immunotherapy for programmed cell death 1 (PD-1) and its ligand, PD-L1, has been considered an effective treatment for ovarian cancer. 18F-labeled fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is a widely used noninvasive imaging tool for diagnosing several cancers. In this study, we investigated the association between PD-L1 expression and the maximum standardized uptake value (SUVmax) using 18F-FDG PET/CT. METHODS We retrospectively analyzed clinical data of patients with ovarian cancer who underwent 18F-FDG PET/CT. Patients were categorized into two groups according to PD-L1 expression results. The relationship between clinicopathological characteristics of patients with ovarian cancer and PD-L1 expression was examined. RESULTS SUVmax was significantly higher in PD-L1-positive tumors than in PD-L1-negative tumors (16.1 ± 5.2 and 12.7 ± 7.0, respectively; p = 0.026). There were no significant differences in age, histologic type, and tumor grade between the PD-L1-negative and PD-L1-positive groups. The receiver operating characteristic curve analysis demonstrated that the highest accuracy (61.8%) for predicting PD-L1 expression was obtained with an SUVmax cutoff value of 10.5. CONCLUSION There was a significant correlation between 18F-FDG uptake and PD-L1 expression, suggesting a role of 18F-FDG PET/CT in selecting ovarian cancer candidates for anti-PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Yun Jung Choi
- Department of Nuclear Medicine, Graduate School, Yonsei University College of Medicine, Seoul, South Korea
| | - KwanHyeong Jo
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Sang Hyun Hwang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, South Korea
| | - YongHyu Jeong
- Department of Nuclear Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, South Korea.
| |
Collapse
|
29
|
Flaus A, Nevesny S, Guy JB, Sotton S, Magné N, Prévot N. Positron emission tomography for radiotherapy planning in head and neck cancer: What impact? Nucl Med Commun 2021; 42:234-243. [PMID: 33252513 DOI: 10.1097/mnm.0000000000001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PET-computed tomography (CT) plays a growing role to guide target volume delineation for head and neck cancer in radiation oncology. Pretherapeutic [18F]FDG PET-CT adds information to morphological imaging. First, as a whole-body imaging modality, it reveals regional or distant metastases that induce major therapeutic changes in more than 10% of the cases. Moreover, it allows better pathological lymph node selection which improves overall regional control and overall survival. Second, locally, it allows us to define the metabolic tumoral volume, which is a reliable prognostic feature for survival outcome. [18F]FDG PET-CT-based gross tumor volume (GTV) is on average significantly smaller than GTV based on CT. Nevertheless, the overlap is incomplete and more evaluation of composite GTV based on PET and GTV based on CT are needed. However, in clinical practice, the study showed that using GTV PET alone for treatment planning was similar to using GTVCT for local control and dose distribution was better as a dose to organs at risk significantly decreased. In addition to FDG, pretherapeutic PET could give access to different biological tumoral volumes - thanks to different tracers - guiding heterogeneous dose delivery (dose painting concept) to resistant subvolumes. During radiotherapy treatment, follow-up [18F]FDG PET-CT revealed an earlier and more important diminution of GTV than other imaging modality. It may be a valuable support for adaptative radiotherapy as a new treatment plan with a significant impact on dose distribution became possible. Finally, additional studies are required to prospectively validate long-term outcomes and lower toxicity resulting from the use of PET-CT in treatment planning.
Collapse
Affiliation(s)
- Anthime Flaus
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Saint-Etienne, St Etienne
| | - Stéphane Nevesny
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
| | - Jean-Baptiste Guy
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
- UMR CNRS 5822/IN2P3, IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins Cedex
| | - Sandrine Sotton
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, University Departement of Research and Teaching
| | - Nicolas Magné
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
- UMR CNRS 5822/IN2P3, IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins Cedex
| | - Nathalie Prévot
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Saint-Etienne, St Etienne
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
30
|
Lee Y, Joo J, Lee YJ, Lee EK, Park S, Kim TS, Lee SH, Kim SY, Wie GA, Park M, Kim MJ, Lee JS, Han JY. Randomized phase II study of platinum-based chemotherapy plus controlled diet with or without metformin in patients with advanced non-small cell lung cancer. Lung Cancer 2020; 151:8-15. [PMID: 33278671 DOI: 10.1016/j.lungcan.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accumulating evidence indicates anti-diabetic drug metformin has anti-cancer effect by controlling cancer metabolism. We evaluated whether addition of metformin to chemotherapy improved survival of lung cancer patients. MATERIALS AND METHODS This randomized phase II study enrolled 164 patients with chemo-native, EGFR-ALK wild-type, stage IIIB/IV non-small-cell lung cancer (NSCLC). Patients were randomized to receive chemotherapy either with metformin (1000 mg twice daily) or alone every 3 weeks for six cycles. The patients received gemcitabine (1000 mg/m2) on days 1 and 8 and carboplatin (5 area under the curve) on day 1. Exploratory studies included serum metabolic panels, positron-emission tomography (PET) imaging, and genetic mutation tests for metabolism-related genes. RESULTS Metformin group showed no significant difference in the risk of progression and death compared to control group (progression: hazard ratio [HR] = 1.01 [95% confidence interval (CI) = 0.72 - 1.42], P = 0.935; death: HR = 0.95 [95% CI = 0.67-1.34], P = 0.757). Squamous cell carcinoma (SqCC) had significantly higher fluorodeoxyglucose (FDG) uptake on baseline PET image than non-SqCC NSCLC (P = 0.004). In the SqCC with high FDG uptake, the addition of metformin significantly decreased the risk of progression and death (progression: HR = 0.31 [95% CI = 0.12-0.78], P = 0.013; death: HR = 0.42 [95% CI = 0.18-0.94], P = 0.035). The HDL-cholesterol level was significantly increased after the treatment in metformin group compared to control group (P = 0.011). The metformin group showed no survival benefit in the patients with hyperinsulinemia or patients whose insulin level was decreased after treatment. CONCLUSIONS Addition of metformin to chemotherapy provided no survival benefit in unselected NSCLC patients. However, it significantly improved the survival of the selected patients with SqCC showing high FDG uptake. It suggests metformin shows the synergistic anti-tumor effect in the tumor which are highly dependent on glucose metabolism.
Collapse
Affiliation(s)
- Youngjoo Lee
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - You Jin Lee
- Division of Endocrinology, Department of Internal Medicine, National Cancer Center Korea, Goyang, Republic of Korea
| | - Eun Kyung Lee
- Division of Endocrinology, Department of Internal Medicine, National Cancer Center Korea, Goyang, Republic of Korea
| | - Sohyun Park
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Department of Nuclear Medicine, National Cancer Center Korea, Goyang, Republic of Korea
| | - Soo-Hyun Lee
- Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea
| | - So Young Kim
- Department of Clinical Nutrition, National Cancer Center Korea, Goyang, Republic of Korea
| | - Gyung-Ah Wie
- Department of Clinical Nutrition, National Cancer Center Korea, Goyang, Republic of Korea
| | - Minjoung Park
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea
| | - Mi-Jung Kim
- Division of Medical Oncology, Department of Internal Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Jin Soo Lee
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea.
| |
Collapse
|
31
|
Nucleophosmin 1 overexpression correlates with 18F-FDG PET/CT metabolic parameters and improves diagnostic accuracy in patients with lung adenocarcinoma. Eur J Nucl Med Mol Imaging 2020; 48:904-912. [PMID: 32856112 DOI: 10.1007/s00259-020-05005-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE This study investigated the correlation of nucleophosmin 1 (NPM1) expression with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerised tomography scan (PET/CT)-related parameters and compared the diagnostic value of NPM1 with that of the positive biomarker TTF1 in lung adenocarcinoma patients. METHODS Forty-six lung adenocarcinoma patients who underwent 18F-FDG PET/CT before pulmonary surgery were retrospectively analysed. Metabolic parameters including SUVmax, SUVmean, metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were calculated from 18F-FDG PET imaging data. The expression levels of NPM1 and TTF1 were assessed using The Cancer Genome Atlas (TCGA) database and immunohistochemistry of tumour tissues and adjacent normal lung tissues. We examined the association between the frequency of NPM1 and TTF1 expression and the metabolic parameters. RESULTS Lung adenocarcinoma samples expressed higher levels of NPM1 than adjacent normal lung epithelial tissues. NPM1 showed higher specificity and sensitivity for lung adenocarcinoma compared with TTF1 (p < 0.001). SUVmax, SUVmean and TLG correlated with NPM1 expression (p < 0.001). MTV was inversely correlated with TTF1 (p < 0.01). SUVmax was the primary predictor of NPM1 expression by lung adenocarcinoma (p < 0.01). A cutoff value for the SUVmax of 3.93 allowed 90.9% sensitivity and 84.6% specificity for predicting NPM1 overexpression in lung adenocarcinoma. CONCLUSION NPM1 overexpression correlated with 18F-FDG PET/CT metabolic parameters and improved diagnostic accuracy in lung adenocarcinoma. SUVmax on 18F-FDG PET/CT may estimate NPM1 expression for targeted therapy of lung adenocarcinoma.
Collapse
|
32
|
Recent and Current Advances in FDG-PET Imaging within the Field of Clinical Oncology in NSCLC: A Review of the Literature. Diagnostics (Basel) 2020; 10:diagnostics10080561. [PMID: 32764429 PMCID: PMC7459495 DOI: 10.3390/diagnostics10080561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths around the world, the most common type of which is non-small-cell lung cancer (NSCLC). Computed tomography (CT) is required for patients with NSCLC, but often involves diagnostic issues and large intra- and interobserver variability. The anatomic data obtained using CT can be supplemented by the metabolic data obtained using fluorodeoxyglucose F 18 (FDG) positron emission tomography (PET); therefore, the use of FDG-PET/CT for staging NSCLC is recommended, as it provides more accuracy than either modality alone. Furthermore, FDG-PET/magnetic resonance imaging (MRI) provides useful information on metabolic activity and tumor cellularity, and has become increasingly popular. A number of studies have described FDG-PET/MRI as having a high diagnostic performance in NSCLC staging. Therefore, multidimensional functional imaging using FDG-PET/MRI is promising for evaluating the activity of the intratumoral environment. Radiomics is the quantitative extraction of imaging features from medical scans. The chief advantages of FDG-PET/CT radiomics are the ability to capture information beyond the capabilities of the human eye, non-invasiveness, the (virtually) real-time response, and full-field analysis of the lesion. This review summarizes the recent advances in FDG-PET imaging within the field of clinical oncology in NSCLC, with a focus on surgery and prognostication, and investigates the site-specific strengths and limitations of FDG-PET/CT. Overall, the goal of treatment for NSCLC is to provide the best opportunity for long-term survival; therefore, FDG-PET/CT is expected to play an increasingly important role in deciding the appropriate treatment for such patients.
Collapse
|
33
|
Na KJ, Choi H, Oh HR, Kim YH, Lee SB, Jung YJ, Koh J, Park S, Lee HJ, Jeon YK, Chung DH, Paeng JC, Park IK, Kang CH, Cheon GJ, Kang KW, Lee DS, Kim YT. Reciprocal change in Glucose metabolism of Cancer and Immune Cells mediated by different Glucose Transporters predicts Immunotherapy response. Theranostics 2020; 10:9579-9590. [PMID: 32863946 PMCID: PMC7449929 DOI: 10.7150/thno.48954] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023] Open
Abstract
The metabolic properties of tumor microenvironment (TME) are dynamically dysregulated to achieve immune escape and promote cancer cell survival. However, in vivo properties of glucose metabolism in cancer and immune cells are poorly understood and their clinical application to development of a biomarker reflecting immune functionality is still lacking. Methods: We analyzed RNA-seq and fluorodeoxyglucose (FDG) positron emission tomography profiles of 63 lung squamous cell carcinoma (LUSC) specimens to correlate FDG uptake, expression of glucose transporters (GLUT) by RNA-seq and immune cell enrichment score (ImmuneScore). Single cell RNA-seq analysis in five lung cancer specimens was performed. We tested the GLUT3/GLUT1 ratio, the GLUT-ratio, as a surrogate representing immune metabolic functionality by investigating the association with immunotherapy response in two melanoma cohorts. Results: ImmuneScore showed a negative correlation with GLUT1 (r = -0.70, p < 0.01) and a positive correlation with GLUT3 (r = 0.39, p < 0.01) in LUSC. Single-cell RNA-seq showed GLUT1 and GLUT3 were mostly expressed in cancer and immune cells, respectively. In immune-poor LUSC, FDG uptake was positively correlated with GLUT1 (r = 0.27, p = 0.04) and negatively correlated with ImmuneScore (r = -0.28, p = 0.04). In immune-rich LUSC, FDG uptake was positively correlated with both GLUT3 (r = 0.78, p = 0.01) and ImmuneScore (r = 0.58, p = 0.10). The GLUT-ratio was higher in anti-PD1 responders than nonresponders (p = 0.08 for baseline; p = 0.02 for on-treatment) and associated with a progression-free survival in melanoma patients who treated with anti-CTLA4 (p = 0.04). Conclusions: Competitive uptake of glucose by cancer and immune cells in TME could be mediated by differential GLUT expression in these cells.
Collapse
|
34
|
Wu C, Chen R, Xu L, Chen Y, Wang Y, Huang G, Liu J. Relationship between the expression of oestrogen receptor and progesterone receptor and 18F-FDG uptake in endometrial cancer. Aging (Albany NY) 2020; 12:12921-12929. [PMID: 32639950 PMCID: PMC7377875 DOI: 10.18632/aging.103352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Background: Progestogens have been widely used for the treatment of inoperable endometrial cancer or younger patients with endometrial cancer. Identifying markers that are predictive of a response to progestogens is critical for successful therapy. Molecular imaging with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) can provide metabolic phenotypic information of many malignancies. We investigated whether estrogen receptor (ER)/progestogen receptor (PR) status is correlated with 18F-FDG uptake, and whether 18F-FDG PET/CT could be useful for predicting ER/PR status in endometrial cancer. Results: Endometrial cancers in the ER-positive group had lower SUVmax than those in the ER-negative group (12.3 ± 6.2 vs. 19.9 ± 6.6, respectively; P = 0.003). Endometrial cancers in the PR-positive group also had lower SUVmax than those in the PR-negative group (12.4 ± 6.2 vs. 20.0 ± 6.9, respectively; P = 0.005). Multivariate analysis indicated that SUVmax and tumour differentiation grade were significantly associated with both ER and PR status (P = 0.027 and P = 0.044, respectively). ER expression was predicted with an accuracy of 74.2% when a SUVmax value of 15.3 was used as a cutoff point for analysis. Similarly, PR expression was predicted with an accuracy of 74.2%, when a SUVmax value of 15.95 was used as the threshold for analysis. Conclusion: Higher 18F-FDG accumulation in endometrial cancers is correlated with negative ER/PR expression. 18F-FDG PET/CT may be used to predict the status of ER/PR and thus aid in optimal treatment decision in endometrial cancers. Methods: We carried out a retrospective analysis on 62 endometrial cancer patients who underwent 18F-FDG PET/CT before radical treatment. The maximum of standardized uptake value (SUVmax) was calculated from the 18F-FDG accumulation of the primary tumor. The relationship between SUVmax and ER/PR status was analyzed.
Collapse
Affiliation(s)
- Chunhua Wu
- Department of Ultrasound, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Xu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumei Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yining Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gan Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Wei J, Huang K, Chen Z, Hu M, Bai Y, Lin S, Du H. Characterization of Glycolysis-Associated Molecules in the Tumor Microenvironment Revealed by Pan-Cancer Tissues and Lung Cancer Single Cell Data. Cancers (Basel) 2020; 12:cancers12071788. [PMID: 32635458 PMCID: PMC7408567 DOI: 10.3390/cancers12071788] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Altered metabolism is a hallmark of cancer and glycolysis is one of the important factors promoting tumor development. There is however still a lack of molecular characterization glycolysis and comprehensive studies related to tumor glycolysis in the pan-cancer landscape. Here, we applied a gene expression signature to quantify glycolysis in 9229 tumors across 25 cancer types and 7875 human lung cancer single cells and verified the robustness of signature using defined glycolysis samples from previous studies. We classified tumors and cells into glycolysis score-high and -low groups, demonstrated their prognostic associations, and identified genome and transcriptome molecular features associated with glycolysis activity. We observed that glycolysis score-high tumors were associated with worse prognosis across cancer types. High glycolysis tumors exhibited specific driver genes altered by copy number aberrations (CNAs) in most cancer types. Tricarboxylic acid (TCA) cycle, DNA replication, tumor proliferation and other cancer hallmarks were more active in glycolysis-high tumors. Glycolysis signature was strongly correlated with hypoxia signature in all 25 cancer tissues (r > 0.7) and cancer single cells (r > 0.8). In addition, HSPA8 and P4HA1 were screened out as the potential modulating factors to glycolysis as their expression were highly correlated with glycolysis score and glycolysis genes, which enables future efforts for therapeutic options to block the glycolysis and control tumor progression. Our study provides a comprehensive molecular-level understanding of glycolysis with a large sample data and demonstrates the hypoxia pressure, growth signals, oncogene mutation and other potential signals could activate glycolysis, thereby to regulate cell cycle, energy material synthesis, cell proliferation and cancer progression.
Collapse
|
36
|
Wu X, Huang Y, Zhao Q, Wang L, Song X, Li Y, Jiang L. PD-L1 expression correlation with metabolic parameters of FDG PET/CT and clinicopathological characteristics in non-small cell lung cancer. EJNMMI Res 2020; 10:51. [PMID: 32430866 PMCID: PMC7237589 DOI: 10.1186/s13550-020-00639-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immunotherapy targeting programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown promising results in non-small cell lung cancer (NSCLC) patients. Exploring PD-L1 expression could help to select NSCLC candidates for immunotherapy. Fluorine-18 fluorodeoxyglucose (FDG) PET/CT could provide phenotypic information on malignant tumors. Thus, this study investigated PD-L1 expression correlation with metabolic parameters of FDG PET/CT and clinicopathological characteristics in NSCLC. METHODS FDG PET/CT metabolic parameters including maximum standard uptake (SUVmax), metabolic tumor volume and total lesion glycolysis of primary lesion (MTV-P, TLG-P), and combination of primary lesion and metastases (MTV-C, TLG-C) were compared with PD-L1-positive expression in patients with NSCLC. Moreover, clinicopathological characteristics, including age, gender, smoking history, serum tumor markers, tumor location, size, TNM stage, and genetic mutation were also reviewed. RESULTS All 374 patients (215 men; 159 women; age 63 ± 9 years) included 283 adenocarcinomas (ACs) and 91 squamous cell carcinomas (SCCs). PD-L1 expression was positive in 27.8% (104/374) cases. SUVmax, TLG-P, and TLG-C of PD-L1 positivity were significantly higher than PD-L1 negativity. Moreover, PD-L1 expression was obviously correlated with man, smoking, and central NSCLC. If ACs and SCCs were separately analyzed, PD-L1 positivity in ACs and SCCs was 21.6% (61/283) and 47.5% (43/91), respectively, and only SUVmax was obviously associated with PD-L1 expression. Furthermore, multivariate analysis revealed that only SUVmax was an independent predictor of PD-L1 positive expression in overall NSCLC, AC, and SCC. Using a SUVmax cut-off value of 12.5, PD-L1 status of NSCLC was predicted by FDG PET/CT with sensitivity, specificity, and accuracy of 65.4%, 86.7%, and 80.7%, respectively. CONCLUSIONS PD-L1 expression of NSCLC was related to SUVmax, TLG, man, smoking, and central location. However, only SUVmax was an independent predictor of PD-L1 positivity, which could help to explore the existence of immune checkpoints.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China.,Medical College of Soochow University, Suzhou, 215123, China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Qingping Zhao
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Lei Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yi Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Lei Jiang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
37
|
Adenine Nucleotide Translocase 2 as an Enzyme Related to [ 18F] FDG Accumulation in Various Cancers. Mol Imaging Biol 2020; 21:722-730. [PMID: 30225759 DOI: 10.1007/s11307-018-1268-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Although glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) are known as major proteins involved in the molecular mechanisms for accumulating 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in cancer cells, sometimes, [18F] FDG accumulation cannot be explained by the expression of these two proteins. We investigated the involvement of adenine nucleotide translocase 2 (ANT2), which catalyzes ADP/ATP exchange at the mitochondrial inner membrane, in [18F] FDG accumulation. PROCEDURES ANT2 expression was evaluated in various cancer cell lines and human cancer tissues (microarrays) using western blot and immunohistochemical (IHC) staining, respectively. The expression levels of ANT2 were compared to [18F] FDG accumulation and pathologic findings, including differentiation grade. Additionally, we modulated ANT2 expression levels using ANT2 siRNA and an ANT2 expression vector in cancer cells and murine xenografted tumors. RESULTS [18F] FDG accumulation correlated with ANT2 expression in various cancer cell lines; this was not explained by GLUT1 and/or HK2 expression. At both the cell and tissue levels, ANT2 expression was high in less-differentiated or more malignant type of cancers. [18F] FDG accumulation changed according to the modulation of the ANT2 expression level. CONCLUSION In various cancer cells and tissues, the expression levels of ANT2 explained [18F] FDG accumulation better than those of GLUT1 and HK2. ANT2 can be used as a marker of dedifferentiated pathology and aggressiveness of cancer.
Collapse
|
38
|
Kim HO, Kim JS, Kim SO, Chae SY, Oh SJ, Seo M, Lee SH, Oh JS, Ryu JS, Huh JR, Kim JH. Clinicopathological characteristics of primary central nervous system lymphoma with low 18F-fludeoxyglucose uptake on brain positron emission tomography. Medicine (Baltimore) 2020; 99:e20140. [PMID: 32443328 PMCID: PMC7254841 DOI: 10.1097/md.0000000000020140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) typically shows a strong uptake of F-fludeoxyglucose (FDG) imaged by positron emission tomography (PET). Uncommonly, PCNSL demonstrates a low uptake on FDG PET. We investigated the clinicopathological characteristics of the unusual cases of PCNSL with low FDG uptake.We retrospectively enrolled 104 consecutive patients with newly diagnosed PCNSL who underwent baseline brain FDG PET. The degree of FDG uptake of PCNSL was visually scored by 4 grades (0, ≤contralateral white matter; 1, >contralateral white matter and <contralateral gray matter; 2, = contralateral gray matter; 3, >contralateral gray matter). Grades 0-2 were considered as PCNSL with low uptake. We investigated association of low uptake of PCNSL with the following clinicopathological factors: age, sex, steroid treatment, lactate dehydrogenase level, cerebrospinal fluid protein level, condition of PET scanning, immunohistochemical markers (cluster of differentiation 10 [CD10], B-cell lymphoma 6 [BCL-6], B-cell lymphoma 2 [BCL-2], multiple myeloma oncogene 1 [MUM1], Epstein-Barr virus [EBV] protein, and Ki67), location of lesions, tumor size, multiplicity of lesions, involvement of deep brain structures, and cystic or necrotic appearance of lesions.Of the 104 patients with PCNSL, 14 patients (13.5%) showed PCNSL with low FDG uptake on PET. Among various clinicopathological factors, MUM1 negativity was the only factor associated with low FDG uptake PCNSL by univariate (P = .002) and multivariate analysis (P = .007).This study suggests that the different clinicopathological characteristics between patients with high uptake and low uptake of PCNSL on FDG PET is closely associated with lack of MUM1, a protein known to be a crucial regulator of B-cell development and tumorigenesis.
Collapse
Affiliation(s)
- Hye Ok Kim
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University
| | | | - Seon-Ok Kim
- Department of Clinical Epidemiology and Biostatistics
| | | | | | - Minjung Seo
- Department of Nuclear Medicine, Ulsan University Hospital
| | - Suk Hyun Lee
- Division of Nuclear Medicine, Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine
| | | | | | | | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
Shi Y, Chen R, Wang Y, Huang G, Xia Q, Liu J. Delayed post-diuretic 18F-FDG PET/CT for preoperative evaluation of renal pelvic cancer. J Cancer 2020; 11:3745-3750. [PMID: 32328179 PMCID: PMC7171487 DOI: 10.7150/jca.44512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background: Application of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in urological oncology was relatively slowly due to the urinary elimination of 18F-FDG. We investigated whether delayed post-diuretic 18F-FDG PET/CT could be used for diagnosing renal pelvic cancer. Methods: 51 patients were included who underwent delayed post-diuretic 18F-FDG PET/CT for detecting renal pelvic space-occupying lesions. The comparations of delayed PET/CT parameters and clinical characteristics between renal pelvic cancer and benign polyp were investigated. Results: Among the 51 patients, 47 were found to have renal pelvic urothelial carcinoma, and 4 had benign polyp. ROC analysis identified the lesion maximum standardized uptake value (SUVmax) of 6.2 as the optimal cut-off value to distinguish from renal pelvic urothelial carcinoma to benign polyp. With the SUVmax cut-off of 6.2, the sensitivity, and specificity for predicting of renal pelvic urothelial carcinoma were 91.5% (43/47), and 100% (4/4). We also found a significant difference in tumor size between the positive (SUVmax > 6.2) and negative (SUVmax ≤ 6.2) PET groups in renal pelvic cancers. In patients with tumor size < 1.1 cm, the probability of being in the negative PET group was 75%. In such patients, a substantial proportion of renal pelvic cancer demonstrated negative SUVmax similar to that in patients with benign polyp. Conclusion: Delayed 18F-FDG PET/CT could be used for differentiating renal pelvic cancer from benign polyp. In patients with small tumor size, renal pelvic cancer may present low 18F-FDG uptake, mimicking the metabolic phenotypes of patients with benign polyp.
Collapse
Affiliation(s)
- Yiping Shi
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yining Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gan Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Xia
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Cossu V, Bauckneht M, Bruno S, Orengo AM, Emionite L, Balza E, Castellani P, Piccioli P, Miceli A, Raffa S, Borra A, Donegani MI, Carlone S, Morbelli S, Ravera S, Sambuceti G, Marini C. The Elusive Link Between Cancer FDG Uptake and Glycolytic Flux Explains the Preserved Diagnostic Accuracy of PET/CT in Diabetes. Transl Oncol 2020; 13:100752. [PMID: 32302773 PMCID: PMC7163080 DOI: 10.1016/j.tranon.2020.100752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 01/21/2023] Open
Abstract
This study aims to verify in experimental models of hyperglycemia induced by streptozotocin (STZ-DM) to what degree the high competition between unlabeled glucose and metformin (MET) treatment might affect the accuracy of cancer FDG imaging. The study included 36 “control” and 36 “STZ-DM” Balb/c mice, undergoing intraperitoneal injection of saline or streptozotocin, respectively. Two-weeks later, mice were subcutaneously implanted with breast (4 T1) or colon (CT26) cancer cells and subdivided in three subgroups for treatment with water or with MET at 10 or 750 mg/Kg/day. Two weeks after, mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested tumors. Finally, competition by glucose, 2-deoxyglucose (2DG) and the fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) on FDG uptake was studied in 4 T1 and CT26 cultured cells. STZ-DM slightly decreased cancer volume and FDG uptake rate (MRF). More importantly, it also abolished MET capability to decelerate lesion growth and MRF. This metabolic reprogramming closely agreed with the activity of hexose-6-phosphate dehydrogenase within the endoplasmic reticulum. Finally, co-incubation with 2DG virtually abolished FDG and 2-NBDG uptake within the endoplasmic reticulum in cultured cells. These data challenge the current dogma linking FDG uptake to glycolytic flux and introduce a new model to explain the relation between glucose analogue uptake and hexoses reticular metabolism. This selective fate of FDG contributes to the preserved sensitivity of PET imaging in oncology even in chronic moderate hyperglycemic conditions.
Collapse
Affiliation(s)
- Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Health Sciences, University of Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Health Sciences, University of Genoa, Italy
| | - Silvia Bruno
- Department Experimental Medicine, University of Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrica Balza
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Italy
| | - Anna Borra
- Department of Health Sciences, University of Genoa, Italy
| | | | | | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Ravera
- Department Experimental Medicine, University of Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Health Sciences, University of Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy; CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Italy.
| |
Collapse
|
41
|
Ozaki K, Harada K, Terayama N, Kosaka N, Kimura H, Gabata T. FDG-PET/CT imaging findings of hepatic tumors and tumor-like lesions based on molecular background. Jpn J Radiol 2020; 38:697-718. [PMID: 32246350 DOI: 10.1007/s11604-020-00961-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
The usefulness of whole-body 18-fluoro-2-deoxyglucose (FDG)-fluorodeoxyglucose positron emission (PET)/computed tomography (CT) is established for assessment of disease staging, detection of early disease recurrence, therapeutic evaluation, and predicting prognosis in various malignancies; and for evaluating the spread of inflammation. However, the role of FDG-PET/CT for the liver is limited because CT and magnetic resonance imaging (MRI) can provide an accurate diagnosis of most tumors. In addition, in other potentially useful roles there are several pitfalls in the interpretation of FDG uptake in PET/CT imaging. Accurate evaluation demands knowledge of the FDG uptake of each lesion, including potential negative and positive uptakes, and requires an understanding of the underlying background of the molecular mechanisms. The degree of FDG uptake is dependent on cellular metabolic rate and the expression of glucose transporter, hexokinase, and glucose-6-phosphatase, which in turn are closely affected by biological characteristics such as pathological category (e.g., adenocarcinoma, squamous cell carcinoma, small cell cancer, transitional cell cancer, neuroendocrine tumor, sarcoma, lymphoma), tumor differentiation, histological behavior (e.g., solid, cystic, mucinous), and intratumoral alterations (e.g., necrosis, degeneration, hemorrhage). Correlation with the CT and MRI findings, which also precisely depict the pathological findings, is important to avoid misdiagnosis.
Collapse
Affiliation(s)
- Kumi Ozaki
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Kenichi Harada
- Department of Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Noboru Terayama
- Department of Radiology, Takaoka City Hospital, Takaoka, Japan
| | - Nobuyuki Kosaka
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
42
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
43
|
Wang S, Lin D, Yang X, Zhan C, Zhao S, Luo R, Wang Q, Tan L. Clinical significance of PET/CT uptake for peripheral clinical N0 non-small cell lung cancer. Cancer Med 2020; 9:2445-2453. [PMID: 32056387 PMCID: PMC7131855 DOI: 10.1002/cam4.2900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Objective In this cohort study, we determined the clinical value of the maximum standardized uptake value (SUVmax) of primary tumors in non‐small cell lung cancer (NSCLC). Study Design A retrospective review of NSCLC patients was performed from January 2011 to December 2017. Peripheral cN0 NSCLC patients with tumor size ≤2 cm were included. SUVmax was calculated as a continuous variable for semiquantitative analyses. A receiver operating characteristic curve was analyzed to assess the cutoff threshold of SUVmax on pathological (p) nodal metastasis. We further evaluated the clinical relevance of SUVmax in peripheral cN0 NSCLC patients. Results A total of 670 peripheral NSCLC patients with tumor size ≤2 cm were deemed cN0 by preoperative PET/CT scan. Statistical analyses suggested significant correlations of SUVmax with smoking status (P = .026), tumor volume (P = .001), pathology type (P = .008), tumor differentiation (P < .001), vessel invasion (P = .001), plural invasion (P < .001), pT stage (P < .001), nodal involvement (P < .001), and pathological tumor node metastasis stage (P < .001). A cutoff point of SUVmax of 3.8 (P < .001) could be used to predict pathological nodal metastasis. Multivariable analyses indicated that preoperative SUVmax >3.8 (odds ratio, 12.149; P < .001) was an independent predictor of nodal metastasis. Overall survival analyses further suggested that SUVmax was an independent prognostic indicator (hazard ratio, 2.050; P = .017). Conclusion Preoperative SUVmax is a predictor of pathological nodal metastasis and prognosis for peripheral cN0 NSCLC patients with tumor size ≤2 cm. Our results indicate that assessment of PET SUVmax could improve stratification of these patients.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shihai Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Sun T, Du B, Diao Y, Li X, Chen S, Li Y. ATAD2 expression increases [18F]Fluorodeoxyglucose uptake value in lung adenocarcinoma via AKT-GLUT1/HK2 pathway. BMB Rep 2020. [PMID: 31186081 PMCID: PMC6675242 DOI: 10.5483/bmbrep.2019.52.7.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
[18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers.
Collapse
Affiliation(s)
- Tong Sun
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Bulin Du
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Yao Diao
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Xuena Li
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Song Chen
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| |
Collapse
|
45
|
Correlation between combining 18F–FDG PET/CT metabolic parameters and other clinical features and ALK or ROS1 fusion in patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2020; 47:1183-1197. [DOI: 10.1007/s00259-019-04652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/09/2019] [Indexed: 01/03/2023]
|
46
|
Kang KJ, Jung KH, Choi EJ, Kim H, Do SH, Ko IO, Oh SJ, Lee YJ, Kim JY, Park JA. Monitoring Physiological Changes in Neutron-Exposed Normal Mouse Brain Using FDG-PET and DW-MRI. Radiat Res 2019; 193:54-62. [PMID: 31682543 DOI: 10.1667/rr15405.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We monitored a physiological response in a neutron-exposed normal mouse brain using two imaging tools, [18F]fluro-deoxy-D-glucose positron emission tomography ([18F]FDG-PET) and diffusion weighted-magnetic resonance imaging (DW-MRI), as an imaging biomarker. We measured the apparent diffusion coefficient (ADC) of DW-MRI and standardized uptake value (SUV) of [18F]FDG-PET, which indicated changes in the cellular environment for neutron irradiation. This approach was sensitive enough to detect cell changes that were not confirmed in hematoxylin and eosin (H&E) results. Glucose transporters (GLUT) 1 and 3, indicators of the GLUT capacity of the brain, were significantly decreased after neutron irradiation, demonstrating that the change in blood-brain-barrier (BBB) permeability affects the GLUT, with changes in both SUV and ADC values. These results demonstrate that combined imaging of the same object can be used as a quantitative indicator for in vivo pathological changes. In particular, the radiation exposure assessment of combined imaging, with specific integrated functions of [18F]FDG-PET and MRI, can be employed repeatedly for noninvasive analysis performed in clinical practice. Additionally, this study demonstrated a novel approach to assess the extent of damage to normal tissues as well as therapeutic effects on tumors.
Collapse
Affiliation(s)
- Kyung Jun Kang
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Ki-Hye Jung
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Eun-Ji Choi
- College of Veterinary Medicine, Konkuk University, Seoul, Korea 05029
| | - Hyosung Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Korea 05029
| | - Sun Hee Do
- College of Veterinary Medicine, Konkuk University, Seoul, Korea 05029
| | - In Ok Ko
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Se Jong Oh
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Jung Young Kim
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| |
Collapse
|
47
|
Guo F, Li X, Yao G, Zeng G, Yu L. Correlation between 18F-FDG maximum standardized uptake value with CD147 expression in lung adenocarcinomas: a retrospective study. PeerJ 2019; 7:e7635. [PMID: 31565568 PMCID: PMC6741284 DOI: 10.7717/peerj.7635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background The pro-tumoral action of the cluster of differentiation 147 (CD147), which is associated with the chemotherapy resistance of lung adenocarcinoma, is partly due to accelerated tumor cell glycolysis. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) metabolic parameters included maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), which are non-invasive markers of the glucose metabolism of tumor cells in vivo. This study aimed to clarify the correlation between PET metabolic parameters and CD147 expression, and to evaluate the prognostic value of CD147 expression in resectable lung adenocarcinoma patients. Methods A total of 89 lung adenocarcinoma chemotherapy-naive patients who underwent 18F-fluorodeoxyglucose positron emission tomography and computerized tomography scan before pulmonary surgery were retrospectively analyzed. The PET metabolic parameters were calculated by 18F-FDG PET imaging, and CD147 expression was analyzed by immunohistochemistry. SUVmax, SUVmean, MTV, and TLG compared for their performance in predicting the expression of CD147 were illustrated with statistical analysis. All patients were then followed-up for survival analysis. Results The SUVmax was significantly correlated with the CD147 expression and was the primary predictor for the CD147 expression of lung adenocarcinoma. A cut-off value of the SUVmax, 9.77 allowed 85.1% sensitivity and 64.3% specificity for predicting the CD147 positive lung adenocarcinoma. CD147 expression was correlated with tumor differentiation and metastasis. Univariate survival analysis showed that CD147 expression was significantly associated with a shorter overall survival (OS) time. Multivariate analysis revealed that CD147 was an independent prognostic factor of lung adenocarcinoma patients. Conclusion The SUVmax of a primary tumor measured with 18F-FDG PET may be a simple and non-invasive marker for predicting CD147 expression in lung adenocarcinoma. CD147 is an independent prognostic factor related to OS of postoperative lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Fei Guo
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueyan Li
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guodong Yao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangchun Zeng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lijuan Yu
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
48
|
Graña-López L, Herranz M, Domínguez-Prado I, Argibay S, Villares Á, Vázquez-Caruncho M. Can dedicated breast PET help to reduce overdiagnosis and overtreatment by differentiating between indolent and potentially aggressive ductal carcinoma in situ? Eur Radiol 2019; 30:514-522. [DOI: 10.1007/s00330-019-06356-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
|
49
|
Mirus M, Tokalov SV, Abramyuk A, Heinold J, Prochnow V, Zöphel K, Kotzerke J, Abolmaali N. Noninvasive assessment and quantification of tumor vascularization using [18F]FDG-PET/CT and CE-CT in a tumor model with modifiable angiogenesis-an animal experimental prospective cohort study. EJNMMI Res 2019; 9:55. [PMID: 31227938 PMCID: PMC6588673 DOI: 10.1186/s13550-019-0502-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background This study investigated the noninvasive assessment of tumor vascularization with clinical F-18-fluorodeoxyglucose positron emission tomography/computed tomography and contrast-enhanced computed tomography ([18F]FDG-PET/CT and CE-CT) in experimental human xenograft tumors with modifiable vascularization and compared results to histology. Tumor xenografts with modifiable vascularization were established in 71 athymic nude rats by subcutaneous transplantation of human non-small-cell lung cancer (NSCLC) cells. Four different groups were transplanted with two different tumor cell lines (either A549 or H1299) alone or tumors co-transplanted with rat glomerular endothelial (RGE) cells, the latter to increase vascularization. Tumors were assessed noninvasively by [18F]FDG PET/CT and contrast-enhanced CT (CE-CT) using clinical scanners. This was followed by histological examinations evaluating tumor vasculature (CD-31 and intravascular fluorescent beads). Results In both tumor lines (A549 and H1299), co-transplantation of RGE cells resulted in faster growth rates [maximal tumor diameter of 20 mm after 22 (± 1.2) as compared to 45 (± 1.8) days, p < 0.001], higher microvessel density (MVD) determined histologically after CD-31 staining [171.4 (± 18.9) as compared to 110.8 (± 11) vessels per mm2, p = 0.002], and higher perfusion as indicated by the number of beads [1.3 (± 0.1) as compared to 1.1 (± 0.04) beads per field of view, p = 0.001]. In [18F]FDG-PET/CT, co-transplanted tumors revealed significantly higher standardized uptake values [SUVmax, 2.8 (± 0.2) as compared to 1.1 (± 0.1), p < 0.001] and larger metabolic active volumes [2.4 (± 0.2) as compared to 0.4 (± 0.2) cm3, p < 0.001] than non-co-transplanted tumors. There were significant correlations for vascularization parameters derived from histology and [18F]FDG PET/CT [beads and SUVmax, r = 0.353, p = 0.005; CD-31 and SUVmax, r = 0.294, p = 0.036] as well as between CE-CT and [18F]FDG PET/CT [contrast enhancement and SUVmax, r = 0.63, p < 0.001; vital CT tumor volume and metabolic PET tumor volume, r = 0.919, p < 0.001]. Conclusions In this study, a human xenograft tumor model with modifiable vascularization implementable for imaging, pharmacological, and radiation therapy studies was successfully established. Both [18F]FDG-PET/CT and CE-CT are capable to detect parameters closely connected to the degree of tumor vascularization, thus they can help to evaluate vascularization in tumors noninvasively. [18F]FDG-PET may be considered for characterization of tumors beyond pure glucose metabolism and have much greater contribution to diagnostics in oncology.
Collapse
Affiliation(s)
- Martin Mirus
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Institution under Public Law of the Free State of Saxony, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sergey V Tokalov
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Andrij Abramyuk
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Neuroradiology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jessica Heinold
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Municipal Hospital Dresden-Neustadt, Department of Neurology, Industriestraße 40, 01129, Dresden, Germany
| | - Vincent Prochnow
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Clinic for Obstetrics and Gynaecology, Klinikum Chemnitz, Flemmingstraße 4, 09116, Chemnitz, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nasreddin Abolmaali
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,Department of Radiology, Municipal Hospital and Academic Teaching Hospital of the Technical University Dresden, Dresden-Friedrichstadt, Friedrichstraße 41, 01067, Dresden, Germany.
| |
Collapse
|
50
|
Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET/CT for prediction of KRAS mutation in colorectal cancer patients: a systematic review and meta-analysis. Abdom Radiol (NY) 2019; 44:1703-1711. [PMID: 30603881 DOI: 10.1007/s00261-018-01891-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The purpose of the current study was to investigate the diagnostic performance of F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for the prediction of v-Ki-ras-2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer (CRC) patients through a systematic review and meta-analysis. METHODS The PubMed and EMBASE database, from the earliest available date of indexing through April 30, 2018, were searched for studies evaluating the diagnostic performance of F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients. RESULTS Across 9 studies (804 patients), the pooled sensitivity for F-18 FDG PET/CT was 0.66 (95% CI 0.60-0.73) without heterogeneity (I2 = 34.1, p = 0.14) and a pooled specificity of 0.67 (95% CI 0.62-0.72) without heterogeneity (I2 = 1.63, p = 0.42). Likelihood ratio (LR) syntheses gave an overall positive likelihood ratio (LR+) of 2.0 (95% CI 1.7-2.4) and negative likelihood ratio (LR-) of 0.5 (95% CI 0.41-0.61). The pooled diagnostic odds ratio (DOR) was 4 (95% CI 3-6). Hierarchical summary receiver operating characteristic (ROC) curve indicates that the areas under the curve were 0.69 (95% CI 0.65-0.73). CONCLUSION The current meta-analysis showed the low sensitivity and specificity of F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients. The DOR was very low and the likelihood ratio scatter-gram indicated that F-18 FDG PET/CT might not be useful for prediction of KRAS mutation and not for its exclusion. Therefore, cautious application and interpretation should be paid to the F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients.
Collapse
|